JP2004059387A - Production method for activated carbon, polarizable electrode and electric double layer capacitor - Google Patents
Production method for activated carbon, polarizable electrode and electric double layer capacitor Download PDFInfo
- Publication number
- JP2004059387A JP2004059387A JP2002221850A JP2002221850A JP2004059387A JP 2004059387 A JP2004059387 A JP 2004059387A JP 2002221850 A JP2002221850 A JP 2002221850A JP 2002221850 A JP2002221850 A JP 2002221850A JP 2004059387 A JP2004059387 A JP 2004059387A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- alkali metal
- treatment
- metal hydroxide
- electric double
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Carbon And Carbon Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、活性炭の製造方法、分極性電極及び電気二重層キャパシタに関する。本発明の活性炭は高密度で体積あたりの静電容量が大きいので、分極性電極に成形して電気二重層キャパシタに好適に使用される。
【0002】
【従来の技術】
近年、携帯電話やノート型パソコンなどの様な新しい電子機器が急速に普及し、メモリーバックアップ用やモーター等の補助電源として電気二重層キャパシタが注目されている。特に、高比表面積を持つ活性炭を電極材に用いた電気二重層キャパシタが多く開発されている。これまで、電気二重層キャパシタ用の活性炭として椰子殻、樹脂、石炭、ピッチなどを水蒸気や炭酸ガスなどの酸性ガス雰囲気下で賦活して得た活性炭が多く使用されている。また、炭素質材料をKOHなどのアルカリ金属水酸化物を使用して賦活(アルカリ賦活)することも行われるようになっている。中でもアルカリ賦活により得られる活性炭は、比表面積が相対的に大きく、高い静電容量を示すので、電気二重層キャパシタの分極性電極として期待されている(例えば、WO91/12203、特開平10−199767号公報など)。
【0003】
ところで、近年の電子機器の小型軽量化に伴い、使用される電気二重層キャパシタに対しては小型大容量化が要求される傾向にあるため、その分極性電極となる活性炭に対しても今まで以上に高い静電容量を示すことが求められている。このため、活性炭を従来と同様の手法で更に多孔化し高比表面積化することが考えられるが、重量あたりの静電容量の向上は期待できるものの、活性炭密度が低下するために単位体積あたりの静電容量向上は期待できない。また、アルカリ金属水酸化物の使用量や反応温度を制御し、アルカリ賦活の進行を抑制することにより活性炭密度を増大させることが可能であるが、結果的に単位重量あたりの静電容量が低下するため、やはり単位体積あたりの静電容量の向上は期待できない。
【0004】
これを解決するものとして、炭素質原料をアルカリ賦活した後、アルカリ金属化合物を除去し、さらに熱処理することにより活性炭を製造することが提案されている(特開平9−213590号公報)。
【0005】
【発明が解決しようとする課題】
しかしながら、特開平9−213590号公報に記載の方法に従って、活性炭密度を向上させるために、炭素質原料のアルカリ賦活処理物からアルカリ金属化合物を除去したものに熱処理を施すと、単位重量あたりの静電容量が低下し、結果的に単位体積あたりの静電容量向上がせいぜい数%程度に過ぎないという問題があった。
【0006】
本発明の目的は、賦活度を変えたり、通常の熱処理を加える方法によらず、単位重量あたりの静電容量を低下させること無く、高密度化を図り、単位体積あたりの静電容量の高い活性炭を得る方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは鋭意検討し、炭素質原料のアルカリ賦活処理物からアルカリ金属化合物を除去したものに単純に熱処理を施すのではなく、炭素質材料とアルカリ金属水酸化物とを混合して一旦炭化処理を施し、さらにアルカリ金属水酸化物を加えてアルカリ賦活することによって上記目的を達成できることを見出し、本発明に至った。
【0008】
即ち、本発明は、炭素質材料とアルカリ金属水酸化物とを一次混合処理し、得られた一次混合物を炭化処理し、得られた炭化処理物とアルカリ金属水酸化物とを二次混合処理し、得られた二次混合物を賦活処理することにより活性炭を得ることを特徴とする活性炭の製造方法を提供する。
【0009】
また、本発明は、このようにして得た活性炭と、少なくともバインダー及び導電性材料を混合して成形した分極性電極を提供し、また、かかる分極性電極を組み込んだ電気二重層キャパシタを提供する。
【0010】
【発明の実施の形態】
本発明の製造方法は、炭素質材料とアルカリ金属水酸化物とを一次混合処理し、得られた一次混合物を炭化処理し、得られた炭化処理物とアルカリ金属水酸化物とを二次混合処理し、得られた二次混合物を賦活処理することにより活性炭を得ることを特徴とする。本発明の製造方法により得られる活性炭は、高い静電容量を示す。この理由は、明確に説明することはできないが、一次混合処理に使用するアルカリ金属水酸化物は炭化処理時に炭素質材料の炭化(強酸化)に寄与し、二次混合処理に使用するアルカリ金属水酸化物が賦活処理に寄与することで、活性炭の結晶性を増加させながら、電気二重層に有効な表面を増加させるためであると推測できる。
【0011】
まず、本発明において使用する原材料について説明する。
【0012】
本発明において使用される炭素質材料は賦活して活性炭を形成できるものであれば特に限定はなく、例えば、石炭、椰子殻、樹脂、石油コークス、石炭ピッチコークスなどが挙げられる。炭素質材料としては、1000℃以上、より好ましくは600℃以上の熱処理を施していない炭素質材料が好ましい。炭素質材料の形状も特に限定はなく、粒状、粉末状、繊維状、シート状など各種形状のものを使用することができる。
【0013】
また、炭素質材料の状態は、固体でも液体でも限らず使用することができる。ここで、炭素質材料が固体の場合には、アルカリ金属水酸化物との混合を均一化するため、粉砕したものを使用することが好ましい。粉砕粒度は中心粒径2mm以下が好ましく、0.2mm以下がより好ましい。炭素質材料が液状レゾール樹脂等の液状の場合には、そのまま使用することができる。
【0014】
アルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化ルビジウムが挙げられる。これらは単独で使用してもよく、2種類以上を混合して使用してもよい。中でも、好ましいアルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム、またはこれらの混合物が挙げられる。
【0015】
また、アルカリ金属水酸化物も炭素質材料との混合が均一化される点で、粉末状、液状に限らず使用することができる。アルカリ金属水酸化物を液状にする場合、アルカリ金属水酸化物が液状態にあれば特に限定はない。アルカリ金属水酸化物を、水、アルコールなどに溶解したアルカリ金属水酸化物溶液で使用してもよい。
【0016】
次に、本発明の活性炭の製造方法を各処理毎に説明する。
