JP6371787B2 - Activated carbon, method for producing the same, and electric double layer capacitor using the activated carbon - Google Patents

Activated carbon, method for producing the same, and electric double layer capacitor using the activated carbon Download PDF

Info

Publication number
JP6371787B2
JP6371787B2 JP2016060129A JP2016060129A JP6371787B2 JP 6371787 B2 JP6371787 B2 JP 6371787B2 JP 2016060129 A JP2016060129 A JP 2016060129A JP 2016060129 A JP2016060129 A JP 2016060129A JP 6371787 B2 JP6371787 B2 JP 6371787B2
Authority
JP
Japan
Prior art keywords
activated carbon
pore volume
carbon
raw material
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016060129A
Other languages
Japanese (ja)
Other versions
JP2017171538A (en
Inventor
孝規 塚▲崎▼
孝規 塚▲崎▼
天能 浩次郎
浩次郎 天能
大西 寛二
寛二 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MC EVOLVE TECHNOLOGIES CORPORATION
Kansai Coke and Chemicals Co Ltd
Original Assignee
MC EVOLVE TECHNOLOGIES CORPORATION
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59973769&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6371787(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by MC EVOLVE TECHNOLOGIES CORPORATION, Kansai Coke and Chemicals Co Ltd filed Critical MC EVOLVE TECHNOLOGIES CORPORATION
Priority to JP2016060129A priority Critical patent/JP6371787B2/en
Publication of JP2017171538A publication Critical patent/JP2017171538A/en
Application granted granted Critical
Publication of JP6371787B2 publication Critical patent/JP6371787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は活性炭、およびその製造方法、並びに該活性炭を用いた電気二重層キャパシタに関するものである。   The present invention relates to activated carbon, a method for producing the same, and an electric double layer capacitor using the activated carbon.

活性炭は、比表面積が大きいことから吸着用途などに用いられている。また、近年では、電気二重層キャパシタ用電極などの電極材料としても用いられている。活性炭は、細孔径2.0nm以下のミクロ孔を多く有するため、他の多孔質材料に比べて比表面積が大きいという特徴を有する。しかしながらミクロ孔は孔径が小さいため吸着剤に用いると、吸着物質の細孔内での拡散・移動速度(以下、まとめて「移動速度」ということがある)が遅く、また電気二重層キャパシタ用電極に用いると、電解質イオンの移動速度(以下、「イオン移動速度」ということがある)が遅い。従って比表面積が大きくても細孔内の吸着サイトを充分に生かしきれていなかった。   Activated carbon is used for adsorption and the like because of its large specific surface area. In recent years, it is also used as an electrode material such as an electrode for an electric double layer capacitor. Since activated carbon has many micropores having a pore diameter of 2.0 nm or less, it has a feature that the specific surface area is larger than other porous materials. However, since micropores have a small pore size, if used as an adsorbent, the diffusion / migration speed of the adsorbed substance in the pores (hereinafter sometimes referred to as “migration speed”) is slow, and the electrode for an electric double layer capacitor When used in the above, the moving speed of the electrolyte ions (hereinafter sometimes referred to as “ion moving speed”) is slow. Therefore, even if the specific surface area was large, the adsorption sites in the pores could not be fully utilized.

このような問題を解決する手段として、細孔径を大きくすることにより、吸着物質の細孔内での移動速度を向上させることが考えられる。しかし、単純に細孔径を大きくしただけでは細孔容積当たりの比表面積が低下してしまい、活性炭質量当たりの吸着量もしくは活性炭体積当たりの吸着量(以下、「吸着量」ということがある)が低下する。   As a means for solving such a problem, it is conceivable to increase the moving speed of the adsorbed substance in the pores by increasing the pore diameter. However, simply increasing the pore diameter reduces the specific surface area per pore volume, and the amount of adsorption per activated carbon mass or the amount of adsorption per activated carbon volume (hereinafter sometimes referred to as “adsorption amount”). descend.

このような問題に対し、活性炭の細孔分布と比表面積を調整して吸着量と移動速度の向上を図る技術が、種々提案されている。   Various techniques for improving the adsorption amount and the moving speed by adjusting the pore distribution and specific surface area of the activated carbon have been proposed for such problems.

例えば特許文献1には、ミクロ細孔容積が全細孔容積の10〜60%を、メソ細孔容積が全細孔容積の20〜70%を、およびマクロ細孔容積が全細孔容積の20%以下を占めるとともに、全細孔容積が0.3〜2.0cm3/gであり、かつ、比表面積が1000〜2500m2/gである炭素質材料が開示されている。 For example, in Patent Document 1, the micropore volume is 10 to 60% of the total pore volume, the mesopore volume is 20 to 70% of the total pore volume, and the macropore volume is the total pore volume. A carbonaceous material that occupies 20% or less, has a total pore volume of 0.3 to 2.0 cm 3 / g, and a specific surface area of 1000 to 2500 m 2 / g is disclosed.

また特許文献2には、BET比表面積が1000m2/g以上3000m2/g以下であり、細孔径1.0nm以上2.0nm以下の細孔のBET比表面積中の面積比率が40%以上、かつ、細孔径2.0nm超50.0nm未満の細孔の全細孔容積中の容積比率が40%以上である活性炭が開示されている。 In Patent Document 2, the BET specific surface area is 1000 m 2 / g or more and 3000 m 2 / g or less, and the area ratio in the BET specific surface area of pores having a pore diameter of 1.0 nm or more and 2.0 nm or less is 40% or more, And the activated carbon whose volume ratio in the total pore volume of the pore more than 2.0 nm and less than 50.0 nm is 40% or more is disclosed.

更に特許文献3には、BET比表面積が2200m2/g以上2700m2/g以下であり、平均細孔径が2.2nm以上2.8nm以下であり、かつクランストンインクレー法で算出した細孔直径が5.0nmから30.0nm間の細孔容積が0.20cm3/g以上0.60cm3/g以下である電気二重層キャパシタ用活性炭が開示されている。 Further, Patent Document 3 discloses that the BET specific surface area is 2200 m 2 / g or more and 2700 m 2 / g or less, the average pore diameter is 2.2 nm or more and 2.8 nm or less, and the pores calculated by the Cranston inclay method An activated carbon for an electric double layer capacitor having a pore volume between 5.0 nm and 30.0 nm in diameter of 0.20 cm 3 / g or more and 0.60 cm 3 / g or less is disclosed.

特開2001−89119号公報JP 2001-89119 A 特開2011−20907号公報JP 2011-20907 A 特開2011−176043号公報JP 2011-176043 A

上記特許文献1〜3のように活性炭の細孔分布と比表面積を制御しても、吸着量と移動速度には未だ検討の余地があった。また例えば電気二重層キャパシタには静電容量が大きく、且つ内部抵抗が低いことが要求されているが、従来の活性炭では両特性を満足することが困難であった。   Even if the pore distribution and specific surface area of the activated carbon are controlled as in Patent Documents 1 to 3, there is still room for study on the adsorption amount and the moving speed. In addition, for example, an electric double layer capacitor is required to have a large capacitance and a low internal resistance, but it has been difficult to satisfy both characteristics with conventional activated carbon.

本発明は上記事情に鑑みてなされたものであり、吸着量と移動速度とをバランスよく両立させた活性炭、及びその製造方法、並びに該活性炭を用いた電気二重層キャパシタを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an activated carbon that balances the adsorption amount and the moving speed in a well-balanced manner, a manufacturing method thereof, and an electric double layer capacitor using the activated carbon. To do.

上記課題を解決し得た本発明に係る活性炭は、BET比表面積(以下、「比表面積」ということがある)が1450〜1950m2/g、細孔径3nm以上の細孔容積が0.09〜0.35cm3/g、且つ平均細孔径が2.05〜2.60nmであることに要旨を有する。 The activated carbon according to the present invention that has solved the above-mentioned problems has a BET specific surface area (hereinafter sometimes referred to as “specific surface area”) of 1450 to 1950 m 2 / g and a pore volume of 3 to 9 nm. It has a gist that it is 0.35 cm 3 / g and the average pore diameter is 2.05 to 2.60 nm.

本発明の上記活性炭は、全細孔容積に対して前記細孔径3nm以上の細孔容積の比率が12〜39%であることも好ましく、また平均粒子径が10μm以下であることも好ましい実施態様である。   In the activated carbon of the present invention, the ratio of the pore volume having a pore diameter of 3 nm or more to the total pore volume is preferably 12 to 39%, and the average particle diameter is preferably 10 μm or less. It is.

また本発明の上記活性炭は、粒状、または粉状でもよい。   The activated carbon of the present invention may be granular or powdery.

本発明には上記活性炭を含有する電気二重層キャパシタ用電極材料や、該電極材料を用いた電気二重層キャパシタ用電極、更には該電極を用いた電気二重層キャパシタも含まれる。   The present invention includes an electrode material for an electric double layer capacitor containing the activated carbon, an electrode for an electric double layer capacitor using the electrode material, and an electric double layer capacitor using the electrode.

本発明の上記活性炭の製造方法は、炭素原料を炭化し、次いで1回以上水蒸気賦活することで炭素原料由来物を順次処理することとし、最後の水蒸気賦活を実施するまでに炭素原料由来物にカルシウム化合物、およびカリウム化合物の少なくとも一方を添着させておき、添着状態を維持したまま前記最後の水蒸気賦活を実施することに要旨を有する。   In the method for producing the activated carbon according to the present invention, the carbon raw material is carbonized, and then the carbon raw material derived material is sequentially processed by steam activation one or more times, and the carbon raw material derived material is subjected to the final steam activation. The gist is that at least one of a calcium compound and a potassium compound is attached, and the final water vapor activation is performed while the attached state is maintained.

本発明の上記活性炭の製造方法において、(1)前記炭素原料に前記カルシウム化合物、およびカリウム化合物の少なくとも一方を添着させ、次いで炭化した後、または(2)前記炭素原料を炭化し、次いで前記カルシウム化合物、およびカリウム化合物の少なくとも一方を添着させた後、あるいは(3)前記炭素原料を炭化した後、水蒸気賦活し、次いで前記カルシウム化合物、およびカリウム化合物の少なくとも一方を添着させた後、上記最後の水蒸気賦活することも好ましい実施態様である。   In the method for producing activated carbon of the present invention, (1) after adding at least one of the calcium compound and potassium compound to the carbon raw material and then carbonizing, or (2) carbonizing the carbon raw material and then the calcium After adhering at least one of a compound and a potassium compound, or (3) after carbonizing the carbon raw material, steam activation, and then adhering at least one of the calcium compound and the potassium compound, Steam activation is also a preferred embodiment.

