WO2024080302A1 - Binder composition for graphite electrode production use, method for producing green electrode for graphite electrode, method for producing baked electrode for graphite electrode, and method for producing graphite electrode - Google Patents

Binder composition for graphite electrode production use, method for producing green electrode for graphite electrode, method for producing baked electrode for graphite electrode, and method for producing graphite electrode Download PDF

Info

Publication number
WO2024080302A1
WO2024080302A1 PCT/JP2023/036878 JP2023036878W WO2024080302A1 WO 2024080302 A1 WO2024080302 A1 WO 2024080302A1 JP 2023036878 W JP2023036878 W JP 2023036878W WO 2024080302 A1 WO2024080302 A1 WO 2024080302A1
Authority
WO
WIPO (PCT)
Prior art keywords
producing
electrode
test piece
graphite electrode
graphite
Prior art date
Application number
PCT/JP2023/036878
Other languages
French (fr)
Japanese (ja)
Inventor
智 下岡
慎治 森竹
弘樹 水野
宮地 悟
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2024080302A1 publication Critical patent/WO2024080302A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder

Definitions

  • the present invention relates to a binder composition for producing a graphite electrode, a method for producing a raw electrode for a graphite electrode, a method for producing a sintered electrode for a graphite electrode, and a method for producing a graphite electrode.
  • Coal tar a by-product of coal carbonization, is mostly composed of condensed polycyclic aromatic compounds and has long been used as a raw material for various carbon products.
  • Coal tar products are made up of approximately 30% creosote oil and naphthalene, which are derived from distillate oil components, and the remaining 70% is made up of products derived from coal tar pitch, a heavy component that is a non-distillate.
  • needle coke made from coal tar pitch occupies an important position as a product with particularly high added value, and is mainly used as aggregate for graphite electrodes for electric steelmaking.
  • needle coke pitch from which impurities have been removed in the refining process is coked at a temperature of 400°C or higher using a delayed coker or the like to obtain green coke.
  • the green coke is subjected to a calcination process in which the water and volatile components contained in the green coke are removed to obtain needle coke.
  • needle coke particles are first mixed with binder pitch, which is used to manufacture the compact, in a specified ratio, and then the mixture is heated and kneaded, and then extruded to produce a raw electrode. This raw electrode is then fired and graphitized, and then processed to produce a graphite electrode product.
  • Patent Documents 1 and 2 propose a method of reducing puffing by heat-treating pitch coke at 1500° C. or higher to remove nitrogen.
  • Patent Document 3 shows a method of heat-treating raw coke at a normal calcination temperature after pre-treating it with an oxidation treatment or the like. These methods have the problem that the former consumes a large amount of energy due to high-temperature heating, and the latter is more complicated than the conventional methods.
  • Patent Document 4 proposes that a metal compound used as a puffing inhibitor in a solution state is added only to the surface of lumpy and granular coke before it is kneaded with binder pitch or the like, and then the mixture is heated, thereby increasing the puffing suppression effect while reducing the amount of inhibitor added.
  • the present invention has been made in consideration of the above circumstances, and aims to provide a binder composition for producing graphite electrodes that can suppress puffing of needle coke and improve the production yield and characteristics of graphite electrodes without incurring significant costs when producing needle coke, a method for producing raw electrodes for graphite electrodes, a method for producing sintered electrodes for graphite electrodes, and a method for producing graphite electrodes.
  • An embodiment of the present invention includes the following aspects.
  • a binder composition for producing graphite electrodes comprising an inhibitor for producing graphite electrodes and a binder pitch.
  • the element (M ⁇ ) is at least one metal element selected from the group consisting of K, Sc, alkaline earth metal elements, and rare earth metal elements.
  • L1 Thickness of test piece before firing (mm)
  • L2 Thickness of the test piece after firing to 2800°C (mm)
  • ⁇ Evaluation test (i)> The binder pitch, the ratio of which to the coal-based needle coke is 30% by weight, and the inhibitor for graphite electrode production, 2% by weight or 5% by weight, are mixed and kneaded for 5 minutes while heating at 165°C, and then the coal-based needle coke is added and kneaded again for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mm ⁇ x 3 mm to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece.
  • the test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L1 and L2 of the test piece before and after firing are measured.
  • P 1700-2100 (L3-L4) / L5 ⁇ 100 ...
  • L3, L4 and L5 have the following meanings.
  • L3 Thickness of the test piece after firing at 2100°C (mm)
  • L4 Thickness of the test piece after firing at 1700°C (mm)
  • L5 Thickness of the test piece after firing at 1000°C (mm) ⁇ Evaluation test (ii)>
  • the binder pitch, the ratio of which to the coal-based needle coke is 30% by weight, and the inhibitor for graphite electrode production, 2% by weight or 5% by weight, are mixed and kneaded for 5 minutes while heating at 165°C, and then the coal-based needle coke is added and kneaded again for 5 minutes while heating at 165°C.
  • L1 and L2 have the following meanings.
  • L1 Thickness of test piece before firing (mm)
  • L2 Thickness of the test piece after firing to 2800°C (mm)
  • ⁇ Evaluation test (iii)> Powdered binder pitch with a ratio of 30% by weight to the coal-based needle coke and 2% by weight of an inhibitor for graphite electrode production are mixed at room temperature for 10 minutes, and then the coal-based needle coke is added and kneaded for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mm ⁇ x 3 to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece.
  • the test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L1 and L2 of the test piece before and after firing are measured.
  • P 1700-2100 (L3-L4) / L5 ⁇ 100 ...
  • L3, L4 and L5 have the following meanings.
  • This is molded into a disk shape of 20 mm ⁇ x 3 to 15 mm, and calcined in a baking furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece.
  • the test piece is calcined at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L3, L4 and L5 of the test piece during calcination are measured.
  • L1 and L2 have the following meanings.
  • L1 Thickness of test piece before firing (mm)
  • L2 Thickness of the test piece after firing to 2800°C (mm)
  • ⁇ Evaluation test (i)> The binder pitch, the ratio of which to the coal-based needle coke is 30% by weight, and the inhibitor for graphite electrode production, 2% by weight or 5% by weight, are mixed and kneaded for 5 minutes while heating at 165°C, and then the coal-based needle coke is added and kneaded again for 5 minutes while heating at 165°C.
  • L3, L4 and L5 have the following meanings.
  • L3 Thickness of the test piece after firing at 2100°C (mm)
  • L4 Thickness of the test piece after firing at 1700°C (mm)
  • L5 Thickness of the test piece after firing at 1000°C (mm)
  • ⁇ Evaluation test (ii)> The binder pitch, the ratio of which to the coal-based needle coke is 30% by weight, and the inhibitor for graphite electrode production, 2% by weight or 5% by weight, are mixed and kneaded for 5 minutes while heating at 165°C, and then the coal-based needle coke is added and kneaded again for 5 minutes while heating at 165°C.
  • This is molded into a disk shape of 20 mm ⁇ x 3 mm to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece.
  • the test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L3, L4 and L5 of the test piece during firing are measured.
  • a method for producing a graphite electrode comprising producing a sintered electrode by the method for producing a sintered electrode for a graphite electrode according to [33] or [34], and graphitizing the sintered electrode at 2500° C. or more and 3000° C. or less to obtain a graphite electrode.
  • [36] The method for producing a graphite electrode according to [35], wherein the proportion of the graphite electrode production inhibitor remaining in the graphite electrode is 0.01% by weight or less.
  • a method for producing a graphite electrode comprising mixing the binder composition for producing a graphite electrode according to any one of [1] to [17] with needle coke and molding the mixture to obtain a raw electrode.
  • a method for producing a sintered electrode for a graphite electrode comprising producing a raw electrode by the method for producing a raw electrode for a graphite electrode according to [37], and sintering the raw electrode at 500° C. or more and 1,200° C. or less to obtain a sintered electrode.
  • a method for producing a graphite electrode comprising producing a sintered electrode by the method for producing a sintered electrode for a graphite electrode according to [38] or [39], and graphitizing the sintered electrode at 2500° C. or more and 3000° C. or less to obtain a graphite electrode.
  • a binder composition containing an inhibitor and binder pitch for producing graphite electrodes by using a binder composition containing an inhibitor and binder pitch for producing graphite electrodes, it is possible to suppress puffing of needle coke without incurring significant costs during the production of needle coke, and to improve the production yield and characteristics of graphite electrodes.
  • FIG. 1 is a diagram showing hot puffing values measured by a thermal dilatometer for Examples 1-1, 1-2, 2-1, 2-2, and 3 and Comparative Examples 1 and 2.
  • FIG. 1 is a diagram showing data obtained by measuring hot puffing in Examples 1-1, 1-2, 2-1, 2-2 and Comparative Example 1 by a differential method.
  • FIG. 1 is a diagram showing hot puffing values measured by a thermal dilatometer in Example 3 and Comparative Examples 1 and 3.
  • % by weight is synonymous with “% by mass”
  • parts by weight is synonymous with “parts by mass”.
  • pitch-based is treated as a synonym for "coal-based.”
  • the "sulfur content of the coke” in the present invention means a value measured in accordance with JIS M8813.
  • the "nitrogen content of the coke” in the present invention means a value measured in accordance with JIS M8819.
  • Binder Composition for Producing Graphite Electrodes One embodiment of the present invention relates to a binder composition for producing graphite electrodes.
  • the binder composition for producing a graphite electrode according to the embodiment is a composition used for producing a graphite electrode, and contains an inhibitor for producing a graphite electrode (hereinafter, sometimes simply referred to as an "inhibitor") in a binder pitch. Since the puffing suppression effect can be increased while reducing the amount of inhibitor added, a composition in which the inhibitor is contained in the binder pitch is preferred.
  • the inhibitor used in the binder composition for graphite electrode production according to the embodiment is intended to suppress puffing of needle coke when the binder composition and needle coke are fired simultaneously to obtain a graphite electrode.
  • the inhibitor comprises at least one of a metal consisting of the element (M ⁇ ) and an oxide having the element (M ⁇ ).
  • Element (M ⁇ ) at least one element selected from the group consisting of Group 4 elements (Ti, Zr, Hf), Group 8 elements (Fe, Ru, Os), Group 9 elements (Co, Rh, Ir), Group 10 elements (Ni, Pr, Pt), Group 13 elements (B, Al, Ga, In), Group 14 elements (Si, Ge, Sn) and Group 15 elements (P, Sb, Bi) of the long form periodic table.
  • the inhibitor of the first embodiment includes a composite oxide having an element (M ⁇ ) and an element (M ⁇ ), or a metal or alloy composed of the element (M ⁇ ).
  • Element (M ⁇ ) At least one metal element (excluding element (M ⁇ )).
  • Element (M ⁇ ) at least one element selected from the group consisting of Group 4 elements (Ti, Zr, Hf), Group 8 elements (Fe, Ru, Os), Group 9 elements (Co, Rh, Ir), Group 10 elements (Ni, Pr, Pt), Group 13 elements (B, Al, Ga, In), Group 14 elements (Si, Ge, Sn) and Group 15 elements (P, Sb, Bi) of the long form periodic table.
  • the element (M ⁇ ) is preferably at least one metal element selected from the group consisting of K, Sc, alkaline earth metal elements (Mg, Ca, Sr, Ba) and rare earth metal elements (Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) because it is easy to reduce puffing, more preferably at least one metal element selected from the group consisting of alkaline earth metals and rare earth metal elements, even more preferably at least one metal element selected from the group consisting of Mg, Ca, Sr, and Ba, as well as La and Ce, and particularly preferably at least one of Ca and Ce.
  • the element (M ⁇ ) is preferably at least one element selected from the group consisting of Si, Ge, Al, B, Ti, Fe and P, as this tends to reduce puffing, more preferably at least one element of Si and Ge, and most preferably Si.
  • composition formula of the inhibitor of the first embodiment is not particularly limited, but is preferably the following formula (1) because it is easy to reduce puffing.
  • x is preferably 0 ⁇ x ⁇ 3, more preferably 0.05 ⁇ x ⁇ 2.5, and particularly preferably 0.1 ⁇ x ⁇ 2, since puffing is easily reduced.
  • y is preferably 0 ⁇ y ⁇ 1, more preferably 0.01 ⁇ y ⁇ 0.8, and particularly preferably 0.1 ⁇ y ⁇ 0.5, since puffing can be easily reduced.
  • z is preferably 0 ⁇ z ⁇ 5, more preferably 0.05 ⁇ z ⁇ 4, and particularly preferably 0.1 ⁇ z ⁇ 3, since puffing can be easily reduced.
  • composite oxides having an element (M ⁇ ) and an element (M ⁇ ) include, for example, MgSi3O7 , Mg3SiO5 , Mg14Si5O24 , MgO , Ca3SiO5 , Ca2SiO4 , CaSiO3 , Ca8Si5O18, CaSi2O5 , CaO, CaCO3 , Ca( OH ) 2 , SrSiO3 , Sr3SiO5 , SrSi2O5 , Sr2SiO4 , Ba3SiO5 , Ba2SiO4 , BaSiO3 , BaSi2O5 , Ba2Si3O8 , and Ba5Si8O21 .
  • the method for producing the inhibitor of the first embodiment is not particularly limited, and examples thereof include known methods such as measuring and mixing raw material compounds so as to obtain the composition ratio of the target composite oxide, and firing the mixture at a temperature range of 1000° C. to 1500° C. in air or in a reducing atmosphere.
  • the upper limit of the particle size of the obtained inhibitor is not particularly limited, but is more preferably 10,000 ⁇ m or less, particularly preferably 1,000 ⁇ m or less, and most preferably 100 ⁇ m or less.
  • the lower limit of the particle size is also not particularly limited, but is more preferably 1 nm or more, particularly preferably 10 nm or more, and most preferably 100 nm or more.
  • the particle size of the inhibitor means the mode diameter measured by a method using a laser diffraction type particle size distribution analyzer MT3300EX (manufactured by Microtrac Bell) and ethanol as a dispersion medium.
  • the puffing suppression effect is increased, and the manufacturing yield and characteristics of the graphite electrode are improved.
  • the reason why the inhibitor of the first embodiment exhibits such an effect is not yet clear, but is presumed to be as follows. It is presumed that the presence of the inhibitor of the first embodiment during the calcination of the needle coke for graphite electrodes causes a complex compound containing nitrogen or a complex compound containing sulfur to be formed at a temperature lower than the temperature at which nitrogen is desorbed from the graphite electrode, and the timing of nitrogen desorption or sulfur desorption is shifted from that of a system without the inhibitor added, thereby suppressing the puffing phenomenon.
  • the inhibitor of the first embodiment contains a complex oxide having the element (M ⁇ ) and the element (M ⁇ ), it reacts with the nitrogen or sulfur in the coke during the temperature rise process during calcination to form a complex compound (nitride, oxynitride, sulfide, oxysulfide, carbonitride), and thus the effect of the first embodiment is achieved.
  • the inhibitor of the second embodiment includes a metal consisting of the element (M ⁇ ) or an oxide having the element (M ⁇ ), and a metal consisting of the element (M ⁇ ) or an oxide having the element (M ⁇ ).
  • the inhibitor of the second embodiment preferably includes an oxide having the element (M ⁇ ) and an oxide having the element (M ⁇ ) because puffing is easily reduced.
  • Element (M ⁇ ) At least one metal element (excluding element (M ⁇ )).
  • Element (M ⁇ ) at least one element selected from the group consisting of Group 4 elements, Group 8 elements, Group 9 elements, Group 10 elements, Group 13 elements, Group 14 elements, and Group 15 elements of the long form periodic table.
  • the element (M ⁇ ) is at least one metal element selected from the group consisting of K, Sc, alkaline earth metal elements, and rare earth metal elements, it is more preferable that the element (M ⁇ ) is at least one metal element selected from the group consisting of Sc, alkaline earth metals, and rare earth metal elements, it is particularly preferable that the element (M ⁇ ) is at least one metal element selected from the group consisting of alkaline earth metals and rare earth metal elements, and it is most preferable that the element (M ⁇ ) is an alkaline earth metal.
  • composition formula of the oxide having the element (M ⁇ ) is not particularly limited, but is preferably the following formula (2) because it is easy to reduce puffing.
  • x1 is preferably 0 ⁇ x1 ⁇ 3, more preferably 0.05 ⁇ x1 ⁇ 2.5, and particularly preferably 0.1 ⁇ x1 ⁇ 2, because puffing can be easily reduced.
  • z1 is preferably 0 ⁇ z1 ⁇ 3, more preferably 0.05 ⁇ z1 ⁇ 2.5, and particularly preferably 0.1 ⁇ z1 ⁇ 2, because puffing can be easily reduced.
  • the metal consisting of the element (M ⁇ ) or the oxide having the element (M ⁇ ) include CaO, Ca(OH) 2 , CaCO3 , Ca, MgO, MgCO3 , Mg(OH) 2 , Mg, SrO, SrCO3 , Sr (OH) 2 , Sr, BaO, BaCO3 , Ba(OH) 2 , Ba, CeO2 , Ce, Pr6O11 , Pr, Eu2O3 , and Eu.
  • the oxide having the element ( M ⁇ ) contained in the inhibitor of the second embodiment may be one type or two or more types.
  • the element (M ⁇ ) is preferably at least one element selected from the group consisting of Si, Ge, Al, B, Ti, Fe and P, more preferably at least one element of Si and Ge, and most preferably Si, because this easily reduces puffing.
  • composition formula of the oxide having the element (M ⁇ ) is not particularly limited, but is preferably the following formula (3) because it is easy to reduce puffing.
  • M ⁇ 1-y1 O 2-z2 ... (3) (In the formula, M ⁇ is an element (M ⁇ ), 0 ⁇ y1 ⁇ 1, and 0 ⁇ z2 ⁇ 2.)
  • y1 is preferably 0 ⁇ y1 ⁇ 1, more preferably 0.01 ⁇ y1 ⁇ 0.8, and particularly preferably 0.1 ⁇ y1 ⁇ 0.5, since puffing can be easily reduced.
  • z2 is preferably 0 ⁇ z2 ⁇ 2, more preferably 0.05 ⁇ z2 ⁇ 0.2, and particularly preferably 0.1 ⁇ z2 ⁇ 0.15, since puffing can be easily reduced.
  • the metal consisting of the element (M ⁇ ) or the oxide having the element (M ⁇ ) include, for example, SiO 2 , Si, SiO x , GeO 2 , Ge, Al 2 O 3 , Al, B 2 O 3 , and P 2 O 5.
  • the oxide having the element (M ⁇ ) contained in the inhibitor of the second embodiment may be one type or two or more types.
  • the method for producing the inhibitor of the second embodiment is not particularly limited, and an example thereof is a method in which the elements (M ⁇ ) and (M ⁇ ) are measured and mixed in a desired ratio, and then fired in an air atmosphere and a reducing atmosphere at a temperature range of 1000° C. to 1500° C. to obtain an inhibitor in which an oxide having the element (M ⁇ ) and an oxide having the element (M ⁇ ) are composited.
  • the inhibitor may be prepared by mixing an oxide having an element (M ⁇ ) with an oxide having an element (M ⁇ ).
  • the particle size of the composite inhibitor is not particularly limited, but is more preferably 10,000 ⁇ m or less, particularly preferably 1000 ⁇ m or less, and most preferably 100 ⁇ m or less.
  • the lower limit of the particle size is also not particularly limited, but is more preferably 1 nm or more, particularly preferably 10 nm, and most preferably 100 nm or more. By controlling the particle size within this range, it is expected that the inhibitor can be easily uniformly dispersed in the binder pitch, and the puffing effect can be enhanced.
  • the mixing ratio of the oxide having the element (M ⁇ ) and the oxide having the element (M ⁇ ) is not particularly limited, but in order to achieve low puffing, the lower limit of the weight ratio of the oxide having the element (M ⁇ ) to the oxide having the element (M ⁇ ) is usually 0.01 or more, preferably 0.05 or more, and more preferably 0.1 or more, while the upper limit is usually 1 or less, preferably 0.7 or less, and more preferably 0.5 or less.
  • the puffing suppression effect is increased, and the manufacturing yield and characteristics of the graphite electrode are improved.
  • the reason why the inhibitor of the second embodiment exhibits such an effect is not yet clear, but is presumed to be as follows.
  • the presence of the inhibitor of the second embodiment during the calcination of the needle coke for graphite electrodes causes a nitrogen-containing composite compound or a sulfur-containing composite compound to be formed at a temperature lower than the temperature at which nitrogen is desorbed from the graphite electrode, and the timing of nitrogen desorption or sulfur desorption is shifted from that in a system in which the inhibitor is not added, thereby suppressing the puffing phenomenon.
  • the inhibitor of the second embodiment contains a metal made of element (M ⁇ ) or an oxide having element (M ⁇ ) and a metal made of element (M ⁇ ) or an oxide having element (M ⁇ ), it reacts with nitrogen or sulfur in the coke during the temperature rise process during calcination to form a composite compound (nitride, oxynitride, sulfide, oxysulfide, carbonitride), and therefore the effect of the second embodiment is achieved.
  • Binder pitch may be the same as the raw material pitch of needle coke.
  • pitch derived from coal tar, FCC decant oil, ethylene heavy ends, petroleum residue, petroleum waste, biomass oil, biomass tar, etc. may be exemplified.
  • the binder pitch may be used alone or in combination of two or more kinds.
  • the ratio (wt%) of the inhibitor to the total weight of the binder pitch is X, it is preferable that 0.02 ⁇ X ⁇ 60. This makes it easier to obtain a sufficient puffing reduction effect and also makes it easier to reduce adverse effects on electrode products.
  • the ratio X of the inhibitor is more preferably 0.2 ⁇ X ⁇ 50, and further preferably 2 ⁇ X ⁇ 40.
  • the binder composition for producing a graphite electrode according to the embodiment is likely to suppress puffing of needle coke during the production of a graphite electrode, it is preferable that the puffing value P2800 calculated by the following formula (I) of a test piece prepared in the following evaluation test (i) is 1.20% or less.
  • P 2800 (L2 - L1) / L1 ⁇ 100 ...
  • L1 and L2 have the following meanings.
  • L1 Thickness of test piece before firing (mm)
  • L2 Thickness of the test piece after firing to 2800°C (mm)
  • ⁇ Evaluation test (i)> The binder pitch, the ratio of which to the coal-based needle coke is 30% by weight, and the inhibitor for graphite electrode production, 2% by weight or 5% by weight, are mixed and kneaded for 5 minutes while heating at 165°C, and then the coal-based needle coke is added and kneaded again for 5 minutes while heating at 165°C.
  • This is molded into a disk shape of 20 mm ⁇ x 3 mm to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece.
  • the test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L1 and L2 of the test piece before and after firing are measured.
  • the puffing value P2800 of the test piece prepared in the evaluation test (i) is preferably 1.2% or less, more preferably 1.15% or less, even more preferably 1.1% or less, particularly preferably 1.05% or less, even more preferably 1% or less, and most preferably 0% or less.
  • the lower limit of the puffing value P2800 of the test piece prepared in the evaluation test (i) is not particularly limited, but is preferably -5% or more, more preferably -2% or more.
  • the lower limit and upper limit of the puffing value P2800 can be arbitrarily combined, and for example, it is preferably -5% or more and 1.20% or less.
  • a test piece is prepared in the same manner as in the evaluation test (i) except that no inhibitor is used, and the puffing value (blank) of the test piece calculated by the formula (I) is defined as P 2800b .
  • the puffing value ratio calculated by P 2800 /P 2800b for the test piece in evaluation test (i) is preferably less than 1, more preferably 0.95 or less, even more preferably 0.9 or less, and particularly preferably 0.85 or less.
  • the lower limit of the P 2800 /P 2800b is not limited, but may be substantially -1.5 or more.
  • the puffing value P 1700-2100 calculated by the following formula (II) of the test piece prepared in the following evaluation test (ii) is 0.7% or less.
  • P 1700-2100 (L3-L4) / L5 ⁇ 100 ...
  • L3, L4 and L5 have the following meanings.
  • L5 Thickness of the test piece after firing at 1000°C (mm)
  • ⁇ Evaluation test (ii)> The binder pitch, the ratio of which to the coal-based needle coke is 30% by weight, and the inhibitor for graphite electrode production, 2% by weight or 5% by weight, are mixed and kneaded for 5 minutes while heating at 165°C, and then the coal-based needle coke is added and kneaded again for 5 minutes while heating at 165°C.
  • This is molded into a disk shape of 20 mm ⁇ x 3 mm to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece.
  • the test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L3, L4 and L5 of the test piece during firing are measured.
  • the puffing value P 1700-2100 of the test piece prepared in the evaluation test (ii) is preferably 0.7% or less, more preferably 0.6% or less, particularly preferably 0.5% or less, and most preferably 0.4% or less.
  • the lower limit of the puffing value P 1700-2100 of the test piece prepared in the evaluation test (ii) is not particularly limited, but is preferably -5% or more, more preferably -2% or more.
  • the lower limit and upper limit of the puffing value P 1700-2100 can be arbitrarily combined, and for example, it is preferably -5% or more and 0.7% or less.
  • a test piece is prepared in the same manner as in the evaluation test (ii) except that no inhibitor is used, and the puffing value (blank) of the test piece calculated by the formula (II) is defined as P 1700-2100b .
  • the puffing value ratio calculated by P 1700-2100 /P 1700-2100b for the test piece in evaluation test (ii) is preferably less than 1, more preferably 0.9 or less, even more preferably 0.8 or less, and particularly preferably 0.6 or less.
  • the lower limit of the P 1700-2100 /P 1700-2100b is not limited, but may be substantially -1.5 or more.
  • Powdered binder pitch with a ratio of 30% by weight to the coal-based needle coke and 2% by weight of an inhibitor for graphite electrode production are mixed at room temperature for 10 minutes, and then the coal-based needle coke is added and kneaded for 5 minutes while heating at 165°C.
  • This is molded into a disk shape of 20 mm ⁇ x 3 to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece.
  • the test piece is fired at a heating rate of 20°C/min to 2800°C using a thermal expansion measuring device, and L1 and L2 of the test piece before and after firing are measured.
  • the puffing value P 2800 of the test piece prepared in the evaluation test (iii) is preferably 1.2% or less, more preferably 1.15% or less, even more preferably 1.1% or less, particularly preferably 1.05% or less, even more preferably 1% or less, and most preferably 0% or less.
  • the lower limit of the puffing value P 2800 of the test piece prepared in the evaluation test (iii) is not particularly limited, but is preferably -5% or more, more preferably -2% or more.
  • the lower limit and upper limit of the puffing value P 2800 can be arbitrarily combined, and for example, it is preferably -5% or more and 1.20% or less.
  • the puffing value (blank) of the test piece calculated by the formula (I) is defined as P 2800b .
  • the puffing value ratio calculated by P2800 / P2800b for the test piece in evaluation test (iii) is preferably less than 1, more preferably 0.95 or less, even more preferably 0.9 or less, and particularly preferably 0.85 or less.
  • the lower limit of the P2800 / P2800b is not limited, but may be substantially -1.5 or more.
  • the puffing value P 1700-2100 calculated by the following formula (II) of the test piece prepared in the following evaluation test (iv) is 0.7% or less.
  • P 1700-2100 (L3-L4) / L5 ⁇ 100 ...
  • L3, L4 and L5 have the following meanings.
  • L5 Thickness of the test piece after firing at 1000°C (mm)
  • Powdered binder pitch with a ratio of 30% by weight to the coal-based needle coke and 2% by weight of an inhibitor for graphite electrode production are mixed at room temperature for 10 minutes, and then the coal-based needle coke is added and kneaded for 5 minutes while heating at 165°C.
  • This is molded into a disk shape of 20 mm ⁇ x 3 to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece.
  • the test piece is fired at a heating rate of 20°C/min up to 2800°C using a heating thermal expansion measuring device, and L3, L4 and L5 of the test piece during firing are measured.
  • the puffing value P 1700-2100 of the test piece prepared in the evaluation test (iv) is preferably 0.7% or less, more preferably 0.6% or less, particularly preferably 0.5% or less, and most preferably 0.4% or less.
  • the lower limit of the puffing value P 1700-2100 of the test piece prepared in the evaluation test (iv) is not particularly limited, but is preferably -5% or more, more preferably -2% or more.
  • the lower limit and upper limit of the puffing value P 1700-2100 can be arbitrarily combined, and for example, it is preferably -5% or more and 0.7% or less.
  • a test piece is prepared in the same manner as in the evaluation test (iv) except that no inhibitor is used, and the puffing value (blank) of the test piece calculated by the formula (II) is defined as P 1700-2100b .
  • the ratio of the puffing value calculated by P 1700-2100 /P 1700-2100b for the test piece in evaluation test (iv) is preferably less than 1, more preferably 0.9 or less, even more preferably 0.8 or less, and particularly preferably 0.6 or less.
  • the lower limit of the P 1700-2100 /P 1700-2100b is not limited, but may be substantially -1.5 or more.
  • the method for producing the binder composition for producing graphite electrodes according to the embodiment is not particularly limited.
  • the inhibitor may be dissolved or dispersed in an organic solvent or heavy oil and added to the binder pitch, so that the inhibitor is applied to the surface of the binder pitch.
  • the inhibitor may be dissolved in a volatile solvent such as alcohol or benzene and then added.
  • a method for producing a raw electrode for a graphite electrode includes mixing an inhibitor and a binder pitch to produce a binder composition for producing a graphite electrode, mixing the binder composition for producing a graphite electrode with needle coke, and molding the mixture to obtain a raw electrode.
  • a method for producing a raw electrode for a graphite electrode according to another embodiment may include mixing a binder composition for producing a graphite electrode that has been produced in advance with needle coke, and molding the mixture to obtain a raw electrode.
  • the method for producing the binder composition for producing a graphite electrode is as described above.
  • a method can be exemplified in which the binder composition for producing graphite electrodes is mixed (kneaded) with needle coke, and iron oxide is further added as necessary, and then the mixture is molded.
  • the use of iron oxide may be omitted, but the use of iron oxide can provide a further effect of reducing puffing, so that the amount of iron oxide may be appropriately determined taking into consideration the required quality and economic efficiency.
  • the molding method is not particularly limited, and may be, for example, extrusion molding.
  • the amount of the fine coke mixed is preferably 50% by weight or less, more preferably 30% by weight or less, based on the total amount of the needle coke for graphite electrodes. Since the fine coke is not directly related to the puffing reduction effect, the amount of the fine coke to be mixed may be appropriately determined taking into account the electrode quality such as the ash content and the economical efficiency.
  • pitches that are usually used as raw materials for needle coke for graphite electrodes can be used.
  • pitches derived from coal tar, FCC decant oil, ethylene heavy ends, petroleum residues, petroleum waste, biomass oil, biomass tar, etc. can be exemplified.
  • One type of raw material pitch may be used alone, or two or more types may be used in combination.
  • the needle coke is not particularly limited, but is preferably a pitch-based needle coke because of its small thermal expansion coefficient.
  • Pitch-based needle coal coke has a high sulfur and nitrogen content and tends to cause high puffing if used as is, but in the present invention, puffing can be sufficiently suppressed even when using pitch-based needle coal coke.
  • Pitch-based needle coke can be suitably used as an aggregate for graphite electrodes for electric furnace steelmaking.
  • pitch-based needle coke can be produced by hydrogenating a raw coal tar pitch to obtain hydrogenated coal tar pitch, and then coking the hydrogenated coal tar pitch.
  • Hydrogenated coal tar pitch is obtained by subjecting a raw coal tar pitch to a hydrogenation reaction (hydrogenation step) and separating light oil from the obtained hydrogenated coal tar pitch (separation step). The light oil separated in the separation step can be recycled by supplying it to the hydrogenation step.
  • the method for hydrogenating the raw coal tar pitch and the method for separating the light oil from the hydrogenated coal tar pitch are not particularly limited, and known methods can be applied.
  • the raw coal tar pitch is not particularly limited.
  • the manufacturing method (pre-adjustment method) of the raw coal tar pitch is not particularly limited, and for example, a method of substantially removing quinoline insolubles from coal tar heavy oil can be exemplified.
  • a method for removing quinoline insolubles a known method can be applied, but a method of treating with an aromatic oil or aliphatic oil solvent, or a method of treating with a mixed solvent of aromatic oil and aliphatic oil is preferable.
  • the solvent is mixed with the coal tar heavy oil under appropriate conditions, heated, and then allowed to stand as necessary, and the mixture is distilled to remove low boiling point components, thereby obtaining a raw coal tar pitch that contains almost no quinoline insolubles.
  • aliphatic oil alicyclic compounds such as cyclohexane and cyclopentane, compounds with carbonyl groups such as acetone and ether, light oil, etc. can be used.
  • aromatic oil tar washing oil, anthracene oil, etc. can be used.
  • petroleum heavy oil may be mixed with the raw coal tar pitch.
  • the coal tar heavy oil and the petroleum heavy oil may be mixed, and then the quinoline insoluble matter may be removed to obtain a mixture of raw coal tar pitch and petroleum heavy oil.
  • the raw coal tar pitch and petroleum heavy oil may be mixed, and the light oil may be separated and used in the hydrogenation process.
  • the light oil-separated coal tar pitch obtained by separating the light oil may be mixed with the petroleum heavy oil and used in the hydrogenation process.
  • Petroleum-based heavy oils are not particularly limited, and examples include fluid catalytic cracking oil, atmospheric distillation residual oil, vacuum distillation residual oil, shale oil, tar sand bitumen, Orinoco tar, coal liquefaction oil, ethylene bottom oil, and heavy oils obtained by hydrorefining these.
  • the oil may further contain relatively light oils such as straight run diesel, vacuum diesel, desulfurized diesel, and desulfurized vacuum diesel.
  • the method for converting hydrogenated coal tar pitch into coke is not particularly limited, and examples include the delayed coking method, the visbreaking method, the flexicoking method, and the Eureka process. Among these, the delayed coking method is preferred from the standpoint of productivity and quality stability of needle coke.
  • hydrogenated coal tar pitch is heated as it passes rapidly through a heating tube and is introduced into a coke drum where coking occurs.
  • the temperature is preferably between 300°C and 600°C, and the coking time is preferably 8 to 72 hours.
  • the coke thus obtained can be calcined in a rotary kiln, shaft furnace, or the like.
  • the calcination temperature is preferably from 1000°C to 1700°C, more preferably from 1000°C to 1500°C.
  • the calcination time is preferably from 1 hour to 6 hours, more preferably from 1.5 hours to 5 hours.
  • Another embodiment of the present invention relates to a method for producing a sintered electrode for a graphite electrode.
  • the raw electrode is sintered at 500° C. or more and 1200° C. or less to obtain a sintered electrode for graphite electrode.
  • the raw electrode may be fired in one step or two steps, for example, by a method of performing primary firing, impregnation, secondary firing, etc.
  • the firing temperature is from 500° C. to 1200° C., and is preferably from 800° C. to 1100° C. because the binder pitch is easily burned off.
  • the ratio (wt%) of the inhibitor to the total weight of the sintered electrode is Y, it is preferable that 0.02 ⁇ Y ⁇ 15.
  • the inhibitor ratio Y is a value as the amount of ash (metal component or metal oxide).
  • the ratio Y of the inhibitor is more preferably 0.1 ⁇ Y ⁇ 10, and further preferably 0.5 ⁇ Y ⁇ 7.5.
  • a graphite electrode is obtained by subjecting a sintered electrode obtained by sintering a raw electrode to a graphitization treatment at 2500° C. to 3000° C. In producing a graphite electrode, processing may be performed after graphitization as necessary.
  • the graphitization temperature is preferably 2500°C or higher and 3000°C or lower, and more preferably 2600°C or higher and 3000°C or lower. If the graphitization temperature is equal to or higher than the lower limit, the inhibitor can be easily burned off sufficiently. If the graphitization temperature is equal to or lower than the upper limit, the graphitization temperature can be easily performed while suppressing deterioration and wear of the electrode due to sublimation and oxidation of graphite. The preferred lower and upper limits of the graphitization temperature can be combined in any way.
  • the proportion of inhibitors remaining in the graphite electrode is preferably 0.01% by weight or less, more preferably 0.005% by weight or less, and even more preferably 0.001% by weight or less, based on the total weight of the graphite electrode. If the proportion of remaining inhibitors is equal to or less than the upper limit, contamination of the iron during electric furnace steelmaking can be reduced.
  • the present invention uses a binder composition for producing graphite electrodes, which contains an inhibitor and binder pitch, and thereby makes it possible to suppress puffing of needle coke without incurring significant costs during the production of needle coke, and to improve the production yield and characteristics of graphite electrodes.
  • the puffing suppression effect is enhanced by using an inhibitor containing at least one of a metal consisting of the element (M ⁇ ) and an oxide having the element (M ⁇ ).
  • an inhibitor containing a composite oxide having the element (M ⁇ ) and the element (M ⁇ ) is preferred because it further enhances the puffing suppression effect.
  • Test piece preparation method-1 In each example, 30% by weight of binder pitch relative to the coal-based needle coke and 2% by weight or 5% by weight of inhibitor were mixed and stirred for 10 minutes, and then kneaded for 5 minutes while heating at 165°C to obtain a mixed powder of binder pitch and inhibitor (binder composition for graphite electrode production). Coal-based needle coke pulverized to a predetermined particle size was added to the obtained binder composition for graphite electrode production, and kneaded for 5 minutes in an oil bath at 165°C.
  • Test piece preparation method-2 In each example, 30% by weight of binder pitch and 2% by weight of inhibitor were added to coal-based needle coke pulverized to a specified particle size, stirred and mixed for 10 minutes, and then kneaded for 5 minutes in an oil bath at 165° C. This was molded into a disk shape of 20 mm ⁇ 3 to 15 mm, and calcined in a firing furnace at 1000° C. for 3 hours to burn off the binder pitch and prepare a test piece for puffing measurement.
  • Test piece preparation method-3 30% by weight of binder pitch and 2% by weight of inhibitor were mixed and stirred for 10 minutes to obtain a mixed powder of binder pitch and inhibitor (binder composition for graphite electrode production).
  • Binder composition for graphite electrode production Coal-based needle coke pulverized to a predetermined particle size was added to the obtained binder composition for graphite electrode production, and kneaded for 5 minutes in an oil bath at 165°C. This was molded into a disk shape of 20 mm ⁇ x 3 mm to 15 mm, and calcined in a baking furnace at 1000°C for 3 hours to burn off the binder pitch and obtain a test piece for puffing measurement.
  • Hot puffing value ( ⁇ L / L) x 100 (In the formula, L is the length of the test piece before the test, and ⁇ L is the elongation in the longitudinal direction of the test piece during the temperature rise to 2800° C.)
  • Example 1-1 Ca 2 SiO 4 was used as an inhibitor, and the amount of inhibitor added was 2% by weight based on the coal-based needle coke.
  • P 2800 and P 1700-2100 were calculated by the above-mentioned "(5) Measurement of cold puffing”. The results are shown in Table 1.
  • the hot puffing value was measured by the above-mentioned "(6) Measurement of hot puffing”. The results are shown in Figures 1 and 2.
  • Example 1-2 Using the test pieces obtained in the same manner as in Example 1-1, P2800 and P1700-2100 were calculated by the method described above in “(5) Measurement of cold puffing”. The results are shown in Table 1. In addition, the hot puffing value was measured by the method described above in “(6) Measurement of hot puffing”. The results are shown in Figures 1 and 2.
  • Example 2-1 Test pieces were obtained in the same manner as in Example 1-1, except that the amount of inhibitor added was changed to 5% by weight, and P2800 and P1700-2100 were calculated by the method described above in "(5) Measurement of cold puffing”. The results are shown in Table 1. In addition, the hot puffing value was measured by the method described above in "(6) Measurement of hot puffing”. The results are shown in Figures 1 and 2.
  • Example 2-2 Using the test pieces obtained in the same manner as in Example 2-1, P2800 and P1700-2100 were calculated by the method described above in "(5) Measurement of cold puffing”. The results are shown in Table 1. In addition, the hot puffing value was measured by the method described above in “(6) Measurement of hot puffing”. The results are shown in Figures 1 and 2.
  • Example 3 Using Ca2SiO4 as an inhibitor and the test pieces obtained in the above-mentioned "(4) Test piece preparation method-3", P2800 and P1700-2100 were calculated by the above-mentioned "(5) Measurement of cold puffing”. The results are shown in Table 1. In addition, the hot puffing value was measured by the above-mentioned "(6) Measurement of hot puffing”. The results are shown in Figure 1.
  • Example 4 Using Ce 2 SiO 5 as an inhibitor and the test pieces obtained in the above-mentioned “(4) Test piece preparation method-3", P 2800 and P 1700-2100 were calculated by the above-mentioned method "(5) Measurement of cold puffing”. The results are shown in Table 1. In addition, the hot puffing value was measured by the above-mentioned method "(6) Measurement of hot puffing”. The results are shown in Figure 3.
  • Test pieces were prepared in the same manner as in Example 2-1, except that binder pitch without inhibitor added was used as a comparison for the mixed powder of binder pitch and inhibitor (binder composition for producing graphite electrodes), and the blank puffing values P 2800b and P 1700-2100b were calculated by the method described above in "(5) Measurement of cold puffing”. The results are shown in Table 1. In addition, the hot puffing values were measured by the method described above in "(6) Measurement of hot puffing”. The results are shown in Figures 1 and 2.
  • Example 1 in Examples 1-1, 1-2, 2-1, 2-2 and 3 in which Ca 2 SiO 4 was added as an inhibitor, the P 2800 representing the cold puffing value was smaller than that in Comparative Example 1 in which no inhibitor was added and Comparative Example 2 in which the inhibitor, binder pitch and needle coke were mixed simultaneously.
  • the P 1700-2100 representing nitrogen puffing was also low, and the puffing inhibition effect was high. 1, it was confirmed that puffing occurred suddenly from about 1800°C in Comparative Example 1, whereas puffing did not occur in the same temperature range in Examples 1-1, 1-2, 2-1, 2-2, and 3, and the inhibitor suppressed puffing.
  • Example 4 in which Ce 2 SiO 5 was added as an inhibitor, P 2800, which represents the cold puffing value, was smaller than in Comparative Example 1 in which no inhibitor was added and Comparative Example 3 in which the inhibitor, binder pitch, and needle coke were mixed simultaneously.
  • FIG. 3 it was confirmed that in Comparative Examples 1 and 3, puffing occurred suddenly from about 1800° C. to 2800° C., whereas in Example 4, puffing was suppressed in the same temperature range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The purpose of the present invention is to provide a binder composition for graphite electrode production use, a method for producing a green electrode for a graphite electrode, a method for producing a backed electrode for a graphite electrode, and a method for producing a graphite electrode, whereby it becomes possible to suppress the puffing of a needle coke without spending huge cost for the production of the needle coke and it also becomes possible to improve the production yield and properties of a graphite electrode. Provided is a binder composition for graphite electrode production use, which comprises an inhibitor for graphite electrode production use and a binder pitch. The binder composition for graphite electrode production use is mixed with a needle coke, then the resultant mixture is shaped to produce a green electrode, then the green electrode is burned at 500°C to 1200°C inclusive to produce a baked electrode, and then the baked electrode is graphitized at 2500°C to 3000°C inclusive to produce a graphite electrode.