【0017】
本発明の活性炭の製造方法では、まず、炭素質材料とアルカリ金属水酸化物とを一次混合処理して一次混合物を得る。この処理の際に用いる混合機としては、特に限定されるものではなく、公知の回転容器型混合機や固定容器型混合機などが用いられるが、均一な混合が得られる点で回転容器型混合機を用いるのがよい。これらの装置の材質としては、耐アルカリ性の材質、特にニッケルを主成分とする材質のものが好ましい。
【0018】
一次混合処理において、アルカリ金属水酸化物の使用量は、少なすぎると結晶化の進行が遅く、多すぎると結晶化進行より賦活が先に進行するため、炭素質材料の好ましくは0.01〜0.5重量倍、より好ましくは0.05〜0.3重量倍とするのが好ましい。
【0019】
一次混合処理時の処理温度は、通常は室温下で十分である。
【0020】
一次混合処理により得られる一次混合物(炭素質材料が液状の場合、アルカリ金属水酸化物と均一に混合し、不融化処理したもの)は、そのまま炭化処理を施してもよいが、常法により、球状、顆粒状、ペレット状、板状などに成形してもよい。成型時に、必要に応じて成形性向上のためにピッチ、タールなどの公知のバインダーを混合してもよい。
【0021】
次に、一次混合処理物を炭化処理して炭化処理物を得る。この炭化処理は、炭素質材料と比較的少量のアルカリ金属水酸化物と共に加熱することにより、炭素質材料中に含まれている有機物を酸化して炭化する処理である。この炭化処理を行わずに、炭素質材料と比較的多量のアルカリ金属水酸化物との混合物を賦活処理すると、活性体の体積あたりの静電容量を向上させることが困難となる。
【0022】
炭化処理の際の処理温度は、低すぎると結晶化促進効果が少なく、高すぎると結晶化が進行し過ぎて、賦活の進行を阻害するため、好ましくは300℃〜1000℃、より好ましくは300℃〜800℃である。
【0023】
炭化処理の際の処理温度への昇温速度はとくに限定されないが、遅すぎると所期の処理温度に到達までに時間がかかりすぎるため、工業的生産性が低下し、速すぎると温度班の発生や急激なガス発生が起き、危険なため、好ましくは0.1〜4.0℃/分程度、より好ましくは0.5〜3.0℃/分程度で実施ある。また、炭化処理時間(熱処理時間)に制限はないが、通常1〜24時間で実施される。
【0024】
また、炭化処理は、高温熱処理であるために、窒素、炭酸ガス、アルゴンガス、燃焼ガス、これらの混合ガス等の不活性ガスの雰囲気下に実施することが好ましい。
【0025】
なお、一次混合処理と炭化処理とは、別々に実施してもよいが、一次混合処理しながら炭化処理を行ってもよい。
【0026】
次に、炭化処理により得られた炭化処理物に、更にアルカリ金属水酸化物を二次混合し、二次混合物を得る。この場合、例えば、室温まで放冷した炭化処理物を使用してもよく、放冷せずに炭化処理に連続して処理してもよい。この処理の際に用いる混合機としては、一次混合処理において例示した混合機を使用することができる。
【0027】
二次混合処理において、アルカリ金属水酸化物の使用量は、少なすぎると賦活の進行が遅く、多すぎると過賦活となるので、炭素質材料の好ましくは0.5倍〜10重量倍、より好ましくは操作性、安全性の面を考慮して0.5〜4重量倍とするのが好ましい。
【0028】
二次混合処理時の処理温度は、通常は室温〜80℃の範囲で行うことができるが、二次混合処理を炭化処理に連続して行う場合には、炭化処理温度と同じ温度としてもよい。
【0029】
また、二次混合処理は、室温下で行う場合には空気雰囲気下でもよいが、二次混合処理温度が炭化処理温度とほぼ同じ場合には、窒素、炭酸ガス、アルゴンガス、燃焼ガス、これらの混合ガス等の不活性ガスの雰囲気下に実施することが好ましい。
【0030】
次に、二次混合処理により得られる二次混合物を、賦活処理して賦活処理物を得、更にそれから活性炭を得る。ここで、二次混合処理と賦活処理とは、別々に実施してもよいが、二次混合処理しながら賦活処理を行ってもよい。特に、炭化処理に続いて、反応系の温度を低下させずに、炭化処理物にアルカリ金属水酸化物を添加して二次混合処理を行うと同時に賦活処理を進行させるようにしてもよい。
【0031】
賦活処理としては、炭素、177(1997)p.76−79等に記載されている公知のアルカリ賦活法を適用することができる。例えば、二次混合処理により得られる二次混合物を、窒素、炭酸ガス、アルゴンガス、燃焼ガス、これらの混合ガスの不活性ガスの雰囲気下で、バッチ又は連続式に、加熱することにより行うことができる。ここで、賦活処理温度が高すぎると、活性炭の表面積は増大するが電気二重層キャパシタとしたときの静電容量が小さくなり、また、賦活処理で生成する金属カリウムが蒸発するため、危険性が著しく高くなる。また、賦活処理温度をあまり低くすると、賦活処理によってガス化されて系外に除去されるべき微細な構造が除去されないため、例えば電極材料として使用した時の電気抵抗が大きくなる。したがって、賦活処理温度は、好ましくは500〜1000℃、より好ましくは600℃〜800℃である。
【0032】
賦活処理により得られた賦活処理物は、処理物の燃焼を抑制するために、窒素、アルゴンなどの不活性ガス気流下で、冷却される。次いで、常法により、賦活処理物を水洗し、必要に応じて酸洗、水洗してアルカリ金属分や不純物を除去し、大気圧下又は減圧下で常温又は加熱し、乾燥して目的物の活性炭を得る。
【0033】
以上説明した本発明の製造方法により得られる活性炭は、特に電気二重層キャパシタ用に適した分極性電極の材料として有用なものとなる。
【0034】
このような分極性電極は、本発明の製造方法により得られた活性炭に、少なくともポリビニリデンフロライド、ポリテトラフロロエチレン等のバインダー及びカーボンブラックなどの導電性材料を混合し、成型してなるものである。導電性材料を混合することにより、電極の抵抗を低下させることができ、これにより、分極性電極の内部抵抗を下げ、電極体積を小さくするのに有効である。
【0035】
このような電気二重層キャパシタ用に適した分極性電極を製造するには、通常知られた方法を適用することが可能である。例えば、市販されている、ポリビニリデンフロライド、ポリテトラフロロエチレンなどバインダーとして知られた物質やカーボンブラックなどの導電性材料を必要に応じて、数%程度まで加えてよく混練した後、金型に入れて加圧成形したり、圧延してシート化し、必要な形状に打ちぬくことで電極に成形することができる。また、混練物を集電体に塗布して塗布電極としてもよい。電極化の際、必要に応じて、アルコールやN−メチルピロリドンなどの有機化合物や水などの溶剤、分散剤、各種添加物を使用してもよい。また、発明の効果を損なわない範囲で熱を加えることも可能である。
【0036】
以上説明した分極性電極は、図1(概略断面図)に示すような電気二重層キャパシタの電極として有用である。図1のキャパシタを構成する各構成要素は、本発明による分極性電極を使用する以外は、公知の電気二重層キャパシタと同様の構成とすることができ、例えば、図中、1及び2はアルミニウムなどからなる集電部材、3及び4は本発明の活性炭からなる分極性電極、5はポリプロピレン不織布などから構成されるセパレータ、6はポリプロピレン、ポリエチレン、ポリアミド、ポリアミドイミド、ポリブチレンなどから構成されるガスケット、7はステンレスなどの素材で構成されるケースを示す。
【0037】
なお、電気二重層キャパシタとして機能させるためには、ケース7内に、テトラエチルアンモニウムテトラフロロボレート、テトラメチルアンモニウムテトラフロロボレートなど公知の電解質を、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネートなどのカーボネート類、アセトニトリルなどのニトリル類、α−メチル−γ−ブチロラクトンなどのラクトン類、ジメチルスルホキシドなどのスルホキシド類、ジメチルフォルムアミドなどのアミド類などの溶媒に溶解した電解液を封入する必要がある。
