JP5770550B2 - Activated carbon and manufacturing method thereof - Google Patents

Activated carbon and manufacturing method thereof Download PDF

Info

Publication number
JP5770550B2
JP5770550B2 JP2011159233A JP2011159233A JP5770550B2 JP 5770550 B2 JP5770550 B2 JP 5770550B2 JP 2011159233 A JP2011159233 A JP 2011159233A JP 2011159233 A JP2011159233 A JP 2011159233A JP 5770550 B2 JP5770550 B2 JP 5770550B2
Authority
JP
Japan
Prior art keywords
activated carbon
double layer
mass
electric double
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011159233A
Other languages
Japanese (ja)
Other versions
JP2013023405A (en
Inventor
尚一 竹中
尚一 竹中
徳康 赤松
徳康 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MC EVOLVE TECHNOLOGIES CORPORATION
Kansai Coke and Chemicals Co Ltd
Original Assignee
MC EVOLVE TECHNOLOGIES CORPORATION
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MC EVOLVE TECHNOLOGIES CORPORATION, Kansai Coke and Chemicals Co Ltd filed Critical MC EVOLVE TECHNOLOGIES CORPORATION
Priority to JP2011159233A priority Critical patent/JP5770550B2/en
Publication of JP2013023405A publication Critical patent/JP2013023405A/en
Application granted granted Critical
Publication of JP5770550B2 publication Critical patent/JP5770550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、ケイ素成分の含有量を低減した活性炭、及びその製造方法に関するものである。   The present invention relates to activated carbon having a reduced content of silicon component, and a method for producing the same.

活性炭は、その高い比表面積と発達した細孔構造から各種吸着用途等に用いられており、近年では電気二重層キャパシタ用電極等の電子材料への展開も盛んに行われている。しかし、活性炭には、原料として使用される炭素含有材料(例えば、ピッチ)に含まれる金属成分や、賦活処理に使用される賦活剤(例えば、水酸化カリウム)に由来する金属成分が残存することが知られている。活性炭に残存する金属成分は、吸着剤や電子材料への使用において、その性能面で障害となることもあるため、このような金属成分を除去する方法が提案されている。   Activated carbon is used for various adsorption applications because of its high specific surface area and developed pore structure, and in recent years, it has been actively developed into electronic materials such as electrodes for electric double layer capacitors. However, activated carbon remains a metal component contained in a carbon-containing material (for example, pitch) used as a raw material or a metal component derived from an activator (for example, potassium hydroxide) used for activation treatment. It has been known. Since the metal component remaining in the activated carbon may interfere with the performance of the adsorbent or the electronic material, a method for removing such a metal component has been proposed.

例えば、特許文献1には、原料として金属含有ピッチを用いて繊維状活性炭を製造する場合、賦活物を酸又はアルカリで洗浄して、活性炭表面の金属又は金属化合物を除去することが提案されている。なお、特許文献1では、酸洗浄のみで金属成分が除去できることが示されている(特許文献1(表1)参照)。特許文献2には、原料として廃タイヤを用いた場合に、廃タイヤ由来の重金属成分を除去するために、賦活物を塩酸溶液で処理し、さらに水又は希アルカリ溶液で洗浄することが提案されている。なお、特許文献2では、酸洗浄と水洗の組合せにより、金属成分が除去できることが示されている(特許文献2(段落[0016]〜[0020])参照)。   For example, Patent Document 1 proposes that when a fibrous activated carbon is produced using a metal-containing pitch as a raw material, the activated material is washed with an acid or an alkali to remove the metal or metal compound on the activated carbon surface. Yes. Note that Patent Document 1 shows that a metal component can be removed only by acid cleaning (see Patent Document 1 (Table 1)). Patent Document 2 proposes that, when a waste tire is used as a raw material, the activated material is treated with a hydrochloric acid solution and further washed with water or a dilute alkaline solution in order to remove heavy metal components derived from the waste tire. ing. Patent Document 2 shows that the metal component can be removed by a combination of acid cleaning and water cleaning (see Patent Document 2 (paragraphs [0016] to [0020])).

特許文献3には、水処理用活性炭を製造するにあたり、賦活物に含まれるアルカリ金属の酸化物を酸で中和し、活性炭に保持された酸をアルカリ洗浄により除去することが提案されている。なお、特許文献3では、金属成分の除去ではなく、中和を目的としているため、使用される塩酸水溶液は0.01〜0.15規定と低濃度のものが使用され、アルカリ溶液も0.01規定と低濃度のものが使用されている(特許文献3([請求項1]、[表3])参照)。特許文献4には、賦活物を塩基性物質を含有する液体で洗浄し、さらに塩酸水で洗浄することにより、アルカリ金属の総含有量を100ppm以下とすることが提案されている(特許文献4(実施例B1、D5)参照)。なお、特許文献4では、活性炭のアルカリ金属含有量を低減するため、洗浄に用いる塩基性物質としては、アルカリ金属を含まない塩基性物質が使用されている(特許文献4(第10頁第13〜19行)参照)。   Patent Document 3 proposes that when producing activated carbon for water treatment, the alkali metal oxide contained in the activation product is neutralized with an acid, and the acid retained in the activated carbon is removed by alkali washing. . In Patent Document 3, since the purpose is not the removal of the metal component but the neutralization, the hydrochloric acid aqueous solution used has a low concentration of 0.01 to 0.15 N, and the alkaline solution is also 0.1%. The one with a low concentration of 01 standard is used (see Patent Document 3 ([Claim 1], [Table 3])). Patent Document 4 proposes that the total content of alkali metal is 100 ppm or less by washing the activation product with a liquid containing a basic substance and further washing with hydrochloric acid water (Patent Document 4). (See Examples B1, D5)). In Patent Document 4, in order to reduce the alkali metal content of activated carbon, a basic substance not containing an alkali metal is used as a basic substance used for cleaning (Patent Document 4 (page 10, page 13). To line 19)).

特開2003−217982号公報JP 2003-217882 A 特許第3376431号公報Japanese Patent No. 3376431 特許第4272586号公報Japanese Patent No. 4272586 国際公開第2004/011371号International Publication No. 2004/011371

本発明者らが検討した結果、従来の製造方法で得られる活性炭には灰分が残存しており、この灰分内には酸洗浄では除去が困難である原料由来のケイ素(Si)成分が多く含まれていることが明らかとなった。このようなケイ素成分は、他の金属不純物(Fe、K、Ni、Cu等)のように、例えば、電気二重層キャパシタ電極においては、使用される電解液を分解して容量を低下させたり、抵抗を上昇させたりする可能性は低い。しかし、ケイ素含有量が多いと、活性炭における電気二重層形成に寄与する炭素成分の割合を減少させるため、活性炭正味の比表面積が低下し、静電容量の低下の原因となる。   As a result of investigations by the present inventors, activated carbon obtained by the conventional production method still contains ash, and this ash contains a large amount of silicon (Si) components derived from raw materials that are difficult to remove by acid cleaning. It became clear that Such a silicon component, like other metal impurities (Fe, K, Ni, Cu, etc.), for example, in an electric double layer capacitor electrode, decomposes the electrolyte used to reduce the capacity, The possibility of increasing the resistance is low. However, if the silicon content is high, the ratio of the carbon component contributing to the formation of the electric double layer in the activated carbon is decreased, so that the specific surface area of the activated carbon is decreased, which causes a decrease in capacitance.

しかしながら、特許文献1、2のように、酸洗浄のみでは活性炭表面の金属成分は除去できるものの、高比表面積を有する活性炭では、細孔内に存在する灰分が十分に除去できないという問題がある。また、特許文献3のように洗浄液の酸成分やアルカリ成分が低濃度の場合や、特許文献4のように塩基性成分としてアルカリ金属以外の塩基性成分を使用する場合にも、灰分が十分に除去できないという問題がある。   However, as in Patent Documents 1 and 2, although the metal component on the activated carbon surface can be removed only by acid cleaning, the activated carbon having a high specific surface area has a problem that the ash present in the pores cannot be sufficiently removed. In addition, when the acid component or alkali component of the cleaning liquid is at a low concentration as in Patent Document 3 or when a basic component other than an alkali metal is used as the basic component as in Patent Document 4, the ash content is sufficient. There is a problem that it cannot be removed.