本発明の活性炭は、比表面積、特定の細孔径の細孔容積、及び平均細孔径が最適化されているため、吸着量と移動速度とがバランスよく両立されている。そのため、例えば、本発明の活性炭を電気二重層キャパシタ用電極材料として電気二重層キャパシタ用電極に用いれば、静電容量を増大させつつ、活性炭の細孔内におけるイオン移動速度も向上させることができるため、静電容量および内部抵抗に優れた電気二重層キャパシタが得られる。また本発明の製造方法によれば、本発明の上記活性炭を容易に製造できる。   In the activated carbon of the present invention, the specific surface area, the pore volume of a specific pore diameter, and the average pore diameter are optimized, so that the adsorption amount and the moving speed are balanced in a balanced manner. Therefore, for example, if the activated carbon of the present invention is used for an electrode for an electric double layer capacitor as an electrode material for an electric double layer capacitor, the ion transfer rate in the pores of the activated carbon can be improved while increasing the capacitance. Therefore, an electric double layer capacitor having excellent capacitance and internal resistance can be obtained. Moreover, according to the manufacturing method of this invention, the said activated carbon of this invention can be manufactured easily.

図1は、実施例の活性炭の全細孔容積と比表面積の関係を示すグラフである。FIG. 1 is a graph showing the relationship between the total pore volume and specific surface area of the activated carbon of the example. 図2は、実施例の活性炭の細孔径3nm以上の細孔容積と比表面積の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the pore volume of the activated carbon of the example having a pore diameter of 3 nm or more and the specific surface area. 図3は、実施例の活性炭の細孔径3nm以上の細孔容積比率と比表面積の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the volume ratio of pores having a pore diameter of 3 nm or more and the specific surface area of the activated carbon of the example. 図4は、実施例の活性炭の平均細孔径と比表面積との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the average pore diameter and the specific surface area of the activated carbon of the example. 図5は、実施例の活性炭の−30℃における内部抵抗と常温における体積あたりの静電容量の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the internal resistance at −30 ° C. of the activated carbon of the example and the capacitance per volume at room temperature. 図6は、実施例の活性炭の常温における体積あたりの静電容量と細孔径3nm以上の細孔容積の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the capacitance per volume of the activated carbon of the example at room temperature and the pore volume with a pore diameter of 3 nm or more. 図7は、実施例の活性炭の−30℃における内部抵抗と細孔径3nm以上の細孔容積の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the internal resistance at −30 ° C. of the activated carbon of the example and the pore volume having a pore diameter of 3 nm or more. 図8は、実施例の活性炭No.1、2、6、10の細孔分布を示すグラフである。FIG. 8 shows activated carbon No. of Example. It is a graph which shows the pore distribution of 1, 2, 6, 10. 図9は、実施例で作製した電気二重層キャパシタの概略説明図である。FIG. 9 is a schematic explanatory diagram of the electric double layer capacitor produced in the example.

上記特許文献1〜3のように活性炭の細孔分布と比表面積を制御することによって活性炭の特性向上を図る技術が提案されているが、吸着量と移動速度のバランスを図ることが難しかった。例えば電気二重層キャパシタ用途においては、静電容量と内部抵抗はトレードオフの関係にあると考えられている。すなわち、活性炭の比表面積を大きくするとミクロ孔の様な微細な細孔の割合が増加するが、微細な細孔内においてはイオン移動速度が低下し、内部抵抗が高くなることが知られている。一方、活性炭の細孔径を大きくすると、イオン移動速度が向上して内部抵抗は低下するが、全細孔容積が増大して活性炭のかさ密度が低下することから、キャパシタセル単位体積あたりの静電容量が低下することが知られている。   Although the technique which improves the characteristic of activated carbon by controlling the pore distribution and specific surface area of activated carbon like the said patent documents 1-3 was proposed, it was difficult to aim at the balance of adsorption amount and moving speed. For example, in electric double layer capacitor applications, electrostatic capacity and internal resistance are considered to have a trade-off relationship. That is, when the specific surface area of the activated carbon is increased, the proportion of fine pores such as micropores increases, but it is known that the ion migration rate decreases and the internal resistance increases in the fine pores. . On the other hand, when the pore diameter of the activated carbon is increased, the ion migration speed is improved and the internal resistance is decreased. However, since the total pore volume is increased and the bulk density of the activated carbon is decreased, the electrostatic capacity per unit volume of the capacitor cell is decreased. It is known that capacity decreases.

本発明の活性炭は、比表面積と、細孔径3nm以上の細孔容積と、平均細孔径をバランスよく調整することで、移動速度を向上させると共に、吸着量増大に寄与する細孔も十分に維持できる。そのため、例えば、本発明の活性炭を用いれば、静電容量が大きく、かつ、内部抵抗の小さい電気二重層キャパシタが得られる。特に本発明の活性炭は、常温(25℃)における静電容量(体積あたりの静電容量、及び質量あたりの静電容量を含む、以下同じ)や内部抵抗だけでなく、−30℃における静電容量(以下、「低温静電容量」ということがある)や−30℃における内部抵抗(以下、「低温内部抵抗」ということがある)にも優れた特性を示す。   The activated carbon of the present invention improves the movement speed by well-balanced adjustment of the specific surface area, the pore volume with a pore diameter of 3 nm or more, and the average pore diameter, and also sufficiently maintains the pores that contribute to the increase in adsorption amount. it can. Therefore, for example, when the activated carbon of the present invention is used, an electric double layer capacitor having a large capacitance and a small internal resistance can be obtained. In particular, the activated carbon of the present invention has not only a capacitance at normal temperature (25 ° C.) (including capacitance per volume and capacitance per mass, the same shall apply hereinafter) and internal resistance, but also a capacitance at −30 ° C. It also exhibits excellent characteristics in terms of capacitance (hereinafter also referred to as “low temperature capacitance”) and internal resistance at −30 ° C. (hereinafter also referred to as “low temperature internal resistance”).

以下、本発明の活性炭について具体的に説明する。   Hereinafter, the activated carbon of the present invention will be specifically described.

本発明の活性炭の比表面積は、1450〜1950m2/gである。比表面積が小さすぎると吸着量が低下する。そのため、例えば電気二重層キャパシタとして十分な質量当たりの静電容量が得られない。また、比表面積が大きすぎると、かさ密度が低下する。そのため、例えば、電気二重層キャパシタとして十分な体積当たりの静電容量が得られない。比表面積は好ましくは1500m2/g以上、より好ましくは1550m2/g以上であり、好ましくは1900m2/g以下、より好ましくは1880m2/g以下である。 The specific surface area of the activated carbon of the present invention is 1450 to 1950 m 2 / g. If the specific surface area is too small, the amount of adsorption decreases. Therefore, for example, a sufficient capacitance per mass as an electric double layer capacitor cannot be obtained. Moreover, when the specific surface area is too large, the bulk density decreases. Therefore, for example, a sufficient capacitance per volume as an electric double layer capacitor cannot be obtained. The specific surface area is preferably 1500 m 2 / g or more, more preferably 1550 m 2 / g or more, preferably 1900 m 2 / g or less, and more preferably not more than 1880m 2 / g.

また本発明の活性炭は、細孔径3nm以上の細孔容積が0.09〜0.35cm3/gである。細孔径3nm以上の細孔容積が小さすぎると、移動速度が低下する。そのため、例えば活性炭を電気二重層キャパシタに用いると内部抵抗が増大する。また、細孔径3nm以上の細孔容積が大きすぎると、活性炭のかさ密度が低下する。細孔径3nm以上の細孔容積は好ましくは0.10cm3/g以上、より好ましくは0.15cm3/g以上であり、好ましくは0.30cm3/g以、より好ましくは0.25cm3/g以下である。なお、本発明において細孔径3nm以上の細孔容積とは、細孔径3nm以上、30nm以下の細孔容積である。 Moreover, the activated carbon of the present invention has a pore volume of 0.09 to 0.35 cm 3 / g with a pore diameter of 3 nm or more. When the pore volume having a pore diameter of 3 nm or more is too small, the moving speed is lowered. Therefore, for example, when activated carbon is used for the electric double layer capacitor, the internal resistance increases. On the other hand, if the pore volume having a pore diameter of 3 nm or more is too large, the bulk density of the activated carbon decreases. More pore volume pore diameter 3nm preferably 0.10 cm 3 / g or more, more preferably 0.15 cm 3 / g or more, preferably 0.30 cm 3 / g hereinafter, more preferably 0.25 cm 3 / G or less. In the present invention, the pore volume having a pore diameter of 3 nm or more is a pore volume having a pore diameter of 3 nm or more and 30 nm or less.

本発明の活性炭は、平均細孔径が2.05〜2.60nmである。平均細孔径が小さすぎると、吸着物質の活性炭からの出入りがスムースに行われ難くなり、移動速度が低下する。また平均細孔径が大きすぎると、活性炭のかさ密度が低下する。平均細孔径は、好ましくは2.10nm以上、好ましくは2.55nm以下、より好ましくは2.50nm以下である。   The activated carbon of the present invention has an average pore diameter of 2.05 to 2.60 nm. If the average pore diameter is too small, it becomes difficult for the adsorbent to enter and exit the activated carbon smoothly, and the moving speed decreases. On the other hand, if the average pore diameter is too large, the bulk density of the activated carbon decreases. The average pore diameter is preferably 2.10 nm or more, preferably 2.55 nm or less, more preferably 2.50 nm or less.

また本発明の活性炭は、全細孔容積に対して上記細孔径3nm以上の細孔容積(以下、「細孔径3nm以上の細孔容積」という)の比率が好ましくは12〜39%である。細孔径3nm以上の細孔容積の比率が高くなると、移動速度が向上するため、より好ましくは15%以上である。一方、細孔径3nm以上の細孔容積の比率が高くなり過ぎると、活性炭のかさ密度が低下するため、より好ましくは30%以下である。なお、本発明において全細孔容積とは実施例に記載の方法で測定される細孔径30nm以下の細孔容積である。 In the activated carbon of the present invention, the ratio of the pore volume having a pore diameter of 3 nm or more (hereinafter referred to as “pore volume having a pore diameter of 3 nm or more”) to the total pore volume is preferably 12 to 39%. When the ratio of the pore volume having a pore diameter of 3 nm or more is increased, the moving speed is improved, and therefore, it is more preferably 15% or more. On the other hand, if the ratio of the pore volume having a pore diameter of 3 nm or more becomes too high, the bulk density of the activated carbon decreases, and therefore it is more preferably 30% or less. In the present invention, the total pore volume is a pore volume having a pore diameter of 30 nm or less as measured by the method described in Examples.