Description

黒鉛電極製造用バインダー組成物、黒鉛電極用生電極の製造方法、黒鉛電極用焼成電極の製造方法、及び黒鉛電極の製造方法Binder composition for producing graphite electrodes, method for producing raw electrodes for graphite electrodes, method for producing fired electrodes for graphite electrodes, and method for producing graphite electrodes
 本発明は、黒鉛電極製造用バインダー組成物、黒鉛電極用生電極の製造方法、黒鉛電極用焼成電極の製造方法、及び黒鉛電極の製造方法に関する。
 本願は、2022年10月11日に、日本に出願された特願2022-163407号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a binder composition for producing a graphite electrode, a method for producing a raw electrode for a graphite electrode, a method for producing a sintered electrode for a graphite electrode, and a method for producing a graphite electrode.
This application claims priority based on Japanese Patent Application No. 2022-163407 filed on October 11, 2022, the contents of which are incorporated herein by reference.
 石炭乾留時に副生するコールタールは、その大部分が縮合多環芳香族化合物から構成されており、以前から各種の炭素製品用の原料として使用されてきた。コールタール系製品群の構成割合は、約30%が留出油成分から得られるクレオソート油やナフタレン等の製品群、残り70%が非留出分である重質成分のコールタールピッチから得られる製品群である。これらのうち、コールタールピッチから製造されるニードルコークスは特に付加価値の高い製品として重要な位置を占めており、主に電気製鋼用黒鉛電極の骨材に使用される。ニードルコークスの製造においては、精製工程において夾雑物が取り除かれたピッチをディレイドコーカー等により400℃以上の温度でコーキングすることで生コークスを得る。次に、この生コークスを熱処理するカルサイン工程を経ることで生コークス中に含まれる水分や揮発成分が取り除かれたニードルコークスが得られる。黒鉛電極の製造工程においては、まずニードルコークス粒と成形体を製造する際の結合材であるバインダーピッチとを所定の割合で配合し、加熱捏合した後、押し出し成形して生電極を製造する。この生電極を焼成し、黒鉛化した後、加工することにより黒鉛電極製品が得られる。 Coal tar, a by-product of coal carbonization, is mostly composed of condensed polycyclic aromatic compounds and has long been used as a raw material for various carbon products. Coal tar products are made up of approximately 30% creosote oil and naphthalene, which are derived from distillate oil components, and the remaining 70% is made up of products derived from coal tar pitch, a heavy component that is a non-distillate. Of these, needle coke made from coal tar pitch occupies an important position as a product with particularly high added value, and is mainly used as aggregate for graphite electrodes for electric steelmaking. In the manufacture of needle coke, pitch from which impurities have been removed in the refining process is coked at a temperature of 400°C or higher using a delayed coker or the like to obtain green coke. Next, the green coke is subjected to a calcination process in which the water and volatile components contained in the green coke are removed to obtain needle coke. In the graphite electrode manufacturing process, needle coke particles are first mixed with binder pitch, which is used to manufacture the compact, in a specified ratio, and then the mixture is heated and kneaded, and then extruded to produce a raw electrode. This raw electrode is then fired and graphitized, and then processed to produce a graphite electrode product.
 この黒鉛電極は過酷な高温条件のもとで使用されるため、極めて高い耐熱衝撃性が要求される。耐熱衝撃性の高い黒鉛電極を製造するためには熱膨張係数が小さいニードルコークスが必要とされる。コールタールピッチを原料とするニードルコークス(以下、「ピッチ系ニードルコークス」ということがある。)は、あらゆるコークスの中で熱膨張係数が最も小さいので、黒鉛電極の原料としては最も好ましいものである。しかしながら、ピッチ系ニードルコークスは良品質な黒鉛電極を与える反面、電極を製造する黒鉛化過程で、いわゆるパッフィングと呼ばれる不可逆膨張現象を起こし易く、急速に黒鉛化した場合には製品に亀裂が発生して歩留りが著しく低下するといった欠点がある。 Since these graphite electrodes are used under harsh high-temperature conditions, they require extremely high thermal shock resistance. To manufacture graphite electrodes with high thermal shock resistance, needle coke with a small thermal expansion coefficient is required. Needle coke made from coal tar pitch (hereinafter sometimes referred to as "pitch-based needle coke") has the smallest thermal expansion coefficient of all cokes, making it the most preferable raw material for graphite electrodes. However, while pitch-based needle coke can produce good-quality graphite electrodes, it has the disadvantage that it is prone to an irreversible expansion phenomenon known as puffing during the graphitization process used to manufacture electrodes, and if graphitized too quickly, cracks will occur in the product, significantly reducing the yield.
 このため黒鉛電極の製造にあたっては、黒鉛化のための昇温を長時間かけて行う必要があり、生産性は著しく低いものであった。このパッフィング現象は、主として黒鉛化過程の1500~2100℃の領域、ならびに、2500~2800℃の領域において、ピッチ系ニードルコークスに含まれる窒素や硫黄が急激に脱離、揮散するための異常膨張と考えられている。 As a result, when manufacturing graphite electrodes, it is necessary to raise the temperature for graphitization over a long period of time, resulting in extremely low productivity. This puffing phenomenon is thought to be caused by abnormal expansion due to the rapid desorption and volatilization of nitrogen and sulfur contained in pitch-based needle coke, mainly in the 1500-2100°C and 2500-2800°C ranges during the graphitization process.
 例えば、特許文献1、2では、1500℃以上でピッチコークスを加熱処理して脱窒素することでパッフィングを低減する方法が提案されている。また、特許文献3では、生コークスを予め酸化処理等の前処理をした後に、通常のか焼温度で熱処理する手法が示されている。これらの方法は、前者は高温加熱に伴うエネルギー消費が大きくなり、後者は従来方法に比べて工程が複雑化するという課題がある。
 さらに、特許文献4では、バインダーピッチ等と混練する前の、塊状および粒状のコークス表面にのみパッフィングインヒビターとして用いる金属化合物を溶液状態で添加し、加熱処理することによって、インヒビター添加量を減少させつつパッフィング抑制効果を増大させることが提案されている。
For example, Patent Documents 1 and 2 propose a method of reducing puffing by heat-treating pitch coke at 1500° C. or higher to remove nitrogen. Patent Document 3 shows a method of heat-treating raw coke at a normal calcination temperature after pre-treating it with an oxidation treatment or the like. These methods have the problem that the former consumes a large amount of energy due to high-temperature heating, and the latter is more complicated than the conventional methods.
Furthermore, Patent Document 4 proposes that a metal compound used as a puffing inhibitor in a solution state is added only to the surface of lumpy and granular coke before it is kneaded with binder pitch or the like, and then the mixture is heated, thereby increasing the puffing suppression effect while reducing the amount of inhibitor added.
特開昭60-33208号公報Japanese Patent Application Laid-Open No. 60-33208 特開昭60-208392号公報Japanese Patent Application Laid-Open No. 60-208392 特開昭63-135486号公報Japanese Patent Application Laid-Open No. 63-135486 特開2001-329271号公報JP 2001-329271 A
 しかし、これらの低パッフィングニードルコークスの製造方法では、何れの場合もその経済性に難があり、実用化に至っていないか、あるいは、必ずしも十分なパッフィング低減効果が得られないなどの問題がある。 However, all of these methods for producing low-puffing needle coke have problems with their economic viability, and they have not been put to practical use, or they do not necessarily achieve sufficient puffing reduction effects.
 本発明は、上記の状況に鑑みてなされたものであり、ニードルコークスの製造時に多大なコストをかけることなく、ニードルコークスのパッフィングを抑制し、黒鉛電極の製造歩留まりと特性を向上させることができる黒鉛電極製造用バインダー組成物、黒鉛電極用生電極の製造方法、黒鉛電極用焼成電極の製造方法、及び黒鉛電極の製造方法を提供することを目的とする。 The present invention has been made in consideration of the above circumstances, and aims to provide a binder composition for producing graphite electrodes that can suppress puffing of needle coke and improve the production yield and characteristics of graphite electrodes without incurring significant costs when producing needle coke, a method for producing raw electrodes for graphite electrodes, a method for producing sintered electrodes for graphite electrodes, and a method for producing graphite electrodes.
 本発明の一実施形態は、以下の態様を含む。
[1]黒鉛電極製造用インヒビターとバインダーピッチとを含有する、黒鉛電極製造用バインダー組成物。
[2]前記黒鉛電極製造用インヒビターが、以下の元素(Mβ)からなる金属、および、以下の元素(Mβ)を有する酸化物の少なくとも一方を含む、[1]に記載の黒鉛電極製造用バインダー組成物。
 元素(Mβ):長周期型周期表の第4族元素、第8族元素、第9族元素、第10族元素、第13族元素、第14族元素および第15族元素からなる群より選ばれる少なくとも一種の元素。
[3]前記元素(Mβ)が、Si、Ge、Al、B、Ti、FeおよびPからなる群より選ばれる少なくとも一種の元素である、[2]に記載の黒鉛電極製造用バインダー組成物。
[4]前記元素(Mβ)を有する酸化物が、以下の元素(Mα)および前記元素(Mβ)を有する複合酸化物である、[2]または[3]に記載の黒鉛電極製造用バインダー組成物。
 元素(Mα):少なくとも一種の金属元素(ただし元素(Mβ)を除く)。
[5]前記元素(Mα)が、K、Sc、アルカリ土類金属元素および希土類金属元素からなる群より選ばれる少なくとも一種の金属元素である、[4]に記載の黒鉛電極製造用バインダー組成物。
[6]前記元素(Mα)が、アルカリ土類金属元素および希土類金属元素からなる群より選ばれる少なくとも一種の金属元素である、[4]に記載の黒鉛電極製造用バインダー組成物。
[7]前記元素(Mα)が、Mg、Ca、SrおよびBa、並びにLaおよびCeからなる群より選ばれる少なくとも一種の金属元素である、[4]に記載の黒鉛電極製造用バインダー組成物。
[8]前記元素(Mα)が、CaおよびCeの少なくとも一方である、[4]に記載の黒鉛電極製造用バインダー組成物。
[9]前記複合酸化物の組成式が、以下の式(1)である、[4]~[8]のいずれかに記載の黒鉛電極製造用バインダー組成物。
 Mα3-xMβ1-y5-z ・・・(1)
(式中、0≦x<3、0≦y<1、0≦z<5である。)
[10]前記バインダーピッチが、コールタール、FCCデカントオイル、エチレンヘビーエンド、石油系残渣、石油系廃棄物、バイオマスオイル、またはバイオマスタールに由来するピッチの1種以上を含む、[1]~[9]のいずれかに記載の黒鉛電極製造用バインダー組成物。
[11]前記バインダーピッチの総重量に対する前記黒鉛電極製造用インヒビターの割合(重量%)をXとしたとき、0.02<X<60である、[1]~[10]に記載の黒鉛電極製造用バインダー組成物。
[12]以下の評価試験(i)で作成されたテストピースの下記式(I)で算出されるパッフィング値P2800が1.20%以下である、[1]~[11]のいずれかに記載の黒鉛電極製造用バインダー組成物。
 P2800=(L2-L1)/L1×100 ・・・(I)
 ただし式(I)中のL1およびL2は以下の意味を示す。
 L1:焼成前のテストピースの厚み(mm)
 L2:2800℃まで焼成後のテストピースの厚み(mm)
 <評価試験(i)>
 石炭系ニードルコークスに対する割合が外割で30重量%となるバインダーピッチと2重量%または5重量%となる黒鉛電極製造用インヒビターとを混ぜ合わせ、165℃で加熱しながら5分間混錬した後、石炭系ニードルコークスを添加して再度165℃で加熱しながら5分間混錬する。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、前記バインダーピッチを焼き飛ばしてテストピースとする。テストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成し、焼成前後のテストピースのL1およびL2を測定する。
[13]以下の評価試験(ii)で作成されたテストピースの下記式(II)で算出されるパッフィング値P1700-2100が0.7%以下である、[1]~[12]のいずれかに記載の黒鉛電極製造用バインダー組成物。
 P1700-2100=(L3-L4)/L5×100 ・・・(II)
 ただし式(II)中のL3、L4およびL5は以下の意味を示す。
 L3:2100℃焼成時点のテストピースの厚み(mm)
 L4:1700℃焼成時点のテストピースの厚み(mm)
 L5:1000℃焼成時点のテストピースの厚み(mm)
 <評価試験(ii)>
 石炭系ニードルコークスに対する割合が外割で30重量%となるバインダーピッチと2重量%または5重量%となる黒鉛電極製造用インヒビターとを混ぜ合わせ、165℃で加熱しながら5分間混錬した後、石炭系ニードルコークスを添加して再度165℃で加熱しながら5分間混錬する。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、バインダーピッチを焼き飛ばしてテストピースとする。テストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成し、焼成中のテストピースのL3、L4およびL5を測定する。
[14]以下の評価試験(iii)で作成されたテストピースの下記式(I)で算出されるパッフィング値P2800が1.20%以下である、[1]~[13]のいずれかに記載の黒鉛電極製造用バインダー組成物。
 P2800=(L2-L1)/L1×100 ・・・(I)
 ただし式(I)中のL1およびL2は以下の意味を示す。
 L1:焼成前のテストピースの厚み(mm)
 L2:2800℃まで焼成後のテストピースの厚み(mm)
 <評価試験(iii)>
 石炭系ニードルコークスに対する割合が外割で30重量%となる粉末状にしたバインダーピッチと2重量%となる黒鉛電極製造用インヒビターとを室温下で10分間混ぜ合わせ、その後、石炭系ニードルコークスを添加して165℃で加熱しながら5分間混錬する。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、前記バインダーピッチを焼き飛ばしてテストピースとする。テストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成し、焼成前後のテストピースのL1およびL2を測定する。
[15]以下の評価試験(iv)で作成されたテストピースの下記式(II)で算出されるパッフィング値P1700-2100が0.7%以下である、[1]~[14]のいずれかに記載の黒鉛電極製造用バインダー組成物。
 P1700-2100=(L3-L4)/L5×100 ・・・(II)
 ただし式(II)中のL3、L4およびL5は以下の意味を示す。
 L3:2100℃焼成時点のテストピースの厚み(mm)
 L4:1700℃焼成時点のテストピースの厚み(mm)
 L5:1000℃焼成時点のテストピースの厚み(mm)
<評価試験(iv)>
 石炭系ニードルコークスに対する割合が外割で30重量%となる粉末状にしたバインダーピッチと2重量%となる黒鉛電極製造用インヒビターとを室温下で10分間混ぜ合わせ、その後、石炭系ニードルコークスを添加して165℃で加熱しながら5分間混錬する。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、前記バインダーピッチを焼き飛ばしてテストピースとする。テストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成し、焼成中のテストピースのL3、L4およびL5を測定する。
[16]前記評価試験(i)において、前記黒鉛電極製造用インヒビターを用いない以外は同様の方法でテストピースを作成し、当該テストピースの前記式(I)で算出されるパッフィング値(ブランク)をP2800bとしたとき、P2800/P2800bで算出されるパッフィング値の比が1未満である、[12]に記載の黒鉛電極製造用バインダー組成物。
[17]前記評価試験(ii)において、前記黒鉛電極製造用インヒビターを用いない以外は同様の方法でテストピースを作成し、当該テストピースの前記式(II)で算出されるパッフィング値(ブランク)をP1700-2100bとしたとき、P1700-2100/P1700-2100bで算出されるパッフィング値の比が1未満である、[13]に記載の黒鉛電極製造用バインダー組成物。
[18]黒鉛電極製造用インヒビターとバインダーピッチとを混合して黒鉛電極製造用バインダー組成物を製造し、
 前記黒鉛電極製造用バインダー組成物とニードルコークスとを混合し、成形して生電極を得る、黒鉛電極用生電極の製造方法。
[19]前記黒鉛電極製造用インヒビターが、以下の元素(Mβ)からなる金属、および、以下の元素(Mβ)を有する酸化物の少なくとも一方を含む、[18]に記載の黒鉛電極用生電極の製造方法。
 元素(Mβ):長周期型周期表の第4族元素、第8族元素、第9族元素、第10族元素、第13族元素、第14族元素および第15族元素からなる群より選ばれる少なくとも一種の元素。
[20]前記元素(Mβ)が、Si、Ge、Al、B、Ti、FeおよびPからなる群より選ばれる少なくとも一種の元素である、[19]に記載の黒鉛電極用生電極の製造方法。
[21]前記元素(Mβ)を有する酸化物が、以下の元素(Mα)および前記元素(Mβ)を有する複合酸化物である、[19]または[20]に記載の黒鉛電極用生電極の製造方法。
 元素(Mα):少なくとも一種の金属元素(ただし元素(Mβ)を除く)。
[22]前記元素(Mα)が、K、Sc、アルカリ土類金属元素および希土類金属元素からなる群より選ばれる少なくとも一種の金属元素である、[21]に記載の黒鉛電極用生電極の製造方法。
[23]前記元素(Mα)が、アルカリ土類金属元素および希土類金属元素からなる群より選ばれる少なくとも一種の金属元素である、[21]に記載の黒鉛電極用生電極の製造方法。
[24]前記元素(Mα)が、Mg、Ca、SrおよびBa、並びにLaおよびCeからなる群より選ばれる少なくとも一種の金属元素である、[21]に記載の黒鉛電極用生電極の製造方法。
[25]前記元素(Mα)が、CaおよびCeの少なくとも一方である、[21]に記載の黒鉛電極用生電極の製造方法。
[26]前記複合酸化物の組成式が、以下の式(1)である、[21]~[25]のいずれかに記載の黒鉛電極用生電極の製造方法。
 Mα3-xMβ1-y5-z ・・・(1)
(式中、0≦x<3、0≦y<1、0≦z<5である。)
[27]前記バインダーピッチが、コールタール、FCCデカントオイル、エチレンヘビーエンド、石油系残渣、石油系廃棄物、バイオマスオイル、またはバイオマスタールに由来するピッチの1種以上を含む、[18]~[26]のいずれかに記載の黒鉛電極用生電極の製造方法。
[28]前記バインダーピッチの総重量に対する前記黒鉛電極製造用インヒビターの割合(重量%)をXとしたとき、0.02<X<60である、[18]~[27]のいずれかに記載の黒鉛電極用生電極の製造方法。
[29]前記黒鉛電極製造用バインダー組成物について、以下の評価試験(i)で作成されたテストピースの下記式(I)で算出されるパッフィング値P2800が1.20%以下である、[18]~[28]のいずれかに記載の黒鉛電極用生電極の製造方法。
 P2800=(L2-L1)/L1×100 ・・・(I)
 ただし式(I)中のL1およびL2は以下の意味を示す。
 L1:焼成前のテストピースの厚み(mm)
 L2:2800℃まで焼成後のテストピースの厚み(mm)
 <評価試験(i)>
 石炭系ニードルコークスに対する割合が外割で30重量%となるバインダーピッチと2重量%または5重量%となる黒鉛電極製造用インヒビターとを混ぜ合わせ、165℃で加熱しながら5分間混錬した後、石炭系ニードルコークスを添加して再度165℃で加熱しながら5分間混錬する。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、前記バインダーピッチを焼き飛ばしてテストピースとする。テストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成し、焼成前後のテストピースのL1およびL2を測定する。
[30]前記黒鉛電極製造用バインダー組成物について、以下の評価試験(ii)で作成されたテストピースの下記式(II)で算出されるパッフィング値P1700-2100が0.7%以下である、[18]~[29]のいずれかに記載の黒鉛電極用生電極の製造方法。
 P1700-2100=(L3-L4)/L5×100 ・・・(II)
 ただし式(II)中のL3、L4およびL5は以下の意味を示す。
 L3:2100℃焼成時点のテストピースの厚み(mm)
 L4:1700℃焼成時点のテストピースの厚み(mm)
 L5:1000℃焼成時点のテストピースの厚み(mm)
 <評価試験(ii)>
 石炭系ニードルコークスに対する割合が外割で30重量%となるバインダーピッチと2重量%または5重量%となる黒鉛電極製造用インヒビターとを混ぜ合わせ、165℃で加熱しながら5分間混錬した後、石炭系ニードルコークスを添加して再度165℃で加熱しながら5分間混錬する。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、バインダーピッチを焼き飛ばしてテストピースとする。テストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成し、焼成中のテストピースのL3、L4およびL5を測定する。
[31]前記評価試験(i)において、前記黒鉛電極製造用インヒビターを用いない以外は同様の方法でテストピースを作成し、当該テストピースの前記式(I)で算出されるパッフィング値(ブランク)をP2800bとしたとき、P2800/P2800bで算出されるパッフィング値の比が1未満である、[29]に記載の黒鉛電極用生電極の製造方法。
[32]前記評価試験(ii)において、前記黒鉛電極製造用インヒビターを用いない以外は同様の方法でテストピースを作成し、当該テストピースの前記式(II)で算出されるパッフィング値(ブランク)をP1700-2100bとしたとき、P1700-2100/P1700-2100bで算出されるパッフィング値の比が1未満である、[30]に記載の黒鉛電極用生電極の製造方法。
[33][18]~[32]のいずれかに記載の黒鉛電極用生電極の製造方法によって生電極を製造し、前記生電極を500℃以上1200℃以下で焼成して焼成電極を得る、黒鉛電極用焼成電極の製造方法。
[34]前記焼成電極の総重量に対する前記黒鉛電極製造用インヒビターの割合(重量%)をYとしたとき、0.02<Y<15である、[33]に記載の黒鉛電極用焼成電極の製造方法。
[35][33]または[34]に記載の黒鉛電極用焼成電極の製造方法によって焼成電極を製造し、前記焼成電極を2500℃以上3000℃以下で黒鉛化処理して黒鉛電極を得る、黒鉛電極の製造方法。
[36]前記黒鉛電極中に残存する前記黒鉛電極製造用インヒビターの割合が0.01重量%以下である、[35]に記載の黒鉛電極の製造方法。
[37][1]~[17]のいずれか一項に記載の黒鉛電極製造用バインダー組成物と、ニードルコークスとを混合し、成形して生電極を得る、黒鉛電極用生電極の製造方法。
[38][37]に記載の黒鉛電極用生電極の製造方法によって生電極を製造し、前記生電極を500℃以上1200℃以下で焼成して焼成電極を得る、黒鉛電極用焼成電極の製造方法。
[39]前記焼成電極の総重量に対する前記黒鉛電極製造用インヒビターの割合(重量%)をYとしたとき、0.02<Y<15である、[38]に記載の黒鉛電極用焼成電極の製造方法。
[40][38]または[39]に記載の黒鉛電極用焼成電極の製造方法によって焼成電極を製造し、前記焼成電極を2500℃以上3000℃以下で黒鉛化処理して黒鉛電極を得る、黒鉛電極の製造方法。
[41]前記黒鉛電極中に残存する前記黒鉛電極製造用インヒビターの割合が0.01重量%以下である、[40]に記載の黒鉛電極の製造方法。
An embodiment of the present invention includes the following aspects.
[1] A binder composition for producing graphite electrodes, comprising an inhibitor for producing graphite electrodes and a binder pitch.
[2] The binder composition for producing a graphite electrode according to [1], wherein the inhibitor for producing a graphite electrode contains at least one of a metal consisting of the following element (Mβ) and an oxide having the following element (Mβ).
Element (Mβ): at least one element selected from the group consisting of Group 4 elements, Group 8 elements, Group 9 elements, Group 10 elements, Group 13 elements, Group 14 elements, and Group 15 elements of the long form periodic table.
[3] The binder composition for producing a graphite electrode according to [2], wherein the element (Mβ) is at least one element selected from the group consisting of Si, Ge, Al, B, Ti, Fe and P.
[4] The binder composition for producing a graphite electrode according to [2] or [3], wherein the oxide having the element (Mβ) is a composite oxide having the following element (Mα) and the element (Mβ):
Element (Mα): at least one metal element (excluding element (Mβ)).
[5] The binder composition for producing a graphite electrode according to [4], wherein the element (Mα) is at least one metal element selected from the group consisting of K, Sc, alkaline earth metal elements, and rare earth metal elements.
[6] The binder composition for producing a graphite electrode according to [4], wherein the element (Mα) is at least one metal element selected from the group consisting of alkaline earth metal elements and rare earth metal elements.
[7] The binder composition for producing a graphite electrode according to [4], wherein the element (Mα) is at least one metal element selected from the group consisting of Mg, Ca, Sr, Ba, La, and Ce.
[8] The binder composition for producing a graphite electrode according to [4], wherein the element (Mα) is at least one of Ca and Ce.
[9] The binder composition for producing a graphite electrode according to any one of [4] to [8], wherein the composite oxide has a composition formula represented by the following formula (1):
3−x1−y O 5−z ... (1)
(In the formula, 0≦x<3, 0≦y<1, and 0≦z<5.)
[10] The binder composition for producing a graphite electrode according to any one of [1] to [9], wherein the binder pitch comprises one or more pitches derived from coal tar, FCC decant oil, ethylene heavy ends, petroleum residue, petroleum waste, biomass oil, or biomass tar.
[11] The binder composition for producing a graphite electrode according to any one of [1] to [10], wherein X is a ratio (wt%) of the inhibitor for producing a graphite electrode to a total weight of the binder pitch, and X is 0.02<X<60.
[12] The binder composition for producing a graphite electrode according to any one of [1] to [11], wherein a puffing value P2800 calculated by the following formula (I) of a test piece prepared in the following evaluation test (i) is 1.20% or less.
P 2800 = (L2 - L1) / L1 × 100 ... (I)
In the formula (I), L1 and L2 have the following meanings.
L1: Thickness of test piece before firing (mm)
L2: Thickness of the test piece after firing to 2800°C (mm)
<Evaluation test (i)>
The binder pitch, the ratio of which to the coal-based needle coke is 30% by weight, and the inhibitor for graphite electrode production, 2% by weight or 5% by weight, are mixed and kneaded for 5 minutes while heating at 165°C, and then the coal-based needle coke is added and kneaded again for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mmΦ x 3 mm to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece. The test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L1 and L2 of the test piece before and after firing are measured.
[13] The binder composition for producing a graphite electrode according to any one of [1] to [12], wherein a puffing value P 1700-2100 calculated by the following formula (II) of a test piece prepared in the following evaluation test (ii) is 0.7% or less.
P 1700-2100 = (L3-L4) / L5 × 100 ... (II)
In the formula (II), L3, L4 and L5 have the following meanings.
L3: Thickness of the test piece after firing at 2100°C (mm)
L4: Thickness of the test piece after firing at 1700°C (mm)
L5: Thickness of the test piece after firing at 1000°C (mm)
<Evaluation test (ii)>
The binder pitch, the ratio of which to the coal-based needle coke is 30% by weight, and the inhibitor for graphite electrode production, 2% by weight or 5% by weight, are mixed and kneaded for 5 minutes while heating at 165°C, and then the coal-based needle coke is added and kneaded again for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mmΦ x 3 mm to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece. The test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L3, L4 and L5 of the test piece during firing are measured.
[14] The binder composition for producing a graphite electrode according to any one of [1] to [13], wherein a puffing value P2800 calculated by the following formula (I) of a test piece prepared in the following evaluation test (iii) is 1.20% or less.
