JP3960397B2 - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP3960397B2
JP3960397B2 JP14798097A JP14798097A JP3960397B2 JP 3960397 B2 JP3960397 B2 JP 3960397B2 JP 14798097 A JP14798097 A JP 14798097A JP 14798097 A JP14798097 A JP 14798097A JP 3960397 B2 JP3960397 B2 JP 3960397B2
Authority
JP
Japan
Prior art keywords
activation
activated carbon
double layer
electric double
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14798097A
Other languages
Japanese (ja)
Other versions
JPH10335189A (en
Inventor
一富 山本
良美 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP14798097A priority Critical patent/JP3960397B2/en
Publication of JPH10335189A publication Critical patent/JPH10335189A/en
Application granted granted Critical
Publication of JP3960397B2 publication Critical patent/JP3960397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

【0001】
【発明の属する技術分野】
本発明は、活性炭を電極材料に使用した大容量の電気二重層コンデンサーに関するものである。
【0002】
【従来の技術】
電気二重層コンデンサーは、アルミ電解コンデンサーあるいはタンタルコンデンサーと比較して数百倍から数千倍の電気量を充電したり、放電したりすることのできるコンデンサーである。また、急速充放電が可能であり、数万回に及ぶ充放電サイクルにおいても容量低下が少ないという特徴を有する。他方、そのコンデンサー容量は、代表的な二次電池であるニッケルカドミウム電池の電気量の1/30と小さく、電子機器の駆動用電源さらには自動車の補助電源としては容量不足である。
【0003】
電気二重層コンデンサーのコンデンサー容量を左右するのは、電極材料である。電極材料には、電子伝導性と大きな比表面積を併せ持つ材料が使用されるが、現状では活性炭が最も適した材料である。活性炭は、サブミクロ孔(0.8nm以下の直径を有する細孔)、ミクロ孔(0.8〜2nmの直径を有する細孔)、メソ孔(2〜50nmの直径を有する細孔)、マクロ孔(50nm以上の直径を有する細孔)が様々な割合で連結した多孔質炭素材料である。
【0004】
電気二重層コンデンサーのコンデンサー容量は、ミクロ孔の多寡に依存し、細孔の100%がミクロ孔である活性炭ができれば、コンデンサー容量はニッケルカドミウム電池の電気量に近接すると考えられる。しかし現在の活性炭の量産技術では、特定の細孔のみを形成させることは極めて困難であり、出発原料を変えたり、賦活条件を変える手法で、ミクロ孔の割合を支配的にする事が検討されている。
【0005】
最近、最も注目されている活性炭は、フェノール樹脂を出発原料としてこれを加熱分解し炭化物とした後、水蒸気賦活あるいは薬品賦活をする方法で調製され、その形状が粒状もしくは繊維状であり、これら活性炭を電極材料に使用してコンデンサー容量を改善した電気二重層コンデンサーが開発されている。
【0006】
【発明が解決しようとする課題】
しかし、フェノール樹脂から調製した活性炭を電極材料に使用した電気二重層コンデンサーは、未だコンデンサー容量の不足が指摘されており、電子機器の駆動用電源さらには電気自動車の補助電源に供試するには十分な性能を具備しているとは言えない状況にある。
【0007】
本発明は、新規活性炭原料からコンデンサー容量の大きな活性炭を調製し、その活性炭を使用することで電子機器の駆動用電源さらには電気自動車の補助電源として使用可能な大容量の電気二重層コンデンサーを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、糖類に、金属微粉末若しくは金属化合物である添加物を添加して混合し、混合物を100〜200℃で加熱して脱水、部分分解させ、次に600〜800℃で加熱分解し、生成した炭化物に対して水酸化カリウムを添加し700〜1000℃で賦活することによって調製した活性炭を電極材料に使用して電気二重層コンデンサーを構成することにより上記課題を解決している。
【0009】
糖類は、単糖類から多糖類まで多くの種類が見出されているが、これらを加熱すると多量のH2 OとCO2 の発生を伴いながら液状化が起こり、最終的には炭化物まで分解する。加熱時に多くの状態変化を経由することによって、これらの炭化物は極めて活性な表面性状を有するものとなるため、賦活が進み易く、活性炭用炭素材として好適である。
【0010】
糖類には、まず金属微粉末若しくは金属化合物又はこれらを組み合わせた添加物を添加し均一に分散するように混合する。糖類としては、不純物が少なくその含有量が安定しており、さらに添加物の種類および量について制御の容易さまたは簡便さから澱粉、転化糖や分蜜糖が適当である。添加物を糖類と混合した後、混合物を高温に加熱して炭化物にすると、添加物中の金属は炭化物の黒鉛化を促進する触媒として作用するが、賦活剤の共存下においてはそれら金属が賦活促進剤として働き、ミクロ孔の増大に有効な作用を示すため大容量の電気二重層コンデンサー用活性炭として適した物性が得られるものと考えられる。
【0011】
その添加物としては、Si、Al、Fe、Ni、Ca、Mg、またはBの元素を主成分とする金属微粉末若しくは金属化合物があり、中でもFe、Caが最適である。これらの金属は炭化物に対し非常に活性で、炭化物中に拡散した時には多数の格子欠陥の発生を伴う。この格子欠陥はエネルギーが大きく非常に活性であるため、賦活でミクロ孔の形成に大きな効果を示す。その賦活促進作用は以下のように推論される。
【0012】
Si、Al、Fe、およびNiは、高温で炭化物と反応しSiC、Al4 3 、Fe3 C、もしくはNi3 Cの生成と分解を繰り返すが、分解によって生成した炭素表面が格子欠陥を有し、非常に活性であるため賦活剤が反応し易く、賦活の進行がミクロ孔の割合を増加させるよう作用する。