本発明の活性炭の平均粒子径は、好ましくは10μm以下である。平均粒子径の下限は特に限定されないが、取り扱い性を考慮すると、好ましくは1.0μm以上、より好ましくは2.0μm以上である。   The average particle diameter of the activated carbon of the present invention is preferably 10 μm or less. The lower limit of the average particle diameter is not particularly limited, but is preferably 1.0 μm or more, more preferably 2.0 μm or more in consideration of handleability.

本発明の活性炭の全細孔容積は、好ましくは0.70cm/g以上、より好ましくは0.90cm/g以上、更に好ましくは0.94cm/g以上であって、好ましくは3.0cm/g以下、より好ましくは2.0cm/g以下、更に好ましくは1.10cm/g以下である。 The total pore volume of the activated carbon of the present invention is preferably 0.70 cm 3 / g or more, more preferably 0.90cm 3 / g or more, even more preferably 0.94 cm 3 / g or more, preferably 3. 0 cm 3 / g or less, more preferably 2.0 cm 3 / g, more preferably not more than 1.10 cm 3 / g.

活性炭の形状は用途に応じた各種形状にすればよく、例えば粒状や粉状などが挙げられる。例えば活性炭を電気二重層キャパシタ用電極材料として用いる場合は、取り扱い性やかさ密度を考慮して粒状活性炭や粉状活性炭を用いてもよい。   The shape of the activated carbon may be various shapes depending on the application, and examples thereof include granular and powdery forms. For example, when using activated carbon as an electrode material for an electric double layer capacitor, granular activated carbon or powdered activated carbon may be used in consideration of handleability and bulk density.

本発明の活性炭の製造方法は特に限定されず、比表面積、細孔径3nm以上の細孔容積、平均細孔径が上記所定の範囲を満足する活性炭を製造できればよい。以下、本発明の活性炭の製造方法について具体的に説明するが、本発明の製造方法は下記製造例に限定されず、適宜変更できる。   The method for producing the activated carbon of the present invention is not particularly limited as long as it can produce activated carbon having a specific surface area, a pore volume having a pore diameter of 3 nm or more, and an average pore diameter satisfying the predetermined range. Hereinafter, although the manufacturing method of the activated carbon of this invention is demonstrated concretely, the manufacturing method of this invention is not limited to the following manufacture example, It can change suitably.

本発明の上記特徴を有する活性炭は、カルシウム化合物、およびカリウム化合物の少なくとも一方(以下、「カルシウム化合物等」という)を炭素原料由来物(後記する炭素原料、炭素原料炭化物、および炭素原料水蒸気賦活物を含む意味、以下同じ)に添着させておき、該添着状態を維持したまま水蒸気賦活することによって製造できる。   The activated carbon having the above-described features of the present invention is obtained by converting at least one of a calcium compound and a potassium compound (hereinafter referred to as “calcium compound etc.”) from a carbon raw material (a carbon raw material, a carbon raw material carbide, and a carbon raw material steam activated material described later). In the meaning including the same, the same applies hereinafter), and steam activation is performed while maintaining the attached state.

具体的には、炭素原料を炭化し、次いで1回以上水蒸気賦活することで炭素原料由来物を順次処理することとし、且つ1回の水蒸気賦活を行う場合は当該水蒸気賦活、または複数回の水蒸気賦活を行う場合は、最後の水蒸気賦活を実施するまでに炭素原料由来物にカルシウム化合物等を添着させておき、該添着状態を維持したまま最後の水蒸気賦活を実施すればよい。   Specifically, the carbon raw material is carbonized, and then the raw material derived from the carbon raw material is sequentially processed by steam activation one or more times, and when performing one water vapor activation, the water vapor activation or a plurality of water vapor activations are performed. When the activation is performed, a calcium compound or the like is attached to the carbon material-derived material until the last steam activation is performed, and the last steam activation may be performed while maintaining the attached state.

炭素原料由来物は、通常の活性炭の原料として用いられるものであれば、特に限定されない。例えばヤシ殻、フェノール樹脂、石炭、レーヨンなどの炭素原料;これら炭素原料を炭化した炭素原料炭化物;及びこれら炭素原料や炭素原料炭化物を水蒸気賦活した炭素原料水蒸気賦活物(以下、「水蒸気賦活炭」ということがある)などが挙げられる。これらのなかでも比表面積と細孔径3nm以上の細孔容積をバランスよくコントロール可能なヤシ殻、ヤシ殻炭化物、及びヤシ殻水蒸気賦活炭が好ましい。また入手容易性やコストなどを考慮すると、市場で安価に入手可能なヤシ殻水蒸気賦活炭がより好ましい。   The carbon raw material-derived material is not particularly limited as long as it is used as a raw material for ordinary activated carbon. For example, carbon raw materials such as coconut shell, phenol resin, coal, rayon; carbon raw material carbides obtained by carbonizing these carbon raw materials; and carbon raw material steam activated products obtained by steam activation of these carbon raw materials and carbon raw material carbides (hereinafter referred to as “steam activated charcoal”) And so on). Among these, coconut shell, coconut shell carbide, and coconut shell steam activated charcoal that can control the specific surface area and the pore volume of 3 nm or more in a well-balanced manner are preferable. In view of availability and cost, coconut shell steam activated charcoal that can be obtained at low cost in the market is more preferable.

本発明では、カルシウム化合物等を炭素原料由来物に添着させた状態で水蒸気賦活することで、ミクロ孔を残しつつ、細孔径3nm以上の細孔を発達させることができる。なおカルシウム化合物等を添着させるタイミングは特に限定されず、水蒸気賦活するときに炭素原料由来物にカルシウム化合物等の添着状態が維持される限り、任意の段階で添着できる。本発明では水蒸気賦活を実施する前にカルシウム化合物等の添着状態が維持されている炭素原料由来物を賦活原料といい、賦活原料には下記添着炭化物や添着水蒸気賦活物が含まれる。   In the present invention, pores having a pore diameter of 3 nm or more can be developed while leaving micropores by activating water vapor in a state where a calcium compound or the like is attached to a carbon raw material-derived material. In addition, the timing which attaches a calcium compound etc. is not specifically limited, As long as the attachment state of a calcium compound etc. is maintained to a carbon raw material origin material at the time of steam activation, it can be added in arbitrary steps. In the present invention, a carbon material-derived material in which an adhering state of a calcium compound or the like is maintained before performing steam activation is referred to as an activation material, and the activation material includes the following adsorbed carbide and the adsorbed water vapor activation material.

上記したように本発明の製造方法では、最後の水蒸気賦活を実施する前にカルシウム化合物等が炭素原料由来物に添着していればよい。したがって(1)カルシウム化合物等を炭素原料に添着させてから炭化した後、得られた添着炭化物を水蒸気賦活してもよいし、または(2)炭素原料を炭化した後にカルシウム化合物等を添着させて得られた添着炭化物を水蒸気賦活してもよい。あるいは(3)炭素原料を炭化した後、水蒸気賦活し、次いでカルシウム化合物等を添着させて得られた添着水蒸気賦活物を水蒸気賦活してもよい。もちろん、カルシウム化合物等は製造プロセスの複数箇所、すなわち任意の異なる工程で添着させてもよい。例えば炭素原料にカルシウム化合物等を添着させてから炭化した後、カルシウム化合物等を再度添着させてもよい。また炭素原料を炭化した後、カルシウム化合物等を添着してから水蒸気賦活し、得られた炭素原料水蒸気賦活物にカルシウム化合物等を添着させ、次いで水蒸気賦活をしてもよい。   As described above, in the production method of the present invention, the calcium compound or the like may be attached to the carbon raw material-derived material before the final steam activation. Therefore, (1) after the carbon compound is carbonized after being added to the carbon raw material, the obtained carbonized carbide may be activated by steam, or (2) after the carbon raw material is carbonized, the calcium compound or the like is added. The obtained impregnated carbide may be steam activated. Alternatively, (3) after carbonizing the carbon raw material, steam activation may be performed, and then an impregnated steam activated product obtained by adhering a calcium compound or the like may be steam activated. Of course, the calcium compound or the like may be added at a plurality of locations in the manufacturing process, that is, at arbitrary different steps. For example, a calcium compound or the like may be added to a carbon raw material and then carbonized, and then the calcium compound or the like may be added again. Further, after carbonizing the carbon raw material, a calcium compound or the like may be attached and then steam activated, and the resulting carbon raw material steam activated product may be attached with a calcium compound or the like, and then steam activated.

炭素原料由来物の形状は、特に限定されることはなく、粒状、粉状、顆粒状、球状、塊状、繊維状、板状などのいずれの形状であってもよい。   The shape of the carbon material-derived material is not particularly limited, and may be any shape such as a granular shape, a powdery shape, a granular shape, a spherical shape, a lump shape, a fibrous shape, and a plate shape.

本発明ではカルシウム化合物等を添着前、または添着後に炭素原料を炭化するが、その際の炭化処理処条件は特に限定されず、通常、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気下で炭素原料が燃焼しない温度、時間で加熱処理すればよい。該炭化処理の温度は、好ましくは500℃以上、より好ましくは550℃以上であり、好ましくは1200℃以下、より好ましくは1000℃以下である。また炭化処理温度での保持時間は好ましくは5分〜3時間である。   In the present invention, the carbon raw material is carbonized before or after the calcium compound is attached, but the carbonization treatment conditions are not particularly limited, and the carbon raw material is usually used in an inert gas atmosphere such as nitrogen, helium or argon. What is necessary is just to heat-process with the temperature and time which do not burn. The carbonization temperature is preferably 500 ° C. or higher, more preferably 550 ° C. or higher, preferably 1200 ° C. or lower, more preferably 1000 ° C. or lower. The holding time at the carbonization temperature is preferably 5 minutes to 3 hours.