本発明は上記事情に鑑みてなされたものであり、活性炭に含まれる灰分を効果的に除去し、容易にケイ素含有量が低減された活性炭を得られる製造方法を提供することを目的とする。また、ケイ素含有量が少なく、高静電容量、低電気抵抗を示す電気二重層キャパシタ電極に適した活性炭を提供することも目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the manufacturing method which can remove the ash content contained in activated carbon effectively, and can obtain the activated carbon with which silicon content was reduced easily. Another object of the present invention is to provide activated carbon suitable for an electric double layer capacitor electrode having a low silicon content, high capacitance, and low electrical resistance.

上記課題を解決することができた本発明の活性炭の製造方法は、炭素原料を賦活処理した賦活物を、アルカリ金属水酸化物の濃度が5〜30質量%であるアルカリ性溶液及び酸成分の濃度が3〜20質量%である酸性溶液で、この順で又は逆の順で洗浄することを特徴とする。前記洗浄は、アルカリ性溶液で洗浄した後、酸性溶液で洗浄することが好ましい。前記賦活処理は、水蒸気賦活が好ましい。前記炭素原料は、紙フェノール樹脂積層体の炭化物が好ましい。
また、本発明の活性炭は、ケイ素含有量が200ppm〜3000ppmであることを特徴とする。前記活性炭の比表面積は1600m2/g以上、平均細孔径は2nm以上が好ましい。本発明には前記活性炭を電極材料として用いた電気二重層キャパシタ用電極、及び、該電極を備えた電気二重層キャパシタも含まれる。
The method for producing activated carbon according to the present invention that has solved the above-described problem is that the activated material obtained by activating the carbon raw material is an alkaline solution having an alkali metal hydroxide concentration of 5 to 30% by mass and an acid component concentration. It is characterized by wash | cleaning in this order or the reverse order with the acidic solution which is 3-20 mass%. The washing is preferably carried out with an alkaline solution and then with an acidic solution. The activation treatment is preferably steam activation. The carbon raw material is preferably a carbonized paper phenol resin laminate.
Moreover, the activated carbon of the present invention is characterized in that the silicon content is 200 ppm to 3000 ppm. The activated carbon preferably has a specific surface area of 1600 m 2 / g or more and an average pore diameter of 2 nm or more. The present invention also includes an electric double layer capacitor electrode using the activated carbon as an electrode material, and an electric double layer capacitor including the electrode.

本発明の製造方法によれば、所定の濃度を有する酸性溶液及びアルカリ金属水酸化物溶液により賦活物を洗浄することにより、効果的に灰分を除去することができ、ケイ素含有量が低減された活性炭を容易に得られる。
また、ケイ素含有量の少ない活性炭を電気二重層キャパシタ用電極に使用すれば、静電容量が高く、電気抵抗が低減された電気二重層キャパシタが得られる。
According to the production method of the present invention, ash can be effectively removed by washing the activated material with an acidic solution and an alkali metal hydroxide solution having a predetermined concentration, and the silicon content is reduced. Activated carbon can be easily obtained.
In addition, if activated carbon having a low silicon content is used for an electrode for an electric double layer capacitor, an electric double layer capacitor having a high capacitance and a reduced electric resistance can be obtained.

製造例の活性炭を使用して製造した電気二重層キャパシタを説明するための模式図である。It is a schematic diagram for demonstrating the electric double layer capacitor manufactured using the activated carbon of a manufacture example.

本発明の活性炭の製造方法は、炭素原料を賦活処理した賦活物を、所定の濃度を有するアルカリ性溶液及び酸性溶液で洗浄することを要旨とする。こうすることで、アルカリ性溶液のみによる洗浄若しくは酸性溶液のみによる洗浄、又は、低濃度のアルカリ性溶液や酸性溶液による洗浄では除去できなかった灰分(ケイ素成分)を効果的に除去することができる。   The gist of the method for producing activated carbon of the present invention is to wash an activated product obtained by activating a carbon raw material with an alkaline solution and an acidic solution having a predetermined concentration. By doing so, it is possible to effectively remove ash (silicon component) that could not be removed by washing with only an alkaline solution or washing with only an acidic solution, or washing with a low-concentration alkaline solution or acidic solution.

前記炭素原料としては、木質材料(木材、おが屑、ヤシガラ等)、セルロース系繊維(紙、綿繊維等)、合成樹脂(フェノール樹脂、フラン樹脂、ポリ塩化ビニル、ポリイミド、ポリアクリロニトリル(PAN)等)、石油ピッチ、コールタールピッチ、メソフェーズピッチ及びこれらの複合物等の炭素質物質;石炭、石油コークス、石炭コークス、石油ピッチコークス、石炭ピッチコークス、木炭等の炭化物;が挙げられる。   Examples of the carbon raw material include woody materials (wood, sawdust, coconut shell, etc.), cellulosic fibers (paper, cotton fibers, etc.), synthetic resins (phenol resin, furan resin, polyvinyl chloride, polyimide, polyacrylonitrile (PAN), etc.) Carbonaceous materials such as petroleum pitch, coal tar pitch, mesophase pitch, and composites thereof; and carbides such as coal, petroleum coke, coal coke, petroleum pitch coke, coal pitch coke, and charcoal.

前記炭素原料としては、比較的大きい細孔(メソ孔:直径2.0nm超50nm未満の細孔)が形成されやすい炭素原料(以下、「メソ孔形成原料」と称する場合がある)と比較的小さい細孔(ミクロ孔:直径2.0nm以下の細孔)が形成されやすい炭素原料(以下、「ミクロ孔形成原料」と称する場合がある)との複合物を用いることが好ましい。炭素原料として、メソ孔形成原料とミクロ孔形成原料との複合物を用いれば、賦活処理を複数回行うことなく、一回の賦活処理でミクロ孔とメソ孔とをバランスよく有する活性炭が得られる。ミクロ孔とメソ孔とをバランスよく有する活性炭は、吸着量と吸着物質の移動速度とがバランスよく両立され、例えば、電極材料に用いれば、高静電容量及び低抵抗を示す電気二重層キャパシタが得られる。   As the carbon raw material, a carbon raw material (hereinafter, sometimes referred to as “mesopore forming raw material”) in which relatively large pores (mesopores: pores having a diameter of more than 2.0 nm and less than 50 nm) are easily formed is used. It is preferable to use a composite with a carbon raw material (hereinafter sometimes referred to as “micropore forming raw material”) in which small pores (micropores: pores having a diameter of 2.0 nm or less) are easily formed. If a composite of a mesopore forming raw material and a micropore forming raw material is used as the carbon raw material, activated carbon having a good balance of micropores and mesopores can be obtained by a single activation treatment without performing the activation treatment multiple times. . Activated carbon having a good balance of micropores and mesopores has a good balance between the amount of adsorption and the moving speed of the adsorbed material. For example, when used as an electrode material, an electric double layer capacitor exhibiting high capacitance and low resistance can be obtained. can get.

前記メソ孔形成原料としては、例えば、セルロース系繊維、木質材料等のセルロース系原料等が挙げられる。前記ミクロ孔形成原料としては、例えば、フェノール樹脂、フラン樹脂等の合成樹脂系原料等が挙げられる。これらのメソ孔形成原料、ミクロ孔形成原料は、それぞれ少なくとも1種以上使用する。なお、メソ孔形成原料とミクロ孔形成原料との配合比は、所望とする活性炭の物性に応じて適宜変更すればよい。メソ孔形成原料とミクロ孔形成原料との複合物としては、例えば、紙フェノール樹脂積層体が挙げられる。   Examples of the mesopore-forming raw material include cellulose-based raw materials such as cellulose-based fibers and woody materials. Examples of the micropore forming raw material include synthetic resin raw materials such as phenol resin and furan resin. At least one or more of these mesopore forming raw materials and micropore forming raw materials are used. In addition, what is necessary is just to change suitably the compounding ratio of a mesopore formation raw material and a micropore formation raw material according to the physical property of the desired activated carbon. Examples of the composite of the mesopore forming raw material and the micropore forming raw material include a paper phenol resin laminate.