【0013】
またCaおよびMgは、その蒸気が炭化物内に進入し易いインターカレート物質であり、金属がインターカレートする際に炭素結晶を押し広げるため炭化物内部に圧縮歪みを生じる。その圧縮歪みは炭化物全体を均一に黒鉛化する作用をするが、ガラス状から黒鉛化への変化の過程で炭素表面にC−C結合が切断したラジカルな部分が多く発生し、その微小部分で賦活が進行するため、ミクロ孔の形成が促進される。この時の活性炭は、X線回折図形で26°付近に非常にブロードなピークを示す構造となる。
【0014】
さらにBは、黒鉛構造に置換固溶し得る唯一の元素であり、Bが炭化物内で拡散する時に炭化物内部で膨張、圧縮を繰り返し多くの内部歪みを生じ、その内部歪みが黒鉛化を促進する作用をする。ところが賦活時においてはBの拡散で生じる格子欠陥が賦活され易いため、ミクロ孔の形成が促進される。
【0015】
以上のように、これら添加物が炭化物の黒鉛化触媒として作用するマイナス要因よりも、炭化物表面の活性化、C−C結合の切断により生成される活性な微小部分あるいは金属原子の拡散で生じた格子欠陥が賦活されやすいことによっておこるミクロ孔の増大の効果の方が大きく、この方法により調製した活性炭を使用することによって電気二重層コンデンサーのコンデンサー容量の大容量化を計るることが可能となる。
【0016】
添加物は、上記金属元素の粉末または化合物の中から一種類を選択すれば目的とする効果が得られるが、組み合わせ使用しても同様の効果が得られる。ただしいずれの添加物でも添加量が多くなると黒鉛化というマイナス要因が強く現出するので、糖類に対して金属元素換算で0.7重量%以下になるように添加物の添加量を制御することが好ましい。このように低い添加率では、その含有量に相応した容量損失はほとんど生じない。
【0017】
添加物の使用にあたっては、幾つかの制約がある。金属微粉末を使用する場合は、Si、Al、Fe、Ni、またはBを主成分とする金属微粉末に限定した方が良い。CaおよびMgを成分とする金属微粉末は非常に活性であるため、微粉末の製造が非常に難しいだけでなく、糖類との混合時に発熱する危険性を伴うので、安全上慎重な配慮が必要である。
【0018】
他方、金属化合物を使用する場合は、水溶性の金属化合物が最適である。水溶性の金属化合物は、結晶粒が比較的柔らかく細粒化しやすいため、炭化物との均一な混合分散が行われ目的の効果が得られ易い。さらに賦活後の活性炭にこれら金属化合物が残留した場合には、活性炭を熱湯で煮沸洗浄する時に賦活剤のKOHと共に溶解、除去が可能である。
【0019】
水溶性の金属化合物としては、塩化物、水酸化物、炭酸塩、あるいは硫酸塩が挙げられ、これらの中から水に対する溶解度の高いものを選択する。ただし例えばSiでは炭酸塩、硫酸塩は知られておらず、唯一塩化物が知られているが、SiCl4 は大気中の水分で加水分解し白煙を発生する。このような大気に不安定な化合物は、取扱いに労力を必要とし、結果として目的の効果を導き難い。またSiには水酸化物が存在するが、水に対する溶解度が極めて小さい。そのような場合、他の選択肢としては、金属炭化物の様に共有結合の化合物を用いることも可能である。例えばSiはSiC、AlはAl4 3 、FeはFe3 C、NiはNi3 C、BはB4 Cを添加すれば目的の効果が得られる。ただしCa、Mgについては、CaC2 、MgC2 およびMg2 3 が知られているが、水分との反応でアセチレンを発生し爆発を誘発する可能性があるため使用には適さない。
【0020】
添加物を混合した糖類は、まず低温で加熱脱水と部分分解を行うことによって、次の加熱分解工程で調製される炭化物の基本的な結晶構造が構築され、炭化物がより表面活性なものになる効果を与える。その加熱温度は100〜200℃が好ましく、加熱時間は3〜24hrで目的を達成できる。200℃より高い場合には膨張の程度が大きく、容器からの溢出により収率および作業性を著しく低下させる。
【0021】
次に部分分解したものの加熱分解による炭化物の調製は、600〜800℃で行なわれる。温度が600℃よりも低い場合、糖の分解が完全に行われないため、賦活の工程で残りの分解がおきるため、分解ガスの一つであるCO2 が発生する。CO2 は炭化物の黒鉛化を促進するため、目的とする賦活が行われない。また、800℃より高い場合、添加物が炭化物の黒鉛化の触媒として作用するため黒鉛化が起こり、賦活が進行し難くなる。加熱時間は、部分分解物の重量減少が45〜60%になるまでであるが、2〜5hrで目的の炭化物が得られる。時間が短い場合には分解を途中で止めてしまうことになり、温度が600℃より低い場合と同じ影響を受ける。
【0022】
賦活方法は、一般に水蒸気賦活と薬品賦活に分けられる。水蒸気賦活は、サブミクロ孔の割合が大きくなり本発明の目的に合致しない。有機電解液を用いた電気二重層コンデンサーの場合、溶媒和したイオンサイズが大きいため、水蒸気賦活で形成されるサブミクロ孔へイオンの侵入が不可能で、高いコンデンサー容量が得られないからである。薬品賦活は、水蒸気賦活と反応機構が異なり、細孔径は比較的大きくなる。薬品にはZnCl2 、NaOH、KOHなどが用いられる。特にKOHは、炭化物との濡れ性が良好であるため賦活速度が速く、それによって形成される細孔径も大きく、大きなコンデンサー容量を示す。よって本発明ではKOHを用いた薬品賦活を採用している。
【0023】
賦活は、炭化物にKOHを混合し、700〜1000℃の温度で加熱することにより行う。賦活温度が700℃よりも低い場合、賦活の進行速度が非常に遅く、細孔形成が緩慢である。これを相殺するために賦活時間を延長するような措置を施しても、細孔径が大きくなり過ぎてコンデンサー容量の向上につながらない。1000℃よりも高い場合、賦活反応が激しく、KOHの炭化物による還元で金属カリウムが大量に生成し、賦活終了後に反応装置内に堆積した金属カリウムの処理に多くの時間を必要とする。さらにマクロ孔、メソ孔の割合が増加し、ミクロ孔の割合は逆に減少するため、コンデンサーの容量の低下を招来する。
【0024】
【発明の実施の形態】
糖類と添加物は目的の重量を秤量した後、ボールミルを用いて混合を行う。混合は、糖類に添加物が良好に分散できればボールミルに限らず、ブレンダーなど他の手段でも構わない。
【0025】
糖類と添加物との混合物は、テフロンコーティングした金属容器に入れ、大気中200℃で3〜24hr加熱することによって重量減少が35〜50%になるまで脱水と部分分解を行い、黒褐色の多孔質体とする。これを室温まで冷却した後、乳鉢で解砕して粒径を1.7mm未満とする。粒径を1.7mm未満とすれば、炭化物にした時の粒径は1000μm以下になる。解砕手段は乳鉢に限らず、1.7mm未満にできればブレンダー、ハンマーミルなど他の手段を使用することも可能である。細粒化は、解砕時間を制御することで防止する。