また本発明では炭素原料炭化物を1回以上水蒸気賦活するが、例えば炭素原料炭化物に水蒸気賦活を行って得られた炭素原料水蒸気賦活物にカルシウム化合物等を添着させ、該添着状態を維持したまま水蒸気賦活してもよい。炭素原料水蒸気賦活物を製造する場合の水蒸気賦活条件は特に限定されず、公知の水蒸気賦活の条件を採用できる。炭素原料炭化物を水蒸気賦活することで、活性炭の比表面積や全細孔容積を増大できると共に、吸着量向上に有効なミクロ孔の細孔容積も増大できる。そのため、得られた炭素原料水蒸気賦活物を賦活原料として用いると、吸着量、及び移動速度に優れた本発明の活性炭が得られる。また炭素原料水蒸気賦活物には必要に応じて公知の洗浄処理や熱処理を行ってもよい。   In the present invention, the carbon raw material carbide is steam activated one or more times. For example, the carbon raw material steam activated product obtained by performing steam activation on the carbon raw material carbide is adsorbed with a calcium compound or the like, and the steam is maintained while maintaining the attached state. You may activate. The water vapor activation conditions for producing the carbon raw material water vapor activated product are not particularly limited, and known water vapor activation conditions can be employed. By steam activation of the carbon raw material carbide, the specific surface area and total pore volume of the activated carbon can be increased, and the pore volume of the micropores effective for improving the adsorption amount can be increased. Therefore, when the obtained carbon raw material water vapor activation product is used as the activation raw material, the activated carbon of the present invention excellent in the adsorption amount and the moving speed can be obtained. Moreover, you may perform a well-known washing | cleaning process and heat processing as needed to a carbon raw material steam activation material.

本発明では上記炭素原料由来物にカルシウム化合物等を添着させる。カルシウム化合物等の添着方法は特に限定されない。例えば(i)炭素原料由来物をカルシウム化合物等含有液に浸漬する方法、(ii)炭素原料由来物にカルシウム化合物等含有液を噴霧する方法、(iii)炭素原料由来物にカルシウム化合物等含有粉末を添加する方法などが挙げられる。その後、必要に応じて乾燥させてもよい。またカルシウム化合物等含有液は、簡易且つ低コストで添着性を高める観点から液中でカルシウムやカリウムが溶解していることが望ましく、カルシウム化合物、またはカリウム化合物としては、炭酸カルシウム、炭酸カリウム、塩化カルシウム、塩化カリウムなどが例示される。これらの中でも水溶性に優れており、かつ低コストな塩化カルシウムや塩化カリウムを用いることが好ましい。また上記添着方法においては、有機溶剤を用いたり、乾式混合を行うなど、カルシウム化合物等の性質に応じて適宜添着条件を選択することができる。   In the present invention, a calcium compound or the like is added to the carbon material-derived material. The method for attaching the calcium compound or the like is not particularly limited. For example, (i) a method of immersing a carbon material-derived material in a calcium compound-containing liquid, (ii) a method of spraying a calcium compound-containing liquid on the carbon material-derived material, and (iii) a calcium compound-containing powder on the carbon material-derived material. And the like. Then, you may dry as needed. In addition, the calcium compound and the like-containing liquid desirably has calcium and potassium dissolved in the liquid from the viewpoint of improving the attachment property at a simple and low cost. Examples of the calcium compound or potassium compound include calcium carbonate, potassium carbonate, and chloride. Examples include calcium and potassium chloride. Among these, it is preferable to use calcium chloride or potassium chloride which is excellent in water solubility and low cost. Further, in the above-mentioned attaching method, the attaching conditions can be appropriately selected according to the properties of the calcium compound, such as using an organic solvent or dry mixing.

上記添着方法によれば、炭素原料由来物にカルシウム化合物等の添着状態を維持したまま水蒸気賦活できる。もっとも、カルシウム化合物等の添着後、水洗などの湿式洗浄を行うとカルシウム化合物等が脱離するため、添着後、水蒸気賦活するまでは湿式洗浄を行わないか、あるいは湿式洗浄後、再度、カルシウム化合物等を添着させることが望ましい。   According to the said attachment method, water vapor activation can be performed, maintaining the attachment state of a calcium compound etc. to the carbon raw material origin. However, if the wet cleaning such as washing with water is performed after the addition of the calcium compound or the like, the calcium compound or the like is desorbed. Therefore, either the wet cleaning is not performed until the water vapor is activated after the addition, or after the wet cleaning, the calcium compound is again used. It is desirable to attach them.

カルシウム化合物等の添着状態を維持したまま炭素原料由来物に最後の水蒸気賦活をして得られる本発明の活性炭と、カルシウム化合物等を添着させずに炭素原料由来物を水蒸気賦活して得られる従来の活性炭と比べると以下のことがわかる。例えば図1に示すように比表面積や全細孔容積などが同等であっても、カルシウム化合物等の添着状態を維持したまま炭素原料由来物を最後の水蒸気賦活した場合のみ、カルシウム化合物等の使用によって活性炭の状態がより好適に制御され、その結果、吸着量と移動速度とがバランスよく両立されている活性炭が得られる。図8に示すようにカルシウム化合物等の添着状態を維持したまま最後の水蒸気賦活をして得られる活性炭No.1、2は、カルシウム化合物等を添着させずに製造した活性炭No.6、10と比べると、カルシウム化合物等の添着状態を維持したまま最後の水蒸気賦活することで、ミクロ孔の細孔容積は十分な吸着容量を維持しつつ、細孔径3nm以上の細孔が発達し、移動速度向上に効果的な細孔分布となる。したがって本発明の製造方法で得られた活性炭は、例えば電気二重層キャパシタとして十分な静電容量を有するだけでなく、内部抵抗も低減されている。   Activated carbon of the present invention obtained by the last steam activation to a carbon material-derived material while maintaining the adhering state of the calcium compound, etc., and a conventional product obtained by steam-activating the carbon material-derived material without attaching a calcium compound or the like Compared with activated carbon, the following can be seen. For example, as shown in FIG. 1, even when the specific surface area, total pore volume, etc. are the same, the use of the calcium compound or the like is performed only when the water vapor derived from the carbon raw material is finally activated while maintaining the attached state of the calcium compound or the like. As a result, the state of the activated carbon is more suitably controlled, and as a result, an activated carbon in which the amount of adsorption and the moving speed are balanced with each other can be obtained. As shown in FIG. 8, activated carbon No. obtained by the last steam activation while maintaining the adhering state of the calcium compound or the like. Nos. 1 and 2 are activated carbon No. 1 manufactured without adding calcium compounds or the like. Compared with 6, 10, the last water vapor activation while maintaining the adhering state of calcium compound, etc. allows the pore volume of the micropores to maintain a sufficient adsorption capacity while developing pores with a pore diameter of 3 nm or more. Thus, the pore distribution is effective for improving the moving speed. Therefore, the activated carbon obtained by the production method of the present invention not only has a sufficient capacitance as, for example, an electric double layer capacitor, but also has reduced internal resistance.

カルシウム、およびカリウムの少なくとも一方(以下、「カルシウム等」という)の添着量は特に限定されず、賦活条件、賦活処理後の洗浄処理や熱処理の有無などに応じて上記所望の比表面積、細孔径3nm以上の細孔容積、及び平均細孔径が得られるように適宜調整すればよい。カルシウム等の添着量が、少なすぎると水蒸気賦活しても細孔径3nm以上の細孔が十分に発達しないことがある。一方、カルシウム等の添着量が多すぎると、ミクロ孔の細孔容積が著しく減少したり、或いは細孔径3nm以上の細孔が発達しすぎてかさ密度が低下することがある。したがってカルシウム等を添着させた後の炭素原料に含まれるカルシウム等の添着量は好ましくは2700ppm以上、より好ましくは3000ppm以上であり、更に好ましくは4000ppm以上であり、好ましくは20000ppm以下、より好ましくは15000ppm以下である。   The amount of at least one of calcium and potassium (hereinafter referred to as “calcium etc.”) is not particularly limited, and the desired specific surface area and pore diameter are determined depending on the activation conditions, the presence or absence of washing treatment or heat treatment after the activation treatment, and the like. What is necessary is just to adjust suitably so that the pore volume of 3 nm or more and an average pore diameter may be obtained. If the amount of calcium or the like is too small, pores having a pore diameter of 3 nm or more may not be sufficiently developed even when steam is activated. On the other hand, if the amount of calcium or the like is too large, the pore volume of the micropores may be remarkably reduced, or pores having a pore diameter of 3 nm or more may be developed too much to reduce the bulk density. Therefore, the amount of calcium or the like contained in the carbon raw material after the calcium or the like is added is preferably 2700 ppm or more, more preferably 3000 ppm or more, still more preferably 4000 ppm or more, preferably 20000 ppm or less, more preferably 15000 ppm. It is as follows.

カルシウム化合物等含有液を用いて炭素原料由来物にカルシウム化合物等を添着させた場合は、必要に応じて乾燥処理などによって水分を除去してから次の処理をすることが望ましい。   When a calcium compound or the like is added to a carbon raw material derived solution using a calcium compound or the like-containing liquid, it is desirable to remove the moisture by a drying treatment or the like as necessary, and then perform the next treatment.

炭素原料由来物にカルシウム化合物等を添着させた後、該添着状態を維持したまま最後の水蒸気賦活をする。水蒸気賦活は、加熱炉を所定の温度まで加熱した後、水蒸気を供給することにより、賦活処理を行う。   After a calcium compound or the like is attached to the carbon material-derived material, the final steam activation is performed while maintaining the attached state. In the steam activation, the heating furnace is heated to a predetermined temperature, and then activated by supplying steam.

水蒸気賦活条件は特に限定されず、比表面積、細孔径3nm以上の細孔容積、平均細孔径が上記所定の範囲である本発明の活性炭が得られればよい。例えば水蒸気賦活の雰囲気は、窒素、アルゴン、ヘリウムなどの不活性ガス雰囲気で行うことが好ましい。また水蒸気賦活を行う際の温度(炉内温度)は好ましくは400℃以上、より好ましくは450℃以上であり、好ましくは1500℃以下、より好ましくは1300℃以下である。水蒸気賦活を行う際の加熱時間は好ましくは1分以上、より好ましくは5分以上であり、好ましくは10時間以下、より好ましくは5時間以下である。   The water vapor activation conditions are not particularly limited as long as the activated carbon of the present invention having a specific surface area, a pore volume of 3 nm or more in pore diameter, and an average pore diameter in the predetermined range is obtained. For example, the steam activation atmosphere is preferably performed in an inert gas atmosphere such as nitrogen, argon, or helium. Moreover, the temperature at the time of performing steam activation (furnace temperature) is preferably 400 ° C. or higher, more preferably 450 ° C. or higher, preferably 1500 ° C. or lower, more preferably 1300 ° C. or lower. The heating time when performing steam activation is preferably 1 minute or more, more preferably 5 minutes or more, preferably 10 hours or less, more preferably 5 hours or less.

