JP2017204628A - Method for manufacturing active carbon for electric double layer capacitor electrode, and active carbon for electric double layer capacitor electrode manufactured thereby - Google Patents

Method for manufacturing active carbon for electric double layer capacitor electrode, and active carbon for electric double layer capacitor electrode manufactured thereby Download PDF

Info

Publication number
JP2017204628A
JP2017204628A JP2016230400A JP2016230400A JP2017204628A JP 2017204628 A JP2017204628 A JP 2017204628A JP 2016230400 A JP2016230400 A JP 2016230400A JP 2016230400 A JP2016230400 A JP 2016230400A JP 2017204628 A JP2017204628 A JP 2017204628A
Authority
JP
Japan
Prior art keywords
activated carbon
double layer
electric double
layer capacitor
capacitor electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016230400A
Other languages
Japanese (ja)
Inventor
チュン イ、チョン
Jung-Joon Lee
チュン イ、チョン
チン チョン、ヨン
Young Jin Jung
チン チョン、ヨン
キョ チョ、ムン
Moonkyu Cho
キョ チョ、ムン
ポ イ、ヨン
Yong Bo Lee
ポ イ、ヨン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Energy Corp
Original Assignee
GS Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Energy Corp filed Critical GS Energy Corp
Publication of JP2017204628A publication Critical patent/JP2017204628A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide: a method for manufacturing an active carbon, by which the decrease in specific surface area can be suppressed as far as possible, and an oxygen functional group can be removed effectively; and an active carbon for an electric double layer capacitor electrode, which is manufactured by the method.SOLUTION: An active carbon for an electric double layer capacitor electrode is 500-3,000 m/g in specific surface area (BET) according to a nitrogen adsorption method. The active carbon comprises boron (B) therein and/or on the surface thereof. The weight ratio (B/C) of the boron to carbon in the active carbon is 15 wt% or less.SELECTED DRAWING: None

Description

本発明は、電気二重層キャパシタ(EDLC)に含まれた電極の製造に使用される活性炭及びその製造方法に関する。   The present invention relates to activated carbon used for manufacturing an electrode included in an electric double layer capacitor (EDLC) and a method for manufacturing the same.

活性炭(activated carbon)は、電気二重層キャパシタ(Electric Double−Layer Capacitor:EDLC)を構成する電極の核心となる素材であって、装置のコスト又は性能において最も大きな比重を占めている。   Activated carbon is a core material of an electrode constituting an electric double-layer capacitor (EDLC), and occupies the largest specific gravity in the cost or performance of the apparatus.

このような活性炭は、通常、石油系・石炭系のコークス、又はヤシ殻などの炭素質原料を、KOH、NaOHなどのアルカリ溶液で処理して化学的に活性化させ、又は、900〜1000℃のガス(例えば、HO又はCO)を用いて活性化させることで製造される。しかし、上述のように製造された活性炭は、表面に金属不純物や酸素官能基が存在し、電気二重層キャパシタの性能が低下するという問題点があった。即ち、活性炭の表面に存在する金属不純物や酸素官能基が、電気二重層キャパシタの作動時に副反応を起こす要因として作用し、電気二重層キャパシタの容量が減少する(長期寿命性能低下)ようになる。 Such activated carbon is usually chemically activated by treating a carbonaceous raw material such as petroleum or coal-based coke or coconut shell with an alkaline solution such as KOH or NaOH, or 900 to 1000 ° C. It is manufactured by activating using a gas (for example, H 2 O or CO 2 ). However, the activated carbon produced as described above has a problem in that metal impurities and oxygen functional groups exist on the surface, and the performance of the electric double layer capacitor is deteriorated. That is, metal impurities and oxygen functional groups present on the surface of the activated carbon act as a factor causing a side reaction during the operation of the electric double layer capacitor, and the capacity of the electric double layer capacitor decreases (long-term life performance deterioration). .

上述のような問題点を解決するため、従来は、活性炭を、塩酸、硫酸、硝酸などの酸性溶液で洗浄して活性炭の表面に存在する金属不純物を除去した後、中性化処理を施す過程を経て活性炭を製造する方法が提案されている。このような方法は、活性炭の表面に存在する金属不純物の除去には効果的であったが、洗浄過程の際にカルボキシル基、ラクトン基、フェノール基、カルボニル基のような酸素官能基(Oxygen Functional Group:OFG)が生成し、かえって、活性炭の表面において酸素官能基の数が増加し、これにより、電気二重層キャパシタの性能向上には限界があった。   In order to solve the above-mentioned problems, conventionally, activated carbon is washed with an acidic solution such as hydrochloric acid, sulfuric acid, nitric acid to remove metal impurities present on the surface of the activated carbon, and then subjected to neutralization treatment. A method for producing activated carbon via the process has been proposed. Such a method was effective in removing metal impurities present on the surface of the activated carbon, but oxygen functional groups such as carboxyl, lactone, phenol, and carbonyl groups (Oxygen Functionalal) were used during the cleaning process. Group: OFG) is generated, and on the contrary, the number of oxygen functional groups is increased on the surface of the activated carbon, which limits the improvement of the performance of the electric double layer capacitor.

前述の酸素官能基(OFG)を還元及び除去するため、従来は、活性化工程の後に、700〜1000℃の範囲で活性炭を一定時間の間熱処理する後処理工程が行われている。しかし、このような後処理工程は、高価で、高温の加熱炉及び排出物質を燃焼させるための焼却炉がさらに必要となるため、光熱費及びメンテナンスコストが高く、費用面で非経済的である。また、後処理工程を経た活性炭は、高温熱処理によって活性炭の比表面積の減少が発生し、電気二重層キャパシタ(EDLC)の初期容量の低下が必然的に生じる。   In order to reduce and remove the oxygen functional group (OFG), a post-treatment step is conventionally performed after the activation step, in which the activated carbon is heat-treated in a range of 700 to 1000 ° C. for a predetermined time. However, such a post-treatment process is expensive and further requires a high-temperature heating furnace and an incinerator for burning the exhausted material, so that the heat and maintenance costs are high, and the cost is uneconomical. . Moreover, the activated carbon which passed through the post-processing process will generate | occur | produce the reduction | decrease of the specific surface area of activated carbon by high temperature heat processing, and the fall of the initial capacity of an electric double layer capacitor (EDLC) will arise inevitably.

本発明は、上述のような従来技術の問題点を解決するために案出されたものであって、活性炭の活性化工程の後において、従来の高温熱処理に代えて、酸素官能基(OFG)を効果的に還元させ得るホウ素(B)系無機還元剤を採用して常温で湿式工程を行うことで、熱処理の副作用である比表面積の減少を極力抑制することが可能であり、また、熱処理工程に要する投資費、光熱費(Utility)及びメンテナンス費用の削減が可能であることを知見した。   The present invention has been devised to solve the above-described problems of the prior art, and after the activation step of activated carbon, oxygen functional groups (OFG) are substituted for the conventional high-temperature heat treatment. By adopting a boron (B) -based inorganic reducing agent that can effectively reduce the heat treatment, it is possible to suppress the decrease in specific surface area, which is a side effect of heat treatment, as much as possible by performing a wet process at room temperature. It was found that the investment cost, utility cost and maintenance cost required for the process can be reduced.

従って、本発明の目的は、比表面積の減少を極力抑制し、かつ、酸素官能基を効果的に除去することができる活性炭の製造方法及び当該方法で製造された電気二重層キャパシタ電極用活性炭を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing activated carbon capable of suppressing the reduction of the specific surface area as much as possible and effectively removing the oxygen functional group, and activated carbon for an electric double layer capacitor electrode produced by the method. It is to provide.

上述の目的を達成するため、本発明は、窒素吸着法による比表面積(BET)が、500〜3,000m/gであり、内部、表面又はこれらの両方にホウ素(B)を含み、活性炭中の炭素に対するホウ素の重量比(B/C)が、15重量%以下である、電気二重層キャパシタ電極用活性炭を提供する。 In order to achieve the above-mentioned object, the present invention has a specific surface area (BET) by nitrogen adsorption method of 500 to 3,000 m 2 / g, contains boron (B) inside, on the surface, or both, and is activated carbon Provided is an activated carbon for an electric double layer capacitor electrode, wherein the weight ratio of boron to carbon (B / C) is 15% by weight or less.

本発明において、前記活性炭は、表面に存在する酸素官能基(OFG)が、0.5meq/g未満であることが好ましい。   In the present invention, the activated carbon preferably has an oxygen functional group (OFG) present on the surface of less than 0.5 meq / g.

また、本発明は、前述した電気二重層キャパシタ電極用活性炭の製造方法を提供する。より具体的に、前記製造方法は、(i)炭素質原料を活性化して活性炭を製造するステップ;及び(ii)前記活性化された活性炭を、常温でホウ素(B)系無機還元剤含有溶液に含浸させた後、攪拌及び洗浄し、乾燥するステップを含んで構成される。   Moreover, this invention provides the manufacturing method of the activated carbon for electric double layer capacitor electrodes mentioned above. More specifically, the production method includes the steps of (i) activating a carbonaceous raw material to produce activated carbon; and (ii) a solution containing boron (B) based inorganic reducing agent at room temperature. After the impregnation, the step of stirring, washing and drying is included.

本発明において、前記ステップ(i)における炭素質原料は、石炭系コークス、石油系コークス及びヤシ殻からなる群から選択される原料を炭化させるものであることができる。   In the present invention, the carbonaceous raw material in the step (i) can carbonize a raw material selected from the group consisting of coal-based coke, petroleum-based coke, and coconut shells.

本発明において、前記ステップ(i)における活性化は、活性化剤を用いた化学的活性化、又は、HO若しくはCOガスを用いた物理的活性化であることができる。 In the present invention, the activation in the step (i) can be chemical activation using an activator or physical activation using H 2 O or CO 2 gas.

本発明において、前記ステップ(ii)におけるホウ素系無機還元剤は、LiBH及びNaBHからなる群から選択されるものであることができる。 In the present invention, the boron-based inorganic reducing agent in the step (ii) can be selected from the group consisting of LiBH 4 and NaBH 4 .

本発明において、前記ステップ(ii)におけるホウ素系無機還元剤含有溶液の濃度は、0.1〜2molの範囲であることができる。   In the present invention, the concentration of the boron-based inorganic reducing agent-containing solution in step (ii) may be in the range of 0.1 to 2 mol.

本発明において、前記ステップ(ii)では、活性炭含量が20〜80重量%であるスラリー状態で、1〜12時間攪拌を行うことを特徴とする電気二重層キャパシタ電極用活性炭の製造方法が提供される。   In the present invention, in the step (ii), there is provided a method for producing activated carbon for an electric double layer capacitor electrode, characterized in that stirring is performed for 1 to 12 hours in a slurry state having an activated carbon content of 20 to 80% by weight. The

本発明によれば、活性炭の表面に存在する酸素官能基(OFG)を、熱処理を行うことなく、常温で効果的に還元及び除去することができるため、投資費、光熱費などのコストを著しく削減することができる。   According to the present invention, the oxygen functional group (OFG) present on the surface of the activated carbon can be effectively reduced and removed at room temperature without performing heat treatment. Can be reduced.

また、本発明によれば、常温で湿式工程を行うことで、熱処理の副作用である活性炭の比表面積減少を極力抑制することができ、これを備えた電気二重層キャパシタ(EDLC)の初期容量を向上させることができる。   In addition, according to the present invention, by performing the wet process at room temperature, it is possible to suppress the specific surface area reduction of the activated carbon which is a side effect of the heat treatment as much as possible, and the initial capacity of the electric double layer capacitor (EDLC) provided with this Can be improved.

以下、本発明について詳述する。   Hereinafter, the present invention will be described in detail.

本発明は、炭素質原料を用いて、活性化工程を経て活性炭を製造するが、前記活性化工程の後において、活性炭の表面に存在する酸素官能基(OFG)を、常温での湿式工程によって効果的に還元及び除去する後処理工程を行うことを特徴とする。   In the present invention, activated carbon is produced through an activation process using a carbonaceous raw material. After the activation process, oxygen functional groups (OFG) present on the surface of the activated carbon are removed by a wet process at room temperature. It is characterized by performing a post-treatment step that effectively reduces and removes.

即ち、活性化された活性炭の表面には、カルボキシル基(carboxylic group)、ラクトン基(lactonic、 cyclic ester group)、フェノール基(phenolic group)などの酸素官能基(oxygen functional group、OFG)が存在する。このような酸素官能基の数が増加すると、EDLCセルの側において、リーク電流(Leakage Current)が増加し、自己放電(Self Discharge)性能が低下し、さらに、電解液とOFGとの直接的な接触によって電圧の印加時に副反応を誘発し、信頼性の低下及びガスの生成を招くようになる。これにより、電気二重層キャパシタの性能向上には限界があった。   That is, oxygen functional groups (OFG) such as carboxyl group, lactone group (lactonic, cyclic ester group), and phenol group (phenolic group) are present on the surface of the activated activated carbon. . When the number of such oxygen functional groups increases, leakage current (Leakage Current) increases on the EDLC cell side, self-discharge (Self Discharge) performance decreases, and the direct relationship between the electrolyte and OFG The contact induces a side reaction when a voltage is applied, leading to a decrease in reliability and gas generation. As a result, there is a limit to improving the performance of the electric double layer capacitor.

本発明では、後処理工程に使用される無機還元剤として、ホウ素(B)系還元剤を採用し、これを常温で用いることで、活性炭の表面に存在する多数のOFGを還元及び除去する。   In the present invention, a boron (B) -based reducing agent is employed as the inorganic reducing agent used in the post-treatment process, and this is used at room temperature, whereby a large number of OFG present on the surface of the activated carbon is reduced and removed.

前記ホウ素(B)系還元剤は、有毒(toxic)な有機還元剤とは異なり、人体に無害である。なお、ホウ素(B)と同族(周期表第13族)であるアルミニウム(Al)系無機還元剤は、ホウ素(B)系無機還元剤より強力な還元力を有する一方で、後処理工程の後において活性炭の表面及び内部に多く残留する性質を有し、これにより、活性炭の気孔を塞ぎ、また、反応中に気孔の崩壊を誘発させ、比表面積(BET)が著しく低下するという副反応を招く。   Unlike the toxic organic reducing agent, the boron (B) reducing agent is harmless to the human body. In addition, the aluminum (Al) -based inorganic reducing agent that is the same group as boron (B) (group 13 of the periodic table) has a stronger reducing power than the boron (B) -based inorganic reducing agent, but after the post-treatment step. Has a property of remaining on the surface and inside of the activated carbon in a large amount, thereby closing the pores of the activated carbon, inducing the collapse of the pores during the reaction, and causing a side reaction that the specific surface area (BET) is significantly reduced. .

これに対し、本発明において採用したホウ素(B)系還元剤は、前述した3つの酸素官能基の一部又は全部を還元させ得る還元力を有しながら、以後、活性炭表面のOFG残留量を極力抑制し、比表面積減少のような副反応を招くことがない。よって、従来の高温熱処理(後処理)工程を、常温での湿式工程に置き換えることで、工程コストやメンテナンスコストを削減することができ、また、熱処理に伴う比表面積(BET)の減少を極力抑制し、高い初期容量(F/g、F/cc)を有する活性炭が得られる。   In contrast, the boron (B) -based reducing agent employed in the present invention has a reducing power capable of reducing some or all of the three oxygen functional groups described above, and thereafter reduces the residual amount of OFG on the activated carbon surface. It suppresses as much as possible and does not cause side reactions such as a decrease in specific surface area. Therefore, by replacing the conventional high-temperature heat treatment (post-treatment) process with a wet process at room temperature, process costs and maintenance costs can be reduced, and the reduction in specific surface area (BET) associated with heat treatment is minimized. Thus, activated carbon having a high initial capacity (F / g, F / cc) is obtained.

実際に、本発明では、従来活性炭の製造工程で行われている高温熱処理工程そのものを排除することで、工程コストの削減効果と共に、熱処理後の活性炭の比表面積減少の問題点を解決して電気二重層キャパシタの容量発現を極大化させることができる。従って、工程時間、費用及び品質面から、従来の技術に比べて、競争力を備えるようになる。   In fact, the present invention eliminates the high-temperature heat treatment process that is conventionally performed in the manufacturing process of activated carbon, thereby solving the problem of reducing the specific surface area of activated carbon after heat treatment as well as reducing the process cost. The capacity expression of the double layer capacitor can be maximized. Therefore, it becomes more competitive than the conventional technology in terms of process time, cost and quality.

<電気二重層キャパシタ電極用活性炭>
本発明の電気二重層キャパシタ電極用活性炭は、ホウ素系無機還元剤を用いた常温での湿式工程を経ることで、活性炭の内部、表面又はこれらの両方にホウ素(B)を含むようになる。
<Activated carbon for electric double layer capacitor electrode>
The activated carbon for an electric double layer capacitor electrode according to the present invention contains boron (B) in the inside, on the surface of the activated carbon, or both of them through a wet process at room temperature using a boron-based inorganic reducing agent.

具体的に、前記活性炭に含まれた炭素に対するホウ素の重量比(B/C)は、15重量%以下であることができ、好ましくは、0.1〜14.5重量%であり、より好ましくは、1〜10重量%の範囲である。   Specifically, the weight ratio (B / C) of boron to carbon contained in the activated carbon may be 15% by weight or less, preferably 0.1 to 14.5% by weight, and more preferably. Is in the range of 1 to 10% by weight.

前記活性炭としては、高い比表面積及び酸素官能基(OFG)の減少効果を示すことができるものであれば、特に限定されない。例えば、前記活性炭は、窒素吸着法による比表面積(BET)が500〜3,000m/gの範囲であり、好ましくは、1,000〜3,000m/gの範囲である。 The activated carbon is not particularly limited as long as it can exhibit a high specific surface area and an oxygen functional group (OFG) reduction effect. For example, the activated carbon has a specific surface area by a nitrogen adsorption method (BET) is in a range of 500~3,000m 2 / g, preferably in the range of 1,000~3,000m 2 / g.

なお、前記活性炭の表面に存在する酸素官能基(OFG)が0.5meq/g未満であることができ、好ましくは、0.45meq/g以下、より好ましくは、0超過0.40meq/g以下であることができる。   The oxygen functional group (OFG) present on the surface of the activated carbon can be less than 0.5 meq / g, preferably 0.45 meq / g or less, more preferably 0 or more and 0.40 meq / g or less. Can be.

上述のように、高い比表面積、かつ酸素官能基の含量が極力抑制された本発明の活性炭で製造された電極を、電気二重層キャパシタに適用する場合、電気二重層キャパシタの初期容量を高めることができ、また、長寿命高信頼性(Floating&Cycle Performance)を向上させることができる。   As described above, when an electrode made of the activated carbon of the present invention having a high specific surface area and an oxygen functional group content suppressed as much as possible is applied to an electric double layer capacitor, the initial capacity of the electric double layer capacitor is increased. In addition, long life and high reliability (Floating & Cycle Performance) can be improved.

<電気二重層キャパシタ電極用活性炭の製造方法>
以下、本発明の一実施形態に係る活性炭の製造方法について説明する。なお、後述の製造方法にのみ限定されず、必要に応じて各工程のステップを変形又は選択的に混用して実施することができる。
<Method for producing activated carbon for electric double layer capacitor electrode>
Hereinafter, the manufacturing method of the activated carbon which concerns on one Embodiment of this invention is demonstrated. In addition, it is not limited only to the below-mentioned manufacturing method, It can implement by deform | transforming or selectively mixing the step of each process as needed.

前記活性炭を製造する方法の好適な一実施形態としては、例えば、(i)炭素質原料を活性化して活性炭を製造するステップ、及び(ii)前記活性化された活性炭を常温でホウ素系還元剤が溶解された溶液に含浸させた後、攪拌及び洗浄を行うステップを含んで構成される。   As a preferred embodiment of the method for producing the activated carbon, for example, (i) a step of producing activated carbon by activating a carbonaceous raw material, and (ii) a boron-based reducing agent at the activated carbon at room temperature. After the impregnated solution is impregnated, the step of stirring and washing is included.

以下、上述の製造方法を、各工程別に分けて説明する。   Hereinafter, the above-described manufacturing method will be described separately for each process.

(1) 活性化工程(以下、「ステップS10」という)
本ステップS10では、炭素質原料を活性化させて活性炭を製造する。
なお、活性化とは、炭素質原料を、多数の気孔(pore)が形成された多孔質に改質して比表面積を増やす工程を指称する。
(1) Activation step (hereinafter referred to as “step S10”)
In this step S10, activated carbon is produced by activating the carbonaceous raw material.
The activation refers to a process of increasing the specific surface area by modifying the carbonaceous raw material into a porous body in which a large number of pores are formed.

本発明において、前記炭素質原料としては、当分野で周知のものを使用することができ、特に限定されない。例えば、石油コークス、石炭コークス、ピッチ、炭化された植物(例えば、ヤシ殻)、植物種子の炭化品、合成樹脂(例えば、フェノール樹脂などの高分子材料)、グラフェン(graphene)、カーボンナノチューブ(Carbon Nanotube)、カーボンオニオン(carbon onion)などの炭化されたものが挙げられるが、これらに制限されない。   In the present invention, as the carbonaceous raw material, those known in the art can be used and are not particularly limited. For example, petroleum coke, coal coke, pitch, carbonized plant (for example, coconut shell), carbonized product of plant seed, synthetic resin (for example, polymer material such as phenol resin), graphene, carbon nanotube (Carbon) Non-limiting examples include carbonized ones such as Nanotube and carbon onion.

前記炭素質原料は、必要に応じて、当分野で周知の前処理工程、粉砕工程又はこれらの両工程が施されたものであることができる。   The carbonaceous raw material may be subjected to a pretreatment step, a pulverization step, or both of these steps that are well known in the art, as necessary.

本発明において、前記前処理工程は、炭素質原料の表面に存在する揮発性物質(volatile materials、VM)を除去する工程の全てを含む。例えば、400〜800℃で一定時間の間熱処理を行うか、又は非極性溶媒などの有機溶媒を使用して常温で湿式工程を行うことができる。これにより、前記前処理工程を経た炭素質原料は、真密度が1.4g/cc未満であり、好ましくは、1.38g/cc以下であることができる。また、前記炭素質原料中の揮発性物質(VM)の含量が、2.0重量%未満(400〜700℃)であり、好ましくは、0超1.5重量%以下であることができる。   In the present invention, the pretreatment step includes all steps of removing volatile materials (VM) present on the surface of the carbonaceous raw material. For example, heat treatment can be performed at a temperature of 400 to 800 ° C. for a certain time, or a wet process can be performed at room temperature using an organic solvent such as a nonpolar solvent. Thereby, the carbonaceous raw material which passed the said pre-processing process has a true density of less than 1.4 g / cc, Preferably, it can be 1.38 g / cc or less. Moreover, the content of the volatile substance (VM) in the carbonaceous raw material is less than 2.0% by weight (400 to 700 ° C.), preferably more than 0 and 1.5% by weight or less.

尚、粉砕工程は、当分野で周知のディスクミル(disk mill)、ボールミル(ball mill)、回転ミル(rotary mill)及び振動ミル(vibration mill)などのような常法で行うことができ、好ましくは、約50〜500μmの大きさに粉砕される。   The pulverization step may be performed by a conventional method such as a disk mill, a ball mill, a rotary mill, a vibration mill, etc., which are well known in the art. Is pulverized to a size of about 50 to 500 μm.

本発明に係るステップS10において、前記炭素質原料を活性化させる方法としては、特に限定されない。例えば、KOH又はNaOHなどのアルカリ塩(アルカリ金属化合物)活性化剤を用いた化学的活性化、又は高温のガス(HO又はCO)を用いた物理的活性化などが挙げられる。 In step S10 according to the present invention, the method for activating the carbonaceous raw material is not particularly limited. For example, chemical activation using an alkali salt (alkali metal compound) activator such as KOH or NaOH, or physical activation using a high-temperature gas (H 2 O or CO 2 ) may be mentioned.

前記活性化工程において、粉砕された炭素質原料粉末と活性化剤との混合割合は、特に制限されず、例えば、1:0.1〜10の重量比(即ち、粉砕されたコークス粉末:活性化剤=1:0.1〜10の重量比)で混合して活性化させることができる。好ましくは、1:2.0〜3.0の重量比で混合して活性化させる。   In the activation step, the mixing ratio of the pulverized carbonaceous raw material powder and the activator is not particularly limited, and is, for example, a weight ratio of 1: 0.1 to 10 (that is, pulverized coke powder: active It can be activated by mixing at a weight ratio of 1: 0.1 to 10). Preferably, the mixture is activated by mixing at a weight ratio of 1: 2.0 to 3.0.

また、活性化工程の際に、前記粉砕された炭素質原料粉末を活性化剤と混合した後、400℃〜1,200℃で加熱して行うことができ、好ましくは、600〜1,000℃の温度範囲であることができる。   In the activation step, the pulverized carbonaceous raw material powder can be mixed with an activator and heated at 400 ° C. to 1,200 ° C., preferably 600 to 1,000. It can be in the temperature range of ° C.

なお、活性炭の粒子サイズとしては、特に限定されないが、D10/D50/D90(1〜4μm/5〜11μm/12〜20μm)であることができる。   The particle size of the activated carbon is not particularly limited, but can be D10 / D50 / D90 (1 to 4 μm / 5 to 11 μm / 12 to 20 μm).

(2) 洗浄/乾燥工程(以下、「ステップS20」という)
必要に応じて、前記活性炭には、当分野で周知の洗浄及び乾燥工程が施される。
(2) Cleaning / drying process (hereinafter referred to as “Step S20”)
If necessary, the activated carbon is subjected to washing and drying steps well known in the art.

前記洗浄工程は、活性炭に存在する不純物を除去するために行われる。洗浄工程としては、例えば、アルカリ洗浄、酸洗浄又はこれら両方の並行が挙げられ、アルカリ洗浄と酸洗浄とを並行することが好ましい。   The washing step is performed to remove impurities present in the activated carbon. As a washing | cleaning process, alkali washing, acid washing, or the parallel of these both is mentioned, for example, It is preferable to perform alkali washing and acid washing in parallel.

また、洗浄工程は、前記活性化工程において、アルカリ金属化合物(KOHなど)を活性化剤として使用する場合、原料に存在する不純物の除去と共に、前記アルカリ金属化合物(KOHなど)などが除去されるように、少なくとも酸洗浄を含むことが好ましい。このとき、酸洗浄液としては、例えば、塩酸や硫酸などの酸水溶液が挙げられる。その他、超純水(deionized water)を用いた洗浄工程を行うこともできる。   In the cleaning step, when an alkali metal compound (KOH or the like) is used as an activator in the activation step, the alkali metal compound (KOH or the like) is removed together with removal of impurities present in the raw material. Thus, it is preferable to include at least an acid wash. At this time, examples of the acid cleaning liquid include aqueous acid solutions such as hydrochloric acid and sulfuric acid. In addition, a cleaning process using deionized water can also be performed.

上述のように洗浄を行った後は、乾燥を行うことで、活性炭に存在する水分を除去する。乾燥工程としては、特に制限されず、例えば、熱風乾燥、自然乾燥、又は赤外線乾燥が挙げられる。   After washing as described above, the moisture present in the activated carbon is removed by drying. The drying process is not particularly limited, and examples thereof include hot air drying, natural drying, and infrared drying.

(3) 無機還元剤を用いた常温湿式後処理工程(以下、「ステップS30」という)
前述したステップS20において酸洗浄を行うことで、活性炭表面の金属不純物が減少するが、反面、酸素官能基(Oxygen Functional Groups:OFG)が増加し、このような酸素官能基は、電気二重層キャパシタ(EDLC)の寿命特性低下の要因となる。従来は、酸素官能基(OFG)を除去するため高温熱処理工程(600〜1000℃)を行っているが、このような高温熱処理が施されると、活性炭の比表面積が減少して電気二重層キャパシタの初期容量の減少を招くだけでなく、経済性及び生産性の低下が発生する。
(3) Room temperature wet post-treatment process using an inorganic reducing agent (hereinafter referred to as “Step S30”)
By performing acid cleaning in the above-described step S20, metal impurities on the activated carbon surface are reduced, but on the other hand, oxygen functional groups (OFG) are increased, and such oxygen functional groups are used as electric double layer capacitors. (EDLC) is a factor in reducing the life characteristics. Conventionally, a high-temperature heat treatment step (600 to 1000 ° C.) is performed to remove oxygen functional groups (OFG). However, when such a high-temperature heat treatment is performed, the specific surface area of the activated carbon decreases, and the electric double layer Not only will the initial capacitance of the capacitor be reduced, but also the economy and productivity will be reduced.

それで、本発明のステップS30では、常温でホウ素系無機還元剤が溶解された溶液に活性炭を含浸させた後、スラリー状態で攪拌及び洗浄する後処理工程を行う。これにより、活性化された活性炭の表面に存在する酸素官能基(OFG)を効果的に還元及び除去することができ、実際に、従来の高温熱処理工程(600〜1000℃)に比べて、活性炭表面のOFGをより効果的に還元及び除去することが可能となる。   Thus, in step S30 of the present invention, after the impregnated activated carbon is impregnated with the solution in which the boron-based inorganic reducing agent is dissolved at room temperature, a post-processing step of stirring and washing in a slurry state is performed. As a result, oxygen functional groups (OFG) present on the surface of the activated carbon can be effectively reduced and removed. Actually, compared with the conventional high-temperature heat treatment process (600 to 1000 ° C.), the activated carbon It becomes possible to reduce and remove the OFG on the surface more effectively.

本発明における無機還元剤としては、1)カルボキシル基(Carboxylic Group)、2)ラクトン基(Lactonic(cyclic ester) Group)、及び3)フェノール基(Phenolic Group)などの酸素官能基(OFG)の一部又は全部を還元及び除去させ得る第13族のホウ素(B)族化合部を使用する。具体的に、例えば、LiBH及びNaBHからなる群から選択される1種以上であることができる。 The inorganic reducing agent in the present invention includes 1) a carboxyl group (Carboxylic Group), 2) a lactone group (Lactonic (cyclic ester) Group), and 3) an oxygen functional group (OFG) such as a phenol group (Phenolic Group). A group 13 boron (B) compound that can be reduced or removed in part or in whole is used. Specifically, for example, it can be one or more selected from the group consisting of LiBH 4 and NaBH 4 .

前記ホウ素系無機還元剤の使用量としては、酸素官能基(OFG)を効果的に還元及び除去され、かつ。次に洗浄工程によって容易に除去され得る最小量であれば、特に制限されない。例えば、前記ステップ(ii)のホウ素系無機還元剤含有溶液の濃度は、0.1〜2molの範囲であることができる。   The amount of the boron-based inorganic reducing agent used is that oxygen functional groups (OFG) are effectively reduced and removed. If it is the minimum quantity which can be easily removed next by a washing | cleaning process, it will not restrict | limit in particular. For example, the concentration of the boron-based inorganic reducing agent-containing solution in step (ii) can be in the range of 0.1 to 2 mol.

前記ステップS30の好適な一例としては、前記活性炭を常温で無機還元剤が溶解された溶液(0.1〜2mol)に投入し、当該スラリー100重量%を基準にして、活性炭の含量が20〜80重量%であるスラリーを、1〜12時間攪拌及び洗浄し、乾燥して最終の活性炭を得ることができる。このとき、前記スラリー100重量%を満足させる残量は、無機還元剤が溶解された溶液(0.1〜2mol)の重量であり、例えば、80〜20重量%の範囲であることができる。   As a suitable example of the step S30, the activated carbon is charged into a solution (0.1 to 2 mol) in which an inorganic reducing agent is dissolved at room temperature, and the activated carbon content is 20 to 20% based on 100% by weight of the slurry. The slurry which is 80% by weight can be stirred and washed for 1-12 hours and dried to obtain the final activated carbon. At this time, the remaining amount that satisfies 100% by weight of the slurry is the weight of the solution (0.1 to 2 mol) in which the inorganic reducing agent is dissolved, and may be, for example, in the range of 80 to 20% by weight.

上述のように後処理工程が施される場合、活性炭の内部、表面及びこれらの両方においてホウ素系無機還元剤が一部残存するようになる。特に、ホウ素系無機還元剤は、主に活性炭の表面に存在するOFGと反応するため、活性炭の内部よりは表面に多く存在するようになる。例えば、ホウ素(B)系無機還元剤による後処理工程が行われた後、活性炭中のB/Cの重量%は、最大15重量%以下であることができ、好ましくは、0.1〜14.5重量%の範囲である。   When the post-treatment process is performed as described above, a part of the boron-based inorganic reducing agent remains on the inside, the surface, and both of the activated carbon. In particular, since the boron-based inorganic reducing agent mainly reacts with OFG present on the surface of the activated carbon, the boron-based inorganic reducing agent is present more on the surface than inside the activated carbon. For example, after the post-treatment step with a boron (B) -based inorganic reducing agent is performed, the weight% of B / C in the activated carbon can be 15% by weight or less, preferably 0.1-14. .5% by weight.

(4) 分級/脱鉄工程(以下、「ステップS40」という)
必要に応じて、後処理された活性炭を粉砕して粒度を調節することができる。
このとき、粒度の調節は、活性炭が3μm〜7μmの平均粒度を有するように行われる。より具体的に、前記活性炭の微粉砕を行い、次に平均粒度3μm〜7μmの大きさを有するように分級による選別を行う。なお、分級は、篩分けによって行うことができる。このように適正な粒度分布を有する場合は、タップ密度(Tap Density)が高くなり、出力特性が改善される。
(4) Classification / deironing process (hereinafter referred to as “step S40”)
If necessary, the post-treated activated carbon can be pulverized to adjust the particle size.
At this time, the particle size is adjusted so that the activated carbon has an average particle size of 3 μm to 7 μm. More specifically, the activated carbon is finely pulverized, and then sorted by classification so as to have an average particle size of 3 μm to 7 μm. The classification can be performed by sieving. Thus, when it has an appropriate particle size distribution, a tap density (Tap Density) becomes high and an output characteristic is improved.

<電気二重層キャパシタ用電極>
本発明は、前記活性炭を含む電気二重層キャパシタ用電極を提供する。
<Electrode for electric double layer capacitor>
The present invention provides an electrode for an electric double layer capacitor containing the activated carbon.

具体的に、本発明の電気二重層キャパシタ用電極は、上述のような活性炭と共に、導電材、バインダー及び集電体を含む。   Specifically, the electrode for an electric double layer capacitor of the present invention includes a conductive material, a binder, and a current collector together with the above-described activated carbon.

前記導電材としては、当業界で公知のものであれば、特に限定されず、例えば、カーボンブラック、グラファイト、カーボンナノチューブなどが挙げられるが、これらに制限されない。前記バインダーとしては、当業界で公知のものであれば、特に限定されず、例えば、PTFE(Polytetrafluoroethylene)、CMC(Carboxymethylcellulose)、PVA(Polyvinylalcohol)、PVDF(Polyvinylidenefluoride)、PVP(Polyvinylpyrrolidone)、MC(メチルセルロース)、SBR(Styrene Butadiene Rubber)、エチレン−塩化ビニル共重合樹脂、塩化ビニリデンラテックス、塩素化樹脂、酢酸ビニル樹脂、ポリビニルブチラール、ポリビニルホルムアルデヒドビスフェノール系エポキシ樹脂、ブタジエンゴム、イソプレンゴム、ニトリルブタジエンゴム、ウレタンゴム、シリコンゴム、アクリルゴムなどが挙げられるが、これらに制限されない。   The conductive material is not particularly limited as long as it is known in the art, and examples thereof include, but are not limited to, carbon black, graphite, and carbon nanotube. The binder is not particularly limited as long as it is known in the art, and examples thereof include PTFE (Polytetrafluoroethylene), CMC (Carboxymethylcellulose), PVA (Polyvinylcohol), PVDF (Polyvinylidenefluor), PVP (polymethyl), PVP (polypropyleneolyl), PVP (polypropylenefluoryl), PVP (polypropylenefluoryl), PVP ), SBR (Styrene Butadiene Rubber), ethylene-vinyl chloride copolymer resin, vinylidene chloride latex, chlorinated resin, vinyl acetate resin, polyvinyl butyral, polyvinyl formaldehyde bisphenol epoxy resin, butadiene rubber, isoprene rubber, nitrile butadiene rubber, urethane Rubber Examples include, but are not limited to, recon rubber and acrylic rubber.

このような本発明の電気二重層キャパシタ電極の製造方法は、当業界で公知の方法であれば、特に限定されない。   The method for producing the electric double layer capacitor electrode of the present invention is not particularly limited as long as it is a method known in the art.

<電気二重層キャパシタ>
本発明は、前記電気二重層キャパシタ用電極を含む電気二重層キャパシタを提供する。
<Electric double layer capacitor>
The present invention provides an electric double layer capacitor including the electrode for the electric double layer capacitor.

具体的に、本発明の電気二重層キャパシタは、上述の電極が、セパレータを介して負極と正極とに配置され、配置された負極と正極とが電解液に含浸される構造を有する。
このような本発明の電気二重層キャパシタは、前述した活性炭で製造された電極を含んでいるため、高容量を有し、また、サイクル特性に優れている。
Specifically, the electric double layer capacitor of the present invention has a structure in which the above-described electrode is disposed on a negative electrode and a positive electrode via a separator, and the disposed negative electrode and positive electrode are impregnated with an electrolytic solution.
Such an electric double layer capacitor of the present invention includes an electrode made of the above-mentioned activated carbon, and thus has a high capacity and is excellent in cycle characteristics.

以下、本発明の実施例を挙げて詳述するが、下記の実施例及び実験例は、本発明の例示に過ぎないものであり、本発明の範囲は、下記の実施例及び実験例によって制限されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples and experimental examples are only examples of the present invention, and the scope of the present invention is limited by the following examples and experimental examples. Is not to be done.

[実施例1]
実施例1−1
炭素質原料(石油系コークス)と活性化剤(KOH)とを1:2.6の重量比で化学的に活性化させ、洗浄及び乾燥を行って活性炭を製造した。次に、洗浄された活性炭15gを、常温で無機還元剤であるLiBHが溶解されたTHF溶液(濃度2mol)100mlに含浸させた後、12時間攪拌し、洗浄した後、乾燥する後処理を行って、平均粒度8μmの大きさを有する活性炭を製造した。
[Example 1]
Example 1-1
Carbonaceous raw material (petroleum coke) and activator (KOH) were chemically activated at a weight ratio of 1: 2.6, washed and dried to produce activated carbon. Next, 15 g of the washed activated carbon was impregnated with 100 ml of a THF solution (concentration 2 mol) in which LiBH 4 as an inorganic reducing agent was dissolved at room temperature, stirred for 12 hours, washed, and then dried. As a result, activated carbon having an average particle size of 8 μm was produced.

実施例1−2
上記で製造された活性炭を、電気二重層キャパシタ電極材として使用した。
より具体的に、活性炭と、導電剤であるカーボンブラック(Super−Pなど)と、バインダーであるCMC(カルボキシメチルセルロース)と、SBR(スチレンブタジエンゴム)とを、90:5:1.5:3.5の重量比で投入した後、混合してスラリーを製造した。製造されたスラリーを、Al箔にコンマコートを施して電極を製造した後、これをセパレータ(NKK社製、35μm厚さのパルプ材質)と共に、2032−コインセル形態に巻き取り、およそ1Fの容量範囲を有する電気二重層キャパシタを製造した。このとき、電解液としては、1M TEABF4(Tetraethylammonium tetrafluoroborate)が、有機系アセトニトリル(acetonitrile)に含有されたものを使用した。
Example 1-2
The activated carbon produced above was used as an electric double layer capacitor electrode material.
More specifically, 90: 5: 1.5: 3 of activated carbon, carbon black (such as Super-P) as a conductive agent, CMC (carboxymethylcellulose) as a binder, and SBR (styrene butadiene rubber). Was added at a weight ratio of .5, and mixed to produce a slurry. After the manufactured slurry is subjected to comma coating on an Al foil to manufacture an electrode, this is wound together with a separator (manufactured by NKK, 35 μm thick pulp material) into a 2032-coin cell form, and a capacity range of about 1F An electric double layer capacitor having the following characteristics was manufactured. At this time, as the electrolytic solution, 1M TEABF4 (Tetraethylammonium tetrafluoroborate) contained in organic acetonitrile was used.

[実施例2]
無機還元剤として、LiBHの代わりに、NaBHを使用する以外は、上記の実施例1と同様にして実施例2の石油系コークス活性炭及びこれを備えた電気二重層キャパシタを製造した。
[Example 2]
A petroleum-based coke activated carbon of Example 2 and an electric double layer capacitor including the same were manufactured in the same manner as in Example 1 except that NaBH 4 was used instead of LiBH 4 as the inorganic reducing agent.

[比較例1]
無機還元剤の代わりに、水素2体積%と窒素98体積%とが混合された混合ガスの条件下で、700℃の温度で1時間熱処理する後処理工程を行う以外は、上記の実施例1と同様にして比較例1の石油系コークス活性炭及びこれを備えた電気二重層キャパシタを製造した。
[Comparative Example 1]
Example 1 described above except that a post-treatment step of heat treatment at 700 ° C. for 1 hour is performed under the condition of a mixed gas in which 2% by volume of hydrogen and 98% by volume of nitrogen are mixed instead of the inorganic reducing agent. In the same manner as above, a petroleum coke activated carbon of Comparative Example 1 and an electric double layer capacitor provided with the same were manufactured.

[比較例2]
後処理工程を行わない以外は、上記の実施例1と同様にして比較例2の石油系コークス活性炭及びこれを備えた電気二重層キャパシタを製造した。
[Comparative Example 2]
A petroleum coke activated carbon of Comparative Example 2 and an electric double layer capacitor including the same were produced in the same manner as in Example 1 except that the post-treatment process was not performed.

[比較例3]
石油系コークス原料の代わりにヤシ系原料を使用して、ガス(HO又はCO)により物理的に活性化させて活性炭を製造する以外は、上記の比較例1と同様にして比較例3のヤシ系活性炭及びこれを備えた電気二重層キャパシタを製造した。
[Comparative Example 3]
Comparative Example as in Comparative Example 1 above, except that the activated carbon is produced by using a coconut-based raw material instead of the petroleum-based coke raw material and physically activated by gas (H 2 O or CO 2 ). 3 coconut-based activated carbon and an electric double layer capacitor including the same were produced.

[比較例4]
無機還元剤としてLiAlHを使用する以外は、上記の実施例1と同様にして比較例4の石油系コークス活性炭及びこれを備えた電気二重層キャパシタを製造した。
[Comparative Example 4]
A petroleum coke activated carbon of Comparative Example 4 and an electric double layer capacitor including the same were produced in the same manner as in Example 1 except that LiAlH 4 was used as the inorganic reducing agent.

[実験例1.活性炭中のホウ素含量の分析]
実施例1で得られた活性炭に含まれた各成分の含量を、SEM−EDAXを用いて分析し、その結果を下記の表1に示す。
[Experimental Example 1. Analysis of boron content in activated carbon]
The content of each component contained in the activated carbon obtained in Example 1 was analyzed using SEM-EDAX, and the results are shown in Table 1 below.

Figure 2017204628
Figure 2017204628

実験の結果、実施例1の活性炭には、ホウ素が含まれていることがわかった(表1参照)。   As a result of the experiment, it was found that the activated carbon of Example 1 contained boron (see Table 1).

[実験例2.後処理工程による活性炭の物性及び電気化学的特性の評価]
実施例1〜2及び比較例1〜4で製造された活性炭の物性を、下記のように評価し、その結果を表2に示す。
[Experimental Example 2. Evaluation of physical properties and electrochemical characteristics of activated carbon by post-treatment process]
The physical properties of the activated carbons produced in Examples 1-2 and Comparative Examples 1-4 were evaluated as follows, and the results are shown in Table 2.

(1)比表面積(m/g):0.5gの活性炭またはその原材料を、250℃で150分間乾燥し、活性炭の表面及び活性炭の内に存在する気孔中の水分を完全に除去した後、窒素(N)を吸着させ、吸着された窒素ガスの量を測定して単位重量当たりの表面積に換算した。 (1) Specific surface area (m 2 / g): 0.5 g of activated carbon or its raw material is dried at 250 ° C. for 150 minutes to completely remove moisture on the surface of the activated carbon and pores existing in the activated carbon. Nitrogen (N 2 ) was adsorbed and the amount of adsorbed nitrogen gas was measured and converted to a surface area per unit weight.

(2)酸素官能基(meq/g):互いに異なるpKa値の塩基を活性炭と混合した後、活性炭表面の酸素官能基(カルボキシル基、ラクトン基、フェノール基)と反応し残った塩基の量を0.1N HCl標準溶液で逆滴定(back−titration)して定量するBoehm法で測定した(使用された塩基:0.1N NaOH)。 (2) Oxygen functional group (meq / g): After mixing bases having different pKa values with activated carbon, the amount of base remaining after reacting with oxygen functional groups (carboxyl group, lactone group, phenol group) on the activated carbon surface is determined. It was measured by the Boehm method, which was quantified by back-titration with a 0.1N HCl standard solution (base used: 0.1N NaOH).

(3)重量当たりの容量(F/g):EDLCセルの放電曲線から下記の数1に基づいてセル全体のC[F]を計算した後、製造時に使用された活性炭の重量で除することで計算した。 (3) Capacity per weight (F / g): After calculating C [F] of the whole cell based on the following equation 1 from the discharge curve of the EDLC cell, it is divided by the weight of the activated carbon used at the time of manufacture. Calculated with

Figure 2017204628
Figure 2017204628

(式中、ΔtとΔVとは、定格電圧(rated volatage)の40、80%の値の差を示す) (In the formula, Δt and ΔV represent the difference between 40 and 80% of the rated voltage).

(4)体積当たりの容量(F/cc):上記で求められたF/gに、製造された電極の密度(g/cc)を乗ずることで計算した。 (4) Capacity per volume (F / cc): Calculated by multiplying the F / g determined above by the density (g / cc) of the manufactured electrode.

Figure 2017204628
Figure 2017204628

実験の結果、ホウ素系無機還元剤を用いた後処理工程を経た実施例1〜2の活性炭は、比較例1〜4に比べて、高い比表面積、低いOFG含量及び優れた電気化学的特性を有することがわかった(表2参照)。   As a result of the experiment, the activated carbons of Examples 1 and 2 that have undergone a post-treatment process using a boron-based inorganic reducing agent have a high specific surface area, a low OFG content, and excellent electrochemical characteristics as compared with Comparative Examples 1 to 4. (See Table 2).

なお、後処理工程を行わない比較例2の活性炭は、比表面積及び電気化学的特性(F/g、F/cc)に優れているが、OFGの含量が非常に高くなった。このような高含量のOFGによって、比較例2の活性炭は、EDLCへの適用時に、寿命特性が大きく低下し、製品化ができないことがわかった。   In addition, although the activated carbon of the comparative example 2 which does not perform a post-processing process is excellent in a specific surface area and an electrochemical characteristic (F / g, F / cc), the content of OFG became very high. With such a high content of OFG, it was found that the activated carbon of Comparative Example 2 significantly deteriorated in life characteristics when applied to EDLC and could not be commercialized.

また、ホウ素(B)と同様に周期表第13族のアルミニウム(Al)系無機還元剤を使用した比較例4では、OFGの還元及び除去には優れた効果を示すが、反面、活性炭の表面及び内部にAlが多く残留し、活性炭の気孔を塞ぎ、反応中に気孔の崩壊を誘発させて比表面積(BET)が著しく低下する現象が生じた。このような比較例4の活性炭は、電気二重層キャパシタ(EDLC)に適用する場合、重量当たりの容量(F/g)及び体積当たりの容量(F/cc)が非常に低く、量産性がほとんどないことがわかった。   In addition, Comparative Example 4 using an aluminum (Al) inorganic reducing agent belonging to Group 13 of the periodic table in the same manner as boron (B) shows an excellent effect in the reduction and removal of OFG. In addition, a large amount of Al remained inside, which closed the pores of the activated carbon and induced pore collapse during the reaction, resulting in a phenomenon that the specific surface area (BET) was significantly reduced. When the activated carbon of Comparative Example 4 is applied to an electric double layer capacitor (EDLC), the capacity per weight (F / g) and the capacity per volume (F / cc) are very low, and mass productivity is almost the same. I knew it was n’t there.

Claims (10)

窒素吸着法による比表面積(BET)が、500〜3,000m/gであり、
内部、表面又はこれらの両方にホウ素(B)を含み、活性炭中の炭素に対するホウ素の重量比(B/C)が、15重量%以下である、電気二重層キャパシタ電極用活性炭。
Specific surface area (BET) by nitrogen adsorption method is 500 to 3,000 m 2 / g,
An activated carbon for an electric double layer capacitor electrode, containing boron (B) inside, on the surface, or both, wherein the weight ratio of boron to carbon (B / C) in the activated carbon is 15% by weight or less.
表面に存在する酸素官能基(OFG)が、0.5meq/g未満であることを特徴とする請求項1に記載の電気二重層キャパシタ電極用活性炭。   The activated carbon for an electric double layer capacitor electrode according to claim 1, wherein the oxygen functional group (OFG) present on the surface is less than 0.5 meq / g. 請求項1又は2に記載の活性炭を含む電気二重層キャパシタ電極。   An electric double layer capacitor electrode comprising the activated carbon according to claim 1. 請求項3に記載の電極を備える電気二重層キャパシタ。   An electric double layer capacitor comprising the electrode according to claim 3. (i)炭素質原料を活性化して活性炭を製造するステップ;及び
(ii)前記活性化された活性炭を、常温でホウ素系無機還元剤含有溶液に投入し、スラリー状態で攪拌及び洗浄を行った後、乾燥するステップ、
を含む電気二重層キャパシタ電極用活性炭の製造方法。
(I) a step of activating a carbonaceous raw material to produce activated carbon; and (ii) the activated activated carbon is charged into a boron-based inorganic reducing agent-containing solution at room temperature, and stirred and washed in a slurry state. After drying step,
The manufacturing method of the activated carbon for electric double layer capacitor electrodes containing.
前記炭素質原料は、石炭系コークス、石油系コークス、及びヤシ殻からなる群から選択される原料を炭化させるものである請求項5に記載の電気二重層キャパシタ電極用活性炭の製造方法。   The method for producing an activated carbon for an electric double layer capacitor electrode according to claim 5, wherein the carbonaceous raw material carbonizes a raw material selected from the group consisting of coal-based coke, petroleum-based coke, and coconut shells. 前記ステップ(i)では、活性化剤を用いた化学的活性化、又は、HO若しくはCOガスを用いた物理的活性化を行うことを特徴とする請求項5に記載の電気二重層キャパシタ電極用活性炭の製造方法。 6. The electric double layer according to claim 5, wherein in the step (i), chemical activation using an activator or physical activation using H 2 O or CO 2 gas is performed. A method for producing activated carbon for capacitor electrodes. 前記ステップ(ii)においてホウ素系無機還元剤は、LiBH及びNaBHからなる群から選択されるものであることを特徴とする請求項5に記載の電気二重層キャパシタ電極用活性炭の製造方法。 The method for producing activated carbon for an electric double layer capacitor electrode according to claim 5, wherein the boron-based inorganic reducing agent in the step (ii) is selected from the group consisting of LiBH 4 and NaBH 4 . 前記ステップ(ii)においてホウ素系無機還元剤含有溶液の濃度は、0.1〜2molの範囲であることを特徴とする請求項5に記載の電気二重層キャパシタ電極用活性炭の製造方法。   The method for producing an activated carbon for an electric double layer capacitor electrode according to claim 5, wherein the concentration of the boron-based inorganic reducing agent-containing solution in the step (ii) is in the range of 0.1 to 2 mol. 前記ステップ(ii)では、活性炭含量が20〜80重量%のスラリーを、1〜12時間攪拌を行うことを特徴とする請求項5に記載の電気二重層キャパシタ電極用活性炭の製造方法。   The method for producing activated carbon for an electric double layer capacitor electrode according to claim 5, wherein in step (ii), the slurry having an activated carbon content of 20 to 80% by weight is stirred for 1 to 12 hours.
JP2016230400A 2016-05-13 2016-11-28 Method for manufacturing active carbon for electric double layer capacitor electrode, and active carbon for electric double layer capacitor electrode manufactured thereby Pending JP2017204628A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0059080 2016-05-13
KR1020160059080A KR101910461B1 (en) 2016-05-13 2016-05-13 Manufacturing method of activated carbon and activated carbon for electric double-layer capacitor electrode manufactured thereby

Publications (1)

Publication Number Publication Date
JP2017204628A true JP2017204628A (en) 2017-11-16

Family

ID=60304280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016230400A Pending JP2017204628A (en) 2016-05-13 2016-11-28 Method for manufacturing active carbon for electric double layer capacitor electrode, and active carbon for electric double layer capacitor electrode manufactured thereby

Country Status (3)

Country Link
JP (1) JP2017204628A (en)
KR (1) KR101910461B1 (en)
CN (1) CN107364862A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102020126B1 (en) * 2017-12-19 2019-09-10 주식회사 티씨케이 Method for manufacturing activated carbon for electrode material
KR102539683B1 (en) * 2020-02-28 2023-06-02 한국화학연구원 Preparation method for activated carbon with multi pore structure and activated carbon with multi pore structure prepared by the same
CN112707397A (en) * 2020-12-30 2021-04-27 江苏集萃安泰创明先进能源材料研究院有限公司 Preparation method of super-capacitor activated carbon
CN114203460A (en) * 2022-02-18 2022-03-18 天津普兰能源科技有限公司 Manufacturing method of capacitor electrode and manufacturing method of capacitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388291B (en) * 2008-10-31 2012-10-31 中国科学院上海硅酸盐研究所 Boron containing porous carbon electrode material and preparation thereof
KR101109124B1 (en) * 2009-02-12 2012-02-16 한국과학기술연구원 Bacteria/Transition metal oxides organic-inorganic composite and method for manufacturing the same
KR101494615B1 (en) * 2013-04-04 2015-02-23 한국세라믹기술원 Manufacturing method of active carbon for supercapacitor electrode

Also Published As

Publication number Publication date
CN107364862A (en) 2017-11-21
KR101910461B1 (en) 2018-10-25
KR20170128740A (en) 2017-11-23

Similar Documents

Publication Publication Date Title
US20210323825A1 (en) Lignin Porous Carbon Nanosheet, Preparation Method Therefor, and Application Thereof in Supercapacitor Electrode Materials
JP5400892B2 (en) Method for producing porous activated carbon
JP2018523623A (en) Method for preparing graphene from coal
WO2021027100A1 (en) Nitrogen-doped porous carbon material, preparation method therefor and use thereof
JP5207338B2 (en) Porous carbon material, method for producing porous carbon material, electric double layer capacitor
Lu et al. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates
JP4054746B2 (en) Electric double layer capacitor, activated carbon for the electrode, and manufacturing method thereof
JP2012507470A5 (en)
JP5770550B2 (en) Activated carbon and manufacturing method thereof
JP2017204628A (en) Method for manufacturing active carbon for electric double layer capacitor electrode, and active carbon for electric double layer capacitor electrode manufactured thereby
CN106946253B (en) One kind being based on HNO3The preparation method of the high-specific-capacitance active carbon of hydrothermal oxidization modification
JP2011176043A (en) Activated carbon for electric double layer capacitor
JP2011046584A (en) Method of manufacturing active carbon, and electric double layer capacitor using the active carbon prepared by the method
Mo et al. Hierarchical porous carbon with three dimensional nanonetwork from water hyacinth leaves for energy storage
JPWO2018155647A1 (en) Carbonaceous material, electrode material for electric double layer capacitor containing the carbonaceous material, electrode for electric double layer capacitor, and electric double layer capacitor
Li et al. Nitrogen/sulfur-codoped carbon materials from chitosan for supercapacitors
Julnaidi et al. Renewable palm oil sticks biomass‐derived unique hierarchical porous carbon nanostructure as sustainability electrode for symmetrical supercapacitor
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
Deng et al. The effect of the HClO4 oxidization of petroleum coke on the properties of the resulting activated carbon for use in supercapacitors
CN108428560B (en) High-specific-surface-area coal-based nitrogen-doped active carbon sphere electrode material and preparation method thereof
JP2016004962A (en) Electrode material for power storage device, manufacturing method for the same, electrode mixture material for power storage device and method of manufacturing electrode for power storage device
KR101903160B1 (en) Manufacturing method of activated carbon and activated carbon for electric double-layer capacitor electrode manufactured thereby
KR101903157B1 (en) Manufacturing method of activated carbon and activated carbon for electric double-layer capacitor electrode manufactured thereby
JP4096653B2 (en) Method for producing activated carbon, polarizable electrode and electric double layer capacitor
JP2005243933A (en) Electric double-layer capacitor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180725