【0026】
この解砕物を石英容器に入れ、重量減少が45〜60%になるまで窒素気流中600〜800℃で2〜5hr加熱することによって炭化物を得る。
次に、この炭化物とその4〜6倍量(重量比)のKOHをニッケル坩堝に入れ、窒素気流中700〜1000℃で2〜6hr加熱することによって賦活する。賦活反応の開始とともにCO2 、H2 が発生し、続いて金属カリウムの蒸気が発生する。賦活時の窒素流量は多い方が良く、それによって反応生成ガスは完全に系外へ排出できるため、賦活反応速度の低下を回避できる。窒素流量は、炭化物装填量を考慮して任意に変化させる必要がある。
【0027】
賦活後、活性炭と過剰のKOHはニッケル坩堝に付着しているので、水を少量加えて剥離させた後、ブフナーロートに流し入れ、そこに温水を繰り返し注いで大部分のKOHを除去する。洗浄した活性炭をテフロン容器に入れ、給水して、3hr煮沸する。煮沸後の活性炭は、再びブフナーロートで分離し、その後熱湯をケーキ上の活性炭に繰り返し注ぐ方法で洗浄し、最後に温風循環乾燥機で200℃、12hr以上乾燥して活性炭を得る。
【0028】
活性炭はボールミルを用いて74μm未満まで粉砕し、活性炭とテフロンを95:5の重量比で秤量し、乳鉢を用いて混練した後、圧延ローラーでシート状に成形し、100meshのステンレス製網に2t/cm2 で圧着したものを電極とする。ただし、活性炭の粉砕は、ボールミルに限定されず、74μm未満にすることができれば乳鉢やミキサーなどを用いることも可能である。電極作製法は上記の他、アルミニウム、銅、ステンレスの金属箔上に活性炭と結着剤のスラリーを薄く塗布した塗布電極でも構わない。
【0029】
電解液にはプロピレンガーボネイト1リッターにLiClO4 を1mol溶解した液などが使用されるが、電解液の組成は電気二重層コンデンサーの規格に合わせて変えることが可能で、電解液の溶媒にはγブチロラクトンやエチレンカーボネイトなどの高誘電率溶媒でかつ分解電圧が高い溶媒ならば、それらの単独あるいは混合使用のいずれも適用可能である。また、電解質塩に関しても上記の物質に限定されるものではなく、電解液中でイオン解離した時に陽イオン、陰イオンのイオン半径が小さく、さらに化学的に安定であれば良い。代表例として(C2 5 4 NBF4 などの第四級アンモニウム塩や、(C2 5 4 PBF4 などの第四級ホスホニウム塩が挙げられる。
【0030】
【実施例】
〔実施例1〕
グラニュー糖100gに対し添加物としてCaSO4 1.36gを秤量した後、ボールミルを用いて混合した。この混合物をテフロンコーティングしたステンレス製バットに入れ、温風循環乾燥機中で200℃、12hr加熱することで58gになるまで脱水、部分分解を行う。冷却後、その部分分解物をめのう乳鉢で1.7mm未満の粒径になるまで解砕した。
【0031】
次に解砕物を石英ボートに入れ、窒素気流中685℃で2hr加熱し炭化をおこなった。この炭化物の平均粒径は500μmであった。
この炭化物20gとKOH100gをニッケル坩堝に入れ、ニッケル内挿管で保護した石英反応管中に挿入し、窒素500ml/minを流し、雰囲気を十分に置換した後、電気炉を昇温し1000°Cで4hr加熱し、賦活を行った。
【0032】
賦活を終えた活性炭とKOHの混合物を、200mlの水でニッケル坩堝から剥離させ、ブフナーロート上に流し入れ、そこに200mlの温水を20回注いで大部分のKOHを水洗除去し、ブフナーロート上の活性炭をテフロン容器に移し替えた。次に、テフロン容器に給水し、3hr煮沸洗浄した。煮沸洗浄後の活性炭はブフナーロートで分離し、活性炭ケーキの上に200mlの温水を25回繰り返し注ぐ方法で洗浄し、温風循環乾燥機で200℃、12hr乾燥した。活性炭中のK濃度は1800ppm、Ca濃度は80ppmであった。
【0033】
活性炭をめのう乳鉢で−74μmまで粉砕し、活性炭とテフロンを95:5の重量比で混合した後、圧延ローラーでシート状に成形し、ステンレス製網に圧着し電極シートを作製した。この電極シートを10mm×10mmに切り、プロピレンガーボネイト1リッターにLiClO4 を1mol溶解させた液を電解液として使用し、ポリプロピレン製セパレータを介した2枚の電極を電解液中に浸し電気二重層コンデンサーを作製した。
【0034】
この電気二重層コンデンサーを電流密度1.0mA/cm2 、電圧範囲0〜2.75Vで定電流充放電を行い、放電時において電気二重層コンデンサーの電極シートに含まれる活性炭の単位重量あたりのコンデンサー容量を測定した。
【0035】
測定結果を表1、表2、および表3に示す。
〔実施例2〕
グラニュー糖100gに対し添加物としてCaSO4 3.40gを混合した以外は、実施例1と同様に操作した。コンデンサー容量の測定結果を表1に示す。
【0036】
〔実施例3〕
グラニュー糖100gに対し添加物としてAl4 3 0.53gを混合した以外は、実施例1と同様に操作した。コンデンサー容量の測定結果を表1に示す。
【0037】
〔実施例4〕
グラニュー糖100gに対し添加物としてFeSO4 1.09gを混合した以外は、実施例1と同様に操作した。コンデンサー容量の測定結果を表1に示す。
【0038】
〔実施例5〕
グラニュー糖100gに対し添加物としてNi微粉末(−43μm)0.4gを混合した以外は、実施例1と同様に操作した。コンデンサー容量の測定結果を表1に示す。
【0039】
〔実施例6〕
グラニュー糖100gに対し添加物としてMgCl2 1.17gを混合した以外は、実施例1と同様に操作した。コンデンサー容量の測定結果を表1に示す。
【0040】
〔実施例7〕
グラニュー糖100gに対し添加物としてH3 BO3 2.29gを混合した以外は、実施例1と同様に操作した。コンデンサー容量の測定結果を表1に示す。
【0041】
〔実施例8〕
加熱分解温度を800℃にした以外は、実施例1と同様に操作した。コンデンサー容量の測定結果を表2に示す。
【0042】
〔実施例9〕
賦活温度を700℃にした以外は、実施例1と同様に操作した。コンデンサー容量の測定結果を表3に示す。
【0043】
〔実施例10〕
賦活温度を800℃にした以外は、実施例1と同様に操作した。コンデンサー容量の測定結果を表3に示す。
【0044】
〔実施例11〕
賦活温度を900℃にした以外は、実施例1と同様に操作した。コンデンサー容量の測定結果を表3に示す。
【0045】
〔比較例1〕
添加物を加えないこと以外は、実施例1と同様に操作した。コンデンサー容量の測定結果を表1に示す。
【0046】
〔比較例2〕
加熱分解温度を500℃にした以外は、実施例1と同様に操作した。コンデンサー容量の測定結果を表2に示す。