賦活処理中に供給する水蒸気の総量は特に限定されない。水蒸気の供給態様も特に限定されず、例えば水蒸気を希釈せずに供給する態様、水蒸気を不活性ガスで希釈して混合ガスとして供給する態様のいずれも可能である。賦活反応を効率良く進行させるためには、不活性ガスで希釈して供給する態様が好ましい。水蒸気を不活性ガスで希釈して供給する場合、該混合ガス(全圧101.3kPa)中の水蒸気分圧は好ましくは30kPa以上、より好ましくは40kPa以上である。   The total amount of water vapor supplied during the activation process is not particularly limited. The supply mode of the water vapor is not particularly limited, and for example, either a mode in which the water vapor is supplied without dilution or a mode in which the water vapor is diluted with an inert gas and supplied as a mixed gas is possible. In order to advance the activation reaction efficiently, an embodiment in which the reaction is diluted with an inert gas and supplied is preferable. When supplying water vapor diluted with an inert gas, the water vapor partial pressure in the mixed gas (total pressure 101.3 kPa) is preferably 30 kPa or more, more preferably 40 kPa or more.

(その他処理)
カルシウム化合物等の添着状態を維持したまま最後の水蒸気賦活を実施して得られた活性炭は、必要に応じてさらに洗浄処理、熱処理、粉砕処理などを行ってもよい。洗浄処理は、水蒸気賦活後の活性炭を、水(常温水、60℃程度の温水含む)や酸溶液またはアルカリ溶液などの公知の溶媒を用いて行う。活性炭を洗浄することにより、金属不純物や灰分などの不純物を除去できる。
(Other processing)
The activated carbon obtained by performing the last steam activation while maintaining the adhering state of the calcium compound or the like may be further subjected to washing treatment, heat treatment, pulverization treatment and the like as necessary. The washing treatment is performed on the activated carbon after steam activation using a known solvent such as water (normal temperature water, including hot water of about 60 ° C.), an acid solution, or an alkaline solution. By washing the activated carbon, impurities such as metal impurities and ash can be removed.

熱処理は、水蒸気賦活後あるいは洗浄後の活性炭を、さらに不活性ガス雰囲気下で加熱することにより行うことが望ましい。活性炭を熱処理することにより、活性炭に含まれる残留塩素を除去できる。熱処理条件は特に限定されないが、例えば熱処理温度を400℃以上1000℃以下、保持時間を5分以上3時間以下とすることが好ましい。   The heat treatment is desirably performed by further heating the activated carbon after steam activation or washing in an inert gas atmosphere. Residual chlorine contained in the activated carbon can be removed by heat treating the activated carbon. Although the heat treatment conditions are not particularly limited, for example, the heat treatment temperature is preferably 400 ° C. or higher and 1000 ° C. or lower, and the holding time is preferably 5 minutes or longer and 3 hours or shorter.

また粉砕処理は、各種公知の粉砕機を用いて活性炭の平均粒子径を用途に応じて適宜調整してもよい。   In the pulverization treatment, the average particle diameter of the activated carbon may be appropriately adjusted according to the application using various known pulverizers.

なお、本発明では複数回の賦活処理を行ってもよいが、カルシウム化合物等を添着させた状態で水蒸気賦活した後は、さらなる賦活を実施しないことが望ましい。該水蒸気賦活後に更に賦活すると、細孔径が更に大きくなるなど、上記所望の比表面積や細孔径3nm以上の細孔容積、及び平均細孔径が得られないことがある。   In the present invention, the activation treatment may be performed a plurality of times, but it is desirable not to carry out further activation after steam activation in a state where a calcium compound or the like is attached. If the activation is further performed after the activation of the water vapor, the desired specific surface area, the pore volume having a pore diameter of 3 nm or more, and the average pore diameter may not be obtained.

本発明によれば、本発明の上記活性炭を含有する電気二重層キャパシタ用電極材料、及び該電極材料を用いた電気二重層キャパシタ用電極、及び該電極を用いた電気二重層キャパシタが提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the electrode material for electric double layer capacitors containing the said activated carbon of this invention, the electrode for electric double layer capacitors using this electrode material, and the electric double layer capacitor using this electrode can be provided.

電気二重層キャパシタ用電極材料としては、本発明の上記活性炭と、バインダー、好ましくは更に導電性付与剤で構成される。   The electrode material for an electric double layer capacitor is composed of the activated carbon of the present invention and a binder, preferably a conductivity imparting agent.

電気二重層キャパシタ用電極としては、例えば、活性炭、導電性付与剤、およびバインダーを混練して得られる電気二重層キャパシタ用電極材料に、さらに溶媒を添加してペーストを調製し、このペーストをアルミ箔などの集電板に塗布した後、溶媒を乾燥除去したものが挙げられる。   As an electrode for an electric double layer capacitor, for example, a paste is prepared by further adding a solvent to an electrode material for an electric double layer capacitor obtained by kneading activated carbon, a conductivity-imparting agent, and a binder. After applying to current collector plates, such as foil, what removed the solvent by drying is mentioned.

前記電気二重層キャパシタ用電極に使用されるバインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系高分子化合物や、カルボキシメチルセルロース、スチレン−ブタジエンゴム、石油ピッチ、フェノール樹脂などを使用できる。また、導電性付与剤としては、アセチレンブラック、ケッチェンブラックなどを使用できる。   As the binder used for the electrode for the electric double layer capacitor, fluorine-based polymer compounds such as polytetrafluoroethylene and polyvinylidene fluoride, carboxymethyl cellulose, styrene-butadiene rubber, petroleum pitch, phenol resin, and the like can be used. As the conductivity imparting agent, acetylene black, ketjen black, or the like can be used.

電気二重層キャパシタは、一般的には、電極、電解液、およびセパレータを主要構成とし、一対の電極間にセパレータを配置した構造となっており、コイン型、巻回型、積層型等いずれの構成もとることができる。前記電解液としては、例えば、プロピレンカーボネート、エチレンカーボネート、メチルエチルカーボネートなどの有機溶剤に、アミジン塩を溶解した電解液;過塩素酸の4級アンモニウム塩を溶解した電解液;4級アンモニウムやリチウムなどのアルカリ金属の四フッ化ホウ素塩や六フッ化リン塩を溶解した電解液;4級ホスホニウム塩を溶解した電解液などが挙げられる。また、前記セパレータとしては、例えば、セルロース、ガラス繊維、または、ポリエチレンやポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルムが挙げられる。   An electric double layer capacitor generally has an electrode, an electrolytic solution, and a separator as main components, and has a structure in which a separator is disposed between a pair of electrodes. Configuration can be taken. Examples of the electrolytic solution include an electrolytic solution in which an amidine salt is dissolved in an organic solvent such as propylene carbonate, ethylene carbonate, and methyl ethyl carbonate; an electrolytic solution in which a quaternary ammonium salt of perchloric acid is dissolved; quaternary ammonium or lithium An electrolytic solution in which an alkali metal boron tetrafluoride salt or phosphorous hexafluoride salt is dissolved; an electrolytic solution in which a quaternary phosphonium salt is dissolved may be mentioned. Examples of the separator include cellulose, glass fiber, or a nonwoven fabric, cloth, or microporous film mainly composed of polyolefin such as polyethylene or polypropylene.

本発明の電気二重層キャパシタは、各種携帯機器用電源、家電製品待機電源、光通信UPSおよび電気自動車動力電源などに利用できる。また本発明の活性炭は吸着容量および吸着速度に優れているため、ガス吸着剤、浄水用吸着剤、排水浄化用吸着剤などの吸着剤に利用できる。   The electric double layer capacitor of the present invention can be used for various portable device power supplies, home appliance standby power supplies, optical communication UPSs, and electric vehicle power supplies. In addition, since the activated carbon of the present invention is excellent in adsorption capacity and adsorption rate, it can be used as an adsorbent such as a gas adsorbent, an adsorbent for water purification, and an adsorbent for wastewater purification.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

活性炭No.1
原料:ヤシ殻炭化物を室温に保持した0.83%塩化カルシウム(CaCl2)水溶液に浸漬し、1時間撹拌した後、ろ過し、ろ過残渣を110℃で乾燥させて、ヤシ殻炭化物にカルシウム化合物が添着した賦活原料(カルシウム添着量は5034ppm)を得た。次いで賦活原料をロータリーキルン炉に投入し、窒素流通下(1L/分)、900℃まで昇温(昇温速度:10℃/分)した後、水蒸気(水蒸気分圧:50kPa)を窒素と共に供給し、900℃で4.0時間保持し、カルシウム化合物の添着状態を維持したまま水蒸気賦活を行った。水蒸気賦活後、酸洗処理(塩酸濃度5.25%)して水蒸気賦活炭から金属を除去した後、0.25%炭酸水素アンモニウム、および60℃の温水で洗浄を行った。その後、マッフル炉に投入し、窒素流通下(2L/分)、760℃まで昇温(昇温速度:10℃/分)した後、760℃で2時間保持する熱処理を行った。熱処理後、ジェットミル粉砕機で粉砕し、活性炭No.1を作製した。
Activated carbon No. 1
Raw material: Immerse in 0.83% calcium chloride (CaCl 2 ) aqueous solution holding coconut shell carbide at room temperature, stir for 1 hour, filter, dry the filtration residue at 110 ° C., and add calcium compound to coconut shell carbide Activated material (calcium added amount is 5034 ppm) was obtained. Next, the activation raw material was put into a rotary kiln furnace, heated to 900 ° C. (temperature increase rate: 10 ° C./min) under nitrogen flow (1 L / min), and then steam (water vapor partial pressure: 50 kPa) was supplied together with nitrogen. This was kept at 900 ° C. for 4.0 hours, and steam activation was carried out while maintaining the calcium compound adhering state. After steam activation, the metal was removed from the steam activated charcoal by pickling treatment (hydrochloric acid concentration 5.25%), and then washed with 0.25% ammonium hydrogen carbonate and 60 ° C. warm water. After that, it was put into a muffle furnace, heated to 760 ° C. under a nitrogen flow (2 L / min) (heating rate: 10 ° C./min), and then heat-treated at 760 ° C. for 2 hours. After the heat treatment, it was pulverized with a jet mill pulverizer, and activated carbon No. 1 was produced.