P 2800 = (L2 - L1) / L1 × 100 ... (I)
In the formula (I), L1 and L2 have the following meanings.
L1: Thickness of test piece before firing (mm)
L2: Thickness of the test piece after firing to 2800°C (mm)
<Evaluation test (iii)>
Powdered binder pitch with a ratio of 30% by weight to the coal-based needle coke and 2% by weight of an inhibitor for graphite electrode production are mixed at room temperature for 10 minutes, and then the coal-based needle coke is added and kneaded for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mmΦ x 3 to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece. The test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L1 and L2 of the test piece before and after firing are measured.
[15] The binder composition for producing a graphite electrode according to any one of [1] to [14], wherein a puffing value P 1700-2100 calculated by the following formula (II) of a test piece prepared in the following evaluation test (iv) is 0.7% or less.
P 1700-2100 = (L3-L4) / L5 × 100 ... (II)
In the formula (II), L3, L4 and L5 have the following meanings.
L3: Thickness of the test piece after firing at 2100°C (mm)
L4: Thickness of the test piece after firing at 1700°C (mm)
L5: Thickness of the test piece after firing at 1000°C (mm)
<Evaluation test (iv)>
Powdered binder pitch with a ratio of 30% by weight to the coal-based needle coke and 2% by weight of an inhibitor for graphite electrode production are mixed at room temperature for 10 minutes, and then the coal-based needle coke is added and kneaded for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mmΦ x 3 to 15 mm, and calcined in a baking furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece. The test piece is calcined at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L3, L4 and L5 of the test piece during calcination are measured.
[16] The binder composition for producing a graphite electrode according to [12], wherein in the evaluation test (i), a test piece is prepared in the same manner except that the inhibitor for producing a graphite electrode is not used, and when the puffing value (blank) of the test piece calculated by the formula (I) is P2800b , the ratio of the puffing value calculated by P2800 / P2800b is less than 1.
[17] The binder composition for producing a graphite electrode according to [13], wherein in the evaluation test (ii), a test piece is prepared in the same manner except that the inhibitor for producing a graphite electrode is not used, and when the puffing value (blank) of the test piece calculated by the formula (II) is P 1700-2100b , the ratio of the puffing value calculated by P 1700-2100 /P 1700-2100b is less than 1.
[18] Mixing an inhibitor for producing a graphite electrode with a binder pitch to produce a binder composition for producing a graphite electrode;
The binder composition for producing a graphite electrode and needle coke are mixed and molded to obtain a raw electrode.
[19] The method for producing a raw electrode for a graphite electrode according to [18], wherein the inhibitor for producing a graphite electrode contains at least one of a metal consisting of the following element (Mβ) and an oxide having the following element (Mβ).
Element (Mβ): at least one element selected from the group consisting of Group 4 elements, Group 8 elements, Group 9 elements, Group 10 elements, Group 13 elements, Group 14 elements, and Group 15 elements of the long form periodic table.
[20] The method for producing a raw electrode for a graphite electrode according to [19], wherein the element (Mβ) is at least one element selected from the group consisting of Si, Ge, Al, B, Ti, Fe and P.
[21] The method for producing a raw electrode for a graphite electrode according to [19] or [20], wherein the oxide having the element (Mβ) is a composite oxide having the following element (Mα) and the element (Mβ):
Element (Mα): at least one metal element (excluding element (Mβ)).
[22] The method for producing a raw electrode for a graphite electrode according to [21], wherein the element (Mα) is at least one metal element selected from the group consisting of K, Sc, alkaline earth metal elements, and rare earth metal elements.
[23] The method for producing a raw electrode for a graphite electrode according to [21], wherein the element (Mα) is at least one metal element selected from the group consisting of alkaline earth metal elements and rare earth metal elements.
[24] The method for producing a raw electrode for a graphite electrode according to [21], wherein the element (Mα) is at least one metal element selected from the group consisting of Mg, Ca, Sr, Ba, La, and Ce.
[25] The method for producing a raw electrode for a graphite electrode according to [21], wherein the element (Mα) is at least one of Ca and Ce.
[26] The method for producing a raw electrode for a graphite electrode according to any one of [21] to [25], wherein the composition formula of the composite oxide is the following formula (1):
3−x1−y O 5−z ... (1)
(In the formula, 0≦x<3, 0≦y<1, and 0≦z<5.)
[27] The method for producing a raw electrode for a graphite electrode according to any one of [18] to [26], wherein the binder pitch contains one or more pitches derived from coal tar, FCC decant oil, ethylene heavy ends, petroleum residues, petroleum waste, biomass oil, or biomass tar.
[28] The method for producing a raw electrode for a graphite electrode according to any one of [18] to [27], wherein X is a ratio (wt%) of the inhibitor for producing a graphite electrode to a total weight of the binder pitch, and X is 0.02<X<60.
[29] The method for producing a raw electrode for a graphite electrode according to any one of [18] to [28], wherein a puffing value P2800 of a test piece prepared in the following evaluation test (i) for the binder composition for producing a graphite electrode, as calculated by the following formula (I), is 1.20% or less.
P 2800 = (L2 - L1) / L1 × 100 ... (I)
In the formula (I), L1 and L2 have the following meanings.
L1: Thickness of test piece before firing (mm)
L2: Thickness of the test piece after firing to 2800°C (mm)
<Evaluation test (i)>
The binder pitch, the ratio of which to the coal-based needle coke is 30% by weight, and the inhibitor for graphite electrode production, 2% by weight or 5% by weight, are mixed and kneaded for 5 minutes while heating at 165°C, and then the coal-based needle coke is added and kneaded again for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mmΦ x 3 mm to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece. The test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L1 and L2 of the test piece before and after firing are measured.
[30] The method for producing a raw electrode for a graphite electrode according to any one of [18] to [29], wherein a puffing value P 1700-2100 calculated by the following formula (II) of a test piece prepared in the following evaluation test (ii) for the binder composition for producing a graphite electrode is 0.7% or less.
P 1700-2100 = (L3-L4) / L5 × 100 ... (II)
In the formula (II), L3, L4 and L5 have the following meanings.
L3: Thickness of the test piece after firing at 2100°C (mm)
L4: Thickness of the test piece after firing at 1700°C (mm)
L5: Thickness of the test piece after firing at 1000°C (mm)
<Evaluation test (ii)>
The binder pitch, the ratio of which to the coal-based needle coke is 30% by weight, and the inhibitor for graphite electrode production, 2% by weight or 5% by weight, are mixed and kneaded for 5 minutes while heating at 165°C, and then the coal-based needle coke is added and kneaded again for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mmΦ x 3 mm to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece. The test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L3, L4 and L5 of the test piece during firing are measured.
[31] The method for producing a raw electrode for a graphite electrode according to [29], wherein in the evaluation test (i), a test piece is prepared in the same manner except that the inhibitor for the production of a graphite electrode is not used, and when the puffing value (blank) of the test piece calculated by the formula (I) is P2800b , the ratio of the puffing value calculated by P2800 / P2800b is less than 1.
[32] The method for producing a raw electrode for a graphite electrode according to [30], wherein in the evaluation test (ii), a test piece is prepared in the same manner except that the inhibitor for the production of a graphite electrode is not used, and when the puffing value (blank) of the test piece calculated by the formula (II) is P 1700-2100b , the ratio of the puffing value calculated by P 1700-2100 /P 1700-2100b is less than 1.
[33] A method for producing a sintered electrode for a graphite electrode, comprising producing a raw electrode by the method for producing a raw electrode for a graphite electrode according to any one of [18] to [32], and sintering the raw electrode at 500° C. or more and 1,200° C. or less to obtain a sintered electrode.
[34] The method for producing a sintered electrode for a graphite electrode according to [33], wherein Y is a ratio (wt%) of the inhibitor for producing a graphite electrode to the total weight of the sintered electrode, and Y is 0.02<Y<15.
[35] A method for producing a graphite electrode, comprising producing a sintered electrode by the method for producing a sintered electrode for a graphite electrode according to [33] or [34], and graphitizing the sintered electrode at 2500° C. or more and 3000° C. or less to obtain a graphite electrode.
[36] The method for producing a graphite electrode according to [35], wherein the proportion of the graphite electrode production inhibitor remaining in the graphite electrode is 0.01% by weight or less.
[37] A method for producing a graphite electrode, comprising mixing the binder composition for producing a graphite electrode according to any one of [1] to [17] with needle coke and molding the mixture to obtain a raw electrode.
[38] A method for producing a sintered electrode for a graphite electrode, comprising producing a raw electrode by the method for producing a raw electrode for a graphite electrode according to [37], and sintering the raw electrode at 500° C. or more and 1,200° C. or less to obtain a sintered electrode.
[39] The method for producing a sintered electrode for a graphite electrode according to [38], wherein Y is a ratio (weight %) of the inhibitor for producing a graphite electrode to the total weight of the sintered electrode, and 0.02<Y<15.
[40] A method for producing a graphite electrode, comprising producing a sintered electrode by the method for producing a sintered electrode for a graphite electrode according to [38] or [39], and graphitizing the sintered electrode at 2500° C. or more and 3000° C. or less to obtain a graphite electrode.
[41] The method for producing a graphite electrode according to [40], wherein the proportion of the graphite electrode production inhibitor remaining in the graphite electrode is 0.01% by weight or less.
 本発明によれば、インヒビターとバインダーピッチとを含有する黒鉛電極製造用バインダー組成物として用いることにより、ニードルコークスの製造時に多大なコストをかけることなく、ニードルコークスのパッフィングを抑制し、黒鉛電極の製造歩留まりと特性を向上させることができる。 According to the present invention, by using a binder composition containing an inhibitor and binder pitch for producing graphite electrodes, it is possible to suppress puffing of needle coke without incurring significant costs during the production of needle coke, and to improve the production yield and characteristics of graphite electrodes.
実施例1-1、1-2、2-1、2-2、3および比較例1、2の熱膨張計測定による熱間パッフィング値を示した図である。FIG. 1 is a diagram showing hot puffing values measured by a thermal dilatometer for Examples 1-1, 1-2, 2-1, 2-2, and 3 and Comparative Examples 1 and 2. 実施例1-1、1-2、2-1、2-2および比較例1の熱間パッフィングの測定で得られたデータを差分法で示した図である。FIG. 1 is a diagram showing data obtained by measuring hot puffing in Examples 1-1, 1-2, 2-1, 2-2 and Comparative Example 1 by a differential method. 実施例3および比較例1、3の熱膨張計測定による熱間パッフィング値を示した図である。FIG. 1 is a diagram showing hot puffing values measured by a thermal dilatometer in Example 3 and Comparative Examples 1 and 3.
 以下、本発明を詳細に説明するが、本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
 以下の説明において「重量%」は「質量%」と同義であり、「重量部」は「質量部」と同義である。
 本発明において「ピッチ系」は「石炭系」と同義の語として扱うものとする。
 本発明でいう「コークスの硫黄分」とは、JIS M8813に従って測定される値を意味する。また、本発明でいう「コークスの窒素分」とは、JIS M8819に従って測定される値を意味する。
The present invention will be described in detail below, but the present invention is not limited to the following description and can be modified in any manner without departing from the gist of the present invention.
In the following description, "% by weight" is synonymous with "% by mass", and "parts by weight" is synonymous with "parts by mass".
In the present invention, the term "pitch-based" is treated as a synonym for "coal-based."
The "sulfur content of the coke" in the present invention means a value measured in accordance with JIS M8813. The "nitrogen content of the coke" in the present invention means a value measured in accordance with JIS M8819.
1.黒鉛電極製造用バインダー組成物
 本発明の一実施形態は、黒鉛電極製造用バインダー組成物に関する。
 実施形態の黒鉛電極製造用バインダー組成物は、黒鉛電極の製造に用いられる組成物であって、バインダーピッチ中に黒鉛電極製造用インヒビター(以下、単に「インヒビター」ということがある。)を含有する。
 インヒビターの添加量を低減しつつパッフィング抑制効果を増大させることができることから、インヒビターをバインダーピッチに含有させた組成物であることが好ましい。
1. Binder Composition for Producing Graphite Electrodes One embodiment of the present invention relates to a binder composition for producing graphite electrodes.
The binder composition for producing a graphite electrode according to the embodiment is a composition used for producing a graphite electrode, and contains an inhibitor for producing a graphite electrode (hereinafter, sometimes simply referred to as an "inhibitor") in a binder pitch.
Since the puffing suppression effect can be increased while reducing the amount of inhibitor added, a composition in which the inhibitor is contained in the binder pitch is preferred.
1.1.黒鉛電極製造用インヒビター
 実施形態の黒鉛電極製造用バインダー組成物に用いるインヒビターは、ニードルコークスと同時に焼成して黒鉛電極を得る際にニードルコークスのパッフィングを抑制するためのものである。
1.1 Inhibitor for Graphite Electrode Production The inhibitor used in the binder composition for graphite electrode production according to the embodiment is intended to suppress puffing of needle coke when the binder composition and needle coke are fired simultaneously to obtain a graphite electrode.
 実施形態の一つのインヒビターは、元素(Mβ)からなる金属、および、元素(Mβ)を有する酸化物の少なくとも一方を含む。
 元素(Mβ):長周期型周期表の第4族元素(Ti、Zr、Hf)、第8族元素(Fe、Ru、Os)、第9族元素(Co、Rh、Ir)、第10族元素(Ni、Pr、Pt)、第13族元素(B、Al、Ga、In)第14族元素(Si、Ge、Sn)および第15族元素(P、Sb、Bi)からなる群より選ばれる少なくとも一種の元素。
In one embodiment, the inhibitor comprises at least one of a metal consisting of the element (Mβ) and an oxide having the element (Mβ).
Element (Mβ): at least one element selected from the group consisting of Group 4 elements (Ti, Zr, Hf), Group 8 elements (Fe, Ru, Os), Group 9 elements (Co, Rh, Ir), Group 10 elements (Ni, Pr, Pt), Group 13 elements (B, Al, Ga, In), Group 14 elements (Si, Ge, Sn) and Group 15 elements (P, Sb, Bi) of the long form periodic table.
 (第一の実施形態)
 第一の実施形態のインヒビターは、元素(Mα)および元素(Mβ)を有する複合酸化物、または、元素(Mβ)からなる金属、合金を含む。
 元素(Mα):少なくとも一種以上の金属元素(ただし元素(Mβ)を除く)。
 元素(Mβ):長周期型周期表の第4族元素(Ti、Zr、Hf)、第8族元素(Fe、Ru、Os)、第9族元素(Co、Rh、Ir)、第10族元素(Ni、Pr、Pt)、第13族元素(B、Al、Ga、In)第14族元素(Si、Ge、Sn)および第15族元素(P、Sb、Bi)からなる群より選ばれる少なくとも一種の元素。
(First embodiment)
The inhibitor of the first embodiment includes a composite oxide having an element (Mα) and an element (Mβ), or a metal or alloy composed of the element (Mβ).
Element (Mα): At least one metal element (excluding element (Mβ)).
Element (Mβ): at least one element selected from the group consisting of Group 4 elements (Ti, Zr, Hf), Group 8 elements (Fe, Ru, Os), Group 9 elements (Co, Rh, Ir), Group 10 elements (Ni, Pr, Pt), Group 13 elements (B, Al, Ga, In), Group 14 elements (Si, Ge, Sn) and Group 15 elements (P, Sb, Bi) of the long form periodic table.
 元素(Mα)としては、パッフィングを低減させやすいことから、K、Sc、アルカリ土類金属元素(Mg、Ca、Sr、Ba)および希土類金属元素(Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)からなる群より選ばれる少なくとも一種の金属元素であることが好ましく、アルカリ土類金属および希土類金属元素からなる群より選ばれる少なくとも一種以上の金属元素であることがより好ましく、Mg、Ca、Sr、及び、Ba、並びにLa及びCeからなる群より選ばれる少なくとも一種の金属元素がさらに好ましく、CaおよびCeの少なくとも一方が特に好ましい。 The element (Mα) is preferably at least one metal element selected from the group consisting of K, Sc, alkaline earth metal elements (Mg, Ca, Sr, Ba) and rare earth metal elements (Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) because it is easy to reduce puffing, more preferably at least one metal element selected from the group consisting of alkaline earth metals and rare earth metal elements, even more preferably at least one metal element selected from the group consisting of Mg, Ca, Sr, and Ba, as well as La and Ce, and particularly preferably at least one of Ca and Ce.
 元素(Mβ)としては、パッフィングを低減させやすいことから、Si、Ge、Al、B、Ti、FeおよびPからなる群より選ばれる少なくとも一種の元素であることが好ましく、SiおよびGeの少なくとも一種の元素であることがより好ましく、Siが最も好ましい。 The element (Mβ) is preferably at least one element selected from the group consisting of Si, Ge, Al, B, Ti, Fe and P, as this tends to reduce puffing, more preferably at least one element of Si and Ge, and most preferably Si.
 第一の実施形態のインヒビターの組成式は、特に限定されないが、パッフィングを低減させやすいことから、以下の式(1)であることが好ましい。
 Mα3-xMβ1-y5-z ・・・(1)
(式中、0≦x<3、0≦y<1、0≦z<5である。)
The composition formula of the inhibitor of the first embodiment is not particularly limited, but is preferably the following formula (1) because it is easy to reduce puffing.
3−x1−y O 5−z ... (1)
(In the formula, 0≦x<3, 0≦y<1, and 0≦z<5.)
 式中、xは、パッフィングを低減させるやすいことから、0≦x<3が好ましく、0.05≦x≦2.5がより好ましく、0.1≦x≦2が特に好ましい。
 式中、yは、パッフィングを低減させやすいことから、0≦y<1が好ましく、0.01≦y≦0.8がより好ましく、0.1≦y≦0.5が特に好ましい。
 式中、zは、パッフィングを低減させやすいことから、0≦z<5が好ましく、0.05≦z≦4がより好ましく、0.1≦z≦3が特に好ましい。
In the formula, x is preferably 0≦x<3, more preferably 0.05≦x≦2.5, and particularly preferably 0.1≦x≦2, since puffing is easily reduced.
In the formula, y is preferably 0≦y<1, more preferably 0.01≦y≦0.8, and particularly preferably 0.1≦y≦0.5, since puffing can be easily reduced.
In the formula, z is preferably 0≦z<5, more preferably 0.05≦z≦4, and particularly preferably 0.1≦z≦3, since puffing can be easily reduced.