【0038】
図1に示した構成の電気二重層キャパシタは、本発明の活性炭を使用しているので、小型でありながら静電容量の高いものとなる。
【0039】
【実施例】
以下、本発明を実施例により具体的に説明する。
【0040】
実施例1
直径10cm、高さ90cmのニッケル製の円筒に、ボールミルで中心粒径50μm程度に粉砕した半無煙炭50g及び50重量%の水酸化カリウム水溶液20gを投入し、混練した。混練後ペレット化し、120℃で乾燥し、次いで窒素0.6リットル(L)/分の気流下730℃にて炭化処理した。得られた炭化物43.2gに85%水酸化カリウム86.4gを混合し、窒素0.6L/分の気流下730℃まで200℃/時間で昇温した。730℃に到達後、3時間保持して賦活処理し、その後室温まで放冷した。得られた賦活処理物に対し酸洗、水洗を繰り返してカリウムを除去した後、120℃で乾燥して26.7gの活性炭を得た。
【0041】
実施例2
実施例1と同様の装置に、ボールミルで中心粒径50μm程度に粉砕した半無煙炭33g及び50重量%の水酸化カリウム水溶液10gを投入し、更にバインダー兼用でフェノール樹脂粉末(鐘紡製S−890)10gを添加し、混練した。混練後ペレット化し、120℃で乾燥し、次いで窒素0.6L/分の気流下730℃にて炭化処理した。得られた炭化処理物42.5gに85%水酸化カリウム85.0gを混合し、窒素0.6L/分の気流下730℃まで200℃/時間で昇温した。730℃に到達後、3時間保持して賦活処理し、その後室温まで放冷した。得られた賦活処理物に対し、酸洗、水洗を繰り返してカリウムを除去した後、120℃で乾燥して26.6gの活性炭を得た。
【0042】
比較例1
ボールミルで中心粒径50μm程度に粉砕した半無煙炭50g及び85%KOH100gを混合し、実施例1と同様に賦活処理し、カリウムを除去し、乾燥して活性炭を得た。
【0043】
比較例2
半無煙炭50gをボールミルで中心粒径50μm程度に粉砕し、窒素0.6L/分の気流下730℃にて炭化処理した。得られた炭化処理物45.6gに85%KOH91.2gを混合し、実施例1と同様に賦活処理し、カリウムを除去し、乾燥して活性炭を得た。
【0044】
比較例3
半無煙炭100gをボールミルで中心粒径50μm程度に粉砕し、窒素0.6L/分の気流下830℃にて炭化処理した。得られた炭化処理物81.2gに85%KOH162.4gを混合し、実施例1と同様に賦活処理し、カリウムを除去し、乾燥して活性炭を得た。
【0045】
実施例3
実施例1と同様の装置に、ボールミルで中心粒径50μm程度に粉砕した石油コークス50g及び50重量%の水酸化カリウム水溶液10gを投入し、さらに10gの水を添加し、混練した。混練後ペレット化し、120℃で乾燥し、次いで窒素0.6L/分の気流下730℃にて炭化処理した。得られた炭化処理物42.5gに85%水酸化カリウム85.0gを混合し、窒素0.6L/分の気流下730℃まで200℃/時間で昇温した。730℃に到達後、3時間保持して賦活処理し、その後室温まで放冷した。得られた賦活処理物に対し、酸洗、水洗を繰り返してカリウムを除去した後、120℃で乾燥して29.5gの活性炭を得た。
【0046】
実施例4
実施例3と同様の装置に、ボールミルで中心粒径50μm程度に粉砕した石油コークス50g及び50重量%の水酸化カリウム水溶液10gを投入し、さらに10gの水を添加し、混練した。混練後ペレット化し、120℃で乾燥し、次いで窒素0.6L/分の気流下730℃にて炭化処理した。炭化処理物42.5gを温水洗し、アルカリを除去した後、120℃で乾燥した。アルカリ除去された炭化物40gに85%水酸化カリウム80.0gを混合し、窒素0.6L/分の気流下730℃まで200℃/時間で昇温した。730℃に到達後、3時間保持して賦活処理し、その後室温まで放冷した。得られた賦活処理物に対し、酸洗、水洗を繰り返してカリウムを除去した後、120℃で乾燥して28.1gの活性炭を得た。
【0047】
実施例5
実施例3と同様の装置に、ボールミルで中心粒径50μm程度に粉砕した石油コークス50g及び50重量%の水酸化カリウム水溶液10gを投入し、さらに10gの水を添加し、混練した。混練後ペレット化し、120℃で乾燥し、窒素0.6L/分の気流下630℃にて炭化処理した。得られた炭化処理物53.0gを温水洗し、洗浄後の炭化処理物40gに85%水酸化カリウム80.0gを混合し、窒素0.6L/分の気流下730℃まで200℃/時間で昇温した。730℃に到達後、3時間保持して賦活処理し、その後室温まで放冷した。得られた賦活処理物に対し、酸洗、水洗を繰り返してカリウムを除去した後、120℃で乾燥し、26.2gの活性炭を得た。
【0048】
比較例4
ボールミルで中心粒径50μm程度に粉砕した石油コークス50g及び85%KOH100.0gを混合し、実施例1と同様に賦活処理し、カリウムを除去し、乾燥して活性炭を得た。
【0049】
比較例5
石油コークス70gをボールミルで中心粒径50μm程度に粉砕し、窒素0.6L/分の気流下730℃にて炭化処理した。得られた炭化処理物61.0gに85%KOH122.0gを混合し、実施例1と同様に賦活処理し、カリウムを除去し、活性炭を得た。
【0050】
比較例6
石油コークス100gをボールミルで中心粒径50μm程度に粉砕し、窒素0.6L/分の気流下630℃にて炭化処理した。得られた炭化処理物50.0gに85%KOH100.0gを混合し、実施例1と同様に賦活処理し、カリウムを除去し、活性炭を得た。
【0051】
比較例7
石油コークス50gをボールミルで中心粒径50μm程度に粉砕し、85%KOH125.0gを混合し、実施例1と同様に賦活処理し、カリウムを除去し、活性炭を得た。
【0052】
(評価)
なお、以上の実施例及び比較例で得られた活性炭の細孔容積及び比表面積を評価するために、ベンゼン(Bz)吸着量及びヨウ素吸着量をJIS 1474により測定した。測定結果を表1に示す。
【0053】
また、各実施例及び比較例で得られた活性炭を、振動ミルにより平均粒径5〜30μmに粉砕して粉末活性炭とし、この粉末活性炭80重量部に、導電性カーボン10重量部とポリテトラフロオロエチレン(PTFE)10重量部とを添加し、メノウ乳鉢で混練した。次いで、えられた混練物をロール圧延により、厚さ200μm程度のシートに成形し、直径2cmの円形に打ち抜き、150℃で4時間減圧下で乾燥することにより分極性電極を作製した。
【0054】
作製した分極性電極を、露点−50℃以下のクローブボックス内で、図1に示すように、ステンレスケースにアルミ集電極とガラスセパレータを用いてセルに組み立て、テトラエチルアンモニウムテトラフルオロボレートを含有するプロピレンカーボネート溶液を含侵させ、グローブボックス内でかしめ封印した。静電容量はパワーシステム製電気二重層キャパシタ評価装置を用い、室温中2.7V定電流、充放電サイクルを5回行い測定した。5回目の充放電サイクルからエネルギー換算法により求めた静電容量を表1に示す。
【0055】
【表1】
【0056】
表1の結果から、本発明の製造方法により得られた活性炭は、細孔容積及び比表面積は低下するが、静電容量は向上していることがわかる。従って、本発明の製造方法によれば、単位重量あたりの静電容量を低下させることなく、通常の熱処理を施した活性炭よりも単位体積あたりの静電容量の向上した活性炭を得ることができる。
【0057】
【発明の効果】
本発明の製造方法によれば、単位重量あたりの静電容量を低下させること無く、単位体積あたりの静電容量の高い活性炭が得られる。
【図面の簡単な説明】
【図1】電気二重層キャパシタの一例を示す断面概略図である。
【符号の説明】