活性炭No.2〜4
原料をヤシ殻炭化物からヤシ殻水蒸気賦活炭(MCET社製、「Z10−30」)に変更した以外は、活性炭No.1と同様にしてヤシ殻水蒸気賦活炭にカルシウム化合物が添着した賦活原料を得た(添着量は表1に記載)。水蒸気賦活時の保持時間を2.5時間(活性炭No.2)、3.0時間(活性炭No.3)、4.0時間(活性炭No.4)に変更した以外は、活性炭No.1と同様にして活性炭No.2〜4を作製した。
Activated carbon No. 2-4
Except for changing the raw material from coconut shell charcoal to coconut shell steam activated charcoal (manufactured by MCET, “Z10-30”), activated carbon No. In the same manner as in No. 1, an activation raw material in which a calcium compound was attached to coconut shell steam activated charcoal was obtained (the amount of attachment is described in Table 1). Except for changing the retention time during steam activation to 2.5 hours (activated carbon No. 2), 3.0 hours (activated carbon No. 3), and 4.0 hours (activated carbon No. 4), activated carbon No. In the same manner as in No. 1, activated carbon no. 2 to 4 were produced.

活性炭No.5
活性炭No.3と同様にして水蒸気賦活、洗浄、及び熱処理を行った後、ジルコニアボール(直径3mm)と純水と共に粉砕容器(直径13cm×21cm)に入れ、振動ボールミルで平均粒子径(D50)が3.0μmとなるように粉砕した活性炭No.5を作製した。
Activated carbon No. 5
Activated carbon No. After performing steam activation, washing, and heat treatment in the same manner as in No. 3, the particles are placed in a pulverization vessel (diameter 13 cm × 21 cm) together with zirconia balls (diameter 3 mm) and pure water, and the average particle size (D50) is 3. Activated carbon No. 1 pulverized to 0 μm. 5 was produced.

活性炭No.6
水蒸気賦活時の保持時間を2.0時間に変更した以外は活性炭No.2と同様にして活性炭No.6を作製した。
Activated carbon No. 6
Activated carbon No. 1 was changed except that the retention time during steam activation was changed to 2.0 hours. In the same manner as in No. 2, activated carbon no. 6 was produced.

活性炭No.7
原料:ヤシ殻水蒸気賦活炭(MCET社製、「Z10−30」)をロータリーキルン炉に投入し、窒素流通下(1L/分)、900℃まで昇温(昇温速度:10℃/分)した後、水蒸気(水蒸気分圧:50kPa)を窒素と共に供給し、900℃で2.0時間保持して水蒸気賦活を行った。水蒸気賦活後、酸洗処理(塩酸濃度5.25%)して水蒸気賦活炭から金属を除去した後、0.25%炭酸水素アンモニウム、および60℃の温水で洗浄を行った。その後、マッフル炉に投入し、窒素流通下(2L/分)、760℃まで昇温(昇温速度:10℃/分)した後、760℃で2時間保持する熱処理を行った。熱処理後、ジェットミル粉砕機で粉砕し、活性炭No.7を作製した。
Activated carbon No. 7
Raw material: Coconut shell steam activated charcoal (manufactured by MCET, “Z10-30”) was put into a rotary kiln furnace and heated to 900 ° C. under a nitrogen flow (1 L / min) (temperature increase rate: 10 ° C./min). Thereafter, steam (water vapor partial pressure: 50 kPa) was supplied together with nitrogen, and kept at 900 ° C. for 2.0 hours for steam activation. After steam activation, the metal was removed from the steam activated charcoal by pickling treatment (hydrochloric acid concentration 5.25%), and then washed with 0.25% ammonium hydrogen carbonate and 60 ° C. warm water. After that, it was put into a muffle furnace, heated to 760 ° C. under a nitrogen flow (2 L / min) (heating rate: 10 ° C./min), and then heat-treated at 760 ° C. for 2 hours. After the heat treatment, it was pulverized with a jet mill pulverizer, and activated carbon No. 7 was produced.

活性炭No.8、9
水蒸気賦活時の保持時間を2.5時間(活性炭No.8)、3.0時間(活性炭No.9)に変更した以外は活性炭No.7と同様にして活性炭No.8、9を作製した。
Activated carbon No. 8, 9
Except for changing the retention time during steam activation to 2.5 hours (activated carbon No. 8) and 3.0 hours (activated carbon No. 9), activated carbon No. In the same manner as in No. 7, activated carbon No. 8 and 9 were produced.

活性炭No.10
特許文献2の製造例2を模擬した活性炭を作製した。具体的には、原料:紙フェノール樹脂積層板炭化物(平均粒子径:5mm〜15mm)100gをロータリーキルン炉に投入し、窒素流通下(1L/分)、900℃まで昇温(昇温速度:10℃/分)した後、水蒸気(水蒸気分圧:71kPa)を窒素とともに供給し、900℃で3.0時間保持して水蒸気賦活を行った。水蒸気賦活後、酸洗処理(塩酸濃度5.25%)して水蒸気賦活炭から金属を除去した後、60℃の温水で洗浄を行った。その後、ジェットミル粉砕機で粉砕し、活性炭No.10を作製した。
Activated carbon No. 10
Activated carbon imitating Production Example 2 of Patent Document 2 was produced. Specifically, raw material: 100 g of paper phenolic resin laminate carbon carbide (average particle size: 5 mm to 15 mm) is put into a rotary kiln furnace and heated to 900 ° C. under nitrogen flow (1 L / min) (temperature increase rate: 10). Then, steam (water vapor partial pressure: 71 kPa) was supplied together with nitrogen and kept at 900 ° C. for 3.0 hours for steam activation. After steam activation, the metal was removed from the steam activated charcoal by pickling treatment (hydrochloric acid concentration 5.25%), and then washed with hot water at 60 ° C. Then, it grind | pulverized with a jet mill grinder and activated carbon No.1. 10 was produced.

活性炭No.11
水蒸気賦活時の保持時間を3.5時間に変更した以外は、活性炭No.10と同様にして活性炭No.11を作製した。
Activated carbon No. 11
Except for changing the retention time during steam activation to 3.5 hours, activated carbon No. In the same manner as in No. 10, activated carbon no. 11 was produced.

1.カルシウム添着量
磁性るつぼに活性炭を約5gを入れ、大気中、815℃で24時間加熱して灰化した後、灰分量を測定すると共に、蛍光X線分析装置(Rigaku社製、「ZSX100e」)を用いて灰分中のカルシウム量を算出し、カルシウム添着量として「Ca添着量」欄に記載した。なお、活性炭No.7〜11はカルシウムを添着していないため、原料由来のカルシウム量である。
1. Calcium deposition amount About 5 g of activated carbon is put in a magnetic crucible, and after ashing by heating at 815 ° C. for 24 hours in the atmosphere, the amount of ash is measured and an X-ray fluorescence analyzer (manufactured by Rigaku, “ZSX100e”) Was used to calculate the calcium content in the ash, and the calcium content was listed in the “Ca content” column. In addition, activated carbon No. Since 7-11 do not impregnate calcium, the amount of calcium derived from the raw material.

2.比表面積、全細孔容積
活性炭0.2gを250℃にて真空加熱した後、窒素吸着装置(マイクロメリティック社製、「ASAP−2400」)を用いて、窒素吸着等温線を求め、BET法により比表面積(m2/g)を求めた。また窒素吸着等温線から相対圧P/P0(P:吸着平衡にある吸着質の気体圧力、P0:吸着温度における吸着質の飽和蒸気圧)が0.93における細孔直径30nmまでの窒素吸着量から全細孔容積(cm3/g)を算出した。
2. Specific surface area and total pore volume After 0.2 g of activated carbon was heated under vacuum at 250 ° C., a nitrogen adsorption isotherm was determined using a nitrogen adsorption device (“ASAP-2400” manufactured by Micromeritic Co., Ltd.), and the BET method Was used to determine the specific surface area (m 2 / g). Nitrogen from the nitrogen adsorption isotherm up to a pore diameter of 30 nm when the relative pressure P / P 0 (P: gas pressure of the adsorbate in adsorption equilibrium, P 0 : saturated vapor pressure of the adsorbate at the adsorption temperature) is 0.93. The total pore volume (cm 3 / g) was calculated from the adsorption amount.

3.各細孔径の細孔容積
吸着等温線をBJH法により解析し、細孔径3nm以上の細孔容積、及び全細孔容積に対する細孔径3nm以上の細孔容積の比率を算出した。
3. The pore volume adsorption isotherm of each pore diameter was analyzed by the BJH method, and the pore volume having a pore diameter of 3 nm or more and the ratio of the pore volume having a pore diameter of 3 nm or more to the total pore volume were calculated.

細孔径3nm以上の細孔容積(cm3/g)=全細孔容積(cm3/g)−細孔径3nm未満の細孔容積(cm3/g)・・・(1)
細孔径3nm以上の細孔容積(%)の比率=[3nm以上の細孔容積(cm3/g)/全細孔容積(cm3/g)]×100
なお、全細孔容積とは30nm以下の細孔容積であり、細孔径3nm以上の細孔容積とは、細孔径3〜30nmの細孔容積である。
Pore volume with a pore diameter of 3 nm or more (cm 3 / g) = total pore volume (cm 3 / g) −pore volume with a pore diameter of less than 3 nm (cm 3 / g) (1)
Ratio of pore volume (%) having a pore diameter of 3 nm or more = [pore volume of 3 nm or more (cm 3 / g) / total pore volume (cm 3 / g)] × 100
The total pore volume is a pore volume of 30 nm or less, and the pore volume of a pore diameter of 3 nm or more is a pore volume having a pore diameter of 3 to 30 nm.

4.平均細孔径
活性炭の細孔をシリンダー状と仮定し、以下の式に基づいて平均細孔径を算出した。
平均細孔径(nm)=(4×全細孔容積(cm3/g))/比表面積(m2/g)×1,000・・・(6)
4). Average pore diameter The pore diameter of the activated carbon was assumed to be cylindrical, and the average pore diameter was calculated based on the following formula.
Average pore diameter (nm) = (4 × total pore volume (cm 3 / g)) / specific surface area (m 2 / g) × 1,000 (6)

5.平均粒子径(50D)
レーザー回折式粒子径分布測定装置(島津製作所社製、「SALD−2000」)を用いて活性炭を測定し、粒度分布の測定結果から体積基準の累積頻度曲線を求め、累積頻度50%における粒子径を平均粒子径とした。
5. Average particle size (50D)
Activated carbon was measured using a laser diffraction type particle size distribution measuring device (Salazu 2000, manufactured by Shimadzu Corporation), a volume-based cumulative frequency curve was obtained from the particle size distribution measurement results, and the particle size at a cumulative frequency of 50%. Was defined as the average particle size.