炭素原料として、前記炭素質物質を用いる場合、炭化処理を施した炭化物(例えば、紙フェノール樹脂積層体の炭化物)を用いることが好ましい。炭素質物質の炭化処理は、通常、不活性ガス雰囲気下で加熱処理を行う。該炭化処理の温度は、400℃以上が好ましく、より好ましくは500℃以上であり、950℃以下が好ましく、より好ましくは900℃以下である。また、炭化処理時間は、0.5時間以上が好ましく、より好ましくは1.0時間以上であり、4.0時間以下が好ましく、より好ましくは3.0時間以下である。   When the carbonaceous material is used as the carbon material, it is preferable to use a carbonized carbonized material (for example, a carbonized paper phenol resin laminate). Carbonization of the carbonaceous material is usually performed by heat treatment under an inert gas atmosphere. The temperature of the carbonization treatment is preferably 400 ° C. or higher, more preferably 500 ° C. or higher, preferably 950 ° C. or lower, more preferably 900 ° C. or lower. Further, the carbonization time is preferably 0.5 hours or longer, more preferably 1.0 hours or longer, 4.0 hours or shorter, more preferably 3.0 hours or shorter.

前記炭素原料の平均粒子径は10mm以下が好ましく、より好ましくは5mm以下、さらに好ましくは2mm以下である。なお、炭素原料の平均粒子径の下限は特に限定されるものではないが、平均粒子径が小さすぎると粉体のハンドリングが悪くなる(例えば、作業時に粉体が舞い上がってしまう)傾向がある。そのため、炭素原料の平均粒子径は1μm以上が好ましく、より好ましくは3μm以上、さらに好ましくは5μm以上である。なお、平均粒子径とは、水に分散させた試料を、レーザ回折式粒度分布測定装置(例えば、島津製作所製の「SALD(登録商標)−2000」)により測定して、求められる体積基準メディアン径である。   The carbon raw material preferably has an average particle size of 10 mm or less, more preferably 5 mm or less, and even more preferably 2 mm or less. The lower limit of the average particle size of the carbon raw material is not particularly limited, but if the average particle size is too small, the handling of the powder tends to be poor (for example, the powder will rise during operation). Therefore, the average particle diameter of the carbon raw material is preferably 1 μm or more, more preferably 3 μm or more, and further preferably 5 μm or more. The average particle diameter is a volume-based median obtained by measuring a sample dispersed in water with a laser diffraction particle size distribution measuring apparatus (for example, “SALD (registered trademark) -2000” manufactured by Shimadzu Corporation). Is the diameter.

前記賦活処理としては、薬品賦活(例えば、アルカリ賦活)、ガス賦活(例えば、水蒸気賦活)のいずれも採用することができ、薬品賦活及びガス賦活の両方を行ってもよい。また、賦活処理は一回のみ行ってもよいし、複数回行ってもよい。これらの中でも、賦活物への薬品成分(アルカリ金属等)の付着等を抑制できることから、水蒸気賦活が好適である。前記水蒸気賦活では、賦活原料を所定の温度まで加熱した後、水蒸気を供給することにより賦活処理を行う。賦活原料の加熱は、不活性ガス雰囲気で行うことが好ましい。なお、不活性ガスとしては、窒素、アルゴン、ヘリウム等を用いることができる。   As the activation treatment, both chemical activation (for example, alkali activation) and gas activation (for example, water vapor activation) can be employed, and both chemical activation and gas activation may be performed. Moreover, the activation process may be performed only once or multiple times. Among these, steam activation is preferable because adhesion of chemical components (such as alkali metals) to the activation product can be suppressed. In the steam activation, the activation raw material is heated to a predetermined temperature and then activated by supplying steam. It is preferable to heat the activation raw material in an inert gas atmosphere. Note that nitrogen, argon, helium, or the like can be used as the inert gas.

賦活処理を行う際の温度(炉内温度)は400℃以上が好ましく、より好ましくは450℃以上であり、1500℃以下が好ましく、より好ましくは1300℃以下である。また、賦活処理を行う際の加熱時間は0.5時間以上が好ましく、より好ましくは1.0時間以上であり、10時間以下が好ましく、より好ましくは5時間以下である。   The temperature at the time of activation treatment (furnace temperature) is preferably 400 ° C. or higher, more preferably 450 ° C. or higher, preferably 1500 ° C. or lower, more preferably 1300 ° C. or lower. Moreover, the heating time at the time of performing an activation process has preferable 0.5 hours or more, More preferably, it is 1.0 hours or more, 10 hours or less are preferable, More preferably, it is 5 hours or less.

賦活処理中に供給する水蒸気の総量は、炭素原料100質量部に対して50質量部以上が好ましく、より好ましくは100質量部以上、さらに好ましくは200質量部以上であり、10000質量部以下とすることが好ましく、より好ましくは5000質量部以下、さらに好ましくは3000質量部以下である。供給する水蒸気の総量が炭素原料100質量部に対して50質量部以上であれば、賦活反応による細孔形成がより良好となり、10000質量部以下であれば、賦活反応がより効率良く進行し、生産性を向上できる。   50 mass parts or more are preferable with respect to 100 mass parts of carbon raw materials, as for the total amount of the water vapor | steam supplied during an activation process, More preferably, it is 100 mass parts or more, More preferably, it is 200 mass parts or more, and shall be 10000 mass parts or less. More preferably, it is 5000 parts by mass or less, and still more preferably 3000 parts by mass or less. If the total amount of water vapor to be supplied is 50 parts by mass or more with respect to 100 parts by mass of the carbon raw material, pore formation by the activation reaction is better, and if it is 10000 parts by mass or less, the activation reaction proceeds more efficiently. Productivity can be improved.

水蒸気を供給する態様としては、水蒸気を希釈せずに供給する態様、水蒸気を不活性ガスで希釈して供給する態様のいずれも可能であるが、賦活反応を効率良く進行させるために、不活性ガスで希釈して供給する態様が好ましい。水蒸気を不活性ガスで希釈して供給する場合、該混合ガス(全圧101.3kPa)中の水蒸気分圧は40kPa以上が好ましく、より好ましくは50kPa以上、さらに好ましくは70kPa以上である。   As an aspect for supplying water vapor, either an aspect for supplying water vapor without dilution or an aspect for supplying water vapor diluted with an inert gas can be used, but in order to advance the activation reaction efficiently, it is inactive. An embodiment in which the gas is supplied after being diluted with a gas is preferable. When supplying water vapor diluted with an inert gas, the water vapor partial pressure in the mixed gas (total pressure 101.3 kPa) is preferably 40 kPa or more, more preferably 50 kPa or more, and further preferably 70 kPa or more.

本発明の活性炭の製造方法では、賦活物を、アルカリ性溶液及び酸性溶液で洗浄する。アルカリ性溶液による洗浄及び酸性溶液による洗浄はそれぞれ1回のみ行ってもよいし、複数回行ってもよい。なお、経済性の観点から、それぞれ1回ずつ行うことが好ましい。アルカリ性溶液による洗浄と酸性溶液による洗浄を行う順序は特に限定されないが、アルカリ性溶液で洗浄した後、酸性溶液で洗浄することが好ましい。こうすることにより、得られる活性炭中の灰分(ケイ素成分)を効果的に除去するとともに、アルカリ金属成分(例えば、カリウム(K)成分)も低減することができる。   In the method for producing activated carbon of the present invention, the activation product is washed with an alkaline solution and an acidic solution. The cleaning with the alkaline solution and the cleaning with the acidic solution may each be performed only once or a plurality of times. In addition, it is preferable to carry out once each from the viewpoint of economy. The order of washing with the alkaline solution and washing with the acidic solution is not particularly limited, but it is preferable to wash with the acidic solution after washing with the alkaline solution. By carrying out like this, while removing the ash (silicon component) in the obtained activated carbon effectively, an alkali metal component (for example, potassium (K) component) can also be reduced.