1,2 集電部材、3,4 分極性電極、5 セパレータ、6 ガスケット、7 ケース[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing activated carbon, a polarizable electrode, and an electric double layer capacitor. Since the activated carbon of the present invention has a high density and a large capacitance per volume, it is formed into a polarizable electrode and is suitably used for an electric double layer capacitor.
[0002]
[Prior art]
In recent years, new electronic devices such as mobile phones and notebook computers have rapidly spread, and electric double-layer capacitors have attracted attention as memory backup devices and auxiliary power sources for motors and the like. In particular, many electric double layer capacitors using activated carbon having a high specific surface area as an electrode material have been developed. Heretofore, as activated carbon for electric double layer capacitors, activated carbon obtained by activating coconut shell, resin, coal, pitch and the like in an acidic gas atmosphere such as water vapor or carbon dioxide gas has been widely used. Further, activation (alkali activation) of a carbonaceous material using an alkali metal hydroxide such as KOH is also performed. Among them, activated carbon obtained by alkali activation has a relatively large specific surface area and high capacitance, and is therefore expected as a polarizable electrode of an electric double layer capacitor (for example, WO91 / 12203, JP-A-10-199767). No.).
[0003]
By the way, with the recent trend toward smaller and lighter electronic devices, the electric double-layer capacitors used tend to require smaller and larger capacities. It is required to exhibit a high capacitance as described above. For this reason, it is conceivable that the activated carbon is made more porous by the same method as in the past to increase the specific surface area. However, although an improvement in the capacitance per weight can be expected, the static carbon per unit volume is reduced due to a decrease in the activated carbon density. No improvement in capacity is expected. In addition, it is possible to increase the activated carbon density by controlling the amount of alkali metal hydroxide used and the reaction temperature to suppress the progress of alkali activation, but as a result, the capacitance per unit weight decreases. Therefore, improvement in the capacitance per unit volume cannot be expected.
[0004]
As a solution to this problem, it has been proposed to produce an activated carbon by activating the carbonaceous raw material with an alkali, removing an alkali metal compound, and performing a heat treatment (Japanese Patent Application Laid-Open No. 9-21590).
[0005]
[Problems to be solved by the invention]
However, according to the method described in Japanese Patent Application Laid-Open No. 9-213590, when heat treatment is performed on a product obtained by removing an alkali metal compound from an alkali activated treatment of a carbonaceous raw material in order to increase the density of activated carbon, static electricity per unit weight is reduced. There is a problem that the capacitance is reduced, and as a result, the capacitance per unit volume is improved by only about several percent at most.
[0006]
An object of the present invention is to increase the density and increase the capacitance per unit volume without decreasing the capacitance per unit weight, regardless of the method of changing the degree of activation or applying a normal heat treatment. It is to provide a method for obtaining activated carbon.
[0007]
[Means for Solving the Problems]
The present inventors have studied diligently, and instead of simply performing a heat treatment on a product obtained by removing an alkali metal compound from an alkali activation treatment product of a carbonaceous raw material, a carbonaceous material and an alkali metal hydroxide are mixed and temporarily mixed. The present inventors have found that the above object can be achieved by performing a carbonization treatment and further activating an alkali by adding an alkali metal hydroxide, and have accomplished the present invention.
[0008]
That is, the present invention provides a primary mixing process of a carbonaceous material and an alkali metal hydroxide, a carbonizing process of the obtained primary mixture, and a secondary mixing process of the obtained carbonized product and the alkali metal hydroxide. And a method for producing activated carbon, characterized in that activated carbon is obtained by activating the obtained secondary mixture.
[0009]
The present invention also provides a polarizable electrode formed by mixing the activated carbon thus obtained, at least a binder and a conductive material, and provides an electric double layer capacitor incorporating such a polarizable electrode. .
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The production method of the present invention comprises a primary mixing treatment of a carbonaceous material and an alkali metal hydroxide, a carbonization treatment of the obtained primary mixture, and a secondary mixing of the obtained carbonized treatment product and an alkali metal hydroxide. The activated carbon is obtained by activating the obtained secondary mixture. Activated carbon obtained by the production method of the present invention exhibits high capacitance. Although the reason cannot be clearly explained, the alkali metal hydroxide used in the primary mixing process contributes to carbonization (strong oxidation) of the carbonaceous material during the carbonization process, and the alkali metal hydroxide used in the secondary mixing process. It is presumed that the contribution of the hydroxide to the activation treatment is to increase the effective surface of the electric double layer while increasing the crystallinity of the activated carbon.
[0011]
First, the raw materials used in the present invention will be described.
[0012]
The carbonaceous material used in the present invention is not particularly limited as long as it can be activated to form activated carbon, and examples thereof include coal, coconut shell, resin, petroleum coke, and coal pitch coke. As the carbonaceous material, a carbonaceous material that has not been subjected to a heat treatment at 1000 ° C. or higher, more preferably 600 ° C. or higher is preferable. The shape of the carbonaceous material is not particularly limited, and various shapes such as granules, powders, fibers, and sheets can be used.
[0013]
Further, the state of the carbonaceous material can be used regardless of whether it is solid or liquid. Here, when the carbonaceous material is solid, it is preferable to use a pulverized material in order to make the mixing with the alkali metal hydroxide uniform. The ground particle size is preferably 2 mm or less, more preferably 0.2 mm or less. When the carbonaceous material is a liquid such as a liquid resol resin, it can be used as it is.
[0014]
Examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide, cesium hydroxide, and rubidium hydroxide. These may be used alone or in combination of two or more. Among them, preferred alkali metal hydroxides include sodium hydroxide, potassium hydroxide, and mixtures thereof.
[0015]
Further, the alkali metal hydroxide can be used not only in the form of powder or liquid, but also in that the mixing with the carbonaceous material is uniform. When making the alkali metal hydroxide liquid, there is no particular limitation as long as the alkali metal hydroxide is in a liquid state. The alkali metal hydroxide may be used in an alkali metal hydroxide solution dissolved in water, alcohol, or the like.
[0016]
Next, the method for producing activated carbon of the present invention will be described for each treatment.
[0017]
In the method for producing activated carbon of the present invention, first, a carbonaceous material and an alkali metal hydroxide are subjected to a primary mixing treatment to obtain a primary mixture. The mixer used in this treatment is not particularly limited, and a known rotary container type mixer or a fixed container type mixer is used, but the rotary container type mixer is used in that uniform mixing is obtained. It is better to use a machine. As a material of these devices, an alkali-resistant material, particularly a material mainly containing nickel is preferable.
[0018]
In the primary mixing treatment, the use amount of the alkali metal hydroxide is too small, the progress of crystallization is slow, and if too large, the activation proceeds earlier than the progress of crystallization. It is preferably 0.5 times by weight, more preferably 0.05 to 0.3 times by weight.
[0019]
The processing temperature during the primary mixing is usually sufficient at room temperature.
[0020]
The primary mixture obtained by the primary mixing treatment (when the carbonaceous material is in a liquid state, uniformly mixed with the alkali metal hydroxide and subjected to infusibilization treatment) may be subjected to the carbonization treatment as it is. It may be formed into a sphere, granule, pellet, plate or the like. At the time of molding, a known binder such as pitch and tar may be mixed as needed to improve moldability.
[0021]
Next, the primary mixed product is carbonized to obtain a carbonized product. This carbonization treatment is a treatment in which an organic substance contained in the carbonaceous material is oxidized and carbonized by heating with a carbonaceous material and a relatively small amount of an alkali metal hydroxide. If a mixture of a carbonaceous material and a relatively large amount of an alkali metal hydroxide is activated without performing the carbonization treatment, it becomes difficult to improve the capacitance per volume of the active material.
[0022]
If the treatment temperature during the carbonization treatment is too low, the effect of promoting crystallization is small, and if it is too high, the crystallization proceeds too much and inhibits the progress of activation, so it is preferably 300 ° C to 1000 ° C, more preferably 300 ° C. C. to 800C.
[0023]
The rate of temperature rise to the treatment temperature during the carbonization treatment is not particularly limited, but if it is too slow, it takes too much time to reach the intended treatment temperature, thereby lowering industrial productivity. Since generation or rapid gas generation occurs and is dangerous, the operation is preferably performed at about 0.1 to 4.0 ° C./min, more preferably about 0.5 to 3.0 ° C./min. The carbonization time (heat treatment time) is not limited, but is usually 1 to 24 hours.
[0024]
In addition, since the carbonization treatment is a high-temperature heat treatment, the carbonization treatment is preferably performed in an atmosphere of an inert gas such as nitrogen, carbon dioxide, argon gas, combustion gas, or a mixed gas thereof.
[0025]
The primary mixing process and the carbonization process may be performed separately, but the carbonization process may be performed while performing the primary mixing process.
[0026]
Next, an alkali metal hydroxide is secondarily mixed with the carbonized product obtained by the carbonizing process to obtain a secondary mixture. In this case, for example, a carbonized product that has been allowed to cool to room temperature may be used, or the carbonization may be performed without cooling. As the mixer used in this process, the mixer exemplified in the primary mixing process can be used.