【0047】
〔比較例3〕
加熱分解温度を1000℃にした以外は、実施例1と同様に操作した。コンデンサー容量の測定結果を表2に示す。
【0048】
〔比較例4〕
賦活温度を600℃にした以外は、実施例1と同様に操作した。コンデンサー容量の測定結果を表3に示す。
【0049】
【表1】

Figure 0003960397
【0050】
【表2】
Figure 0003960397
【0051】
【表3】
Figure 0003960397
【0052】
【発明の効果】
本発明は、以上説明した通り金属微粉末若しくは金属化合物である添加物を添加して混合した糖類から調製した活性炭を電気二重層コンデンサーの電極材料に使用することによって、電子機器の駆動用電源さらには電気自動車の補助電源として使用可能な高容量の電気二重層コンデンサーを提供することが可能となり、それによって環境汚染の防止に寄与しうる。
【0053】
添加物には主成分がアルミニウム、鉄、ニッケル、カルシウム、マグネシウム、またはボロンであるものを使用すると、ミクロ孔形成の効果が大きく電気二重層コンデンサーのコンデンサー容量が大容量化する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a large-capacity electric double layer capacitor using activated carbon as an electrode material.
[0002]
[Prior art]
An electric double layer capacitor is a capacitor that can charge or discharge several hundred times to several thousand times the amount of electricity compared to an aluminum electrolytic capacitor or a tantalum capacitor. Moreover, rapid charge / discharge is possible, and there is a feature that the capacity reduction is small even in a charge / discharge cycle of tens of thousands of times. On the other hand, the capacity of the capacitor is as small as 1/30 of the amount of electricity of a nickel cadmium battery, which is a typical secondary battery, and the capacity is insufficient as a power source for driving electronic devices and also as an auxiliary power source for automobiles.
[0003]
It is the electrode material that determines the capacitor capacity of the electric double layer capacitor. As the electrode material, a material having both electronic conductivity and a large specific surface area is used, but at present, activated carbon is the most suitable material. Activated carbon has sub-micropores (pores with a diameter of 0.8 nm or less), micropores (pores with a diameter of 0.8-2 nm), mesopores (pores with a diameter of 2-50 nm), macropores. It is a porous carbon material in which (pores having a diameter of 50 nm or more) are connected in various proportions.
[0004]
The capacitor capacity of the electric double layer capacitor depends on the number of micropores. If activated carbon with 100% of the pores is micropores, the capacitor capacity is considered to be close to the amount of electricity of the nickel cadmium battery. However, with the current mass production technology of activated carbon, it is extremely difficult to form only specific pores, and it is considered to control the ratio of micropores by changing the starting material or changing the activation conditions. ing.
[0005]
Recently, activated carbon, which has attracted the most attention, is prepared by a method in which a phenol resin is used as a starting material and is thermally decomposed to form a carbide, followed by steam activation or chemical activation. The activated carbon is granular or fibrous. Electric double layer capacitors have been developed that have improved the capacitor capacity by using as an electrode material.