前記アルカリ性溶液に使用するアルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。これらのアルカリ金属水酸化物は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、水酸化カリウムが好ましい。なお、アルカリ性溶液の溶媒は特に限定されないが、水が好ましい。   Examples of the alkali metal hydroxide used in the alkaline solution include lithium hydroxide, sodium hydroxide, and potassium hydroxide. These alkali metal hydroxides may be used alone or in combination of two or more. Among these, potassium hydroxide is preferable. The solvent for the alkaline solution is not particularly limited, but water is preferable.

前記アルカリ性溶液中のアルカリ金属水酸化物濃度は、5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上であり、30質量%以下、好ましくは25質量%以下、より好ましくは20質量%以下である。また、アルカリ性溶液中のアルカリ金属水酸化物濃度は、0.9mol/L以上が好ましく、より好ましくは1.5mol/L以上、さらに好ましくは2.5mol/L以上であり、5mol/L以下が好ましく、より好ましくは4mol/L以下、さらに好ましくは3.5mol/L以下である。   The alkali metal hydroxide concentration in the alkaline solution is 5% by mass or more, preferably 10% by mass or more, more preferably 15% by mass or more, and 30% by mass or less, preferably 25% by mass or less, more preferably. It is 20 mass% or less. Further, the alkali metal hydroxide concentration in the alkaline solution is preferably 0.9 mol / L or more, more preferably 1.5 mol / L or more, still more preferably 2.5 mol / L or more, and 5 mol / L or less. Preferably, it is 4 mol / L or less, more preferably 3.5 mol / L or less.

アルカリ性溶液による洗浄時間は、0.3時間以上が好ましく、より好ましくは0.5時間以上、さらに好ましくは0.7時間以上であり、2時間以下が好ましく、より好ましくは1.5時間以下、さらに好ましくは1.2時間以下である。また、アルカリ性溶液の温度は、30℃以上が好ましく、より好ましくは50℃以上、さらに好ましくは70℃以上である。アルカリ性溶液の温度の上限は特に限定されないが、沸点以下である。アルカリ性溶液で洗浄した賦活物は、水でよく洗浄し、アルカリ成分を除去することが好ましい。   The washing time with the alkaline solution is preferably 0.3 hours or more, more preferably 0.5 hours or more, further preferably 0.7 hours or more, preferably 2 hours or less, more preferably 1.5 hours or less, More preferably, it is 1.2 hours or less. The temperature of the alkaline solution is preferably 30 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 70 ° C. or higher. Although the upper limit of the temperature of an alkaline solution is not specifically limited, It is below the boiling point. The activation product washed with the alkaline solution is preferably washed well with water to remove the alkaline component.

前記酸性溶液に使用する酸成分としては、例えば、塩酸、炭酸、硫酸、硝酸等の無機酸;ギ酸、酢酸、クエン酸等の有機酸が挙げられる。これらの酸成分は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、無機酸が好ましく、塩酸がより好ましい。なお、酸性溶液の溶媒は特に限定されないが、水が好ましい。   Examples of the acid component used in the acidic solution include inorganic acids such as hydrochloric acid, carbonic acid, sulfuric acid, and nitric acid; and organic acids such as formic acid, acetic acid, and citric acid. These acid components may be used alone or in combination of two or more. Among these, inorganic acids are preferable, and hydrochloric acid is more preferable. The solvent of the acidic solution is not particularly limited, but water is preferable.

前記酸性溶液中の酸成分濃度は、3質量%以上、好ましくは4質量%以上、より好ましくは5質量%以上であり、20質量%以下、好ましくは15質量%以下、より好ましくは10質量%以下である。また、酸性溶液中の酸成分濃度は、0.9mol/L以上が好ましく、より好ましくは1.1mol/L以上、さらに好ましくは1.3mol/L以上であり、5mol/L以下が好ましく、より好ましくは4mol/L以下、さらに好ましくは2.5mol/L以下である。   The acid component concentration in the acidic solution is 3% by mass or more, preferably 4% by mass or more, more preferably 5% by mass or more, 20% by mass or less, preferably 15% by mass or less, more preferably 10% by mass. It is as follows. The acid component concentration in the acidic solution is preferably 0.9 mol / L or more, more preferably 1.1 mol / L or more, still more preferably 1.3 mol / L or more, and preferably 5 mol / L or less. Preferably it is 4 mol / L or less, More preferably, it is 2.5 mol / L or less.

酸性溶液による洗浄時間は、0.3時間以上が好ましく、より好ましくは0.5時間以上、さらに好ましくは0.7時間以上であり、2時間以下が好ましく、より好ましくは1.5時間以下、さらに好ましくは1.2時間以下である。また、酸性溶液の温度は、30℃以上が好ましく、より好ましくは50℃以上、さらに好ましくは70℃以上である。酸性溶液の温度の上限は特に限定されないが、沸点以下である。酸性溶液で洗浄した賦活物は、水でよく洗浄し、酸成分を除去することが好ましい。   The washing time with the acidic solution is preferably 0.3 hours or more, more preferably 0.5 hours or more, further preferably 0.7 hours or more, preferably 2 hours or less, more preferably 1.5 hours or less, More preferably, it is 1.2 hours or less. The temperature of the acidic solution is preferably 30 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 70 ° C. or higher. Although the upper limit of the temperature of an acidic solution is not specifically limited, It is below the boiling point. It is preferable that the activation product washed with the acidic solution is washed well with water to remove the acid component.

酸性溶液での洗浄及びアルカリ性溶液での洗浄を行った活性炭は、さらに水洗、粉砕を行ってもよい。水洗を行うことにより、金属不純物、灰分等を一層除去することができる。粉砕は、ディスクミル、ボールミル、ビーズミル等を用いて行う。なお、活性炭の粒子径は、用途に応じて適宜調整すればよい。   The activated carbon that has been washed with an acidic solution and washed with an alkaline solution may be further washed with water and pulverized. By washing with water, metal impurities, ash, etc. can be further removed. The pulverization is performed using a disk mill, a ball mill, a bead mill or the like. In addition, what is necessary is just to adjust the particle diameter of activated carbon suitably according to a use.

本発明の製造方法により得られる活性炭は、ケイ素成分の含有量が低減されている。ケイ素含有量が少ない程、活性炭における電気二重層形成に寄与する炭素成分の割合が増加するため、電気二重層キャパシタ用電極に使用すれば、得られる電気二重層キャパシタの静電容量が向上し、電気抵抗が低減する。前記活性炭のケイ素含有量は3000ppm以下、好ましくは2900ppm以下、より好ましくは2850ppm以下である。なお、ケイ素含有量の下限は特に限定されないが、200ppm以上、好ましくは300ppm以上、より好ましくは500ppm以上である。ケイ素含有量が500ppm未満では、電気二重層キャパシタに使用した場合の静電容量の向上効果、電気抵抗の低減効果が飽和する。またケイ素含有量を200ppm未満とするためには、洗浄を繰り返し行う必要があり経済的でない。   The activated carbon obtained by the production method of the present invention has a reduced content of silicon components. The lower the silicon content, the greater the proportion of the carbon component that contributes to the formation of the electric double layer in the activated carbon, so if used for an electrode for an electric double layer capacitor, the capacitance of the resulting electric double layer capacitor is improved, Electric resistance is reduced. The activated carbon has a silicon content of 3000 ppm or less, preferably 2900 ppm or less, more preferably 2850 ppm or less. In addition, although the minimum of silicon content is not specifically limited, It is 200 ppm or more, Preferably it is 300 ppm or more, More preferably, it is 500 ppm or more. When the silicon content is less than 500 ppm, the effect of improving the electrostatic capacity and the effect of reducing the electric resistance when used in the electric double layer capacitor are saturated. Moreover, in order to make silicon content less than 200 ppm, it is necessary to repeat washing | cleaning, and it is not economical.