[0027]
In the secondary mixing treatment, the use amount of the alkali metal hydroxide is too small, the progress of activation is slow, and if too large, it is overactivated, so that the carbonaceous material is preferably 0.5 to 10 times by weight, It is preferably 0.5 to 4 times by weight in consideration of operability and safety.
[0028]
The processing temperature at the time of the secondary mixing process can be usually performed in the range of room temperature to 80 ° C., but when the secondary mixing process is performed continuously to the carbonization process, the temperature may be the same as the carbonization temperature. .
[0029]
When the secondary mixing is performed at room temperature, the secondary mixing may be performed in an air atmosphere.However, when the secondary mixing is performed at substantially the same temperature as the carbonization, nitrogen, carbon dioxide, argon, combustion gas, It is preferable to carry out in an atmosphere of an inert gas such as a mixed gas of the above.
[0030]
Next, the secondary mixture obtained by the secondary mixing treatment is subjected to an activation treatment to obtain an activation treatment product, and then activated carbon is obtained. Here, the secondary mixing process and the activation process may be performed separately, but the activation process may be performed while performing the secondary mixing process. In particular, after the carbonization treatment, without lowering the temperature of the reaction system, an alkali metal hydroxide may be added to the carbonization treatment product to perform the secondary mixing treatment and at the same time to proceed with the activation treatment.
[0031]
The activation treatment includes carbon, 177 (1997) p. Known alkali activation methods described in 76-79 and the like can be applied. For example, the secondary mixture obtained by the secondary mixing treatment is performed by heating in a batch or continuous manner under an atmosphere of nitrogen, carbon dioxide gas, argon gas, combustion gas, or an inert gas of these mixed gases. Can be. Here, when the activation treatment temperature is too high, the surface area of the activated carbon increases, but the capacitance of the electric double layer capacitor decreases, and the danger of metal potassium generated in the activation treatment evaporates. Significantly higher. On the other hand, if the activation treatment temperature is too low, a fine structure which is gasified by the activation treatment and which should be removed from the system is not removed, so that, for example, the electric resistance when used as an electrode material increases. Therefore, the activation treatment temperature is preferably 500 to 1000C, more preferably 600 to 800C.
[0032]
The activated material obtained by the activation treatment is cooled under a stream of an inert gas such as nitrogen or argon in order to suppress the combustion of the treated material. Then, by a conventional method, the activation treatment product is washed with water, and if necessary, pickled, washed with water to remove alkali metal components and impurities, and heated at room temperature or under atmospheric pressure or reduced pressure, and dried to obtain the desired product. Get activated carbon.
[0033]
The activated carbon obtained by the production method of the present invention described above is useful as a material of a polarizable electrode particularly suitable for an electric double layer capacitor.
[0034]
Such a polarizable electrode is obtained by mixing at least a binder such as polyvinylidene fluoride and polytetrafluoroethylene and a conductive material such as carbon black with activated carbon obtained by the production method of the present invention, and molding the mixture. It is. Mixing a conductive material can reduce the resistance of the electrode, which is effective in reducing the internal resistance of the polarizable electrode and reducing the volume of the electrode.
[0035]
In order to manufacture a polarizable electrode suitable for such an electric double layer capacitor, a generally known method can be applied. For example, a commercially available material known as a binder such as polyvinylidene fluoride or polytetrafluoroethylene or a conductive material such as carbon black may be added to a few percent if necessary, and the mixture may be kneaded. And press-molded, or rolled into a sheet, and punched into a required shape to form an electrode. Alternatively, the kneaded material may be applied to a current collector to form an application electrode. When forming an electrode, an organic compound such as alcohol or N-methylpyrrolidone, a solvent such as water, a dispersant, or various additives may be used as necessary. It is also possible to apply heat within a range that does not impair the effects of the invention.
[0036]
The polarizable electrode described above is useful as an electrode of an electric double layer capacitor as shown in FIG. 1 (schematic sectional view). Each component constituting the capacitor of FIG. 1 can have the same configuration as a known electric double layer capacitor except that the polarizable electrode according to the present invention is used. , 3 and 4 are polarizable electrodes made of the activated carbon of the present invention, 5 is a separator made of polypropylene non-woven fabric and the like, 6 is a gasket made of polypropylene, polyethylene, polyamide, polyamide imide, polybutylene, etc. And 7 indicate a case made of a material such as stainless steel.
[0037]
In order to function as an electric double layer capacitor, a known electrolyte such as tetraethylammonium tetrafluoroborate or tetramethylammonium tetrafluoroborate is placed in the case 7 with a carbonate such as ethylene carbonate, dimethyl carbonate, diethyl carbonate or propylene carbonate. , Acetonitrile and other nitriles, α-methyl-γ-butyrolactone and other lactones, dimethylsulfoxide and other sulphoxides, and dimethylformamide and other amides and the like must be filled with an electrolytic solution.
[0038]
Since the electric double layer capacitor having the configuration shown in FIG. 1 uses the activated carbon of the present invention, it has a small size and a high capacitance.
[0039]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
[0040]
Example 1
In a nickel cylinder having a diameter of 10 cm and a height of 90 cm, 50 g of semi-anthracite and 20 g of a 50% by weight aqueous potassium hydroxide solution pulverized with a ball mill to a center particle size of about 50 μm were added and kneaded. After kneading, the mixture was pelletized, dried at 120 ° C., and then carbonized at 730 ° C. under an air flow of 0.6 liter (L) / min of nitrogen. 86.4 g of 85% potassium hydroxide was mixed with 43.2 g of the obtained carbide, and the temperature was increased to 730 ° C. at a rate of 200 ° C./hour under a gas flow of 0.6 L / min. After reaching 730 ° C., it was kept for 3 hours for activation treatment, and then allowed to cool to room temperature. The obtained activated product was repeatedly pickled and washed with water to remove potassium, and then dried at 120 ° C. to obtain 26.7 g of activated carbon.
[0041]
Example 2
Into the same apparatus as in Example 1, 33 g of semi-anthracite and 10 g of a 50% by weight aqueous potassium hydroxide solution pulverized with a ball mill to a central particle size of about 50 μm were added. 10 g was added and kneaded. After kneading, the mixture was pelletized, dried at 120 ° C., and then carbonized at 730 ° C. under an air flow of 0.6 L / min of nitrogen. 85.0 g of 85% potassium hydroxide was mixed with 42.5 g of the obtained carbonized product, and the temperature was raised to 730 ° C. at a rate of 200 ° C./hour under a gas flow of 0.6 L / min. After reaching 730 ° C., it was kept for 3 hours for activation treatment, and then allowed to cool to room temperature. The obtained activated product was subjected to repeated acid washing and water washing to remove potassium, and then dried at 120 ° C. to obtain 26.6 g of activated carbon.