 元素(Mα)および元素(Mβ)を有する複合酸化物の具体例としては、例えば、MgSi、MgSiO、Mg14Si24、MgO、CaSiO、CaSiO、CaSiO、CaSi18、CaSi、CaO、CaCO、Ca(OH)、SrSiO、SrSiO、SrSi、SrSiO、BaSiO、BaSiO、BaSiO、BaSi、BaSi、BaSi21、BaSi13、BaSiO、BaO、BaCO、CeSiO、CeSi、CeSi11、CeSi、CeSiO、CeSi21、LaSi13.5、LaSi21、LaSiO、LaSi11、LaSi16、Pr4.67Si13、PrSi、PrSi、PrSi1225,EuSi13、EuSi,EuSiO、EuSi1233、CaGe、CaGeO、CaGeO、CaGe11、CaGeO、CaGe16、CaAl1219、CaAl、CaAl13、CaAl14、CaAl16、CaAl、CaAl、CaFeO、CaFe、CaFeO、CaFe、CaFe、CaFe、CaFe、CaFe、CaTi、CaTi、CaTi、CaTi10、CaTiO、CaTi11、MgAl、MgAl、MgAl、MgGe、MgTiO、MgTiO、MgTi、MgTi、MgFe、SrAl1219、SrAl、SrAl1425、Sr12Al1433、SrAl、Sr10Al19、SrGeO、SrGe、SrGeO、SrGeO、SrTi1120、SrTi13、SrTiO、SrTi10、SrTi、SrTiO、SrFe12、SrFe、SrFe、SrFeO、SrFe13、SrFe、SrFe、SrFe11、SrFeO、SrFe、SrFeO、SrFe、SrFeO、SrFeO、BaAl1219,BaAl、BaAl、BaAl、BaAl、Bal210、Ba17Al、Ba21Ge、BaGeO、BaGeO、Ba10Ge、BaGeO、BaGe、BaGe12、BaGe、BaTiO、BaTiO、BaTi10、BaTi11、BaTiO、BaTi、BaTi、BaTi20、BaTi11、BaTi1322、BaFeO、BaFeO、BaFeO、BaFe、BaFe21、BaFe14、BaFeO、BaFe、BaFe11、BaFe、BaFe11、BaFe1219、BaFe1523を例示できる。第一の実施形態のインヒビターに含まれる複合酸化物は、1種であってもよく、2種以上であってもよい。 Specific examples of composite oxides having an element (Mα) and an element (Mβ) include, for example, MgSi3O7 , Mg3SiO5 , Mg14Si5O24 , MgO , Ca3SiO5 , Ca2SiO4 , CaSiO3 , Ca8Si5O18, CaSi2O5 , CaO, CaCO3 , Ca( OH ) 2 , SrSiO3 , Sr3SiO5 , SrSi2O5 , Sr2SiO4 , Ba3SiO5 , Ba2SiO4 , BaSiO3 , BaSi2O5 , Ba2Si3O8 , and Ba5Si8O21 . , Ba3Si5O13 , Ba2SiO4 , BaO , BaCO3 , Ce2SiO5 , Ce2Si2O7 , Ce2Si4O11 , CeSi3O8 , Ce3SiO8 , Ce6Si6O21 , La5Si3O13.5 , La6Si6O21 , La2SiO5 , La2Si4O11 , La2Si6O16 , Pr4.67Si3O13 , Pr2Si2O7 , Pr6Si2 , Pr6Si12O25 , Eu5 Si3O13 , Eu2Si2O7 , Eu2SiO4 , Eu6Si12O33 , CaGe2O5 , Ca3GeO5 , Ca2GeO4 , Ca5Ge3O11 , CaGeO3 , Ca2Ge7O16 , CaAl12O19 , CaAl4O7 , Ca4Al6O13 , Ca5Al6O14 , Ca6Al7O16 , Ca2Al2O5 , Ca3Al2O6 , CaFeO2 , Ca2Fe2O5 , CaFeO3 , CaFe2O4 , CaFe3O5 , CaFe4O6 , CaFe5O7 , CaFe6O8 , CaTi2O4 , CaTi2O5 , Ca3Ti2O7 , Ca4Ti3O10 , CaTiO3 , CaTi5O11 , Mg2Al4O8 , MgAl2O4 , Mg2Al2O5 , MgGe2O4 , Mg2TiO4 , MgTiO3 , MgTi2O4 , MgTi2O5 , MgFe2 O4 , SrAl12O19 , SrAl4O7 , Sr4Al14O25 , Sr12Al14O33 , Sr3Al2O6 , Sr10Al6O19 , Sr3GeO , SrGe4O9 , SrGeO3 , Sr3GeO5 , SrTi11O20 , Sr2Ti6O13 , SrTiO3 , Sr4Ti3O10 , Sr3Ti2O7 , Sr2TiO4 , SrFe12O9 , SrFe2O4 , Sr2Fe3 O6 , SrFeO2 , Sr4Fe6O13 , Sr2Fe2O5 , Sr3Fe2O5 , Sr4Fe4O11 , SrFeO3 , Sr3Fe2O6 , Sr2FeO3 , Sr3Fe2O7 , SrFeO4 , Sr2FeO4 , BaAl12O19 , BaAl4O7 , BaAl2O4 , Ba3Al2O6 , Ba4Al2O7 , Ba7Al2O10 , Ba17Al3O7 , Ba21Ge 2O5 , Ba3GeO , Ba3GeO5 , Ba10Ge7O3 , BaGeO3 , BaGe2O5 , Ba2Ge5O12 , BaGe4O9 , Ba3TiO5 , Ba2TiO4 , Ba4Ti5O10 , Ba4Ti4O11 , BaTiO3 , BaTi2O5 , BaTi4O9 , Ba2Ti9O20 , BaTi5O11 , Ba2Ti13O22 , Ba3FeO5 , Ba2FeO4 , BaFeO2 , Ba2Fe2O5 , Ba8Fe8O21 , Ba5Fe5O14 , BaFeO3 , BaFe2O4 , Ba2Fe6O11 , BaFe4O7 , BaFe7O11 , BaFe12O19 , and BaFe15O23 . The complex oxide contained in the inhibitor of the first embodiment may be one type or two or more types .
 第一の実施形態のインヒビターの製造方法としては、特に限定されず、例えば、目的の複合酸化物の組成比になるように原料となる化合物を計り取って混合し、1000℃~1500℃の温度範囲で大気雰囲気および還元雰囲気で焼成する等の公知の方法が例示できる。
 また、得られたインヒビターの粒径の上限は得に限定はされないが、10000μm以下がより好ましく、1000μm以下が特に好ましく、100μm以下が最も好ましい。粒径の下限も特に限定はされないが、1nm以上がより好ましく、10nmが特に好ましく、100nm以上が最も好ましい。粒径をこの範囲に制御することで、バインダーピッチ中にインヒビターを均一に分散させやすく、また、得られたインヒビターの結晶性を維持させ、パッフィング効果を高めることが期待できる。
 なお、本明細書において、「インヒビターの粒径」は、レーザー回折型粒度分布計MT3300EX(マイクロトラック・ベル社製)を使用して分散媒にエタノールを用いた方法によって測定されるモード径を意味する。
The method for producing the inhibitor of the first embodiment is not particularly limited, and examples thereof include known methods such as measuring and mixing raw material compounds so as to obtain the composition ratio of the target composite oxide, and firing the mixture at a temperature range of 1000° C. to 1500° C. in air or in a reducing atmosphere.
The upper limit of the particle size of the obtained inhibitor is not particularly limited, but is more preferably 10,000 μm or less, particularly preferably 1,000 μm or less, and most preferably 100 μm or less. The lower limit of the particle size is also not particularly limited, but is more preferably 1 nm or more, particularly preferably 10 nm or more, and most preferably 100 nm or more. By controlling the particle size within this range, it is easy to uniformly disperse the inhibitor in the binder pitch, and it is expected that the crystallinity of the obtained inhibitor can be maintained and the puffing effect can be enhanced.
In this specification, the "particle size of the inhibitor" means the mode diameter measured by a method using a laser diffraction type particle size distribution analyzer MT3300EX (manufactured by Microtrac Bell) and ethanol as a dispersion medium.
 元素(Mα)および元素(Mβ)を有する複合酸化物を含む第一の実施形態のインヒビターを用いることで、パッフィング抑制効果が増大し、黒鉛電極の製造歩留まりと特性が向上する。第一の実施形態のインヒビターがこのような効果を奏する理由は未だ明らかではないが、以下のように推察される。
 黒鉛電極用ニードルコークスの焼成時に第一の実施形態のインヒビターが存在することにより、黒鉛電極から窒素が脱離する温度よりも低い温度で、窒素を含む複合化合物が形成されるか、あるいは、硫黄を含む複合化合物が形成され、インヒビター未添加系とは窒素脱離や硫黄脱離のタイミングがずれるため、パッフィング現象が抑制されると推察される。すなわち、第一の実施形態のインヒビターが元素(Mα)および元素(Mβ)を有する複合酸化物を含むため、焼成時の昇温過程においてコークス中の窒素または硫黄と反応して複合化合物(窒化物、酸窒化物、硫化物、酸硫化物、炭窒化物)を形成することから、第一の実施形態による効果を奏するものであると推察される。
By using the inhibitor of the first embodiment containing a composite oxide having elements (Mα) and (Mβ), the puffing suppression effect is increased, and the manufacturing yield and characteristics of the graphite electrode are improved. The reason why the inhibitor of the first embodiment exhibits such an effect is not yet clear, but is presumed to be as follows.
It is presumed that the presence of the inhibitor of the first embodiment during the calcination of the needle coke for graphite electrodes causes a complex compound containing nitrogen or a complex compound containing sulfur to be formed at a temperature lower than the temperature at which nitrogen is desorbed from the graphite electrode, and the timing of nitrogen desorption or sulfur desorption is shifted from that of a system without the inhibitor added, thereby suppressing the puffing phenomenon. That is, since the inhibitor of the first embodiment contains a complex oxide having the element (Mα) and the element (Mβ), it reacts with the nitrogen or sulfur in the coke during the temperature rise process during calcination to form a complex compound (nitride, oxynitride, sulfide, oxysulfide, carbonitride), and thus the effect of the first embodiment is achieved.
 (第二の実施形態)
 第二の実施形態のインヒビターは、元素(Mα)からなる金属または元素(Mα)を有する酸化物、および、元素(Mβ)からなる金属または元素(Mβ)を有する酸化物を含む。第二の実施形態のインヒビターは、パッフィングを低減させやすいことから、元素(Mα)を有する酸化物および元素(Mβ)を有する酸化物を含むことが好ましい。
 元素(Mα):少なくとも一種以上の金属元素(ただし元素(Mβ)を除く)。
 元素(Mβ):長周期型周期表の第4族元素、第8族元素、第9族元素、第10族元素、第13族元素、第14族元素および第15族元素からなる群より選ばれる少なくとも一種の元素。
Second Embodiment
The inhibitor of the second embodiment includes a metal consisting of the element (Mα) or an oxide having the element (Mα), and a metal consisting of the element (Mβ) or an oxide having the element (Mβ). The inhibitor of the second embodiment preferably includes an oxide having the element (Mα) and an oxide having the element (Mβ) because puffing is easily reduced.
Element (Mα): At least one metal element (excluding element (Mβ)).
Element (Mβ): at least one element selected from the group consisting of Group 4 elements, Group 8 elements, Group 9 elements, Group 10 elements, Group 13 elements, Group 14 elements, and Group 15 elements of the long form periodic table.
 <元素(Mα)からなる金属または元素(Mα)を有する酸化物>
 元素(Mα)としては、パッフィングを低減させやすいことから、K、Sc、アルカリ土類金属元素および希土類金属元素からなる群より選ばれる少なくとも一種の金属元素であることが好ましく、Sc、アルカリ土類金属、希土類金属元素からなる群より選ばれる少なくとも一種の金属元素であることがより好ましく、アルカリ土類金属、希土類金属元素からなる群より選ばれる少なくとも一種の金属元素であることが特に好ましく、アルカリ土類金属が最も好ましい。
<Metal consisting of element (Mα) or oxide having element (Mα)>
As the element (Mα), since puffing can be easily reduced, it is preferable that the element (Mα) is at least one metal element selected from the group consisting of K, Sc, alkaline earth metal elements, and rare earth metal elements, it is more preferable that the element (Mα) is at least one metal element selected from the group consisting of Sc, alkaline earth metals, and rare earth metal elements, it is particularly preferable that the element (Mα) is at least one metal element selected from the group consisting of alkaline earth metals and rare earth metal elements, and it is most preferable that the element (Mα) is an alkaline earth metal.
 元素(Mα)を有する酸化物の組成式としては、特に限定されないが、パッフィングを低減させやすいことから、以下の式(2)であることが好ましい。
 Mα3-x13-z1 ・・・(2)
(式中、Mαは元素(Mα)であり、0≦x1<3、0≦z1<3である。)
The composition formula of the oxide having the element (Mα) is not particularly limited, but is preferably the following formula (2) because it is easy to reduce puffing.
3−x1 O 3−z1 ... (2)
(In the formula, Mα is an element (Mα), 0≦x1<3, and 0≦z1<3.)
 式中、x1は、パッフィングを低減させやすいことから、0≦x1<3が好ましく、0.05≦x1≦2.5がより好ましく、0.1≦x1≦2が特に好ましい。
 式中、z1は、パッフィングを低減させやすいことから、0≦z1<3が好ましく、0.05≦z1≦2.5がより好ましく、0.1≦z1≦2が特に好ましい。
In the formula, x1 is preferably 0≦x1<3, more preferably 0.05≦x1≦2.5, and particularly preferably 0.1≦x1≦2, because puffing can be easily reduced.
In the formula, z1 is preferably 0≦z1<3, more preferably 0.05≦z1≦2.5, and particularly preferably 0.1≦z1≦2, because puffing can be easily reduced.
 元素(Mα)からなる金属または元素(Mα)を有する酸化物の具体例としては、例えば、CaO、Ca(OH)、CaCO、Ca、MgO、MgCO、Mg(OH)、Mg、SrO、SrCO、Sr(OH)、Sr、BaO、BaCO、Ba(OH)、Ba、CeO、Ce、Pr11、Pr、Eu、Euを例示できる。第二の実施形態のインヒビターに含まれる元素(Mα)を有する酸化物は、1種であってもよく、2種以上であってもよい。 Specific examples of the metal consisting of the element (Mα) or the oxide having the element (Mα) include CaO, Ca(OH) 2 , CaCO3 , Ca, MgO, MgCO3 , Mg(OH) 2 , Mg, SrO, SrCO3 , Sr (OH) 2 , Sr, BaO, BaCO3 , Ba(OH) 2 , Ba, CeO2 , Ce, Pr6O11 , Pr, Eu2O3 , and Eu. The oxide having the element ( ) contained in the inhibitor of the second embodiment may be one type or two or more types.
 <元素(Mβ)からなる金属または元素(Mβ)を有する酸化物>
 元素(Mβ)としては、パッフィングを低減させやすいことから、Si、Ge、Al、B、Ti、FeおよびPからなる群より選ばれる少なくとも一種の元素であることが好ましく、SiおよびGeの少なくとも一種の元素であることがより好ましく、Siが最も好ましい。
<Metal consisting of element (Mβ) or oxide having element (Mβ)>
The element (Mβ) is preferably at least one element selected from the group consisting of Si, Ge, Al, B, Ti, Fe and P, more preferably at least one element of Si and Ge, and most preferably Si, because this easily reduces puffing.
 元素(Mβ)を有する酸化物の組成式としては、特に限定されないが、パッフィングを低減させやすいことから、以下の式(3)であることが好ましい。
 Mβ1-y12-z2 ・・・(3)
(式中、Mβは元素(Mβ)であり、0≦y1<1、0≦z2<2である。)
The composition formula of the oxide having the element (Mβ) is not particularly limited, but is preferably the following formula (3) because it is easy to reduce puffing.
1-y1 O 2-z2 ... (3)
(In the formula, Mβ is an element (Mβ), 0≦y1<1, and 0≦z2<2.)
 式中、y1は、パッフィングを低減させやすいことから、0≦y1<1が好ましく、0.01≦y1≦0.8がより好ましく、0.1≦y1≦0.5が特に好ましい。
 式中、z2は、パッフィングを低減させやすいことから0<z2≦2が好ましく、0.05≦z2≦0.2がより好ましく、0.1≦z2≦0.15が特に好ましい。
In the formula, y1 is preferably 0≦y1<1, more preferably 0.01≦y1≦0.8, and particularly preferably 0.1≦y1≦0.5, since puffing can be easily reduced.
In the formula, z2 is preferably 0<z2≦2, more preferably 0.05≦z2≦0.2, and particularly preferably 0.1≦z2≦0.15, since puffing can be easily reduced.
 元素(Mβ)からなる金属または元素(Mβ)を有する酸化物の具体例としては、例えば、SiO、Si、SiO、GeO、Ge、Al、Al、B、Pを例示できる。第二の実施形態のインヒビターに含まれる元素(Mβ)を有する酸化物は、1種であってもよく、2種以上であってもよい。 Specific examples of the metal consisting of the element (Mβ) or the oxide having the element (Mβ) include, for example, SiO 2 , Si, SiO x , GeO 2 , Ge, Al 2 O 3 , Al, B 2 O 3 , and P 2 O 5. The oxide having the element (Mβ) contained in the inhibitor of the second embodiment may be one type or two or more types.
 第二の実施形態のインヒビターの製造方法としては、特に限定されず、例えば、元素(Mα)と元素(Mβ)を目的の比率となるように計り取って混合し、1000℃~1500℃の温度範囲で大気雰囲気および還元雰囲気で焼成し、元素(Mα)を有する酸化物と元素(Mβ)を有する酸化物とが複合化されたインヒビターを得る方法を例示できる。
 また、元素(Mα)を有する酸化物と元素(Mβ)を有する酸化物とを混合して調製してもよい。複合化されたインヒビターの粒径は特に限定はされないが、10000μm以下がより好ましく、1000μm以下が特に好ましく、100μm以下が最も好ましい。粒径の下限も特に限定はされないが、1nm以上がより好ましく、10nmが特に好ましく、100nm以上が最も好ましい。粒径をこの範囲に制御することで、バインダーピッチ中にインヒビターを均一に分散させやすく、パッフィング効果を高めることが期待できる。
The method for producing the inhibitor of the second embodiment is not particularly limited, and an example thereof is a method in which the elements (Mα) and (Mβ) are measured and mixed in a desired ratio, and then fired in an air atmosphere and a reducing atmosphere at a temperature range of 1000° C. to 1500° C. to obtain an inhibitor in which an oxide having the element (Mα) and an oxide having the element (Mβ) are composited.
Alternatively, the inhibitor may be prepared by mixing an oxide having an element (Mα) with an oxide having an element (Mβ). The particle size of the composite inhibitor is not particularly limited, but is more preferably 10,000 μm or less, particularly preferably 1000 μm or less, and most preferably 100 μm or less. The lower limit of the particle size is also not particularly limited, but is more preferably 1 nm or more, particularly preferably 10 nm, and most preferably 100 nm or more. By controlling the particle size within this range, it is expected that the inhibitor can be easily uniformly dispersed in the binder pitch, and the puffing effect can be enhanced.
 元素(Mα)を有する酸化物および元素(Mβ)を有する酸化物の混合比率としては、特に限定されないが、低パッフィングとなるため、元素(Mα)を有する酸化物に対する元素(Mβ)を有する酸化物の重量比として、その下限は、通常0.01以上、好ましくは0.05以上、より好ましくは0.1以上であり、一方、その上限は、通常1以下、好ましくは0.7以下、より好ましくは0.5以下である。 The mixing ratio of the oxide having the element (Mα) and the oxide having the element (Mβ) is not particularly limited, but in order to achieve low puffing, the lower limit of the weight ratio of the oxide having the element (Mβ) to the oxide having the element (Mα) is usually 0.01 or more, preferably 0.05 or more, and more preferably 0.1 or more, while the upper limit is usually 1 or less, preferably 0.7 or less, and more preferably 0.5 or less.
 元素(Mβ)からなる金属または元素(Mα)を有する酸化物、および、元素(Mβ)からなる金属または元素(Mβ)を有する酸化物を含む第二の実施形態のインヒビターを用いることで、パッフィング抑制効果が増大し、黒鉛電極の製造歩留まりと特性が向上する。第二の実施形態のインヒビターがこのような効果を奏する理由は未だ明らかではないが、以下のように推察される。
 黒鉛電極用ニードルコークスの焼成時に第二の実施形態のインヒビターが存在することにより、黒鉛電極から窒素が脱離する温度よりも低い温度で、窒素を含む複合化合物が形成されるか、あるいは、硫黄を含む複合化合物が形成され、インヒビター未添加系とは窒素脱離や硫黄脱離のタイミングがずれるために、パッフィング現象が抑制されると推察される。すなわち、第二の実施形態のインヒビターが、元素(Mβ)からなる金属または元素(Mα)を有する酸化物と、元素(Mβ)からなる金属または元素(Mβ)を有する酸化物を含むため、焼成時の昇温過程においてコークス中の窒素または硫黄と反応して複合化合物(窒化物、酸窒化物、硫化物、酸硫化物、炭窒化物)を形成することから、第二の実施形態による効果を奏するものであると推察される。
By using the inhibitor of the second embodiment, which contains a metal consisting of the element (Mβ) or an oxide having the element (Mα), and a metal consisting of the element (Mβ) or an oxide having the element (Mβ), the puffing suppression effect is increased, and the manufacturing yield and characteristics of the graphite electrode are improved. The reason why the inhibitor of the second embodiment exhibits such an effect is not yet clear, but is presumed to be as follows.
It is presumed that the presence of the inhibitor of the second embodiment during the calcination of the needle coke for graphite electrodes causes a nitrogen-containing composite compound or a sulfur-containing composite compound to be formed at a temperature lower than the temperature at which nitrogen is desorbed from the graphite electrode, and the timing of nitrogen desorption or sulfur desorption is shifted from that in a system in which the inhibitor is not added, thereby suppressing the puffing phenomenon. That is, since the inhibitor of the second embodiment contains a metal made of element (Mβ) or an oxide having element (Mα) and a metal made of element (Mβ) or an oxide having element (Mβ), it reacts with nitrogen or sulfur in the coke during the temperature rise process during calcination to form a composite compound (nitride, oxynitride, sulfide, oxysulfide, carbonitride), and therefore the effect of the second embodiment is achieved.
1.2.バインダーピッチ
 バインダーピッチとしては、ニードルコークスの原料ピッチと同じものを使用することができる。例えば、コールタール、FCCデカントオイル、エチレンヘビーエンド、石油系残渣、石油系廃棄物、バイオマスオイル、バイオマスタール等に由来するピッチを例示できる。バインダーピッチは、1種を単独で使用してもよく、2種以上を併用してもよい。
1.2. Binder pitch The binder pitch may be the same as the raw material pitch of needle coke. For example, pitch derived from coal tar, FCC decant oil, ethylene heavy ends, petroleum residue, petroleum waste, biomass oil, biomass tar, etc. may be exemplified. The binder pitch may be used alone or in combination of two or more kinds.
 バインダーピッチの総重量に対するインヒビターの割合(重量%)をXとしたとき、0.02<X<60であることが好ましい。これにより、パッフィング低減効果が十分に得られやすく、また電極製品への悪影響を低減することも容易になる。
 インヒビターの割合Xは、0.2<X<50がより好ましく、2<X<40がさらに好ましい。
When the ratio (wt%) of the inhibitor to the total weight of the binder pitch is X, it is preferable that 0.02<X<60. This makes it easier to obtain a sufficient puffing reduction effect and also makes it easier to reduce adverse effects on electrode products.
The ratio X of the inhibitor is more preferably 0.2<X<50, and further preferably 2<X<40.
1.3.黒鉛電極製造用バインダー組成物の物性
 実施形態の黒鉛電極製造用バインダー組成物は、黒鉛電極の製造時におけるニードルコークスのパッフィングを抑制しやすいことから、以下の評価試験(i)で作成されたテストピースの下記式(I)で算出されるパッフィング値P2800が1.20%以下であることが好ましい。
 P2800=(L2-L1)/L1×100 ・・・(I)
 ただし式(I)中のL1およびL2は以下の意味を示す。
 L1:焼成前のテストピースの厚み(mm)
 L2:2800℃まで焼成後のテストピースの厚み(mm)
1.3. Properties of the Binder Composition for Producing a Graphite Electrode Since the binder composition for producing a graphite electrode according to the embodiment is likely to suppress puffing of needle coke during the production of a graphite electrode, it is preferable that the puffing value P2800 calculated by the following formula (I) of a test piece prepared in the following evaluation test (i) is 1.20% or less.
P 2800 = (L2 - L1) / L1 × 100 ... (I)
In the formula (I), L1 and L2 have the following meanings.
L1: Thickness of test piece before firing (mm)
L2: Thickness of the test piece after firing to 2800°C (mm)
 <評価試験(i)>
 石炭系ニードルコークスに対する割合が外割で30重量%となるバインダーピッチと2重量%または5重量%となる黒鉛電極製造用インヒビターとを混ぜ合わせ、165℃で加熱しながら5分間混錬した後、石炭系ニードルコークスを添加して再度165℃で加熱しながら5分間混錬する。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、バインダーピッチを焼き飛ばしてテストピースとする。テストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成し、焼成前後のテストピースのL1およびL2を測定する。
<Evaluation test (i)>
The binder pitch, the ratio of which to the coal-based needle coke is 30% by weight, and the inhibitor for graphite electrode production, 2% by weight or 5% by weight, are mixed and kneaded for 5 minutes while heating at 165°C, and then the coal-based needle coke is added and kneaded again for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mmΦ x 3 mm to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece. The test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L1 and L2 of the test piece before and after firing are measured.
 評価試験(i)で作成されたテストピースのパッフィング値P2800は、1.2%以下が好ましく、1.15%以下がより好ましく、1.1%以下がさらに好ましく、1.05%以下が特に好ましく、1%以下がより一層好ましく、0%以下であることが最も好ましい。また、評価試験(i)で作成されたテストピースのパッフィング値P2800の下限値は、特に制限されないが、-5%以上が好ましく、-2%以上がより好ましい。前記パッフィング値P2800の下限と上限は任意に組み合わせることができ、例えば-5%以上1.20%以下であることが好ましい。 The puffing value P2800 of the test piece prepared in the evaluation test (i) is preferably 1.2% or less, more preferably 1.15% or less, even more preferably 1.1% or less, particularly preferably 1.05% or less, even more preferably 1% or less, and most preferably 0% or less. The lower limit of the puffing value P2800 of the test piece prepared in the evaluation test (i) is not particularly limited, but is preferably -5% or more, more preferably -2% or more. The lower limit and upper limit of the puffing value P2800 can be arbitrarily combined, and for example, it is preferably -5% or more and 1.20% or less.
 前記評価試験(i)において、インヒビターを用いない以外は同様の方法でテストピースを作成し、当該テストピースの前記式(I)で算出されるパッフィング値(ブランク)をP2800bとする。
 このとき、評価試験(i)のテストピースについてのP2800/P2800bで算出されるパッフィング値の比は、1未満が好ましく、0.95以下がより好ましく、0.9以下がさらに好ましく、0.85以下が特に好ましい。評価試験(i)のテストピースについてのP2800/P2800bは小さいほど好ましい。前記P2800/P2800bの下限は限定されないが、実質的には-1.5以上であってよい。
A test piece is prepared in the same manner as in the evaluation test (i) except that no inhibitor is used, and the puffing value (blank) of the test piece calculated by the formula (I) is defined as P 2800b .
In this case, the puffing value ratio calculated by P 2800 /P 2800b for the test piece in evaluation test (i) is preferably less than 1, more preferably 0.95 or less, even more preferably 0.9 or less, and particularly preferably 0.85 or less. The smaller the P 2800 /P 2800b for the test piece in evaluation test (i), the more preferable it is. The lower limit of the P 2800 /P 2800b is not limited, but may be substantially -1.5 or more.