前記活性炭の灰分含有量は、2.5質量%以下が好ましく、より好ましくは2質量%以下、さらに好ましくは1質量%以下である。灰分含有量が少なければ、ケイ素だけでなく、金属不純物の含有量も少なくなる。よって、電気二重層キャパシタ用電極に使用した場合に、金属不純物による電解液の分解が抑制され、静電容量が一層向上し、電気抵抗が一層低減する。   The ash content of the activated carbon is preferably 2.5% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass or less. If the ash content is low, not only silicon but also metal impurities are reduced. Therefore, when used as an electrode for an electric double layer capacitor, decomposition of the electrolytic solution due to metal impurities is suppressed, the capacitance is further improved, and the electric resistance is further reduced.

前記活性炭のアルカリ金属含有量は、500ppm以下、好ましくは200ppm以下、より好ましくは50ppm以下である。アルカリ金属含有量が上記範囲内であれば、例えば、電極材料に用いた場合に、アルカリ金属成分による電解液の分解等が抑制されるため、高静電容量及び低抵抗を示す電気二重層キャパシタが得られる。   The alkali metal content of the activated carbon is 500 ppm or less, preferably 200 ppm or less, more preferably 50 ppm or less. If the alkali metal content is within the above range, for example, when used as an electrode material, the decomposition of the electrolyte solution due to the alkali metal component is suppressed, so that the electric double layer capacitor exhibiting high capacitance and low resistance Is obtained.

前記活性炭のBET比表面積は1600m2/g以上が好ましく、より好ましくは1700m2/g以上、さらに好ましくは1800m2/g以上であり、3000m2/g以下が好ましく、より好ましくは2500m2/g以下、さらに好ましくは2200m2/g以下である。BET比表面積が1600m2/g未満では、活性炭の吸着能力が低くなる。そのため、例えば、活性炭を電気二重層キャパシタ用電極に用いた場合に十分な質量当たりの静電容量(F/g)が得られない。また、BET比表面積が3000m2/gを超えると活性炭の密度が低下し過ぎる。そのため、例えば、活性炭を電気二重層キャパシタ用電極に用いた場合に体積当たりの静電容量(F/cm3)が低下する。 BET specific surface area of the activated carbon is preferably not less than 1600 m 2 / g, more preferably 1700 m 2 / g or more, still more preferably 1800 m 2 / g or more, is preferably from 3000 m 2 / g, more preferably 2500 m 2 / g Hereinafter, it is more preferably 2200 m 2 / g or less. When the BET specific surface area is less than 1600 m 2 / g, the adsorption ability of the activated carbon becomes low. Therefore, for example, when activated carbon is used for the electrode for an electric double layer capacitor, a sufficient capacitance per unit mass (F / g) cannot be obtained. On the other hand, if the BET specific surface area exceeds 3000 m 2 / g, the density of the activated carbon is excessively lowered. Therefore, for example, when activated carbon is used for an electrode for an electric double layer capacitor, the capacitance per volume (F / cm 3 ) is lowered.

前記活性炭の細孔容積は、0.7cm3/g以上が好ましく、より好ましくは0.9cm3/g以上、さらに好ましくは1.2cm3/g以上であり、3.0cm3/g以下が好ましく、より好ましくは2.5cm3/g以下、さらに好ましくは2.0cm3/g以下である。 Pore volume of the activated carbon is preferably at least 0.7 cm 3 / g, more preferably 0.9 cm 3 / g or more, more preferably 1.2 cm 3 / g or more, 3.0 cm 3 / g or less Preferably, it is 2.5 cm 3 / g or less, more preferably 2.0 cm 3 / g or less.

前記活性炭の平均細孔径は2.0nm以上が好ましく、より好ましくは2.1nm以上、さらに好ましくは2.2nm以上であり、3.0nm以下が好ましく、より好ましくは2.6nm以下、さらに好ましくは2.4nm以下である。前記平均細孔径が上記範囲内であれば、吸着物質が活性炭から出入りしやすくなる。そのため、例えば、電気二重層キャパシタ用電極に用いた場合に急速充放電特性が向上する。   The average pore diameter of the activated carbon is preferably 2.0 nm or more, more preferably 2.1 nm or more, still more preferably 2.2 nm or more, preferably 3.0 nm or less, more preferably 2.6 nm or less, still more preferably 2.4 nm or less. When the average pore diameter is within the above range, the adsorbed material easily enters and exits the activated carbon. Therefore, for example, when used as an electrode for an electric double layer capacitor, rapid charge / discharge characteristics are improved.

本発明の製造方法により得られる活性炭は、電気二重層キャパシタ用電極材料として用いることができ、当該電極材料を使用して、電気二重層キャパシタ用電極や電気二重層キャパシタを製造することが可能である。   Activated carbon obtained by the production method of the present invention can be used as an electrode material for an electric double layer capacitor, and an electrode for an electric double layer capacitor or an electric double layer capacitor can be produced using the electrode material. is there.

電気二重層キャパシタ用電極としては、例えば、活性炭、導電性付与剤、及びバインダーを混練し、さらに溶媒を添加してペーストを調製し、このペーストをアルミ箔等の集電板に塗布した後、溶媒を乾燥除去したものが挙げられる。   As an electrode for an electric double layer capacitor, for example, knead activated carbon, a conductivity imparting agent, and a binder, further add a solvent to prepare a paste, and after applying this paste to a current collector plate such as an aluminum foil, What removed the solvent by drying is mentioned.

前記電気二重層キャパシタ用電極に使用されるバインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素系高分子化合物や、カルボキシメチルセルロース、スチレン−ブタジエンゴム、石油ピッチ、フェノール樹脂等を使用できる。また、導電性付与剤としては、アセチレンブラック、ケッチェンブラック等を使用できる。   As the binder used for the electrode for the electric double layer capacitor, fluorine-based polymer compounds such as polytetrafluoroethylene and polyvinylidene fluoride, carboxymethyl cellulose, styrene-butadiene rubber, petroleum pitch, phenol resin and the like can be used. As the conductivity-imparting agent, acetylene black, ketjen black, or the like can be used.

電気二重層キャパシタは、一般的には、電極、電解液、及びセパレータを主要構成とし、一対の電極間にセパレータを配置した構造となっている。前記電解液としては、例えば、プロピレンカーボネート、エチレンカーボネート、メチルエチルカーボネート等の有機溶剤に、アミジン塩を溶解した電解液;過塩素酸の4級アンモニウム塩を溶解した電解液;4級アンモニウムやリチウム等のアルカリ金属の四フッ化ホウ素塩や六フッ化リン塩を溶解した電解液;4級ホスホニウム塩を溶解した電解液等が挙げられる。また、前記セパレータとしては、例えば、セルロース、ガラス繊維、又は、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルムが挙げられる。   Generally, an electric double layer capacitor has a structure in which an electrode, an electrolytic solution, and a separator are main components, and a separator is disposed between a pair of electrodes. Examples of the electrolytic solution include an electrolytic solution in which an amidine salt is dissolved in an organic solvent such as propylene carbonate, ethylene carbonate, and methyl ethyl carbonate; an electrolytic solution in which a quaternary ammonium salt of perchloric acid is dissolved; quaternary ammonium or lithium An electrolytic solution in which an alkali metal boron tetrafluoride salt or phosphorous hexafluoride salt such as an electrolyte is dissolved; an electrolytic solution in which a quaternary phosphonium salt is dissolved may be mentioned. Moreover, as said separator, the nonwoven fabric, cloth, and microporous film which have polyolefin, such as a cellulose, glass fiber, or polyethylene and a polypropylene, as a main component are mentioned, for example.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.