6.電気二重層キャパシタ評価
6−1.電気二重層キャパシタの製造
作製した活性炭No.1〜11を用いて電気二重層キャパシタを製造した。具体的には、活性炭に、ポリテトラフルオロエチレン(PTFE)粉末とアセチレンブラックとを、活性炭:PTFE:アセチレンブラック=8:1:1(質量比)になるように混合し、ペースト状になるまで混練した。ついで、ミニブレンダーで粉砕し、500μmのステンレス鋼製篩で篩って粒度を揃えた。次に、直径2.54cmの金型を用い、プレス後の厚みが0.5mmになるように仕込み量を調節し、50.4MPaの圧力でプレス成形して、キャパシタ用電極を作成した。
6). Electric double layer capacitor evaluation 6-1. Production of electric double layer capacitor 1 to 11 were used to manufacture electric double layer capacitors. Specifically, polytetrafluoroethylene (PTFE) powder and acetylene black are mixed with activated carbon so as to be activated carbon: PTFE: acetylene black = 8: 1: 1 (mass ratio), until a paste is obtained. Kneaded. Subsequently, it grind | pulverized with the mini blender and sieved with the stainless steel sieve of 500 micrometers, and the particle size was arrange | equalized. Next, using a metal mold with a diameter of 2.54 cm, the amount of charge was adjusted so that the thickness after pressing was 0.5 mm, and press molding was performed at a pressure of 50.4 MPa to prepare a capacitor electrode.

得られたキャパシタ用電極を真空条件下、200℃、1時間の条件で乾燥した後、窒素ガスを流通させたグローブボックス内で電解液(1Mテトラエチルアンモニウムテトラフルオロボレートのプロピレンカーボネート溶液)を電極に真空含浸させた。この電極を使用して図9に示すように電気二重層キャパシタを組み立てた。図9に示す電気二重層キャパシタは、前記電解液を含浸させたセパレータ(Celgard社製、「セルガード(登録商標)#3501」)1を前記キャパシタ用電極2で挟み、電極をOリング3で囲繞した後、さらに集電板としてのアルミニウム板4で挟んで作製した。   The obtained capacitor electrode was dried under vacuum conditions at 200 ° C. for 1 hour, and then an electrolyte (1M tetraethylammonium tetrafluoroborate propylene carbonate solution) was used as an electrode in a glove box in which nitrogen gas was circulated. Vacuum impregnated. Using this electrode, an electric double layer capacitor was assembled as shown in FIG. The electric double layer capacitor shown in FIG. 9 has a separator (Celgard, “Celgard (registered trademark) # 3501”) 1 impregnated with the electrolytic solution sandwiched between the capacitor electrodes 2, and the electrodes are surrounded by an O-ring 3. Then, it was further sandwiched between aluminum plates 4 as current collector plates.

6−2.静電容量
充放電装置(楠本化成社製、「ETAC(登録商標) Ver.4.4」)の充放電端子を電気二重層キャパシタの集電板に接続し、集電板間電圧が2.5Vになるまで40mAの定電流充電を行い、続けて、2.5Vの定電圧で30分間充電を行った。充電後、定電流(放電電流10mA)で電気二重層キャパシタの放電を行った。このとき、集電板間電圧がV1、V2となるまでに要した放電時間t1、t2を測定し、下記式(1)を用いて静電容量を求めた。得られた静電容量を、キャパシタ用電極における電極材料層中の活性炭質量で除することにより質量基準静電容量(F/g)を算出し、キャパシタ用電極における電極材料層の総体積で除することにより体積基準静電容量(F/cm3)を算出した。また、下記式(2)を用いて内部抵抗を求めた。なお、静電容量および内部抵抗の測定は、25℃および−30℃の温度下で行った。
6-2. The charging / discharging terminal of the electrostatic capacity charging / discharging device (“ETAC (registered trademark) Ver. 4.4” manufactured by Enomoto Kasei Co., Ltd.) is connected to the current collecting plate of the electric double layer capacitor. The battery was charged with a constant current of 40 mA until it reached 5 V, and then charged with a constant voltage of 2.5 V for 30 minutes. After charging, the electric double layer capacitor was discharged with a constant current (discharge current 10 mA). At this time, the discharge times t1 and t2 required until the voltage between the current collector plates became V1 and V2 were measured, and the capacitance was obtained using the following formula (1). The mass-based capacitance (F / g) is calculated by dividing the obtained capacitance by the mass of activated carbon in the electrode material layer in the capacitor electrode, and divided by the total volume of the electrode material layer in the capacitor electrode. Thus, a volume-based capacitance (F / cm 3 ) was calculated. Moreover, internal resistance was calculated | required using following formula (2). The capacitance and internal resistance were measured at 25 ° C. and −30 ° C.

式中、
I:10(mA)
t1:電気二重層キャパシタ電圧がV1となるまでに要した放電時間(sec)
t2:電気二重層キャパシタ電圧がV2となるまでに要した放電時間(sec)
V0:放電開始電圧
V1:2.0(V)
V2:1.5(V)
Where
I: 10 (mA)
t1: Discharge time required for the electric double layer capacitor voltage to reach V1 (sec)
t2: Discharge time (sec) required for the electric double layer capacitor voltage to reach V2
V0: discharge start voltage V1: 2.0 (V)
V2: 1.5 (V)

表1に示すように、本発明の要件を満足する活性炭No.1〜5を用いた電気二重層キャパシタは、常温(25℃)、及び低温(−30℃)での静電容量、内部抵抗(これらをまとめた「キャパシタ特性」)ということがある)共にCaを添着しない場合と比べて優れた結果を示した。特に活性炭No.1〜5は25℃の静電容量が11.1F/cm3以上、−30℃の内部抵抗が27Ω以下を達成しており、電気二重層キャパシタとして好適である。一方、本発明の要件を満足しなかった活性炭No.6〜11を用いた電気二重層キャパシタは、キャパシタ特性が劣っていた。 As shown in Table 1, activated carbon No. 1 satisfying the requirements of the present invention. The electric double layer capacitor using 1 to 5 has a capacitance at room temperature (25 ° C.) and a low temperature (−30 ° C.) and an internal resistance (sometimes referred to as “capacitor characteristics”). Excellent results were obtained compared to the case of no attachment. In particular, activated carbon No. Nos. 1 to 5 have a capacitance of 25 ° C. of 11.1 F / cm 3 or more and an internal resistance of −30 ° C. of 27Ω or less, and are suitable as electric double layer capacitors. On the other hand, activated carbon No. which did not satisfy the requirements of the present invention. The electric double layer capacitor using 6-11 was inferior in capacitor characteristics.

また一般に−30℃の低温域においては電解液の粘度、及び抵抗の増加によりイオン移動度が低下するため低温静電容量の減少、及び低温内部抵抗が上昇する傾向があるが、本発明の活性炭No.1〜5は低温静電容量と低温内部抵抗のバランスが良好であった。   In general, in the low temperature range of −30 ° C., the ion mobility decreases due to the increase in the viscosity and resistance of the electrolyte solution. Therefore, the low temperature capacitance tends to decrease and the low temperature internal resistance tends to increase. No. Nos. 1 to 5 had a good balance between the low-temperature capacitance and the low-temperature internal resistance.

特に活性炭No.6〜9は活性炭No.1〜5と比べて、図2に示すように細孔径3nm以上の細孔容積が小さく、更に図3に示すように全細孔容積に対して細孔径3nm以上の細孔容積の比率も低いことがわかる。また図4に示すようにNo.6〜9は平均細孔径が小さかった。これは水蒸気賦活時にカルシウム化合物を添着しなかったか(活性炭No.7〜9)、カルシウム化合物を添着した場合であっても水蒸気賦活時の加熱時間が短かった(活性炭No.6)ためであると考えられる。そして細孔径3nm以上の細孔容積が小さいNo.6〜9は体積あたりの静電容量は大きいが(図6)、低温内部抵抗も高かった(図7)。そのため、図5に示すように活性炭No.6〜9は、静電容量は大きいが、低温内部抵抗も大きく、両特性のバランスが悪かった。   In particular, activated carbon No. 6 to 9 are activated carbon Nos. Compared with 1 to 5, the pore volume with a pore diameter of 3 nm or more is small as shown in FIG. 2, and the ratio of the pore volume with a pore diameter of 3 nm or more to the total pore volume is also low as shown in FIG. I understand that. As shown in FIG. 6-9 had a small average pore diameter. This is because the calcium compound was not attached at the time of steam activation (activated carbon No. 7 to 9), or even when the calcium compound was added, the heating time at the time of steam activation was short (activated carbon No. 6). Conceivable. No. 1 having a small pore volume with a pore diameter of 3 nm or more. 6 to 9 had a large capacitance per volume (FIG. 6), but also had a low temperature internal resistance (FIG. 7). Therefore, as shown in FIG. Nos. 6 to 9 had a large electrostatic capacity but also a large low-temperature internal resistance, and the balance of both characteristics was poor.

一方、活性炭No.10、11は活性炭No.1〜5と比べて、図2に示すように細孔径3nm以上の細孔容積が大きく、更に図3に示すように全細孔容積に対して細孔径3nm以上の細孔容積の比率も高いことがわかる。また図4に示すようにNo.10、11は平均細孔径も大きかった。そして細孔径3nm以上の細孔容積が大きいNo.10〜11は静電容量は小さいが(図6)、低温内部抵抗も低かった(図7)。そのため、図5に示すように活性炭No.10、11は、静電容量は小さいが、低温内部抵抗も小さく、両特性のバランスが悪かった。   On the other hand, activated carbon No. 10 and 11 are activated carbon Nos. Compared with 1 to 5, the pore volume with a pore diameter of 3 nm or more is large as shown in FIG. 2, and the ratio of the pore volume with a pore diameter of 3 nm or more to the total pore volume is also high as shown in FIG. I understand that. As shown in FIG. 10 and 11 also had a large average pore diameter. No. 1 having a pore volume of 3 nm or more and a large pore volume. 10 to 11 had a small capacitance (FIG. 6), but also had a low low temperature internal resistance (FIG. 7). Therefore, as shown in FIG. Nos. 10 and 11 had a small electrostatic capacity but also a low internal resistance at low temperature, and the balance between both characteristics was poor.