[0042]
Comparative Example 1
Activated carbon was obtained by mixing 50 g of semi-anthracite and 100 g of 85% KOH pulverized to a center particle size of about 50 μm with a ball mill, activating it in the same manner as in Example 1, removing potassium, and drying.
[0043]
Comparative Example 2
50 g of semi-anthracite was pulverized with a ball mill to a median particle size of about 50 μm, and carbonized at 730 ° C. under an air flow of 0.6 L / min of nitrogen. 95.6 g of 85% KOH was mixed with 45.6 g of the obtained carbonized product, activated in the same manner as in Example 1, potassium was removed, and dried to obtain activated carbon.
[0044]
Comparative Example 3
100 g of semi-anthracite was pulverized with a ball mill to a center particle size of about 50 μm, and carbonized at 830 ° C. under an air flow of 0.6 L / min of nitrogen. 162.4 g of 85% KOH was mixed with 81.2 g of the obtained carbonized product, activated as in Example 1, potassium was removed, and dried to obtain activated carbon.
[0045]
Example 3
Into the same apparatus as in Example 1, 50 g of petroleum coke and 10 g of a 50% by weight aqueous solution of potassium hydroxide pulverized with a ball mill to a center particle size of about 50 μm were added, and 10 g of water was further added and kneaded. After kneading, the mixture was pelletized, dried at 120 ° C., and then carbonized at 730 ° C. under an air flow of 0.6 L / min of nitrogen. 85.0 g of 85% potassium hydroxide was mixed with 42.5 g of the obtained carbonized product, and the temperature was raised to 730 ° C. at a rate of 200 ° C./hour under a gas flow of 0.6 L / min. After reaching 730 ° C., it was kept for 3 hours for activation treatment, and then allowed to cool to room temperature. The obtained activated product was repeatedly pickled and washed with water to remove potassium, and then dried at 120 ° C. to obtain 29.5 g of activated carbon.
[0046]
Example 4
Into the same apparatus as in Example 3, 50 g of petroleum coke and 10 g of a 50% by weight aqueous potassium hydroxide solution pulverized by a ball mill to have a center particle diameter of about 50 μm were added, and 10 g of water was further added and kneaded. After kneading, the mixture was pelletized, dried at 120 ° C., and then carbonized at 730 ° C. under an air flow of 0.6 L / min of nitrogen. 42.5 g of the carbonized product was washed with warm water to remove alkali, and then dried at 120 ° C. 80.0 g of 85% potassium hydroxide was mixed with 40 g of the alkali-removed carbide, and the temperature was increased to 730 ° C. at a rate of 200 ° C./hour under an air flow of 0.6 L / min of nitrogen. After reaching 730 ° C., it was kept for 3 hours for activation treatment, and then allowed to cool to room temperature. The obtained activated product was repeatedly pickled and washed with water to remove potassium, and then dried at 120 ° C. to obtain 28.1 g of activated carbon.
[0047]
Example 5
Into the same apparatus as in Example 3, 50 g of petroleum coke and 10 g of a 50% by weight potassium hydroxide aqueous solution pulverized by a ball mill to a center particle size of about 50 μm were added, and 10 g of water was further added and kneaded. After kneading, the mixture was pelletized, dried at 120 ° C., and carbonized at 630 ° C. under an air flow of 0.6 L / min of nitrogen. 53.0 g of the obtained carbonized product is washed with warm water, 40 g of the carbonized product after washing is mixed with 80.0 g of 85% potassium hydroxide, and 200 ° C./hour up to 730 ° C. under an air flow of 0.6 L / min of nitrogen. The temperature rose. After reaching 730 ° C., it was kept for 3 hours for activation treatment, and then allowed to cool to room temperature. The obtained activated product was repeatedly pickled and washed with water to remove potassium, and then dried at 120 ° C. to obtain 26.2 g of activated carbon.
[0048]
Comparative Example 4
50 g of petroleum coke and 100.0 g of 85% KOH mixed with a ball mill to a center particle size of about 50 μm were mixed, activated in the same manner as in Example 1, potassium was removed, and dried to obtain activated carbon.
[0049]
Comparative Example 5
70 g of petroleum coke was ground with a ball mill to a center particle diameter of about 50 μm, and carbonized at 730 ° C. under an air flow of 0.6 L / min of nitrogen. 121.0 g of 85% KOH was mixed with 61.0 g of the obtained carbonized product, and activated in the same manner as in Example 1 to remove potassium and obtain activated carbon.
[0050]
Comparative Example 6
100 g of petroleum coke was ground with a ball mill to a center particle size of about 50 μm, and carbonized at 630 ° C. under an air flow of 0.6 L / min of nitrogen. 100.0 g of 85% KOH was mixed with 50.0 g of the obtained carbonized product, and activated in the same manner as in Example 1 to remove potassium and obtain activated carbon.
[0051]
Comparative Example 7
50 g of petroleum coke was ground with a ball mill to a center particle diameter of about 50 μm, mixed with 125.0 g of 85% KOH, activated as in Example 1, and potassium was removed to obtain activated carbon.
[0052]
(Evaluation)
In addition, in order to evaluate the pore volume and specific surface area of the activated carbon obtained in the above Examples and Comparative Examples, the benzene (Bz) adsorption amount and the iodine adsorption amount were measured according to JIS 1474. Table 1 shows the measurement results.
[0053]
The activated carbon obtained in each of the examples and comparative examples was pulverized by a vibration mill to an average particle size of 5 to 30 μm to obtain powdered activated carbon, and 80 parts by weight of the activated carbon powder, 10 parts by weight of conductive carbon and polytetrafluorocarbon were added. Oleethylene (PTFE) (10 parts by weight) was added and kneaded in an agate mortar. Next, the obtained kneaded material was formed into a sheet having a thickness of about 200 μm by roll rolling, punched into a circular shape having a diameter of 2 cm, and dried at 150 ° C. for 4 hours under reduced pressure to produce a polarizable electrode.