[0006]
[Problems to be solved by the invention]
However, electric double layer capacitors using activated carbon prepared from phenolic resin as an electrode material have still been pointed out to be insufficient in capacitor capacity, and to be used as a power source for driving electronic devices and an auxiliary power source for electric vehicles. It is in a situation where it cannot be said that it has sufficient performance.
[0007]
The present invention provides a large-capacity electric double layer capacitor that can be used as a power source for driving electronic devices and an auxiliary power source for electric vehicles by preparing activated carbon having a large capacitor capacity from a new activated carbon raw material and using the activated carbon. The purpose is to do.
[0008]
[Means for Solving the Problems]
In the present invention , an additive which is a fine metal powder or a metal compound is added to and mixed with saccharides, and the mixture is heated at 100 to 200 ° C. for dehydration and partial decomposition, and then heated and decomposed at 600 to 800 ° C. The above problem is solved by constituting an electric double layer capacitor using activated carbon prepared by adding potassium hydroxide to the generated carbide and activating at 700 to 1000 ° C. as an electrode material.
[0009]
Many types of saccharides have been found, from monosaccharides to polysaccharides, but when these are heated, liquefaction occurs with the generation of a large amount of H 2 O and CO 2 , and eventually decomposes into carbides. . By passing through many state changes during heating, these carbides have extremely active surface properties, so that activation is easy to proceed, and it is suitable as a carbon material for activated carbon.
[0010]
First, a metal fine powder, a metal compound, or an additive combined with these is added to the saccharide and mixed so as to be uniformly dispersed. As the saccharide, starch, invert sugar, and honey sugar are suitable because they have few impurities and have a stable content, and are easy to control or simple regarding the type and amount of additives. When the additive is mixed with saccharides and then heated to a high temperature to form a carbide, the metal in the additive acts as a catalyst to promote graphitization of the carbide, but in the presence of an activator, the metal is activated. Since it works as an accelerator and exhibits an effective action for increasing micropores, it is considered that physical properties suitable as a large-capacity activated carbon for electric double layer capacitors can be obtained.
[0011]
As the additive, there are metal fine powder or metal compound containing Si, Al, Fe, Ni, Ca, Mg, or B as a main component, and Fe and Ca are most suitable. These metals are very active against carbides and are accompanied by the generation of numerous lattice defects when diffused into the carbides. Since these lattice defects have large energy and are very active, they are activated and have a great effect on the formation of micropores. The activation promoting effect is inferred as follows.
[0012]
Si, Al, Fe, and Ni react with carbides at high temperatures to repeatedly generate and decompose SiC, Al 4 C 3 , Fe 3 C, or Ni 3 C, but the carbon surface generated by the decomposition has lattice defects. However, since it is very active, the activator is likely to react, and the progress of activation acts to increase the proportion of micropores.
[0013]
Ca and Mg are intercalating substances in which the vapor easily enters the carbide, and when the metal intercalates, the carbon crystals are expanded to cause compressive strain inside the carbide. The compressive strain acts to graphitize the entire carbide uniformly, but in the process of changing from glassy to graphitization, a lot of radicals where the C—C bonds are broken are generated on the carbon surface. Since the activation proceeds, the formation of micropores is promoted. The activated carbon at this time has an X-ray diffraction pattern showing a very broad peak around 26 °.
[0014]
Furthermore, B is the only element that can be substituted and dissolved in the graphite structure. When B diffuses in the carbide, it repeatedly expands and compresses inside the carbide to cause many internal strains, and the internal strains promote graphitization. Works. However, since the lattice defects generated by the diffusion of B are easily activated during activation, the formation of micropores is promoted.
[0015]
As described above, rather than the negative factor that these additives act as a graphitization catalyst for carbides, they occurred due to the activation of the carbide surface and the diffusion of active minute parts or metal atoms generated by breaking the C—C bond. The effect of increasing micropores caused by the fact that lattice defects are easily activated is greater, and it is possible to increase the capacity of the electric double layer capacitor by using activated carbon prepared by this method. .
[0016]
If one kind of additive is selected from the above powders or compounds of metal elements, the desired effect can be obtained, but the same effect can be obtained even when used in combination. However, since the negative factor of graphitization appears strongly when the amount of any additive increases, the amount of additive added should be controlled so that it is 0.7% by weight or less in terms of metal element relative to saccharides. Is preferred. At such a low addition rate, almost no capacity loss corresponding to the content occurs.
[0017]
There are some restrictions on the use of additives. When using a metal fine powder, it is better to limit it to a metal fine powder containing Si, Al, Fe, Ni, or B as a main component. Since metal fine powders containing Ca and Mg are very active, the production of fine powders is not only very difficult, but also involves the risk of heat generation when mixed with sugars, so careful consideration is necessary for safety. It is.
[0018]
On the other hand, when a metal compound is used, a water-soluble metal compound is optimal. Since the water-soluble metal compound has relatively soft crystal grains and is easily finely divided, uniform mixing and dispersion with the carbide is performed, and the desired effect is easily obtained. Furthermore, when these metal compounds remain in activated carbon after activation, it can be dissolved and removed together with the activator KOH when the activated carbon is boiled and washed with hot water.
[0019]
Examples of the water-soluble metal compound include chlorides, hydroxides, carbonates, and sulfates, and those having high solubility in water are selected from these. However, for example, carbonates and sulfates are not known for Si, and only chlorides are known. However, SiCl 4 is hydrolyzed by moisture in the atmosphere to generate white smoke. Such an air-labile compound requires labor for handling, and as a result, it is difficult to lead the desired effect. Si also has a hydroxide, but its solubility in water is extremely small. In such a case, another option is to use a covalently bonded compound such as a metal carbide. For example Si is SiC, Al is Al 4 C 3, Fe is Fe 3 C, Ni is Ni 3 C, B is the desired effect can be obtained by addition of B 4 C. However, as Ca and Mg, CaC 2 , MgC 2 and Mg 2 C 3 are known, but they are not suitable for use because they may generate acetylene by reaction with moisture and induce explosion.