 実施形態の黒鉛電極用ニードルコークスは、黒鉛電極の製造時におけるニードルコークスのパッフィングを抑制しやすいことから、以下の評価試験(ii)で作成されたテストピースの下記式(II)で算出されるパッフィング値P1700-2100が0.7%以下であることが好ましい。
 P1700-2100=(L3-L4)/L5×100 ・・・(II)
 ただし式(II)中のL3、L4およびL5は以下の意味を示す。
 L3:2100℃焼成時点のテストピースの厚み(mm)
 L4:1700℃焼成時点のテストピースの厚み(mm)
 L5:1000℃焼成時点のテストピースの厚み(mm)
Since the needle coke for graphite electrodes of the embodiment is easy to suppress puffing of the needle coke during the production of graphite electrodes, it is preferable that the puffing value P 1700-2100 calculated by the following formula (II) of the test piece prepared in the following evaluation test (ii) is 0.7% or less.
P 1700-2100 = (L3-L4) / L5 × 100 ... (II)
In the formula (II), L3, L4 and L5 have the following meanings.
L3: Thickness of the test piece after firing at 2100°C (mm)
L4: Thickness of the test piece after firing at 1700°C (mm)
L5: Thickness of the test piece after firing at 1000°C (mm)
 <評価試験(ii)>
 石炭系ニードルコークスに対する割合が外割で30重量%となるバインダーピッチと2重量%または5重量%となる黒鉛電極製造用インヒビターとを混ぜ合わせ、165℃で加熱しながら5分間混錬した後、石炭系ニードルコークスを添加して再度165℃で加熱しながら5分間混錬する。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、バインダーピッチを焼き飛ばしてテストピースとする。テストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成し、焼成中のテストピースのL3、L4およびL5を測定する。
<Evaluation test (ii)>
The binder pitch, the ratio of which to the coal-based needle coke is 30% by weight, and the inhibitor for graphite electrode production, 2% by weight or 5% by weight, are mixed and kneaded for 5 minutes while heating at 165°C, and then the coal-based needle coke is added and kneaded again for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mmΦ x 3 mm to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece. The test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L3, L4 and L5 of the test piece during firing are measured.
 評価試験(ii)で作成されたテストピースのパッフィング値P1700-2100は、0.7%以下が好ましく、0.6%以下がさらに好ましく、0.5%以下が特に好ましく、0.4%以下が最も好ましい。また、評価試験(ii)で作成されたテストピースのパッフィング値P1700-2100の下限値は、特に制限されないが、-5%以上が好ましく、-2%以上がより好ましい。前記パッフィング値P1700-2100の下限と上限は任意に組み合わせることができ、例えば-5%以上0.7%以下であることが好ましい。 The puffing value P 1700-2100 of the test piece prepared in the evaluation test (ii) is preferably 0.7% or less, more preferably 0.6% or less, particularly preferably 0.5% or less, and most preferably 0.4% or less. The lower limit of the puffing value P 1700-2100 of the test piece prepared in the evaluation test (ii) is not particularly limited, but is preferably -5% or more, more preferably -2% or more. The lower limit and upper limit of the puffing value P 1700-2100 can be arbitrarily combined, and for example, it is preferably -5% or more and 0.7% or less.
 前記評価試験(ii)において、インヒビターを用いない以外は同様の方法でテストピースを作成し、当該テストピースの前記式(II)で算出されるパッフィング値(ブランク)をP1700-2100bとする。
 このとき、評価試験(ii)のテストピースについてのP1700-2100/P1700-2100bで算出されるパッフィング値の比は、1未満が好ましく、0.9以下がより好ましく、0.8以下がさらに好ましく、0.6以下が特に好ましい。評価試験(ii)のテストピースについてのP1700-2100/P1700-2100bは小さいほど好ましい。前記P1700-2100/P1700-2100bの下限は限定されないが、実質的には-1.5以上であってよい。
A test piece is prepared in the same manner as in the evaluation test (ii) except that no inhibitor is used, and the puffing value (blank) of the test piece calculated by the formula (II) is defined as P 1700-2100b .
In this case, the puffing value ratio calculated by P 1700-2100 /P 1700-2100b for the test piece in evaluation test (ii) is preferably less than 1, more preferably 0.9 or less, even more preferably 0.8 or less, and particularly preferably 0.6 or less. The smaller the P 1700-2100 /P 1700-2100b for the test piece in evaluation test (ii), the more preferable it is. The lower limit of the P 1700-2100 /P 1700-2100b is not limited, but may be substantially -1.5 or more.
<評価試験(iii)>
 石炭系ニードルコークスに対する割合が外割で30重量%となる粉末状にしたバインダーピッチと2重量%となる黒鉛電極製造用インヒビターを室温下で10分間混ぜ合わせ、その後、石炭系ニードルコークスを添加して165℃で加熱しながら5分間混錬する。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、バインダーピッチを焼き飛ばしてテストピースとする。テストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成し、焼成前後のテストピースのL1およびL2を測定する。
<Evaluation test (iii)>
Powdered binder pitch with a ratio of 30% by weight to the coal-based needle coke and 2% by weight of an inhibitor for graphite electrode production are mixed at room temperature for 10 minutes, and then the coal-based needle coke is added and kneaded for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mmΦ x 3 to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece. The test piece is fired at a heating rate of 20°C/min to 2800°C using a thermal expansion measuring device, and L1 and L2 of the test piece before and after firing are measured.
 評価試験(iii)で作成されたテストピースのパッフィング値P2800は、1.2%以下が好ましく、1.15%以下がより好ましく、1.1%以下がさらに好ましく、1.05%以下が特に好ましく、1%以下がより一層好ましく、0%以下であることが最も好ましい。また、評価試験(iii)で作成されたテストピースのパッフィング値P2800の下限値は、特に制限されないが、-5%以上が好ましく、-2%以上がより好ましい。前記パッフィング値P2800の下限と上限は任意に組み合わせることができ、例えば-5%以上1.20%以下であることが好ましい。 The puffing value P 2800 of the test piece prepared in the evaluation test (iii) is preferably 1.2% or less, more preferably 1.15% or less, even more preferably 1.1% or less, particularly preferably 1.05% or less, even more preferably 1% or less, and most preferably 0% or less. The lower limit of the puffing value P 2800 of the test piece prepared in the evaluation test (iii) is not particularly limited, but is preferably -5% or more, more preferably -2% or more. The lower limit and upper limit of the puffing value P 2800 can be arbitrarily combined, and for example, it is preferably -5% or more and 1.20% or less.
 前記評価試験(iii)において、インヒビターを用いない以外は同様の方法でテストピースを作成し、当該テストピースの前記式(I)で算出されるパッフィング値(ブランク)をP2800bとする。
 このとき、評価試験(iii)のテストピースについてのP2800/P2800bで算出されるパッフィング値の比は、1未満が好ましく、0.95以下がより好ましく、0.9以下がさらに好ましく、0.85以下が特に好ましい。評価試験(iii)のテストピースについてのP2800/P2800bは小さいほど好ましい。前記P2800/P2800bの下限は限定されないが、実質的には-1.5以上であってよい。
In the evaluation test (iii), a test piece is prepared in the same manner except that no inhibitor is used, and the puffing value (blank) of the test piece calculated by the formula (I) is defined as P 2800b .
In this case, the puffing value ratio calculated by P2800 / P2800b for the test piece in evaluation test (iii) is preferably less than 1, more preferably 0.95 or less, even more preferably 0.9 or less, and particularly preferably 0.85 or less. The smaller the P2800 / P2800b for the test piece in evaluation test (iii), the more preferable it is. The lower limit of the P2800 / P2800b is not limited, but may be substantially -1.5 or more.
 実施形態の黒鉛電極用ニードルコークスは、黒鉛電極の製造時におけるニードルコークスのパッフィングを抑制しやすいことから、以下の評価試験(iv)で作成されたテストピースの下記式(II)で算出されるパッフィング値P1700-2100が0.7%以下であることが好ましい。
 P1700-2100=(L3-L4)/L5×100 ・・・(II)
 ただし式(II)中のL3、L4およびL5は以下の意味を示す。
 L3:2100℃焼成時点のテストピースの厚み(mm)
 L4:1700℃焼成時点のテストピースの厚み(mm)
 L5:1000℃焼成時点のテストピースの厚み(mm)
Since the needle coke for graphite electrodes of the embodiment is easy to suppress puffing of the needle coke during the production of graphite electrodes, it is preferable that the puffing value P 1700-2100 calculated by the following formula (II) of the test piece prepared in the following evaluation test (iv) is 0.7% or less.
P 1700-2100 = (L3-L4) / L5 × 100 ... (II)
In the formula (II), L3, L4 and L5 have the following meanings.
L3: Thickness of the test piece after firing at 2100°C (mm)
L4: Thickness of the test piece after firing at 1700°C (mm)
L5: Thickness of the test piece after firing at 1000°C (mm)
<評価試験(iv)>
 石炭系ニードルコークスに対する割合が外割で30重量%となる粉末状にしたバインダーピッチと2重量%となる黒鉛電極製造用インヒビターを室温下で10分間混ぜ合わせ、その後、石炭系ニードルコークスを添加して165℃で加熱しながら5分間混錬する。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、バインダーピッチを焼き飛ばしてテストピースとする。テストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成し、焼成中のテストピースのL3、L4およびL5を測定する。
<Evaluation test (iv)>
Powdered binder pitch with a ratio of 30% by weight to the coal-based needle coke and 2% by weight of an inhibitor for graphite electrode production are mixed at room temperature for 10 minutes, and then the coal-based needle coke is added and kneaded for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mmΦ x 3 to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece. The test piece is fired at a heating rate of 20°C/min up to 2800°C using a heating thermal expansion measuring device, and L3, L4 and L5 of the test piece during firing are measured.
 評価試験(iv)で作成されたテストピースのパッフィング値P1700-2100は、0.7%以下が好ましく、0.6%以下がさらに好ましく、0.5%以下が特に好ましく、0.4%以下が最も好ましい。また、評価試験(iv)で作成されたテストピースのパッフィング値P1700-2100の下限値は、特に制限されないが、-5%以上が好ましく、-2%以上がより好ましい。前記パッフィング値P1700-2100の下限と上限は任意に組み合わせることができ、例えば-5%以上0.7%以下であることが好ましい。 The puffing value P 1700-2100 of the test piece prepared in the evaluation test (iv) is preferably 0.7% or less, more preferably 0.6% or less, particularly preferably 0.5% or less, and most preferably 0.4% or less. The lower limit of the puffing value P 1700-2100 of the test piece prepared in the evaluation test (iv) is not particularly limited, but is preferably -5% or more, more preferably -2% or more. The lower limit and upper limit of the puffing value P 1700-2100 can be arbitrarily combined, and for example, it is preferably -5% or more and 0.7% or less.
 前記評価試験(iv)において、インヒビターを用いない以外は同様の方法でテストピースを作成し、当該テストピースの前記式(II)で算出されるパッフィング値(ブランク)をP1700-2100bとする。
 このとき、評価試験(iv)のテストピースについてのP1700-2100/P1700-2100bで算出されるパッフィング値の比は、1未満が好ましく、0.9以下がより好ましく、0.8以下がさらに好ましく、0.6以下が特に好ましい。評価試験(iv)のテストピースについてのP1700-2100/P1700-2100bは小さいほど好ましい。前記P1700-2100/P1700-2100bの下限は限定されないが、実質的には-1.5以上であってよい。
A test piece is prepared in the same manner as in the evaluation test (iv) except that no inhibitor is used, and the puffing value (blank) of the test piece calculated by the formula (II) is defined as P 1700-2100b .
In this case, the ratio of the puffing value calculated by P 1700-2100 /P 1700-2100b for the test piece in evaluation test (iv) is preferably less than 1, more preferably 0.9 or less, even more preferably 0.8 or less, and particularly preferably 0.6 or less. The smaller the P 1700-2100 /P 1700-2100b for the test piece in evaluation test (iv), the more preferable it is. The lower limit of the P 1700-2100 /P 1700-2100b is not limited, but may be substantially -1.5 or more.
 実施形態の黒鉛電極製造用バインダー組成物の製造方法は、特に限定されない。例えば、インヒビターを有機溶剤や重質油に溶解または分散してバインダーピッチに添加し、インヒビターをバインダーピッチの表面に付与する方法を例示できる。例えばインヒビターをアルコール、ベンゼン等の揮発性溶剤に溶解させて添加してもよい。 The method for producing the binder composition for producing graphite electrodes according to the embodiment is not particularly limited. For example, the inhibitor may be dissolved or dispersed in an organic solvent or heavy oil and added to the binder pitch, so that the inhibitor is applied to the surface of the binder pitch. For example, the inhibitor may be dissolved in a volatile solvent such as alcohol or benzene and then added.
2.黒鉛電極用生電極の製造方法
 本発明の他の実施形態は、黒鉛電極用生電極の製造方法に関する。
 実施形態の一例に係る黒鉛電極用生電極の製造方法は、インヒビターとバインダーピッチを混合して黒鉛電極製造用バインダー組成物を製造し、黒鉛電極製造用バインダー組成物と、ニードルコークスとを混合し、成形して生電極を得る方法である。実施形態の他の一例に係る黒鉛電極用生電極の製造方法は、予め製造された黒鉛電極製造用バインダー組成物と、ニードルコークスとを混合し、成形して生電極を得る方法であってもよい。
2. Method for Producing a Raw Electrode for a Graphite Electrode Another embodiment of the present invention relates to a method for producing a raw electrode for a graphite electrode.
A method for producing a raw electrode for a graphite electrode according to one embodiment includes mixing an inhibitor and a binder pitch to produce a binder composition for producing a graphite electrode, mixing the binder composition for producing a graphite electrode with needle coke, and molding the mixture to obtain a raw electrode. A method for producing a raw electrode for a graphite electrode according to another embodiment may include mixing a binder composition for producing a graphite electrode that has been produced in advance with needle coke, and molding the mixture to obtain a raw electrode.
 黒鉛電極製造用バインダー組成物の製造方法は、前述のとおりである。
 例えばニードルコークスに黒鉛電極製造用バインダー組成物を混練(捏合)し、必要に応じてさらに酸化鉄を添加して混練した後に成形する方法を例示できる。酸化鉄の使用については、省略してもよいが、酸化鉄を使用すれば一層のパッフィング低減効果を得ることができるため、要求品質と経済性を勘案して適宜決定すればよい。
 成形方法としては、特に限定されず、例えば押出し成形を例示できる。
The method for producing the binder composition for producing a graphite electrode is as described above.
For example, a method can be exemplified in which the binder composition for producing graphite electrodes is mixed (kneaded) with needle coke, and iron oxide is further added as necessary, and then the mixture is molded. The use of iron oxide may be omitted, but the use of iron oxide can provide a further effect of reducing puffing, so that the amount of iron oxide may be appropriately determined taking into consideration the required quality and economic efficiency.
The molding method is not particularly limited, and may be, for example, extrusion molding.
 ニードルコークスとしては、塊状および粒状のか焼コークス、すなわち粒度調整されていない粗粒コークスを用いることができる。か焼コークスは粉砕していてもよい。
 粗粒コークスには微粉コークス等を混合し、バインダーピッチ混練前に粒度調整することが好ましい。この場合、混合される微粉コークスは、黒鉛電極用ニードルコークスの全体量に対して、好ましくは50重量%以下、より好ましくは30重量%以下にするとよい。微粉コークスはパフィング低減効果には直接関係しないため、微粉コークスの混合については灰分量等の電極品質と経済性を勘案して適宜決定すればよい。
As needle coke, lump and granular calcined coke, i.e., coarse coke that has not been sized, can be used. The calcined coke may be crushed.
It is preferable to mix fine coke with the coarse coke and adjust the particle size before kneading with the binder pitch. In this case, the amount of the fine coke mixed is preferably 50% by weight or less, more preferably 30% by weight or less, based on the total amount of the needle coke for graphite electrodes. Since the fine coke is not directly related to the puffing reduction effect, the amount of the fine coke to be mixed may be appropriately determined taking into account the electrode quality such as the ash content and the economical efficiency.
 以下、ニードルコークスについてさらに詳述する。
 ニードルコークスの原料ピッチとしては、黒鉛電極用のニードルコークスの原料として通常用いられるピッチを用いることができる。例えば、コールタール、FCCデカントオイル、エチレンヘビーエンド、石油系残渣、石油系廃棄物、バイオマスオイル、バイオマスタール等に由来するピッチを例示できる。原料ピッチは、1種を単独で使用してもよく、2種以上を併用してもよい。
Needle coke will be described in more detail below.
As the raw material pitch of the needle coke, pitches that are usually used as raw materials for needle coke for graphite electrodes can be used. For example, pitches derived from coal tar, FCC decant oil, ethylene heavy ends, petroleum residues, petroleum waste, biomass oil, biomass tar, etc. can be exemplified. One type of raw material pitch may be used alone, or two or more types may be used in combination.
 ニードルコークスとしては、特に限定されないが、熱膨張係数が小さいことから、ピッチ系ニードルコークスが好ましい。ピッチ系ニードルコールコークスは硫黄や窒素の含有量が多く、そのままではパッフィングが高くなる傾向があるが、本発明ではピッチ系ニードルコールコークスを用いても十分にパッフィングを抑制できる。
 ピッチ系ニードルコークスは、電炉製鋼用黒鉛電極の骨材として好適に使用することができる。
The needle coke is not particularly limited, but is preferably a pitch-based needle coke because of its small thermal expansion coefficient. Pitch-based needle coal coke has a high sulfur and nitrogen content and tends to cause high puffing if used as is, but in the present invention, puffing can be sufficiently suppressed even when using pitch-based needle coal coke.
Pitch-based needle coke can be suitably used as an aggregate for graphite electrodes for electric furnace steelmaking.
 特に限定されないが、ピッチ系ニードルコークスは、原料コールタールピッチを水素化して水素化コールタールピッチを得た後、水素化コールタールピッチをコークス化することで製造できる。
 水素化コールタールピッチは、原料コールタールピッチの水素化反応を行い(水素化工程)、得られた水素化コールタールピッチから軽質油を分離する(分離工程)ことで得られる。分離工程で分離した軽質油は水素化工程に供給してリサイクルすることができる。原料コールタールピッチを水素化する方法、および水素化コールタールピッチから軽質油を分離する方法は、特に限定されず、公知の方法を適用することができる。
Although not particularly limited, pitch-based needle coke can be produced by hydrogenating a raw coal tar pitch to obtain hydrogenated coal tar pitch, and then coking the hydrogenated coal tar pitch.
Hydrogenated coal tar pitch is obtained by subjecting a raw coal tar pitch to a hydrogenation reaction (hydrogenation step) and separating light oil from the obtained hydrogenated coal tar pitch (separation step). The light oil separated in the separation step can be recycled by supplying it to the hydrogenation step. The method for hydrogenating the raw coal tar pitch and the method for separating the light oil from the hydrogenated coal tar pitch are not particularly limited, and known methods can be applied.
 原料コールタールピッチとしては、特に限定されない。原料コールタールピッチの製造方法(事前調整方法)としては、特に限定されず、例えば、コールタール系重質油からキノリン不溶分を実質的に除去する方法を例示できる。キノリン不溶分を除去する手段としては、公知の方法を適用できるが、芳香族系油または脂肪族系油の溶剤で処理する方法や、芳香族系油と脂肪族系油の混合溶剤で処理する方法が好ましい。具体的には、コールタール系重質油に前記溶剤を適当な条件にて混合、加熱した後に必要に応じて静置し、この混合物を蒸留して低沸点成分を留去することにより、キノリン不溶分を殆ど含まない原料コールタールピッチが得られる。脂肪族系油としては、シクロヘキサン、シクロペンタン等の脂環式化合物、アセトン、エーテル等のカルボニル基をもつ化合物、軽油等を使用することができる。芳香族系油としては、タール系洗浄油、アントラセン油等を使用することができる。 The raw coal tar pitch is not particularly limited. The manufacturing method (pre-adjustment method) of the raw coal tar pitch is not particularly limited, and for example, a method of substantially removing quinoline insolubles from coal tar heavy oil can be exemplified. As a means for removing quinoline insolubles, a known method can be applied, but a method of treating with an aromatic oil or aliphatic oil solvent, or a method of treating with a mixed solvent of aromatic oil and aliphatic oil is preferable. Specifically, the solvent is mixed with the coal tar heavy oil under appropriate conditions, heated, and then allowed to stand as necessary, and the mixture is distilled to remove low boiling point components, thereby obtaining a raw coal tar pitch that contains almost no quinoline insolubles. As the aliphatic oil, alicyclic compounds such as cyclohexane and cyclopentane, compounds with carbonyl groups such as acetone and ether, light oil, etc. can be used. As the aromatic oil, tar washing oil, anthracene oil, etc. can be used.
 水素化コールタールピッチの製造においては、原料コールタールピッチに石油系重質油を混合してもよい。石油系重質油を混合する場合、コールタール系重質油と石油系重質油と混合した後にキノリン不溶分を除去して、原料コールタールピッチと石油系重質油の混合物としてもよい。また、原料コールタールピッチと石油系重質油とを混合してから軽質油を分離したものを水素化工程に用いてもよい。さらには、軽質油を分離して得られた軽質油分離コールタールピッチと石油系重質油とを混合して水素化工程に用いてもよい。 In the production of hydrogenated coal tar pitch, petroleum heavy oil may be mixed with the raw coal tar pitch. When petroleum heavy oil is mixed, the coal tar heavy oil and the petroleum heavy oil may be mixed, and then the quinoline insoluble matter may be removed to obtain a mixture of raw coal tar pitch and petroleum heavy oil. Alternatively, the raw coal tar pitch and petroleum heavy oil may be mixed, and the light oil may be separated and used in the hydrogenation process. Furthermore, the light oil-separated coal tar pitch obtained by separating the light oil may be mixed with the petroleum heavy oil and used in the hydrogenation process.
 石油系重質油としては、特に限定されず、例えば、流動接触分解油、常圧蒸留残油、減圧蒸留残油、シェールオイル、タールサンドビチューメン、オリノコタール、石炭液化油、エチレンボトム油、およびこれらを水素化精製した重質油を例示できる。また、これら以外に、直留軽油、減圧軽油、脱硫軽油、脱硫減圧軽油等の比較的軽質な油をさらに含有してもよい。 Petroleum-based heavy oils are not particularly limited, and examples include fluid catalytic cracking oil, atmospheric distillation residual oil, vacuum distillation residual oil, shale oil, tar sand bitumen, Orinoco tar, coal liquefaction oil, ethylene bottom oil, and heavy oils obtained by hydrorefining these. In addition to these, the oil may further contain relatively light oils such as straight run diesel, vacuum diesel, desulfurized diesel, and desulfurized vacuum diesel.
 水素化コールタールピッチをコークス化する方法は、特に限定されず、例えば、ディレードコーキング法、ビスブレーキング法、フレキシコーキング法、ユリカプロセスを例示できる。これらの中でも、ニードルコークスの生産性や品質安定性の点から、ディレードコーキング法が好ましい。 The method for converting hydrogenated coal tar pitch into coke is not particularly limited, and examples include the delayed coking method, the visbreaking method, the flexicoking method, and the Eureka process. Among these, the delayed coking method is preferred from the standpoint of productivity and quality stability of needle coke.
 ディレードコーキング法においては、水素化コールタールピッチが加熱管中を加熱されながら急速に通過し、コークドラムに導入されてコーキングが起こる。コーキング条件は特に制限されないが、温度は300℃以上600℃以下が好ましく、コーキング時間は8~72時間が好ましい。 In the delayed coking method, hydrogenated coal tar pitch is heated as it passes rapidly through a heating tube and is introduced into a coke drum where coking occurs. There are no particular restrictions on the coking conditions, but the temperature is preferably between 300°C and 600°C, and the coking time is preferably 8 to 72 hours.
 このようにして得られるコークスは、ロータリーキルン炉、シャフト炉等でか焼することができる。
 か焼温度は、1000℃以上1700℃以下が好ましく、1000℃以上1500℃以下がより好ましい。
 か焼時間は1時間以上6時間以下が好ましく、1.5時間以上5時間以下がより好ましい。
The coke thus obtained can be calcined in a rotary kiln, shaft furnace, or the like.
The calcination temperature is preferably from 1000°C to 1700°C, more preferably from 1000°C to 1500°C.
The calcination time is preferably from 1 hour to 6 hours, more preferably from 1.5 hours to 5 hours.
3.黒鉛電極用焼成電極の製造方法
 本発明の他の実施形態は、黒鉛電極用焼成電極の製造方法に関する。
 生電極を500℃以上1200℃以下で焼成することによって黒鉛電極用焼成電極が得られる。
3. Method for Producing a Sintered Electrode for a Graphite Electrode Another embodiment of the present invention relates to a method for producing a sintered electrode for a graphite electrode.
The raw electrode is sintered at 500° C. or more and 1200° C. or less to obtain a sintered electrode for graphite electrode.
 生電極の焼成は、1段階で行ってもよく、2段階で行ってもよい。例えば、一次焼成、含浸、二次焼成等を実施する方法を例示できる。
 焼成温度は、500℃以上1200℃以下であり、バインダーピッチを焼き飛ばしやすいことから、800℃以上1100℃以下が好ましい。
The raw electrode may be fired in one step or two steps, for example, by a method of performing primary firing, impregnation, secondary firing, etc.
The firing temperature is from 500° C. to 1200° C., and is preferably from 800° C. to 1100° C. because the binder pitch is easily burned off.
 焼成電極の総重量に対するインヒビターの割合(重量%)をYとしたとき、0.02<Y<15であることが好ましい。ただし、インヒビターの割合Yは、灰分量(金属成分または金属酸化物)としての値である。インヒビターの割合Yが前記条件を満たすと、パッフィング低減効果が十分に得られやすく、また残存する灰分による電極製品への悪影響を低減することも容易になる。
 インヒビターの割合Yは、0.1<Y<10がより好ましく0.5<Y<7.5がさらに好ましい。
When the ratio (wt%) of the inhibitor to the total weight of the sintered electrode is Y, it is preferable that 0.02<Y<15. However, the inhibitor ratio Y is a value as the amount of ash (metal component or metal oxide). When the inhibitor ratio Y satisfies the above condition, it is easy to obtain a sufficient puffing reduction effect, and it is also easy to reduce the adverse effects of the remaining ash on the electrode product.
The ratio Y of the inhibitor is more preferably 0.1<Y<10, and further preferably 0.5<Y<7.5.
4.黒鉛電極の製造方法
 本発明の他の実施形態は、黒鉛電極の製造方法に関する。
 生電極を焼成して得た焼成電極に対し、2500℃以上3000℃以下で黒鉛化処理を行うことにより、黒鉛電極が得られる。黒鉛電極の製造においては、必要に応じて黒鉛化の後に加工してもよい。
4. Method for Manufacturing Graphite Electrodes Another embodiment of the present invention relates to a method for manufacturing a graphite electrode.
A graphite electrode is obtained by subjecting a sintered electrode obtained by sintering a raw electrode to a graphitization treatment at 2500° C. to 3000° C. In producing a graphite electrode, processing may be performed after graphitization as necessary.
 黒鉛化処理の温度は、2500℃以上3000℃以下が好ましく、2600℃以上3000℃以下がより好ましい。黒鉛化処理の温度が前記下限値以上であれば、インヒビターを十分に焼き飛ばしやすい。黒鉛化処理の温度が前記上限値以下であれば、黒鉛の昇華や酸化による電極の劣化、消耗を抑制しつつ黒鉛化処理を行いやすい。前記黒鉛化処理の温度の好ましい下限と上限は任意に組み合わせることができる。 The graphitization temperature is preferably 2500°C or higher and 3000°C or lower, and more preferably 2600°C or higher and 3000°C or lower. If the graphitization temperature is equal to or higher than the lower limit, the inhibitor can be easily burned off sufficiently. If the graphitization temperature is equal to or lower than the upper limit, the graphitization temperature can be easily performed while suppressing deterioration and wear of the electrode due to sublimation and oxidation of graphite. The preferred lower and upper limits of the graphitization temperature can be combined in any way.
黒鉛電極中に残存するインヒビターの割合は、黒鉛電極の総重量に対し、0.01重量%以下が好ましく、0.005重量%以下がより好ましく、0.001重量%以下がさらに好ましい。残存するインヒビターの割合が前記上限値以下であれば、電炉製鉄時の鉄へのコンタミネーションを低減させることができる。 The proportion of inhibitors remaining in the graphite electrode is preferably 0.01% by weight or less, more preferably 0.005% by weight or less, and even more preferably 0.001% by weight or less, based on the total weight of the graphite electrode. If the proportion of remaining inhibitors is equal to or less than the upper limit, contamination of the iron during electric furnace steelmaking can be reduced.
 以上説明したように、本発明においては、インヒビターとバインダーピッチとを含有する黒鉛電極製造用バインダー組成物を用いる。これにより、ニードルコークスの製造時に多大なコストをかけることなく、ニードルコークスのパッフィングを抑制し、黒鉛電極の製造歩留まりと特性を向上させることができる。
 また、元素(Mβ)からなる金属、および、元素(Mβ)を有する酸化物の少なくとも一方を含むインヒビターを用いることで、パッフィング抑制効果が増大する。また、この場合、パッフィング抑制効果がより増大することから、元素(Mα)および元素(Mβ)を有する複合酸化物を含むインヒビターが好ましい。
As described above, the present invention uses a binder composition for producing graphite electrodes, which contains an inhibitor and binder pitch, and thereby makes it possible to suppress puffing of needle coke without incurring significant costs during the production of needle coke, and to improve the production yield and characteristics of graphite electrodes.
The puffing suppression effect is enhanced by using an inhibitor containing at least one of a metal consisting of the element (Mβ) and an oxide having the element (Mβ). In this case, an inhibitor containing a composite oxide having the element (Mα) and the element (Mβ) is preferred because it further enhances the puffing suppression effect.
 なお、本発明においては、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。 In addition, in the present invention, the components in the above embodiment may be replaced with well-known components as appropriate without departing from the spirit of the present invention, and the above-mentioned modifications may be combined as appropriate.
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。 The present invention will be specifically explained below with reference to examples, but the present invention is not limited to the following description.
(1)インヒビターの合成方法
 CaSiOおよびCeSiOを公知の方法で調製した。得られたこれら物質は100μm以下になるよう100μmの篩を通し、これをインヒビターとして用いた。
(1) Method for synthesizing inhibitor Ca2SiO4 and Ce2SiO5 were prepared by known methods. The obtained substances were passed through a 100 μm sieve to obtain a particle size of 100 μm or less, and used as the inhibitor.
(2)テストピースの作製方法-1
 各例において、石炭系ニードルコークスに対する割合が外割で30重量%のバインダーピッチと、2重量%または5重量%のインヒビターとを10分間撹拌混合し、その後165℃で加熱しながら5分間混錬し、バインダーピッチとインヒビターの混合粉(黒鉛電極製造用バインダー組成物)を得た。得られた黒鉛電極製造用バインダー組成物に、所定の粒子サイズまで粉砕した石炭系ニードルコークスを添加し、165℃のオイルバスで5分間混練した。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、バインダーピッチを焼き飛ばしてパッフィング測定用のテストピースとした。
(3)テストピースの作製方法-2
 各例において、石炭系ニードルコークスに対する割合が外割で30重量%のバインダーピッチと、2重量%のインヒビターとを、所定の粒子サイズまで粉砕した石炭系ニードルコークスに添加し、10分間撹拌混合した後、165℃のオイルバスで5分間混練した。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、バインダーピッチを焼き飛ばしてパッフィング測定用のテストピースとした。
(4)テストピースの作製方法-3
 各例において、石炭系ニードルコークスに対する割合が外割で30重量%のバインダーピッチと、2重量%のインヒビターとを10分間撹拌混合し、バインダーピッチとインヒビターの混合粉(黒鉛電極製造用バインダー組成物)を得た。得られた黒鉛電極製造用バインダー組成物に、所定の粒子サイズまで粉砕した石炭系ニードルコークスを添加し、165℃のオイルバスで5分間混練した。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、バインダーピッチを焼き飛ばしてパッフィング測定用のテストピースとした。
(5)冷間パッフィングの測定
 得られたテストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成した。その焼成前後のL1およびL2を測定し、前記式(I)を用いてパッフィング値P2800を算出した。また、焼成中のテストピースのL3、L4およびL5を測定し、前記式(II)を用いてパッフィング値P1700-2100を算出した。
(2) Test piece preparation method-1
In each example, 30% by weight of binder pitch relative to the coal-based needle coke and 2% by weight or 5% by weight of inhibitor were mixed and stirred for 10 minutes, and then kneaded for 5 minutes while heating at 165°C to obtain a mixed powder of binder pitch and inhibitor (binder composition for graphite electrode production). Coal-based needle coke pulverized to a predetermined particle size was added to the obtained binder composition for graphite electrode production, and kneaded for 5 minutes in an oil bath at 165°C. This was molded into a disk shape of 20 mmΦ x 3 mm to 15 mm, and calcined in a baking furnace at 1000°C for 3 hours to burn off the binder pitch and obtain a test piece for puffing measurement.
(3) Test piece preparation method-2
In each example, 30% by weight of binder pitch and 2% by weight of inhibitor were added to coal-based needle coke pulverized to a specified particle size, stirred and mixed for 10 minutes, and then kneaded for 5 minutes in an oil bath at 165° C. This was molded into a disk shape of 20 mmΦ×3 to 15 mm, and calcined in a firing furnace at 1000° C. for 3 hours to burn off the binder pitch and prepare a test piece for puffing measurement.
(4) Test piece preparation method-3
In each example, 30% by weight of binder pitch and 2% by weight of inhibitor were mixed and stirred for 10 minutes to obtain a mixed powder of binder pitch and inhibitor (binder composition for graphite electrode production). Coal-based needle coke pulverized to a predetermined particle size was added to the obtained binder composition for graphite electrode production, and kneaded for 5 minutes in an oil bath at 165°C. This was molded into a disk shape of 20 mmΦ x 3 mm to 15 mm, and calcined in a baking furnace at 1000°C for 3 hours to burn off the binder pitch and obtain a test piece for puffing measurement.
(5) Measurement of cold puffing The obtained test piece was fired at a heating rate of 20°C/min up to 2800°C using a heating expansion measuring device. L1 and L2 were measured before and after firing, and the puffing value P2800 was calculated using the above formula (I). In addition, L3, L4, and L5 of the test piece during firing were measured, and the puffing value P1700-2100 was calculated using the above formula (II).
(6)熱間パッフィングの測定
 得られたテストピースを昇温速度20℃/分にて2800℃まで昇温し、その間のテストピースの長さ方向の寸法の伸びを押し棒式熱膨張計にて測定し、下記式により熱間パッフィング値を算出した。なお、テストピース(円柱体)の長さ方向の寸法の伸びは、押出し成形の押出し方向に対して垂直方向の伸びに該当する。熱間パッフィング値は低い方がよい。
 熱間パッフィング値(%)=(ΔL/L)×100
(式中、Lは試験前のテストピースの長さ、ΔLは2800℃までの昇温間のテストピースの長さ方向の伸びである。)
(6) Measurement of hot puffing The obtained test piece was heated to 2800°C at a heating rate of 20°C/min, and the elongation of the length of the test piece during this period was measured using a push rod type thermal dilatometer, and the hot puffing value was calculated by the following formula. The elongation of the length of the test piece (cylinder) corresponds to the elongation in the direction perpendicular to the extrusion direction of the extrusion molding. The lower the hot puffing value, the better.
Hot puffing value (%) = (ΔL / L) x 100
(In the formula, L is the length of the test piece before the test, and ΔL is the elongation in the longitudinal direction of the test piece during the temperature rise to 2800° C.)
[実施例1-1]
 インヒビターとしてCaSiOを使用し、インヒビターの添加量を石炭系ニードルコークスに対して外割で2重量%として、前述の「(2)テストピース作製方法-1」で得られたテストピースを用い、前述の「(5)冷間パッフィングの測定」の方法でP2800およびP1700-2100を算出した。その結果を表1に示す。また、前述の「(6)熱間パッフィングの測定」の方法で熱間パッフィング値を測定した。その結果を図1および図2に示す。
[Example 1-1]
Ca 2 SiO 4 was used as an inhibitor, and the amount of inhibitor added was 2% by weight based on the coal-based needle coke. Using the test pieces obtained in the above-mentioned "(2) Test piece preparation method-1", P 2800 and P 1700-2100 were calculated by the above-mentioned "(5) Measurement of cold puffing". The results are shown in Table 1. In addition, the hot puffing value was measured by the above-mentioned "(6) Measurement of hot puffing". The results are shown in Figures 1 and 2.
[実施例1-2]
 実施例1-1と同様の方法で得られたテストピースを用い、前述の「(5)冷間パッフィングの測定」の方法でP2800およびP1700-2100を算出した。その結果を表1に示す。また、前述の「(6)熱間パッフィングの測定」の方法で熱間パッフィング値を測定した。その結果を図1および図2に示す。
[Example 1-2]
Using the test pieces obtained in the same manner as in Example 1-1, P2800 and P1700-2100 were calculated by the method described above in "(5) Measurement of cold puffing". The results are shown in Table 1. In addition, the hot puffing value was measured by the method described above in "(6) Measurement of hot puffing". The results are shown in Figures 1 and 2.
[実施例2-1]
 インヒビターの添加量を5重量%に変更したこと以外は、実施例1-1と同様の方法で得られたテストピースを用い、前述の「(5)冷間パッフィングの測定」の方法でP2800およびP1700-2100を算出した。その結果を表1に示す。また、前述の「(6)熱間パッフィングの測定」の方法で熱間パッフィング値を測定した。その結果を図1および図2に示す。
[Example 2-1]
Test pieces were obtained in the same manner as in Example 1-1, except that the amount of inhibitor added was changed to 5% by weight, and P2800 and P1700-2100 were calculated by the method described above in "(5) Measurement of cold puffing". The results are shown in Table 1. In addition, the hot puffing value was measured by the method described above in "(6) Measurement of hot puffing". The results are shown in Figures 1 and 2.
[実施例2-2]
 実施例2-1と同様の方法で得られたテストピースを用い、前述の「(5)冷間パッフィングの測定」の方法でP2800およびP1700-2100を算出した。その結果を表1に示す。また、前述の「(6)熱間パッフィングの測定」の方法で熱間パッフィング値を測定した。その結果を図1および図2に示す。
[Example 2-2]
Using the test pieces obtained in the same manner as in Example 2-1, P2800 and P1700-2100 were calculated by the method described above in "(5) Measurement of cold puffing". The results are shown in Table 1. In addition, the hot puffing value was measured by the method described above in "(6) Measurement of hot puffing". The results are shown in Figures 1 and 2.
[実施例3]
 インヒビターとしてCaSiOを使用し、前述の「(4)テストピース作製方法-3」で得られたテストピースを用い、前述の「(5)冷間パッフィングの測定」の方法でP2800およびP1700-2100を算出した。その結果を表1に示す。また、前述の「(6)熱間パッフィングの測定」の方法で熱間パッフィング値を測定した。その結果を図1に示す。
[Example 3]
Using Ca2SiO4 as an inhibitor and the test pieces obtained in the above-mentioned "(4) Test piece preparation method-3", P2800 and P1700-2100 were calculated by the above-mentioned "(5) Measurement of cold puffing". The results are shown in Table 1. In addition, the hot puffing value was measured by the above-mentioned "(6) Measurement of hot puffing". The results are shown in Figure 1.
[実施例4]
 インヒビターとしてCeSiOを使用し、前述の「(4)テストピース作製方法-3」で得られたテストピースを用い、前述の「(5)冷間パッフィングの測定」の方法でP2800およびP1700-2100を算出した。その結果を表1に示す。また、前述の「(6)熱間パッフィングの測定」の方法で熱間パッフィング値を測定した。その結果を図3に示す。
[Example 4]
Using Ce 2 SiO 5 as an inhibitor and the test pieces obtained in the above-mentioned "(4) Test piece preparation method-3", P 2800 and P 1700-2100 were calculated by the above-mentioned method "(5) Measurement of cold puffing". The results are shown in Table 1. In addition, the hot puffing value was measured by the above-mentioned method "(6) Measurement of hot puffing". The results are shown in Figure 3.
[比較例1]
 インヒビターを添加していないバインダーピッチを、バインダーピッチとインヒビターの混合粉(黒鉛電極製造用バインダー組成物)に対する比較対象として用いる以外は、実施例2-1と同様の方法でテストピースを作製し、前述の「(5)冷間パッフィングの測定」の方法でブランクのパッフィング値であるP2800bおよびP1700-2100bを算出した。その結果を表1に示す。また、前述の「(6)熱間パッフィングの測定」の方法で熱間パッフィング値を測定した。その結果を図1および図2に示す。
[Comparative Example 1]
Test pieces were prepared in the same manner as in Example 2-1, except that binder pitch without inhibitor added was used as a comparison for the mixed powder of binder pitch and inhibitor (binder composition for producing graphite electrodes), and the blank puffing values P 2800b and P 1700-2100b were calculated by the method described above in "(5) Measurement of cold puffing". The results are shown in Table 1. In addition, the hot puffing values were measured by the method described above in "(6) Measurement of hot puffing". The results are shown in Figures 1 and 2.
[比較例2]
 インヒビターとしてCaSiOを使用し、前述の「(3)テストピース作製方法-2」で得られたテストピースを用い、前述の「(5)冷間パッフィングの測定」の方法でP2800およびP1700-2100を算出した。その結果を表1に示す。また、前述の「(6)熱間パッフィングの測定」の方法で熱間パッフィング値を測定した。その結果を図1に示す。
[Comparative Example 2]
Using Ca2SiO4 as an inhibitor and the test pieces obtained in the above-mentioned "(3) Test piece preparation method-2", P2800 and P1700-2100 were calculated by the above-mentioned "(5) Measurement of cold puffing". The results are shown in Table 1. In addition, the hot puffing value was measured by the above-mentioned "(6) Measurement of hot puffing". The results are shown in Figure 1.
[比較例3]
 インヒビターとしてCeSiOを使用し、前述の「(3)テストピース作製方法-2」で得られたテストピースを用い、前述の「(5)冷間パッフィングの測定」の方法でP2800およびP1700-2100を算出した。その結果を表1に示す。また、前述の「(6)熱間パッフィングの測定」の方法で熱間パッフィング値を測定した。その結果を図3に示す。
[Comparative Example 3]
Using Ce2SiO5 as an inhibitor and the test pieces obtained in the above-mentioned "(3) Test piece preparation method-2", P2800 and P1700-2100 were calculated by the above-mentioned "(5) Measurement of cold puffing". The results are shown in Table 1. In addition, the hot puffing value was measured by the above-mentioned "(6) Measurement of hot puffing". The results are shown in Figure 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、インヒビターとしてCaSiOを添加した実施例1-1、1-2、2-1、2-2および3では、インヒビターを添加していない比較例1、およびインヒビターとバインダーピッチとニードルコークスを同時に混合する比較例2と比べて、冷間パッフィング値を表すP2800が小さかった。また、実施例1-1、1-2、2-1、2-2および3では、窒素パッフィングを表すP1700-2100も同様に低く、パッフィング抑制効果が高かった。
 図1に示すように、比較例1では1800℃付近から急激にパッフィングが起こるのに対して、実施例1-1、1-2、2-1、2-2および3では同じ温度領域のパッフィングが起こらず、インヒビターがパッフィングを抑制することが確認された。また、比較例2では2800℃付近で急激にパッフィングが起こるのに対して、実施例1-1、1-2、2-1、2-2および3では同じ温度領域のパッフィングが抑制されていた。
 また、図2に示すように、比較例1では1800℃付近から急激に数値が高くなるのに対して、インヒビターを添加した実施例1-1、1-2、2-1、2-2では、数値の変化が少なく、インヒビターがパッフィングを抑制することが確認された。
As shown in Table 1, in Examples 1-1, 1-2, 2-1, 2-2 and 3 in which Ca 2 SiO 4 was added as an inhibitor, the P 2800 representing the cold puffing value was smaller than that in Comparative Example 1 in which no inhibitor was added and Comparative Example 2 in which the inhibitor, binder pitch and needle coke were mixed simultaneously. In addition, in Examples 1-1, 1-2, 2-1, 2-2 and 3, the P 1700-2100 representing nitrogen puffing was also low, and the puffing inhibition effect was high.
1, it was confirmed that puffing occurred suddenly from about 1800°C in Comparative Example 1, whereas puffing did not occur in the same temperature range in Examples 1-1, 1-2, 2-1, 2-2, and 3, and the inhibitor suppressed puffing. Also, puffing occurred suddenly at about 2800°C in Comparative Example 2, whereas puffing was suppressed in the same temperature range in Examples 1-1, 1-2, 2-1, 2-2, and 3.
Also, as shown in FIG. 2, in Comparative Example 1, the value increases sharply from around 1800° C., whereas in Examples 1-1, 1-2, 2-1, and 2-2 in which an inhibitor was added, the change in value was small, confirming that the inhibitor suppresses puffing.
 表1に示すように、インヒビターとしてCeSiOを添加した実施例4では、インヒビターを添加していない比較例1、およびインヒビターとバインダーピッチとニードルコークスを同時に混合する比較例3と比べて、冷間パッフィング値を表すP2800が小さかった。
 図3に示すように、比較例1、3では1800℃付近から2800℃にかけて急激にパッフィングが起こるのに対して、実施例4では同じ温度領域のパッフィングが抑制されることが確認された。
As shown in Table 1, in Example 4 in which Ce 2 SiO 5 was added as an inhibitor, P 2800, which represents the cold puffing value, was smaller than in Comparative Example 1 in which no inhibitor was added and Comparative Example 3 in which the inhibitor, binder pitch, and needle coke were mixed simultaneously.
As shown in FIG. 3, it was confirmed that in Comparative Examples 1 and 3, puffing occurred suddenly from about 1800° C. to 2800° C., whereas in Example 4, puffing was suppressed in the same temperature range.