また図8に示すように活性炭No.1、2の細孔径3nm未満の細孔容積は、活性炭No.6よりも小さいが、活性炭No.10よりも大きかった。また活性炭No.1、2の細孔径3nm以上の細孔容積は、活性炭No.6よりも大きかったが、活性炭No.10よりも小さかった。すなわち、活性炭No.1、2と活性炭No.6からは、水蒸気賦活時の加熱処理時間を適切にコントロールすることで、細孔径3nm未満の細孔容積の減少を抑制しつつ、細孔径3nm以上の細孔が発達することがわかる。一方、活性炭No.1、2と活性炭No.10からは、原料を適切に選択すると共に、Ca添着量が所定の範囲となるようにコントロールすることで上記所定の効果を奏する細孔分布にできる。   Further, as shown in FIG. The pore volume of pore diameters of less than 3 nm for activated carbon No. Although smaller than 6, activated carbon no. It was bigger than 10. Activated carbon No. The pore volume of the pore diameters of 1 and 2 of 3 nm or more is activated carbon No. The activated carbon no. It was less than 10. That is, activated carbon No. 1, 2 and activated carbon No. From FIG. 6, it can be seen that pores with a pore diameter of 3 nm or more develop while suppressing a decrease in pore volume with a pore diameter of less than 3 nm by appropriately controlling the heat treatment time during steam activation. On the other hand, activated carbon No. 1, 2 and activated carbon No. From No. 10, it is possible to obtain a pore distribution exhibiting the above-mentioned predetermined effect by appropriately selecting the raw materials and controlling the Ca adhering amount to be within a predetermined range.

1:セパレータ
2:キャパシタ用電極
3:Oリング
4:アルミニウム板
5:ポリテトラフルオロエチレン板
6:ステンレス鋼板
1: Separator 2: Electrode for capacitor 3: O-ring 4: Aluminum plate 5: Polytetrafluoroethylene plate 6: Stainless steel plate

Claims (10)

BET比表面積が1450〜1950m2/g、
細孔径3nm以上の細孔容積が0.09〜0.35cm3/g、且つ
平均細孔径が2.05〜2.60nmであることを特徴とする活性炭。
BET specific surface area of 1450-1950 m 2 / g,
An activated carbon having a pore volume of 3 nm or more and a pore volume of 0.09 to 0.35 cm 3 / g and an average pore diameter of 2.05 to 2.60 nm.
全細孔容積に対して前記細孔径3nm以上の細孔容積の比率が12〜39%である請求項1に記載の活性炭。   The activated carbon according to claim 1, wherein the ratio of the pore volume having a pore diameter of 3 nm or more to the total pore volume is 12 to 39%. 平均粒子径が10μm以下である請求項1または2に記載の活性炭。   The activated carbon according to claim 1 or 2, wherein the average particle size is 10 µm or less. 前記活性炭は粒状、粉、顆粒状、球状、塊状、及び板状よりなる群から選ばれるものである請求項1〜3のいずれかに記載の活性炭。 The activated carbon granules, powdery, granular, spherical, agglomerated, and activated carbon according to any one of claims 1 to 3 are those selected from the group consisting of plate-shaped. 前記活性炭の全細孔容積は0.90〜3.0cmThe total pore volume of the activated carbon is 0.90 to 3.0 cm. 3 /gである請求項1〜4のいずれかに記載の活性炭。The activated carbon according to any one of claims 1 to 4, which is / g. 請求項1〜のいずれか一項に記載の活性炭を含有することを特徴とする電気二重層キャパシタ用電極材料。 An electrode material for an electric double layer capacitor comprising the activated carbon according to any one of claims 1 to 5 . 請求項に記載の電極材料を用いたことを特徴とする電気二重層キャパシタ用電極。 An electrode for an electric double layer capacitor, wherein the electrode material according to claim 6 is used. 請求項に記載の電極を用いたことを特徴とする電気二重層キャパシタ。 An electric double layer capacitor comprising the electrode according to claim 7 . 粒状、粉状、顆粒状、球状、塊状、及び板状よりなる群から選ばれる炭素原料を炭化し、次いで1回以上水蒸気賦活することで炭素原料由来物を順次処理することとし、
最後の水蒸気賦活を実施するまでに炭素原料由来物にカルシウム化合物、およびカリウム化合物の少なくとも一方を添着させておき、添着状態を維持したまま前記最後の水蒸気賦活を実施すると共に、前記添着後の賦活処理は水蒸気賦活であることを特徴とする請求項1〜5のいずれかに記載の活性炭の製造方法。
Carbonizing a carbon raw material selected from the group consisting of granular, powdery, granular, spherical, massive, and plate-like, and then sequentially treating the carbon raw material-derived material by steam activation one or more times,
Before the last steam activation, at least one of a calcium compound and a potassium compound is attached to the carbon material-derived material, and the last steam activation is performed while maintaining the attached state, and the activation after the attachment The method for producing activated carbon according to any one of claims 1 to 5, wherein the treatment is steam activation .
前記炭素原料に前記カルシウム化合物、および前記カリウム化合物の少なくとも一方を添着させ、次いで炭化した後、または
前記炭素原料を炭化し、次いで前記カルシウム化合物、および前記カリウム化合物の少なくとも一方を添着させた後、あるいは
前記炭素原料を炭化した後、水蒸気賦活し、次いで前記カルシウム化合物、および前記カリウム化合物の少なくとも一方を添着させた後、
前記最後の水蒸気賦活する請求項に記載の活性炭の製造方法。
After attaching at least one of the calcium compound and the potassium compound to the carbon raw material and then carbonizing, or after carbonizing the carbon raw material and then attaching at least one of the calcium compound and the potassium compound, Alternatively, after carbonizing the carbon raw material, steam activation, and then adhering at least one of the calcium compound and the potassium compound,
The method for producing activated carbon according to claim 9 , wherein the last steam activation is performed.
JP2016060129A 2016-03-24 2016-03-24 Activated carbon, method for producing the same, and electric double layer capacitor using the activated carbon Active JP6371787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016060129A JP6371787B2 (en) 2016-03-24 2016-03-24 Activated carbon, method for producing the same, and electric double layer capacitor using the activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016060129A JP6371787B2 (en) 2016-03-24 2016-03-24 Activated carbon, method for producing the same, and electric double layer capacitor using the activated carbon

Publications (2)

Publication Number Publication Date
JP2017171538A JP2017171538A (en) 2017-09-28
JP6371787B2 true JP6371787B2 (en) 2018-08-08

Family

ID=59973769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016060129A Active JP6371787B2 (en) 2016-03-24 2016-03-24 Activated carbon, method for producing the same, and electric double layer capacitor using the activated carbon

Country Status (1)

Country Link
JP (1) JP6371787B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7129429B2 (en) * 2017-12-27 2022-09-01 株式会社クラレ Activated carbon and its production method
JP7129428B2 (en) * 2017-12-27 2022-09-01 株式会社クラレ Activated carbon and its manufacturing method
KR102639869B1 (en) 2018-07-20 2024-02-22 주식회사 쿠라레 Carbonaceous material, manufacturing method thereof, electrode active material for electrochemical device, electrode for electrochemical device, and electrochemical device
CN111115632B (en) * 2020-01-07 2021-07-02 张丽燕 Activated carbon production and processing equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089119A (en) * 1999-04-30 2001-04-03 Adchemco Corp Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material
JP4503134B2 (en) * 2000-05-09 2010-07-14 三菱化学株式会社 Activated carbon for electric double layer capacitors
JP2003104710A (en) * 2001-09-27 2003-04-09 Kyocera Corp Solid state activated carbon and its producing method and electric double-layer capacitor using it and its producing method
JP2008141060A (en) * 2006-12-04 2008-06-19 Kansai Coke & Chem Co Ltd Activated carbon and method of manufacturing the same
JP5202460B2 (en) * 2009-07-17 2013-06-05 関西熱化学株式会社 Activated carbon and electric double layer capacitor using the activated carbon
JP5271851B2 (en) * 2009-08-28 2013-08-21 関西熱化学株式会社 Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP5931326B2 (en) * 2010-02-23 2016-06-08 カルゴンカーボンジャパン株式会社 Activated carbon for electric double layer capacitors
JP5886383B2 (en) * 2014-07-25 2016-03-16 関西熱化学株式会社 Activated carbon with excellent adsorption performance and method for producing the same

Also Published As

Publication number Publication date
JP2017171538A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP5202460B2 (en) Activated carbon and electric double layer capacitor using the activated carbon
JP5271851B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP5027849B2 (en) Method for producing activated carbon, and electric double layer capacitor using activated carbon obtained by the method
CN102460620B (en) Carbon material for electric double layer capacitor electrode and method for producing same
JP6371787B2 (en) Activated carbon, method for producing the same, and electric double layer capacitor using the activated carbon
JP5770550B2 (en) Activated carbon and manufacturing method thereof
JP2001284188A (en) Manufacturing method of carbon material for electric double-layer capacitor electrode, and manufacturing method of electric double-layer capacitor using the carbon material
JP2012101948A (en) Method for producing activated carbon
JP7061107B2 (en) Carbonaceous materials and their manufacturing methods
KR102113719B1 (en) Activated carbon and its manufacturing method
JP7007810B2 (en) A carbonaceous material, and an electrode material for an electric double layer capacitor, an electrode for an electric double layer capacitor, and an electric double layer capacitor containing the carbonaceous material.
TWI751290B (en) Carbonaceous material and its manufacturing method, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor containing the carbon material
JP2023169201A (en) Activated carbon for power storage device electrode
JP5390790B2 (en) Method for producing mesopore activated carbon
JP2015151324A (en) Activated carbon and method for producing the same
KR101525534B1 (en) Alkali-activated carbon and electrode for supercapacitor using the samer
JP6394188B2 (en) Method for producing porous carbon material
JP5718423B2 (en) Electrode material for electric double layer capacitor, electrode for electric double layer capacitor, and electric double layer capacitor
Nor et al. Supercapacitor activated carbon electrode from composite of green monoliths of KOH-treated pre-carbonized oil palm empty fruit bunches and HNO3-treated graphite
JP2010215474A (en) Producing method of active carbon and electrical double layer capacitor using active carbon obtained by the method
JP6597754B2 (en) Method for producing activated carbon
JP5367974B2 (en) Electrode material for electric double layer capacitor and additive for the electrode material
WO2021131907A1 (en) Carbonaceous material, method for producing same, electrode active material for electric double layer capacitors, electrode for electric double layer capacitors, and electric double layer capacitor
JP2004059387A (en) Production method for activated carbon, polarizable electrode and electric double layer capacitor
Ishak et al. Effects of activation time on the performance of supercapacitor binderless activated carbon electrodes derived from fibers of oil palm empty fruit bunches

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180713

R150 Certificate of patent or registration of utility model

Ref document number: 6371787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250