[0020]
The saccharide mixed with additives is first subjected to heat dehydration and partial decomposition at a low temperature, so that the basic crystal structure of carbide prepared in the next heat decomposition step is constructed, and the carbide becomes more surface active. Give effect. The heating temperature is preferably 100 to 200 ° C., and the purpose can be achieved with a heating time of 3 to 24 hours. When the temperature is higher than 200 ° C., the degree of expansion is large, and the yield and workability are significantly reduced due to overflow from the container.
[0021]
Next, preparation of the carbide by thermal decomposition of the partially decomposed material is performed at 600 to 800 ° C. When the temperature is lower than 600 ° C., sugar is not completely decomposed, and the remaining decomposition occurs in the activation process, so that CO 2 which is one of decomposition gases is generated. Since CO 2 promotes graphitization of the carbide, the intended activation is not performed. On the other hand, when the temperature is higher than 800 ° C., the additive acts as a catalyst for graphitization of carbide, so that graphitization occurs and activation is difficult to proceed. The heating time is until the weight loss of the partially decomposed product becomes 45 to 60%, but the target carbide is obtained in 2 to 5 hours. When the time is short, the decomposition is stopped halfway, and the same influence as when the temperature is lower than 600 ° C. is received.
[0022]
Activation methods are generally divided into steam activation and chemical activation. Steam activation does not meet the purpose of the present invention because the proportion of sub-micropores increases. This is because in the case of an electric double layer capacitor using an organic electrolytic solution, since the solvated ion size is large, ions cannot enter into the sub-micropores formed by water vapor activation, and a high capacitor capacity cannot be obtained. Chemical activation is different from water vapor activation in the reaction mechanism, and the pore diameter is relatively large. ZnCl 2 , NaOH, KOH or the like is used as the chemical. In particular, KOH has good wettability with carbides and thus has a high activation rate, and the pores formed thereby have a large diameter and a large capacitor capacity. Therefore, in the present invention, chemical activation using KOH is employed.
[0023]
Activation is performed by mixing KOH with carbide and heating at a temperature of 700 to 1000 ° C. When the activation temperature is lower than 700 ° C., the progression rate of activation is very slow and the pore formation is slow. Even if measures are taken to extend the activation time in order to offset this, the pore diameter becomes too large and the capacitor capacity is not improved. When the temperature is higher than 1000 ° C., the activation reaction is intense, a large amount of metal potassium is generated by reduction with KOH carbide, and a lot of time is required for the treatment of the metal potassium deposited in the reaction apparatus after the activation is completed. Furthermore, since the ratio of macropores and mesopores increases and the ratio of micropores decreases, the capacity of the capacitor is reduced.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The sugars and additives are weighed in the desired weight and then mixed using a ball mill. The mixing is not limited to the ball mill as long as the additive can be well dispersed in the saccharide, and other means such as a blender may be used.
[0025]
The mixture of saccharide and additive is placed in a Teflon-coated metal container and heated in the atmosphere at 200 ° C. for 3 to 24 hours to dehydrate and partially decompose until the weight loss is 35 to 50%. Let it be the body. After cooling this to room temperature, it is crushed in a mortar to make the particle size less than 1.7 mm. If the particle size is less than 1.7 mm, the particle size when converted to carbide is 1000 μm or less. The crushing means is not limited to a mortar, and other means such as a blender and a hammer mill can be used as long as the crushing means can be less than 1.7 mm. Fine graining is prevented by controlling the crushing time.
[0026]
This crushed material is put in a quartz container, and carbide is obtained by heating at 600 to 800 ° C. for 2 to 5 hours in a nitrogen stream until the weight reduction becomes 45 to 60%.
Next, this carbide and 4 to 6 times the weight (weight ratio) of KOH are put into a nickel crucible and activated by heating at 700 to 1000 ° C. in a nitrogen stream for 2 to 6 hours. At the start of the activation reaction, CO 2 and H 2 are generated, followed by generation of metal potassium vapor. It is better that the nitrogen flow rate at the time of activation is large, whereby the reaction product gas can be completely discharged out of the system, so that a decrease in the activation reaction rate can be avoided. The nitrogen flow rate needs to be arbitrarily changed in consideration of the carbide loading.
[0027]
After activation, the activated carbon and excess KOH are attached to the nickel crucible. After a small amount of water is added and peeled off, the mixture is poured into a Buchner funnel, and hot water is repeatedly poured therein to remove most of the KOH. The washed activated carbon is put into a Teflon container, supplied with water, and boiled for 3 hours. The activated carbon after boiling is separated again with a Buchner funnel, then washed with a method of repeatedly pouring hot water onto the activated carbon on the cake, and finally dried with a hot air circulating dryer at 200 ° C. for 12 hours or more to obtain activated carbon.
[0028]
The activated carbon is pulverized to less than 74 μm using a ball mill, the activated carbon and Teflon are weighed at a weight ratio of 95: 5, kneaded using a mortar, formed into a sheet with a rolling roller, and 2 t on a 100 mesh stainless steel net. The electrode is crimped at / cm 2 . However, the pulverization of the activated carbon is not limited to a ball mill, and a mortar, a mixer, or the like can be used as long as it can be made less than 74 μm. In addition to the above, the electrode preparation method may be a coated electrode in which a slurry of activated carbon and a binder is applied thinly on a metal foil of aluminum, copper, or stainless steel.