Claims (41)

  1.  黒鉛電極製造用インヒビターとバインダーピッチとを含有する、黒鉛電極製造用バインダー組成物。 A binder composition for producing graphite electrodes, comprising an inhibitor for producing graphite electrodes and binder pitch.
  2.  前記黒鉛電極製造用インヒビターが、以下の元素(Mβ)からなる金属、および、以下の元素(Mβ)を有する酸化物の少なくとも一方を含む、請求項1に記載の黒鉛電極製造用バインダー組成物。
     元素(Mβ):長周期型周期表の第4族元素、第8族元素、第9族元素、第10族元素、第13族元素、第14族元素および第15族元素からなる群より選ばれる少なくとも一種の元素。
    2. The binder composition for producing graphite electrodes according to claim 1, wherein the inhibitor for producing graphite electrodes comprises at least one of a metal consisting of the following element (Mβ) and an oxide having the following element (Mβ).
    Element (Mβ): at least one element selected from the group consisting of Group 4 elements, Group 8 elements, Group 9 elements, Group 10 elements, Group 13 elements, Group 14 elements, and Group 15 elements of the long form periodic table.
  3.  前記元素(Mβ)が、Si、Ge、Al、B、Ti、FeおよびPからなる群より選ばれる少なくとも一種の元素である、請求項2に記載の黒鉛電極製造用バインダー組成物。 The binder composition for producing graphite electrodes according to claim 2, wherein the element (Mβ) is at least one element selected from the group consisting of Si, Ge, Al, B, Ti, Fe and P.
  4.  前記元素(Mβ)を有する酸化物が、以下の元素(Mα)および前記元素(Mβ)を有する複合酸化物である、請求項2に記載の黒鉛電極製造用バインダー組成物。
     元素(Mα):少なくとも一種の金属元素(ただし元素(Mβ)を除く)。
    3. The binder composition for producing a graphite electrode according to claim 2, wherein the oxide having the element (Mβ) is a composite oxide having the following element (Mα) and the element (Mβ):
    Element (Mα): at least one metal element (excluding element (Mβ)).
  5.  前記元素(Mα)が、K、Sc、アルカリ土類金属元素および希土類金属元素からなる群より選ばれる少なくとも一種の金属元素である、請求項4に記載の黒鉛電極製造用バインダー組成物。 The binder composition for producing graphite electrodes according to claim 4, wherein the element (Mα) is at least one metal element selected from the group consisting of K, Sc, alkaline earth metal elements, and rare earth metal elements.
  6.  前記元素(Mα)が、アルカリ土類金属元素および希土類金属元素からなる群より選ばれる少なくとも一種の金属元素である、請求項4に記載の黒鉛電極製造用バインダー組成物。 The binder composition for producing graphite electrodes according to claim 4, wherein the element (Mα) is at least one metal element selected from the group consisting of alkaline earth metal elements and rare earth metal elements.
  7.  前記元素(Mα)が、Mg、Ca、SrおよびBa、並びにLaおよびCeからなる群より選ばれる少なくとも一種の金属元素である、請求項4に記載の黒鉛電極製造用バインダー組成物。 The binder composition for producing graphite electrodes according to claim 4, wherein the element (Mα) is at least one metal element selected from the group consisting of Mg, Ca, Sr, Ba, La, and Ce.
  8.  前記元素(Mα)が、CaおよびCeの少なくとも一方である、請求項4に記載の黒鉛電極製造用バインダー組成物。 The binder composition for producing graphite electrodes according to claim 4, wherein the element (Mα) is at least one of Ca and Ce.
  9.  前記複合酸化物の組成式が、以下の式(1)である、請求項4に記載の黒鉛電極製造用バインダー組成物。
     Mα3-xMβ1-y5-z ・・・(1)
    (式中、0≦x<3、0≦y<1、0≦z<5である。)
    5. The binder composition for producing a graphite electrode according to claim 4, wherein the composite oxide has a composition formula represented by the following formula (1):
    3−x1−y O 5−z ... (1)
    (In the formula, 0≦x<3, 0≦y<1, and 0≦z<5.)
  10.  前記バインダーピッチが、コールタール、FCCデカントオイル、エチレンヘビーエンド、石油系残渣、石油系廃棄物、バイオマスオイル、またはバイオマスタールに由来するピッチの1種以上を含む、請求項1に記載の黒鉛電極製造用バインダー組成物。 The binder composition for producing graphite electrodes according to claim 1, wherein the binder pitch comprises one or more pitches derived from coal tar, FCC decant oil, ethylene heavy ends, petroleum residues, petroleum waste, biomass oil, or biomass tar.
  11.  前記バインダーピッチの総重量に対する前記黒鉛電極製造用インヒビターの割合(重量%)をXとしたとき、0.02<X<60である、請求項1に記載の黒鉛電極製造用バインダー組成物。 The binder composition for graphite electrode production according to claim 1, wherein the ratio (wt%) of the inhibitor for graphite electrode production to the total weight of the binder pitch is X, and 0.02<X<60.
  12.  以下の評価試験(i)で作成されたテストピースの下記式(I)で算出されるパッフィング値P2800が1.20%以下である、請求項1に記載の黒鉛電極製造用バインダー組成物。
     P2800=(L2-L1)/L1×100 ・・・(I)
     ただし式(I)中のL1およびL2は以下の意味を示す。
     L1:焼成前のテストピースの厚み(mm)
     L2:2800℃まで焼成後のテストピースの厚み(mm)
     <評価試験(i)>
     石炭系ニードルコークスに対する割合が外割で30重量%となるバインダーピッチと2重量%または5重量%となる黒鉛電極製造用インヒビターとを混ぜ合わせ、165℃で加熱しながら5分間混錬した後、石炭系ニードルコークスを添加して再度165℃で加熱しながら5分間混錬する。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、前記バインダーピッチを焼き飛ばしてテストピースとする。テストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成し、焼成前後のテストピースのL1およびL2を測定する。
    2. The binder composition for producing a graphite electrode according to claim 1, wherein a puffing value P2800 calculated by the following formula (I) of a test piece prepared in the following evaluation test (i) is 1.20% or less.
    P 2800 = (L2 - L1) / L1 × 100 ... (I)
    In the formula (I), L1 and L2 have the following meanings.
    L1: Thickness of test piece before firing (mm)
    L2: Thickness of the test piece after firing to 2800°C (mm)
    <Evaluation test (i)>
    The binder pitch, the ratio of which to the coal-based needle coke is 30% by weight, and the inhibitor for graphite electrode production, 2% by weight or 5% by weight, are mixed and kneaded for 5 minutes while heating at 165°C, and then the coal-based needle coke is added and kneaded again for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mmΦ x 3 mm to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece. The test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L1 and L2 of the test piece before and after firing are measured.
  13.  以下の評価試験(ii)で作成されたテストピースの下記式(II)で算出されるパッフィング値P1700-2100が0.7%以下である、請求項1に記載の黒鉛電極製造用バインダー組成物。
     P1700-2100=(L3-L4)/L5×100 ・・・(II)
     ただし式(II)中のL3、L4およびL5は以下の意味を示す。
     L3:2100℃焼成時点のテストピースの厚み(mm)
     L4:1700℃焼成時点のテストピースの厚み(mm)
     L5:1000℃焼成時点のテストピースの厚み(mm)
     <評価試験(ii)>
     石炭系ニードルコークスに対する割合が外割で30重量%となるバインダーピッチと2重量%または5重量%となる黒鉛電極製造用インヒビターとを混ぜ合わせ、165℃で加熱しながら5分間混錬した後、石炭系ニードルコークスを添加して再度165℃で加熱しながら5分間混錬する。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、バインダーピッチを焼き飛ばしてテストピースとする。テストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成し、焼成中のテストピースのL3、L4およびL5を測定する。
    The binder composition for producing a graphite electrode according to claim 1, wherein a puffing value P 1700-2100 calculated by the following formula (II) of a test piece prepared in the following evaluation test (ii) is 0.7% or less.
    P 1700-2100 = (L3-L4) / L5 × 100 ... (II)
    In the formula (II), L3, L4 and L5 have the following meanings.
    L3: Thickness of the test piece after firing at 2100°C (mm)
    L4: Thickness of the test piece after firing at 1700°C (mm)
    L5: Thickness of the test piece after firing at 1000°C (mm)
    <Evaluation test (ii)>
    The binder pitch, the ratio of which to the coal-based needle coke is 30% by weight, and the inhibitor for graphite electrode production, 2% by weight or 5% by weight, are mixed and kneaded for 5 minutes while heating at 165°C, and then the coal-based needle coke is added and kneaded again for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mmΦ x 3 mm to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece. The test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L3, L4 and L5 of the test piece during firing are measured.
  14.  以下の評価試験(iii)で作成されたテストピースの下記式(I)で算出されるパッフィング値P2800が1.20%以下である、請求項1に記載の黒鉛電極製造用バインダー組成物。
     P2800=(L2-L1)/L1×100 ・・・(I)
     ただし式(I)中のL1およびL2は以下の意味を示す。
     L1:焼成前のテストピースの厚み(mm)
     L2:2800℃まで焼成後のテストピースの厚み(mm)
     <評価試験(iii)>
     石炭系ニードルコークスに対する割合が外割で30重量%となる粉末状にしたバインダーピッチと2重量%となる黒鉛電極製造用インヒビターとを室温下で10分間混ぜ合わせ、その後、石炭系ニードルコークスを添加して165℃で加熱しながら5分間混錬する。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、前記バインダーピッチを焼き飛ばしてテストピースとする。テストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成し、焼成前後のテストピースのL1およびL2を測定する。
    2. The binder composition for producing a graphite electrode according to claim 1, wherein a puffing value P2800 calculated by the following formula (I) of a test piece prepared in the following evaluation test (iii) is 1.20% or less.
    P 2800 = (L2 - L1) / L1 × 100 ... (I)
    In the formula (I), L1 and L2 have the following meanings.
    L1: Thickness of test piece before firing (mm)
    L2: Thickness of the test piece after firing to 2800°C (mm)
    <Evaluation test (iii)>
    Powdered binder pitch with a ratio of 30% by weight to the coal-based needle coke and 2% by weight of an inhibitor for graphite electrode production are mixed at room temperature for 10 minutes, and then the coal-based needle coke is added and kneaded for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mmΦ x 3 to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece. The test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L1 and L2 of the test piece before and after firing are measured.
  15.  以下の評価試験(iv)で作成されたテストピースの下記式(II)で算出されるパッフィング値P1700-2100が0.7%以下である、請求項1に記載の黒鉛電極製造用バインダー組成物。
     P1700-2100=(L3-L4)/L5×100 ・・・(II)
     ただし式(II)中のL3、L4およびL5は以下の意味を示す。
     L3:2100℃焼成時点のテストピースの厚み(mm)
     L4:1700℃焼成時点のテストピースの厚み(mm)
     L5:1000℃焼成時点のテストピースの厚み(mm)
    <評価試験(iv)>
     石炭系ニードルコークスに対する割合が外割で30重量%となる粉末状にしたバインダーピッチと2重量%となる黒鉛電極製造用インヒビターとを室温下で10分間混ぜ合わせ、その後、石炭系ニードルコークスを添加して165℃で加熱しながら5分間混錬する。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、前記バインダーピッチを焼き飛ばしてテストピースとする。テストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成し、焼成中のテストピースのL3、L4およびL5を測定する。
    The binder composition for producing a graphite electrode according to claim 1, wherein a puffing value P 1700-2100 calculated by the following formula (II) of a test piece prepared in the following evaluation test (iv) is 0.7% or less.
    P 1700-2100 = (L3-L4) / L5 × 100 ... (II)
    In the formula (II), L3, L4 and L5 have the following meanings.
    L3: Thickness of the test piece after firing at 2100°C (mm)
    L4: Thickness of the test piece after firing at 1700°C (mm)
    L5: Thickness of the test piece after firing at 1000°C (mm)
    <Evaluation test (iv)>
    Powdered binder pitch with a ratio of 30% by weight to the coal-based needle coke and 2% by weight of an inhibitor for graphite electrode production are mixed at room temperature for 10 minutes, and then the coal-based needle coke is added and kneaded for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mmΦ x 3 to 15 mm, and calcined in a baking furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece. The test piece is calcined at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L3, L4 and L5 of the test piece during calcination are measured.
  16.  前記評価試験(i)において、前記黒鉛電極製造用インヒビターを用いない以外は同様の方法でテストピースを作成し、当該テストピースの前記式(I)で算出されるパッフィング値(ブランク)をP2800bとしたとき、P2800/P2800bで算出されるパッフィング値の比が1未満である、請求項12に記載の黒鉛電極製造用バインダー組成物。 13. The binder composition for producing a graphite electrode according to claim 12, wherein in the evaluation test (i), a test piece is prepared in the same manner except that the inhibitor for producing a graphite electrode is not used, and when the puffing value (blank) of the test piece calculated by the formula (I) is P2800b , the ratio of the puffing value calculated by P2800 / P2800b is less than 1.
  17.  前記評価試験(ii)において、前記黒鉛電極製造用インヒビターを用いない以外は同様の方法でテストピースを作成し、当該テストピースの前記式(II)で算出されるパッフィング値(ブランク)をP1700-2100bとしたとき、P1700-2100/P1700-2100bで算出されるパッフィング値の比が1未満である、請求項13に記載の黒鉛電極製造用バインダー組成物。 The binder composition for producing graphite electrodes according to claim 13, wherein in the evaluation test (ii), a test piece is prepared in the same manner except that the inhibitor for producing graphite electrodes is not used, and when the puffing value (blank) of the test piece calculated by the formula (II) is P 1700-2100b , the ratio of the puffing value calculated by P 1700-2100 /P 1700-2100b is less than 1.
  18.  黒鉛電極製造用インヒビターとバインダーピッチとを混合して黒鉛電極製造用バインダー組成物を製造し、
     前記黒鉛電極製造用バインダー組成物とニードルコークスとを混合し、成形して生電極を得る、黒鉛電極用生電極の製造方法。
    Mixing an inhibitor for producing a graphite electrode with a binder pitch to produce a binder composition for producing a graphite electrode;
    The binder composition for producing a graphite electrode and needle coke are mixed and molded to obtain a raw electrode.
  19.  前記黒鉛電極製造用インヒビターが、以下の元素(Mβ)からなる金属、および、以下の元素(Mβ)を有する酸化物の少なくとも一方を含む、請求項18に記載の黒鉛電極用生電極の製造方法。
     元素(Mβ):長周期型周期表の第4族元素、第8族元素、第9族元素、第10族元素、第13族元素、第14族元素および第15族元素からなる群より選ばれる少なくとも一種の元素。
    19. The method for producing a raw electrode for a graphite electrode according to claim 18, wherein the inhibitor for producing a graphite electrode contains at least one of a metal consisting of the following element (Mβ) and an oxide having the following element (Mβ).
    Element (Mβ): at least one element selected from the group consisting of Group 4 elements, Group 8 elements, Group 9 elements, Group 10 elements, Group 13 elements, Group 14 elements, and Group 15 elements of the long form periodic table.
  20.  前記元素(Mβ)が、Si、Ge、Al、B、Ti、FeおよびPからなる群より選ばれる少なくとも一種の元素である、請求項19に記載の黒鉛電極用生電極の製造方法。 The method for producing a raw electrode for a graphite electrode according to claim 19, wherein the element (Mβ) is at least one element selected from the group consisting of Si, Ge, Al, B, Ti, Fe and P.
  21.  前記元素(Mβ)を有する酸化物が、以下の元素(Mα)および前記元素(Mβ)を有する複合酸化物である、請求項19に記載の黒鉛電極用生電極の製造方法。
     元素(Mα):少なくとも一種の金属元素(ただし元素(Mβ)を除く)。
    The method for producing a raw electrode for a graphite electrode according to claim 19, wherein the oxide having the element (Mβ) is a composite oxide having the following element (Mα) and the element (Mβ):
    Element (Mα): at least one metal element (excluding element (Mβ)).
  22.  前記元素(Mα)が、K、Sc、アルカリ土類金属元素および希土類金属元素からなる群より選ばれる少なくとも一種の金属元素である、請求項21に記載の黒鉛電極用生電極の製造方法。 The method for producing a raw electrode for a graphite electrode according to claim 21, wherein the element (Mα) is at least one metal element selected from the group consisting of K, Sc, alkaline earth metal elements, and rare earth metal elements.
  23.  前記元素(Mα)が、アルカリ土類金属元素および希土類金属元素からなる群より選ばれる少なくとも一種の金属元素である、請求項21に記載の黒鉛電極用生電極の製造方法。 The method for producing a raw electrode for a graphite electrode according to claim 21, wherein the element (Mα) is at least one metal element selected from the group consisting of alkaline earth metal elements and rare earth metal elements.
  24.  前記元素(Mα)が、Mg、Ca、SrおよびBa、並びにLaおよびCeからなる群より選ばれる少なくとも一種の金属元素である、請求項21に記載の黒鉛電極用生電極の製造方法。 The method for producing a raw electrode for a graphite electrode according to claim 21, wherein the element (Mα) is at least one metal element selected from the group consisting of Mg, Ca, Sr, Ba, La, and Ce.
  25.  前記元素(Mα)が、CaおよびCeの少なくとも一方である、請求項21に記載の黒鉛電極用生電極の製造方法。 The method for producing a raw electrode for a graphite electrode according to claim 21, wherein the element (Mα) is at least one of Ca and Ce.
  26.  前記複合酸化物の組成式が、以下の式(1)である、請求項21に記載の黒鉛電極用生電極の製造方法。
     Mα3-xMβ1-y5-z ・・・(1)
    (式中、0≦x<3、0≦y<1、0≦z<5である。)
    The method for producing a raw electrode for a graphite electrode according to claim 21, wherein the composite oxide has a composition formula represented by the following formula (1):
    3−x1−y O 5−z ... (1)
    (In the formula, 0≦x<3, 0≦y<1, and 0≦z<5.)
  27.  前記バインダーピッチが、コールタール、FCCデカントオイル、エチレンヘビーエンド、石油系残渣、石油系廃棄物、バイオマスオイル、またはバイオマスタールに由来するピッチの1種以上を含む、請求項18に記載の黒鉛電極用生電極の製造方法。 The method for producing raw electrodes for graphite electrodes according to claim 18, wherein the binder pitch comprises one or more pitches derived from coal tar, FCC decant oil, ethylene heavy ends, petroleum residues, petroleum waste, biomass oil, or biomass tar.
  28.  前記バインダーピッチの総重量に対する前記黒鉛電極製造用インヒビターの割合(重量%)をXとしたとき、0.02<X<60である、請求項18に記載の黒鉛電極用生電極の製造方法。 The method for producing raw electrodes for graphite electrodes according to claim 18, wherein the ratio (wt%) of the inhibitor for producing graphite electrodes to the total weight of the binder pitch is X, and 0.02<X<60.
  29.  前記黒鉛電極製造用バインダー組成物について、以下の評価試験(i)で作成されたテストピースの下記式(I)で算出されるパッフィング値P2800が1.20%以下である、請求項18に記載の黒鉛電極用生電極の製造方法。
     P2800=(L2-L1)/L1×100 ・・・(I)
     ただし式(I)中のL1およびL2は以下の意味を示す。
     L1:焼成前のテストピースの厚み(mm)
     L2:2800℃まで焼成後のテストピースの厚み(mm)
     <評価試験(i)>
     石炭系ニードルコークスに対する割合が外割で30重量%となるバインダーピッチと2重量%または5重量%となる黒鉛電極製造用インヒビターとを混ぜ合わせ、165℃で加熱しながら5分間混錬した後、石炭系ニードルコークスを添加して再度165℃で加熱しながら5分間混錬する。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、前記バインダーピッチを焼き飛ばしてテストピースとする。テストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成し、焼成前後のテストピースのL1およびL2を測定する。
    19. The method for producing a raw electrode for a graphite electrode according to claim 18, wherein a puffing value P2800 calculated by the following formula (I) of a test piece prepared in the following evaluation test (i) for the binder composition for producing a graphite electrode is 1.20% or less.
    P 2800 = (L2 - L1) / L1 × 100 ... (I)
    In the formula (I), L1 and L2 have the following meanings.
    L1: Thickness of test piece before firing (mm)
    L2: Thickness of the test piece after firing to 2800°C (mm)
    <Evaluation test (i)>
    The binder pitch, the ratio of which to the coal-based needle coke is 30% by weight, and the inhibitor for graphite electrode production, 2% by weight or 5% by weight, are mixed and kneaded for 5 minutes while heating at 165°C, and then the coal-based needle coke is added and kneaded again for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mmΦ x 3 mm to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece. The test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L1 and L2 of the test piece before and after firing are measured.
  30.  前記黒鉛電極製造用バインダー組成物について、以下の評価試験(ii)で作成されたテストピースの下記式(II)で算出されるパッフィング値P1700-2100が0.7%以下である、請求項18に記載の黒鉛電極用生電極の製造方法。
     P1700-2100=(L3-L4)/L5×100 ・・・(II)
     ただし式(II)中のL3、L4およびL5は以下の意味を示す。
     L3:2100℃焼成時点のテストピースの厚み(mm)
     L4:1700℃焼成時点のテストピースの厚み(mm)
     L5:1000℃焼成時点のテストピースの厚み(mm)
     <評価試験(ii)>
     石炭系ニードルコークスに対する割合が外割で30重量%となるバインダーピッチと2重量%または5重量%となる黒鉛電極製造用インヒビターとを混ぜ合わせ、165℃で加熱しながら5分間混錬した後、石炭系ニードルコークスを添加して再度165℃で加熱しながら5分間混錬する。これを20mmΦ×3mm~15mmの円板状にモールド成形し、焼成炉を用いて1000℃で3時間か焼し、バインダーピッチを焼き飛ばしてテストピースとする。テストピースを昇温速度20℃/分で2800℃まで昇温熱膨張測定装置を使用して焼成し、焼成中のテストピースのL3、L4およびL5を測定する。
    The method for producing a graphite electrode raw electrode according to claim 18, wherein a puffing value P 1700-2100 calculated by the following formula (II) of a test piece prepared in the following evaluation test (ii) for the binder composition for producing a graphite electrode is 0.7% or less.
    P 1700-2100 = (L3-L4) / L5 × 100 ... (II)
    In the formula (II), L3, L4 and L5 have the following meanings.
    L3: Thickness of the test piece after firing at 2100°C (mm)
    L4: Thickness of the test piece after firing at 1700°C (mm)
    L5: Thickness of the test piece after firing at 1000°C (mm)
    <Evaluation test (ii)>
    The binder pitch, the ratio of which to the coal-based needle coke is 30% by weight, and the inhibitor for graphite electrode production, 2% by weight or 5% by weight, are mixed and kneaded for 5 minutes while heating at 165°C, and then the coal-based needle coke is added and kneaded again for 5 minutes while heating at 165°C. This is molded into a disk shape of 20 mmΦ x 3 mm to 15 mm, and calcined in a firing furnace at 1000°C for 3 hours to burn off the binder pitch to obtain a test piece. The test piece is fired at a heating rate of 20°C/min to 2800°C using a heating thermal expansion measuring device, and L3, L4 and L5 of the test piece during firing are measured.
  31.  前記評価試験(i)において、前記黒鉛電極製造用インヒビターを用いない以外は同様の方法でテストピースを作成し、当該テストピースの前記式(I)で算出されるパッフィング値(ブランク)をP2800bとしたとき、P2800/P2800bで算出されるパッフィング値の比が1未満である、請求項29に記載の黒鉛電極用生電極の製造方法。 30. The method for producing a raw electrode for graphite electrode according to claim 29, wherein in the evaluation test (i), a test piece is prepared in the same manner except that the inhibitor for producing a graphite electrode is not used, and when the puffing value (blank) of the test piece calculated by the formula (I) is P2800b , the ratio of the puffing value calculated by P2800 / P2800b is less than 1.
  32.  前記評価試験(ii)において、前記黒鉛電極製造用インヒビターを用いない以外は同様の方法でテストピースを作成し、当該テストピースの前記式(II)で算出されるパッフィング値(ブランク)をP1700-2100bとしたとき、P1700-2100/P1700-2100bで算出されるパッフィング値の比が1未満である、請求項30に記載の黒鉛電極用生電極の製造方法。 The method for producing a raw electrode for graphite electrode according to claim 30, wherein in the evaluation test (ii), a test piece is prepared in the same manner except that the inhibitor for producing graphite electrodes is not used, and when the puffing value (blank) of the test piece calculated by the formula (II) is P 1700-2100b , the ratio of the puffing value calculated by P 1700-2100 /P 1700-2100b is less than 1.
  33.  請求項18~32のいずれか一項に記載の黒鉛電極用生電極の製造方法によって生電極を製造し、前記生電極を500℃以上1200℃以下で焼成して焼成電極を得る、黒鉛電極用焼成電極の製造方法。 A method for producing a sintered electrode for a graphite electrode, comprising producing a raw electrode by the method for producing a raw electrode for a graphite electrode according to any one of claims 18 to 32, and sintering the raw electrode at 500°C or higher and 1200°C or lower to obtain a sintered electrode.
  34.  前記焼成電極の総重量に対する前記黒鉛電極製造用インヒビターの割合(重量%)をYとしたとき、0.02<Y<15である、請求項33に記載の黒鉛電極用焼成電極の製造方法。 The method for producing a sintered electrode for a graphite electrode according to claim 33, wherein the ratio (wt%) of the inhibitor for producing a graphite electrode to the total weight of the sintered electrode is Y, and 0.02<Y<15.
  35.  請求項33に記載の黒鉛電極用焼成電極の製造方法によって焼成電極を製造し、前記焼成電極を2500℃以上3000℃以下で黒鉛化処理して黒鉛電極を得る、黒鉛電極の製造方法。 A method for producing a graphite electrode, comprising producing a sintered electrode by the method for producing a sintered electrode for graphite electrodes described in claim 33, and graphitizing the sintered electrode at 2500°C or higher and 3000°C or lower to obtain a graphite electrode.
  36.  前記黒鉛電極中に残存する前記黒鉛電極製造用インヒビターの割合が0.01重量%以下である、請求項35に記載の黒鉛電極の製造方法。 The method for producing a graphite electrode according to claim 35, wherein the proportion of the graphite electrode production inhibitor remaining in the graphite electrode is 0.01% by weight or less.
  37.  請求項1~17のいずれか一項に記載の黒鉛電極製造用バインダー組成物と、ニードルコークスとを混合し、成形して生電極を得る、黒鉛電極用生電極の製造方法。 A method for producing a graphite electrode comprising mixing the binder composition for producing graphite electrodes according to any one of claims 1 to 17 with needle coke and molding the mixture to obtain a raw electrode.
  38.  請求項37に記載の黒鉛電極用生電極の製造方法によって生電極を製造し、前記生電極を500℃以上1200℃以下で焼成して焼成電極を得る、黒鉛電極用焼成電極の製造方法。 A method for producing a sintered electrode for a graphite electrode, comprising producing a raw electrode by the method for producing a raw electrode for a graphite electrode described in claim 37, and sintering the raw electrode at 500°C or higher and 1200°C or lower to obtain a sintered electrode.
  39.  前記焼成電極の総重量に対する前記黒鉛電極製造用インヒビターの割合(重量%)をYとしたとき、0.02<Y<15である、請求項38に記載の黒鉛電極用焼成電極の製造方法。 The method for producing a sintered electrode for a graphite electrode according to claim 38, wherein the ratio (wt%) of the inhibitor for producing a graphite electrode to the total weight of the sintered electrode is Y, and 0.02<Y<15.
  40.  請求項38に記載の黒鉛電極用焼成電極の製造方法によって焼成電極を製造し、前記焼成電極を2500℃以上3000℃以下で黒鉛化処理して黒鉛電極を得る、黒鉛電極の製造方法。 A method for producing a graphite electrode, comprising producing a sintered electrode by the method for producing a sintered electrode for graphite electrodes described in claim 38, and graphitizing the sintered electrode at 2500°C or higher and 3000°C or lower to obtain a graphite electrode.
  41.  前記黒鉛電極中に残存する前記黒鉛電極製造用インヒビターの割合が0.01重量%以下である、請求項40に記載の黒鉛電極の製造方法。 The method for producing a graphite electrode according to claim 40, wherein the proportion of the graphite electrode production inhibitor remaining in the graphite electrode is 0.01% by weight or less.
PCT/JP2023/036878 2022-10-11 2023-10-11 Binder composition for graphite electrode production use, method for producing green electrode for graphite electrode, method for producing baked electrode for graphite electrode, and method for producing graphite electrode WO2024080302A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022163407 2022-10-11
JP2022-163407 2022-10-11

Publications (1)

Publication Number Publication Date
WO2024080302A1 true WO2024080302A1 (en) 2024-04-18

Family

ID=90669566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036878 WO2024080302A1 (en) 2022-10-11 2023-10-11 Binder composition for graphite electrode production use, method for producing green electrode for graphite electrode, method for producing baked electrode for graphite electrode, and method for producing graphite electrode

Country Status (1)

Country Link
WO (1) WO2024080302A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292814A (en) * 1988-09-29 1990-04-03 Showa Denko Kk Dispersion of puffing inhibitor into coke
JPH02271964A (en) * 1989-03-06 1990-11-06 Sigri Gmbh Production of graphitized carbon compact
WO1995027766A1 (en) * 1994-04-07 1995-10-19 Nippon Steel Chemical Co., Ltd. Needle coke for graphite electrode and process for producing the same
WO2014147434A1 (en) * 2013-03-21 2014-09-25 Gerhard Hubweber Method and installation to produce graphite bodies
WO2022215747A1 (en) * 2021-04-09 2022-10-13 三菱ケミカル株式会社 Needle coke for graphite electrode, needle coke manufacturing method, and inhibitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292814A (en) * 1988-09-29 1990-04-03 Showa Denko Kk Dispersion of puffing inhibitor into coke
JPH02271964A (en) * 1989-03-06 1990-11-06 Sigri Gmbh Production of graphitized carbon compact
WO1995027766A1 (en) * 1994-04-07 1995-10-19 Nippon Steel Chemical Co., Ltd. Needle coke for graphite electrode and process for producing the same
WO2014147434A1 (en) * 2013-03-21 2014-09-25 Gerhard Hubweber Method and installation to produce graphite bodies
WO2022215747A1 (en) * 2021-04-09 2022-10-13 三菱ケミカル株式会社 Needle coke for graphite electrode, needle coke manufacturing method, and inhibitor

Similar Documents

Publication Publication Date Title
EP3088491B1 (en) Method for producing needle coke
JPWO2009001610A1 (en) Method for producing petroleum coke
JP3093015B2 (en) Needle coke manufacturing method
JP4809676B2 (en) Petroleum coke and method for producing the same
US20240030440A1 (en) Needle Coke for Graphite Electrode, Needle Coke Manufacturing Method, and Inhibitor
WO2024080302A1 (en) Binder composition for graphite electrode production use, method for producing green electrode for graphite electrode, method for producing baked electrode for graphite electrode, and method for producing graphite electrode
JP4809675B2 (en) Petroleum coke and method for producing the same
JP2024056498A (en) Raw coke for graphite electrodes and its manufacturing method, needle coke for graphite electrodes and its manufacturing method, and manufacturing method of graphite electrodes
JP2024056497A (en) Raw material composition for needle coke, raw coke and its manufacturing method, needle coke for graphite electrodes and its manufacturing method, and manufacturing method of graphite electrodes
JP5298131B2 (en) Method for producing needle coke for graphite electrode and raw material oil composition used therefor
JPH073267A (en) Production of needle coke
RU2333236C1 (en) Charge for production of furnace coke
CN117120373A (en) Needle coke for graphite electrode, method for producing the same, and inhibitor
JPH04145193A (en) Production of needle coke
JPH03197589A (en) Manufacture of needle coke
Doshlov Novel technology for production of petroleum pitches for non-ferrous metallurgy
KR102634867B1 (en) Composition for needle cokes and carbon electrode
JP3025540B2 (en) Needle coke manufacturing method
JPH02296894A (en) Production of needle coke
WO2011105480A1 (en) Method for producing high-strength coke
JPS6241285A (en) Production of coke for coal tar electrode
JPH06104833B2 (en) Manufacturing method of coke for high-grade electrode
EP0708064A2 (en) Process for producing carbon-bonded magnesia-based refractory bricks
JP2002241763A (en) Method for producing aggregate coke for artificial graphite
JPS63108095A (en) Production of high-quality coke for electrode