[0054]
The fabricated polarizable electrode was assembled in a cell using a stainless steel case and an aluminum collecting electrode and a glass separator in a clove box having a dew point of −50 ° C. or less, and propylene containing tetraethylammonium tetrafluoroborate was used. It was impregnated with a carbonate solution and swaged and sealed in a glove box. The electrostatic capacity was measured using a power system electric double layer capacitor evaluation device at room temperature, 2.7 V constant current and 5 charge / discharge cycles. Table 1 shows the capacitance obtained by the energy conversion method from the fifth charge / discharge cycle.
[0055]
[Table 1]
[0056]
From the results shown in Table 1, it can be seen that the activated carbon obtained by the production method of the present invention has reduced pore volume and specific surface area, but improved capacitance. Therefore, according to the production method of the present invention, it is possible to obtain an activated carbon having an improved capacitance per unit volume as compared with activated carbon subjected to ordinary heat treatment, without lowering the capacitance per unit weight.
[0057]
【The invention's effect】
According to the production method of the present invention, activated carbon having a high capacitance per unit volume can be obtained without lowering the capacitance per unit weight.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of an electric double layer capacitor.
[Explanation of symbols]
1,2 current collecting member, 3,4 polarity electrode, 5 separator, 6 gasket, 7 case
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002221850A JP4096653B2 (en) | 2002-07-30 | 2002-07-30 | Method for producing activated carbon, polarizable electrode and electric double layer capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002221850A JP4096653B2 (en) | 2002-07-30 | 2002-07-30 | Method for producing activated carbon, polarizable electrode and electric double layer capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004059387A true JP2004059387A (en) | 2004-02-26 |
JP4096653B2 JP4096653B2 (en) | 2008-06-04 |
Family
ID=31942048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002221850A Expired - Lifetime JP4096653B2 (en) | 2002-07-30 | 2002-07-30 | Method for producing activated carbon, polarizable electrode and electric double layer capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4096653B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006261516A (en) * | 2005-03-18 | 2006-09-28 | Honda Motor Co Ltd | Electric double layer capacitor |
WO2015119269A1 (en) * | 2014-02-10 | 2015-08-13 | コスモ石油株式会社 | Production method for activated carbon, and activated carbon |
KR20160038969A (en) * | 2014-09-30 | 2016-04-08 | 인하대학교 산학협력단 | Manufacturing method of active carbon derived from rice husks for hydrogen storage using chemical activation |
WO2020170985A1 (en) * | 2019-02-18 | 2020-08-27 | 株式会社クラレ | Activated carbon and method for producing same |
-
2002
- 2002-07-30 JP JP2002221850A patent/JP4096653B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006261516A (en) * | 2005-03-18 | 2006-09-28 | Honda Motor Co Ltd | Electric double layer capacitor |
JP4597727B2 (en) * | 2005-03-18 | 2010-12-15 | 本田技研工業株式会社 | Electric double layer capacitor |
WO2015119269A1 (en) * | 2014-02-10 | 2015-08-13 | コスモ石油株式会社 | Production method for activated carbon, and activated carbon |
KR20160038969A (en) * | 2014-09-30 | 2016-04-08 | 인하대학교 산학협력단 | Manufacturing method of active carbon derived from rice husks for hydrogen storage using chemical activation |
KR101631180B1 (en) | 2014-09-30 | 2016-06-20 | 인하대학교 산학협력단 | Manufacturing method of active carbon derived from rice husks for hydrogen storage using chemical activation |
WO2020170985A1 (en) * | 2019-02-18 | 2020-08-27 | 株式会社クラレ | Activated carbon and method for producing same |
JPWO2020170985A1 (en) * | 2019-02-18 | 2021-12-16 | 株式会社クラレ | Activated carbon and its manufacturing method |
JP7373549B2 (en) | 2019-02-18 | 2023-11-02 | 株式会社クラレ | Activated carbon and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP4096653B2 (en) | 2008-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4432493B2 (en) | Method for producing activated carbon, polarizable electrode and electric double layer capacitor | |
Bi et al. | One-pot microwave synthesis of NiO/MnO2 composite as a high-performance electrode material for supercapacitors | |
JP4616052B2 (en) | Electrode material for electric double layer capacitor and manufacturing method thereof, electrode for electric double layer capacitor, and electric double layer capacitor | |
JP5271851B2 (en) | Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method | |
Fu et al. | One-pot synthesis of N-doped hierarchical porous carbon for high-performance aqueous capacitors in a wide pH range | |
JPH08119614A (en) | Activated carbon, its production and electrode for electric-double-layer capacitor | |
EP1195355A1 (en) | Method for preparing porous carbon material, porous carbon material and electrical double layer capacitor using the same | |
Xiong et al. | Hydrothermal synthesis of porous sugarcane bagasse carbon/MnO 2 nanocomposite for supercapacitor application | |
JP2011176043A (en) | Activated carbon for electric double layer capacitor | |
JP2012101948A (en) | Method for producing activated carbon | |
JP2004047613A (en) | Activated carbon and electrode for electric double-layer capacitor employing active carbon | |
JP2007186411A (en) | Activated carbon, process of making the same and use of the same | |
WO2001013390A1 (en) | Method for producing activated carbon for electrode of electric double-layer capacitor | |
JP2017204628A (en) | Method for manufacturing active carbon for electric double layer capacitor electrode, and active carbon for electric double layer capacitor electrode manufactured thereby | |
JP2007112704A (en) | Activated carbon, its manufacturing method and polarizable electrode and electric double-layer capacitor using the activated carbon | |
JP2015151324A (en) | Activated carbon and method for producing the same | |
Wang et al. | A novel three-dimensional hierarchical porous lead-carbon composite prepared from corn stover for high-performance lead-carbon batteries | |
JP2007269518A (en) | Porous carbon material, method for producing the same, polarizable electrode for electrical double layer capacitor, and electrical double layer capacitor | |
JP5619367B2 (en) | Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method | |
JP4096653B2 (en) | Method for producing activated carbon, polarizable electrode and electric double layer capacitor | |
JP2006024747A (en) | Carbon material for electric double-layer capacitor electrode, and its production method | |
JP2003183014A (en) | Porous carbon material, its producing method and electric double layer capacitor | |
JP2007153639A (en) | Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor | |
JP2005243933A (en) | Electric double-layer capacitor | |
JP2006216748A (en) | Carbon composite powder for electrode for electric dipole layer capacitor and manufacturing method for carbon composite powder and electric dipole layer capacitor using carbon composite powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040407 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040407 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040407 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040723 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080303 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110321 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120321 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130321 Year of fee payment: 5 |