[0029]
For the electrolyte, a solution of 1 mol of LiClO 4 in 1 liter of propylene carbonate is used, but the composition of the electrolyte can be changed according to the specifications of the electric double layer capacitor, As long as the solvent is a high dielectric constant solvent such as γ-butyrolactone or ethylene carbonate and has a high decomposition voltage, either of them can be used alone or in combination. Further, the electrolyte salt is not limited to the above-mentioned substances, and it is sufficient if the ion radius of the cation and the anion is small when ion dissociation is performed in the electrolytic solution, and it is chemically stable. Typical examples include quaternary ammonium salts such as (C 2 H 5 ) 4 NBF 4 and quaternary phosphonium salts such as (C 2 H 5 ) 4 PBF 4 .
[0030]
【Example】
[Example 1]
After weighing 1.36 g of CaSO 4 as an additive to 100 g of granulated sugar, they were mixed using a ball mill. This mixture is put in a Teflon-coated stainless steel vat, and dehydrated and partially decomposed to 58 g by heating at 200 ° C. for 12 hours in a hot air circulating dryer. After cooling, the partially decomposed product was pulverized with an agate mortar until the particle size was less than 1.7 mm.
[0031]
Next, the crushed material was put into a quartz boat, and carbonized by heating at 685 ° C. for 2 hours in a nitrogen stream. This carbide had an average particle size of 500 μm.
20 g of this carbide and 100 g of KOH were put into a nickel crucible, inserted into a quartz reaction tube protected by a nickel inner tube, and nitrogen 500 ml / min was flowed to sufficiently replace the atmosphere. Then, the temperature of the electric furnace was increased to 1000 ° C. Activation was performed by heating for 4 hr.
[0032]
The activated charcoal and KOH mixture after the activation is peeled off from the nickel crucible with 200 ml of water, poured onto a Buchner funnel, 200 ml of warm water is poured into it 20 times to remove most of the KOH, and the Buchner funnel is washed. The activated carbon was transferred to a Teflon container. Next, water was supplied to a Teflon container and washed by boiling for 3 hours. The activated carbon after boiling washing was separated by a Buchner funnel, washed by repeatedly pouring 200 ml of warm water 25 times on the activated carbon cake, and dried by a hot air circulating dryer at 200 ° C. for 12 hours. The K concentration in the activated carbon was 1800 ppm, and the Ca concentration was 80 ppm.
[0033]
The activated carbon was pulverized to −74 μm with an agate mortar, and the activated carbon and Teflon were mixed at a weight ratio of 95: 5, then formed into a sheet shape with a rolling roller, and pressed onto a stainless steel net to prepare an electrode sheet. This electrode sheet was cut into 10 mm × 10 mm, and 1 mol of LiClO 4 dissolved in 1 liter of propylene carbonate was used as the electrolytic solution. Two electrodes via a polypropylene separator were immersed in the electrolytic solution. A multilayer capacitor was produced.
[0034]
This electric double layer capacitor is charged and discharged at a constant current at a current density of 1.0 mA / cm 2 and a voltage range of 0 to 2.75 V, and the capacitor per unit weight of activated carbon contained in the electrode sheet of the electric double layer capacitor at the time of discharge The capacity was measured.
[0035]
The measurement results are shown in Table 1, Table 2, and Table 3.
[Example 2]
The same operation as in Example 1 was conducted, except that 3.40 g of CaSO 4 was added as an additive to 100 g of granulated sugar. Table 1 shows the measurement results of the capacitor capacity.
[0036]
Example 3
The same operation as in Example 1 was conducted except that 0.53 g of Al 4 C 3 was added as an additive to 100 g of granulated sugar. Table 1 shows the measurement results of the capacitor capacity.
[0037]
Example 4
The same operation as in Example 1 was conducted except that 1.09 g of FeSO 4 was mixed as an additive with 100 g of granulated sugar. Table 1 shows the measurement results of the capacitor capacity.
[0038]
Example 5
The same operation as in Example 1 was performed except that 0.4 g of Ni fine powder (-43 μm) was mixed as an additive with 100 g of granulated sugar. Table 1 shows the measurement results of the capacitor capacity.
[0039]
Example 6
The same operation as in Example 1 was conducted except that 1.17 g of MgCl 2 was added as an additive to 100 g of granulated sugar. Table 1 shows the measurement results of the capacitor capacity.
[0040]
Example 7
The same operation as in Example 1 was carried out except that 2.29 g of H 3 BO 3 was added as an additive to 100 g of granulated sugar. Table 1 shows the measurement results of the capacitor capacity.
[0041]
Example 8
The same operation as in Example 1 was performed except that the thermal decomposition temperature was 800 ° C. Table 2 shows the measurement results of the capacitor capacity.
[0042]
Example 9
The same operation as in Example 1 was performed except that the activation temperature was set to 700 ° C. Table 3 shows the measurement results of the capacitor capacity.
[0043]
Example 10
The same operation as in Example 1 was performed except that the activation temperature was 800 ° C. Table 3 shows the measurement results of the capacitor capacity.
[0044]
Example 11
The same operation as in Example 1 was performed except that the activation temperature was set to 900 ° C. Table 3 shows the measurement results of the capacitor capacity.
[0045]
[Comparative Example 1]
The same operation as in Example 1 was carried out except that no additive was added. Table 1 shows the measurement results of the capacitor capacity.
[0046]
[Comparative Example 2]
The same operation as in Example 1 was performed except that the thermal decomposition temperature was 500 ° C. Table 2 shows the measurement results of the capacitor capacity.
[0047]
[Comparative Example 3]
The same operation as in Example 1 was performed except that the thermal decomposition temperature was 1000 ° C. Table 2 shows the measurement results of the capacitor capacity.
[0048]
[Comparative Example 4]
The same operation as in Example 1 was performed except that the activation temperature was set to 600 ° C. Table 3 shows the measurement results of the capacitor capacity.