灰分、金属不純物等の含有量
磁製るつぼに活性炭試料を1g入れて、815℃で2時間加熱して灰化し、灰分量を測定し、活性炭中の灰分含有量を算出した。また、蛍光X線分析装置(リガク社製、「ZSX 100e」)を用いて、灰分中の不純物を定性、定量した。
Content of ash, metal impurities, etc. 1 g of the activated carbon sample was put in a magnetic crucible, heated at 815 ° C. for 2 hours to be ashed, the amount of ash was measured, and the ash content in the activated carbon was calculated. Moreover, the impurity in ash was qualitatively and quantified using the fluorescent X-ray-analysis apparatus (Rigaku company make, "ZSX 100e").

比表面積、全細孔容積及び平均細孔径の測定方法
活性炭0.2gを150℃にて真空加熱した後、窒素吸着装置(マイクロメリティックス社製、「ASAP(登録商標)−2400」)を用いて、吸着等温線を求め、BET法により比表面積、全細孔容積を算出した。また、活性炭に形成された細孔の形状をシリンダー状と仮定し、細孔径1.0nm〜30nmの範囲における細孔容積と比表面積に基づき、下記式(1)により平均細孔径を算出した。
Measuring method of specific surface area, total pore volume and average pore diameter After 0.2 g of activated carbon was heated under vacuum at 150 ° C., a nitrogen adsorption device (“ASAP (registered trademark) -2400” manufactured by Micromeritics) was used. The adsorption isotherm was determined and the specific surface area and total pore volume were calculated by the BET method. Further, assuming that the shape of the pores formed in the activated carbon is cylindrical, the average pore size was calculated by the following formula (1) based on the pore volume and specific surface area in the pore size range of 1.0 nm to 30 nm.

電気二重層キャパシタ性能評価
静電容量
充放電装置(楠本化成社製、「ETAC(登録商標) Ver.4.4」)の充放電端子を電気二重層キャパシタの集電板に接続し、集電板間電圧が2.5Vになるまで40mAの定電流充電を行い、続けて、2.5Vの定電圧で30分間充電を行った。充電後、定電流(放電電流10mA)で電気二重層キャパシタの放電を行った。このとき、集電板間電圧がV1、V2となるまでに要した放電時間t1、t2を測定し、下記式(2)を用いて静電容量を求めた。得られた静電容量を、キャパシタ用電極における電極材料層中の活性炭質量で除することにより質量基準静電容量(F/g)を算出し、キャパシタ用電極における電極材料層の総体積で除することにより体積基準静電容量(F/cm3)を算出した。また、下記式(3)を用いて抵抗を求めた。なお、静電容量及び抵抗の測定は、25℃及び−30℃の温度下で行った。
Electric double layer capacitor performance evaluation Capacitance Charge / discharge device (Etamoto Kasei Co., Ltd., “ETAC (registered trademark) Ver. 4.4”) charge / discharge terminal is connected to current collector plate of electric double layer capacitor, The battery was charged with a constant current of 40 mA until the voltage between the plates reached 2.5 V, and then charged with a constant voltage of 2.5 V for 30 minutes. After charging, the electric double layer capacitor was discharged with a constant current (discharge current 10 mA). At this time, the discharge times t1 and t2 required until the voltage between the current collector plates became V1 and V2 were measured, and the capacitance was obtained using the following formula (2). The mass-based capacitance (F / g) is calculated by dividing the obtained capacitance by the mass of activated carbon in the electrode material layer in the capacitor electrode, and divided by the total volume of the electrode material layer in the capacitor electrode. Thus, a volume-based capacitance (F / cm 3 ) was calculated. Moreover, resistance was calculated | required using following formula (3). The capacitance and resistance were measured at 25 ° C. and −30 ° C.


I:10(mA)
t1:電気二重層キャパシタ電圧がV1となるまでに要した放電時間(sec)
t2:電気二重層キャパシタ電圧がV2となるまでに要した放電時間(sec)
V1:2.0(V)
V2:1.0(V)
V0:放電開始直後の電圧

I: 10 (mA)
t1: Discharge time required for the electric double layer capacitor voltage to reach V1 (sec)
t2: Discharge time (sec) required for the electric double layer capacitor voltage to reach V2
V1: 2.0 (V)
V2: 1.0 (V)
V0: Voltage immediately after the start of discharge

1.活性炭の製造
製造例1
紙フェノール樹脂積層体の炭化物100gをロータリーキルン内に投入し、窒素流通下(1L/分)で900℃まで昇温した(昇温速度:10℃/分)。900℃に達してからロータリーキルン内に水蒸気(水蒸気分圧:71.2kPa)を窒素とともに供給し、3時間30分水蒸気賦活処理を行った。水蒸気賦活処理後の試料50gを濃度5質量%、温度60℃の水酸化カリウム(KOH)水溶液2L中に1時間浸漬した後、真空ろ過した。ろ過後の試料を60℃の温水で洗浄、真空ろ過した後、濃度5.25質量%の塩酸(HCl)水溶液2L中で1時間煮沸した後、真空ろ過した。ろ過後の試料を60℃の温水で洗浄、真空ろ過を行い、活性炭を製造した。
1. Production and production example 1 of activated carbon
100 g of carbonized paper phenol resin laminate was put into a rotary kiln and heated to 900 ° C. under nitrogen flow (1 L / min) (heating rate: 10 ° C./min). After reaching 900 ° C., steam (steam partial pressure: 71.2 kPa) was supplied into the rotary kiln together with nitrogen, and steam activation treatment was performed for 3 hours 30 minutes. 50 g of the sample after the steam activation treatment was immersed in 2 L of a potassium hydroxide (KOH) aqueous solution having a concentration of 5 mass% and a temperature of 60 ° C. for 1 hour, and then vacuum filtered. The filtered sample was washed with warm water at 60 ° C. and vacuum filtered, then boiled in 2 L of a hydrochloric acid (HCl) aqueous solution having a concentration of 5.25 mass% for 1 hour, and then vacuum filtered. The sample after filtration was washed with 60 ° C. warm water and vacuum filtered to produce activated carbon.

製造例2
洗浄に用いた水酸化カリウム水溶液の濃度を10質量%に変更したこと以外は、製造例1と同様にして活性炭を製造した。
Production Example 2
Activated carbon was produced in the same manner as in Production Example 1 except that the concentration of the aqueous potassium hydroxide solution used for washing was changed to 10% by mass.

製造例3
洗浄に用いた水酸化カリウム水溶液の濃度を20質量%に変更したこと以外は、製造例1と同様にして活性炭を製造した。
Production Example 3
Activated carbon was produced in the same manner as in Production Example 1 except that the concentration of the aqueous potassium hydroxide solution used for washing was changed to 20% by mass.

製造例4
製造例1と同様にして水蒸気賦活処理を行った。水蒸気賦活処理後の試料50gを濃度5.25質量%、温度60℃の塩酸(HCl)水溶液2L中に1時間浸漬した後、真空ろ過した。ろ過後の試料を60℃の温水で洗浄、真空ろ過した後、濃度20質量%の水酸化カリウム(KOH)水溶液2L中で1時間煮沸した後、真空ろ過した。ろ過後の試料を60℃の温水で洗浄、真空ろ過を行い、活性炭を製造した。
Production Example 4
A steam activation treatment was performed in the same manner as in Production Example 1. 50 g of the sample after the steam activation treatment was immersed in 2 L of a hydrochloric acid (HCl) aqueous solution having a concentration of 5.25% by mass and a temperature of 60 ° C. for 1 hour, and then vacuum filtered. The filtered sample was washed with warm water at 60 ° C. and vacuum filtered, then boiled in 2 L of a potassium hydroxide (KOH) aqueous solution having a concentration of 20% by mass for 1 hour, and then vacuum filtered. The sample after filtration was washed with 60 ° C. warm water and vacuum filtered to produce activated carbon.

製造例5
紙フェノール樹脂積層体の炭化物100gをロータリーキルン内に投入し、窒素流通下(1L/分)で900℃まで昇温した(昇温速度:10℃/分)。900℃に達してからロータリーキルン内に水蒸気(水蒸気分圧:71.2kPa)を窒素とともに供給し、3時間30分水蒸気賦活処理を行い、活性炭を製造した。
Production Example 5
100 g of carbonized paper phenol resin laminate was put into a rotary kiln and heated to 900 ° C. under nitrogen flow (1 L / min) (heating rate: 10 ° C./min). After reaching 900 ° C., water vapor (water vapor partial pressure: 71.2 kPa) was supplied into the rotary kiln together with nitrogen, and steam activation treatment was performed for 3 hours 30 minutes to produce activated carbon.

製造例6
紙フェノール樹脂積層体の炭化物100gをロータリーキルン内に投入し、窒素流通下(1L/分)で900℃まで昇温した(昇温速度:10℃/分)。900℃に達してからロータリーキルン内に水蒸気(水蒸気分圧:71.2kPa)を窒素とともに供給し、3時間30分水蒸気賦活処理を行った。水蒸気賦活処理後の試料50gを濃度5.25質量%、温度60℃の塩酸(HCl)水溶液2L中に1時間浸漬した後、真空ろ過した。ろ過後の試料を60℃の温水で洗浄、真空ろ過を行い、活性炭を製造した。
Production Example 6
100 g of carbonized paper phenol resin laminate was put into a rotary kiln and heated to 900 ° C. under nitrogen flow (1 L / min) (heating rate: 10 ° C./min). After reaching 900 ° C., steam (steam partial pressure: 71.2 kPa) was supplied into the rotary kiln together with nitrogen, and steam activation treatment was performed for 3 hours 30 minutes. 50 g of the sample after the steam activation treatment was immersed in 2 L of a hydrochloric acid (HCl) aqueous solution having a concentration of 5.25% by mass and a temperature of 60 ° C. for 1 hour, and then vacuum filtered. The sample after filtration was washed with 60 ° C. warm water and vacuum filtered to produce activated carbon.

製造例7
紙フェノール樹脂積層体の炭化物100gをロータリーキルン内に投入し、窒素流通下(1L/分)で900℃まで昇温した(昇温速度:10℃/分)。900℃に達してからロータリーキルン内に水蒸気(水蒸気分圧:71.2kPa)を窒素とともに供給し、3時間30分水蒸気賦活処理を行った。水蒸気賦活処理後の試料50gを濃度20質量%、温度60℃の水酸化カリウム(KOH)水溶液2L中に1時間浸漬した後、真空ろ過した。ろ過後の試料を60℃の温水で洗浄、真空ろ過を行い、活性炭を製造した。
Production Example 7
100 g of carbonized paper phenol resin laminate was put into a rotary kiln and heated to 900 ° C. under nitrogen flow (1 L / min) (heating rate: 10 ° C./min). After reaching 900 ° C., steam (steam partial pressure: 71.2 kPa) was supplied into the rotary kiln together with nitrogen, and steam activation treatment was performed for 3 hours 30 minutes. A 50 g sample after the steam activation treatment was immersed in 2 L of a potassium hydroxide (KOH) aqueous solution having a concentration of 20 mass% and a temperature of 60 ° C. for 1 hour, and then vacuum filtered. The sample after filtration was washed with 60 ° C. warm water and vacuum filtered to produce activated carbon.

2.電気二重層キャパシタの製造
上記製造例1〜7で得た活性炭を用いて電気二重層キャパシタを製造した。具体的には、活性炭に、ポリテトラフルオロエチレン(PTFE)粉末とアセチレンブラックとを、活性炭:PTFE:アセチレンブラック=8:1:1(質量比)になるように混合し、ペースト状になるまで混練した。ついで、ミニブレンダーで粉砕し、500μmのステンレス鋼製篩で篩って粒度を揃えた。次に、直径2.54cmの金型を用い、プレス後の厚みが0.5mmになるように仕込み量を調節し、50.4MPaの圧力でプレス成形して、キャパシタ用電極を作製した。
2. Production of Electric Double Layer Capacitor An electric double layer capacitor was produced using the activated carbon obtained in Production Examples 1-7. Specifically, polytetrafluoroethylene (PTFE) powder and acetylene black are mixed with activated carbon so as to be activated carbon: PTFE: acetylene black = 8: 1: 1 (mass ratio), until a paste is obtained. Kneaded. Subsequently, it grind | pulverized with the mini blender and sieved with the stainless steel sieve of 500 micrometers, and the particle size was arrange | equalized. Next, using a metal mold with a diameter of 2.54 cm, the amount of charge was adjusted so that the thickness after pressing was 0.5 mm, and press molding was performed at a pressure of 50.4 MPa to produce a capacitor electrode.

得られたキャパシタ用電極を真空条件下、200℃、1時間の条件で乾燥した後、窒素ガスを流通させたグローブボックス内で電解液(1Mテトラエチルアンモニウムテトラフルオロボレートのプロピレンカーボネート溶液)を電極に真空含浸させた。この電極を使用して図1に示すように電気二重層キャパシタを組み立てた。図1に示す電気二重層キャパシタは、前記電解液を含浸させたセパレータ(Celgard社製、「セルガード(登録商標)#3501」)1を前記キャパシタ用電極2で挟み、電極をOリング3で囲繞した後、さらに集電板としてのアルミニウム板4で挟んで作製した。   The obtained capacitor electrode was dried under vacuum conditions at 200 ° C. for 1 hour, and then an electrolyte (1M tetraethylammonium tetrafluoroborate propylene carbonate solution) was used as an electrode in a glove box in which nitrogen gas was circulated. Vacuum impregnated. Using this electrode, an electric double layer capacitor was assembled as shown in FIG. The electric double layer capacitor shown in FIG. 1 has a separator (Celgard, “Celgard (registered trademark) # 3501”) 1 impregnated with the electrolytic solution sandwiched between the capacitor electrodes 2, and the electrodes are surrounded by an O-ring 3. Then, it was further sandwiched between aluminum plates 4 as current collector plates.

製造例1〜7で得た活性炭の評価結果を表1、表2に示した。また、電気二重層キャパシタの評価結果を表1に示した。   The evaluation results of the activated carbon obtained in Production Examples 1 to 7 are shown in Tables 1 and 2. The evaluation results of the electric double layer capacitor are shown in Table 1.

表1に示すように、アルカリ性溶液及び酸性溶液で洗浄を行った製造例1〜4では、得られた活性炭中のケイ素含有量が少なくなっており、電気二重層キャパシタ評価において、静電容量が高く、抵抗が低いことがわかる。これらの中でも、アルカリ性溶液で洗浄した後、酸性溶液での洗浄を行った製造例1〜3では、得られた活性炭中の灰分量(ケイ素含有量)が低減されている。
酸性溶液による洗浄のみを行った製造例6では、製造例5に対して、得られた活性炭中のアルカリ金属、アルカリ土類金属の含有量が低減されているものの、ケイ素含有量はあまり除去できていない。アルカリ性溶液による洗浄のみを行った製造例7では、製造例5に対して、得られた活性炭中のケイ素含有量が半分程度除去できているものの、まだまだ十分に除去できておらず、5000ppm以上と高い値であった。
As shown in Table 1, in Production Examples 1 to 4 in which washing was performed with an alkaline solution and an acidic solution, the silicon content in the obtained activated carbon was reduced, and in the electric double layer capacitor evaluation, the capacitance was It can be seen that the resistance is high and the resistance is low. Among these, the ash content (silicon content) in the obtained activated carbon is reduced in Production Examples 1 to 3, which were washed with an alkaline solution and then washed with an acidic solution.
In Production Example 6 in which only the washing with the acidic solution was performed, the content of alkali metal and alkaline earth metal in the obtained activated carbon was reduced as compared with Production Example 5, but the silicon content was not much removed. Not. In Production Example 7 in which only the washing with the alkaline solution was performed, the silicon content in the obtained activated carbon was removed by about half compared to Production Example 5, but it was not sufficiently removed yet and was not less than 5000 ppm. It was a high value.

本発明の製造方法により得られる活性炭は、電気二重層キャパシタ用電極材料として用いることができ、当該電極材料を使用して、電気二重層キャパシタ用電極や電気二重層キャパシタを製造することが可能である。   Activated carbon obtained by the production method of the present invention can be used as an electrode material for an electric double layer capacitor, and an electrode for an electric double layer capacitor or an electric double layer capacitor can be produced using the electrode material. is there.

1:セパレータ、2:キャパシタ用電極、3:Oリング、4:アルミニウム板、5:ポリテトラフルオロエチレン板、6:ステンレス鋼板 1: Separator, 2: Electrode for capacitor, 3: O-ring, 4: Aluminum plate, 5: Polytetrafluoroethylene plate, 6: Stainless steel plate

Claims (5)

賦活前の紙フェノール樹脂積層体の炭化物水蒸気賦活処理した賦活物を、アルカリ金属水酸化物の濃度が5〜30質量%であるアルカリ性溶液及び酸成分の濃度が3〜20質量%である酸性溶液で、この順で又は逆の順で洗浄することを特徴とする平均細孔径が2.2nm以上の活性炭の製造方法。 The activated product obtained by steam activation of the carbonized paper phenol resin laminate before activation, the alkaline solution having an alkali metal hydroxide concentration of 5 to 30% by mass and the acid component having an acid component concentration of 3 to 20% by mass A method for producing activated carbon having an average pore diameter of 2.2 nm or more , wherein the solution is washed in this order or in the reverse order. 前記賦活物を、アルカリ性溶液で洗浄した後、酸性溶液で洗浄する請求項1に記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1, wherein the activation product is washed with an alkaline solution and then washed with an acidic solution. ケイ素含有量が200ppm〜3000ppm、比表面積が1600m2/g以上、平均細孔径が2.nm以上であることを特徴とする活性炭。 The silicon content is 200 ppm to 3000 ppm, the specific surface area is 1600 m 2 / g or more, and the average pore diameter is 2. Activated carbon characterized by being 2 nm or more. 請求項に記載の活性炭を電極材料として用いたことを特徴とする電気二重層キャパシタ用電極。 4. An electrode for an electric double layer capacitor, wherein the activated carbon according to claim 3 is used as an electrode material. 請求項に記載の電極を備えたことを特徴とする電気二重層キャパシタ。 An electric double layer capacitor comprising the electrode according to claim 4 .
JP2011159233A 2011-07-20 2011-07-20 Activated carbon and manufacturing method thereof Active JP5770550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011159233A JP5770550B2 (en) 2011-07-20 2011-07-20 Activated carbon and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011159233A JP5770550B2 (en) 2011-07-20 2011-07-20 Activated carbon and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013023405A JP2013023405A (en) 2013-02-04
JP5770550B2 true JP5770550B2 (en) 2015-08-26

Family

ID=47782151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011159233A Active JP5770550B2 (en) 2011-07-20 2011-07-20 Activated carbon and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5770550B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131907A1 (en) 2019-12-25 2021-07-01 株式会社クラレ Carbonaceous material, method for producing same, electrode active material for electric double layer capacitors, electrode for electric double layer capacitors, and electric double layer capacitor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726887B (en) 2015-06-12 2021-05-11 日商可樂麗股份有限公司 Carbonaceous material for electronic materials and manufacturing method thereof
US9773622B2 (en) * 2015-08-26 2017-09-26 Nanotek Instruments, Inc. Porous particles of interconnected 3D graphene as a supercapacitor electrode active material and production process
KR20180074258A (en) * 2016-12-23 2018-07-03 희성금속 주식회사 Activated carbon for manufacturing Pd/C Catalyst and manufacturing method thereof and Pd/C Catalyst using the same
CN111247097B (en) * 2018-09-28 2024-03-05 关西热化学株式会社 Activated carbon and preparation method thereof
JP2020064971A (en) * 2018-10-17 2020-04-23 Tdk株式会社 Active material for electric double layer capacitor, electrode for electric double layer capacitor, and electric double layer capacitor
CN112174135A (en) * 2020-10-12 2021-01-05 江苏浦士达环保科技股份有限公司 Method for refining water vapor activated super capacitor carbon
CN114538437B (en) * 2022-02-17 2023-05-26 青海民族大学 Carbon material and preparation method and application thereof
CN115196630A (en) * 2022-06-07 2022-10-18 谢艳 Preparation method for improving tap density of carbon electrode material for energy storage device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229707A (en) * 2006-02-01 2007-09-13 Japan Enviro Chemicals Ltd Organic gas adsorbent
JP5018213B2 (en) * 2006-06-14 2012-09-05 カルゴンカーボンジャパン株式会社 Phosphorus compound composite activated carbon for electric double layer capacitor and method for producing the same
JP5795309B2 (en) * 2009-07-01 2015-10-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Ultra high purity synthetic carbon material
JP5271851B2 (en) * 2009-08-28 2013-08-21 関西熱化学株式会社 Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131907A1 (en) 2019-12-25 2021-07-01 株式会社クラレ Carbonaceous material, method for producing same, electrode active material for electric double layer capacitors, electrode for electric double layer capacitors, and electric double layer capacitor
CN114829301A (en) * 2019-12-25 2022-07-29 株式会社可乐丽 Carbonaceous material, method for producing same, electrode active material for electric double layer capacitor, electrode for electric double layer capacitor, and electric double layer capacitor
KR20220121774A (en) 2019-12-25 2022-09-01 주식회사 쿠라레 Carbonaceous material, manufacturing method thereof, electrode active material for electric double-layer capacitor, electrode for electric double-layer capacitor, and electric double-layer capacitor

Also Published As

Publication number Publication date
JP2013023405A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP5770550B2 (en) Activated carbon and manufacturing method thereof
JP5027849B2 (en) Method for producing activated carbon, and electric double layer capacitor using activated carbon obtained by the method
JP5271851B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP5202460B2 (en) Activated carbon and electric double layer capacitor using the activated carbon
JP5344972B2 (en) Carbon material for electric double layer capacitor electrode and manufacturing method thereof
JP2012101948A (en) Method for producing activated carbon
WO2014017588A1 (en) Activated carbon having large active surface area
JP2011136856A (en) Activated carbon for electric double-layer capacitor electrode, and method for producing the same
JP5676074B2 (en) Method for reforming activated carbon
JP7007810B2 (en) A carbonaceous material, and an electrode material for an electric double layer capacitor, an electrode for an electric double layer capacitor, and an electric double layer capacitor containing the carbonaceous material.
KR20120126118A (en) Activated charcoal for electric double-layer capacitor electrode and method for producing the same
JP7033118B2 (en) A carbonaceous material, and an electrode material for an electric double layer capacitor, an electrode for an electric double layer capacitor, and an electric double layer capacitor containing the carbonaceous material.
Mo et al. Hierarchical porous carbon with three dimensional nanonetwork from water hyacinth leaves for energy storage
JP6371787B2 (en) Activated carbon, method for producing the same, and electric double layer capacitor using the activated carbon
JP2017204628A (en) Method for manufacturing active carbon for electric double layer capacitor electrode, and active carbon for electric double layer capacitor electrode manufactured thereby
JP5619367B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP5563239B2 (en) Method for producing porous carbon material
JP5503196B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP6509643B2 (en) Method of producing activated carbon
JP2007169117A (en) Activated carbon and electrical double layer capacitor using same
JP2005200259A (en) Porous carbon and manufacturing method of porous carbon as well as manufacturing method of porous carbon for electrical double layer capacitor, porous carbon for electrical double layer obtained from the method and electrical double layer capacitor using the same
JP2007153639A (en) Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor
JP5367974B2 (en) Electrode material for electric double layer capacitor and additive for the electrode material
JP5065856B2 (en) Electrode material for electric double layer capacitor, electrode and electric double layer capacitor
JP4377610B2 (en) Porous carbon for electric double layer capacitor, method for producing the same, and electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150625

R150 Certificate of patent or registration of utility model

Ref document number: 5770550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350