[0049]
[Table 1]
Figure 0003960397
[0050]
[Table 2]
Figure 0003960397
[0051]
[Table 3]
Figure 0003960397
[0052]
【The invention's effect】
As described above, the present invention uses an activated carbon prepared from a saccharide mixed with an additive which is a metal fine powder or a metal compound as an electrode material for an electric double layer capacitor, thereby providing a power source for driving an electronic device. Can provide a high-capacity electric double layer capacitor that can be used as an auxiliary power source of an electric vehicle, thereby contributing to prevention of environmental pollution.
[0053]
The additive main component there aluminum, iron, nickel, calcium, using what is magnesium or boron, condenser capacity greater electric double layer capacitor has the effect of micropores formed to capacity.

Claims (1)

アルミニウム、鉄、ニッケル、カルシウム、マグネシウム、またはボロンを主成分とする金属微粉末若しくは金属化合物である添加物を分蜜糖に添加して混合し、混合物を100〜200℃で加熱して脱水、部分分解させ、次に600〜800℃で加熱分解し、生成した炭化物に対して水酸化カリウムを添加し700〜1000℃で賦活することによって調製した活性炭を電極材料に使用してなる電気二重層コンデンサー。 Additives that are metal powder or metal compound mainly composed of aluminum, iron, nickel, calcium, magnesium, or boron are added to honey sugar and mixed, and the mixture is heated at 100 to 200 ° C. for dehydration. An electric double layer using activated carbon prepared as an electrode material by partial decomposition and then pyrolysis at 600 to 800 ° C., adding potassium hydroxide to the generated carbide and activating at 700 to 1000 ° C. condenser.
JP14798097A 1997-06-05 1997-06-05 Electric double layer capacitor Expired - Fee Related JP3960397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14798097A JP3960397B2 (en) 1997-06-05 1997-06-05 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14798097A JP3960397B2 (en) 1997-06-05 1997-06-05 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPH10335189A JPH10335189A (en) 1998-12-18
JP3960397B2 true JP3960397B2 (en) 2007-08-15

Family

ID=15442458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14798097A Expired - Fee Related JP3960397B2 (en) 1997-06-05 1997-06-05 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3960397B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1204577C (en) * 1998-08-25 2005-06-01 钟纺株式会社 Electrode material and method for producing the same
DE10084910B4 (en) * 1999-08-10 2009-06-10 Honda Giken Kogyo K.K. Process for producing activated carbon for an electrode of an electric double-layer capacitor
JP2001118753A (en) 1999-10-21 2001-04-27 Matsushita Electric Ind Co Ltd Activated carbon for electric double layered capacitor and manufacturing method therefor
EP1565404A2 (en) * 2002-11-13 2005-08-24 Showa Denko K.K. Active carbon, production method thereof and polarizable electrode
JP5143469B2 (en) * 2006-06-16 2013-02-13 地方独立行政法人 大阪市立工業研究所 Method for producing iron-containing carbon material
NO345821B1 (en) * 2019-10-29 2021-08-23 Ipr Holding As Method for producing activated carbon

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102855A (en) * 1990-07-20 1992-04-07 Ucar Carbon Technology Corporation Process for producing high surface area activated carbon
US5164355A (en) * 1991-01-23 1992-11-17 Air Products And Chemicals, Inc. High capacity coconut shell char for carbon molecular sieves
JP3195963B2 (en) * 1992-04-14 2001-08-06 大阪瓦斯株式会社 Method for producing metal-containing activated carbon
JP3440515B2 (en) * 1993-12-07 2003-08-25 三菱化学株式会社 Electrode for electric double layer capacitor
JPH0967112A (en) * 1995-08-31 1997-03-11 Kyocera Corp Solid activated carbon and its production
JPH09155187A (en) * 1995-12-12 1997-06-17 Nippon Chem Ind Co Ltd Activated carbon for adsorbing acidic gas and production thereof

Also Published As

Publication number Publication date
JPH10335189A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
US4205055A (en) Dual pore-structure artificial carbon and graphite
JPH09328308A (en) Activated carbon, its production and capacitor using the same
US8927103B2 (en) Method for producing base-activated carbon
CN107611416B (en) Silicon-carbon composite material, preparation method and application thereof
KR20120039024A (en) Nanostructured silicon-carbon composites for battery electrodes
JPH08119614A (en) Activated carbon, its production and electrode for electric-double-layer capacitor
JP2008222551A (en) Method for manufacturing activated carbon
JP2012507470A (en) Method for producing porous activated carbon
TW201138193A (en) Lithium iron phosphate and carbon based lithium accumulator
CN113135568A (en) Nitrogen-doped porous carbon material and preparation method and application thereof
WO2015061160A1 (en) Process for making chemically activated carbon
JP3885905B2 (en) Electric double layer capacitor
JP3960397B2 (en) Electric double layer capacitor
TW201509797A (en) Chemical activation of carbon with at least one additive
CN109192524B (en) Preparation method of activated carbon-graphene composite porous material
US11870059B2 (en) Immobilized selenium in a porous carbon with the presence of oxygen, a method of making, and uses of immobilized selenium in a rechargeable battery
IE44193B1 (en) Active carbon
TW201438992A (en) Chemical activation of carbon via an entrained stream method
JP3309701B2 (en) Method for producing carbon powder for negative electrode of lithium ion secondary battery
RU2620404C1 (en) Method of obtaining mesoporous carbon
JP2009057239A (en) Activated carbon preparation method
JP2003183014A (en) Porous carbon material, its producing method and electric double layer capacitor
JP4096653B2 (en) Method for producing activated carbon, polarizable electrode and electric double layer capacitor
JP2007153639A (en) Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor
JP4403325B2 (en) Method for producing graphite powder for negative electrode of lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees