JP2012101948A - Method for producing activated carbon - Google Patents

Method for producing activated carbon Download PDF

Info

Publication number
JP2012101948A
JP2012101948A JP2010248997A JP2010248997A JP2012101948A JP 2012101948 A JP2012101948 A JP 2012101948A JP 2010248997 A JP2010248997 A JP 2010248997A JP 2010248997 A JP2010248997 A JP 2010248997A JP 2012101948 A JP2012101948 A JP 2012101948A
Authority
JP
Japan
Prior art keywords
activated carbon
double layer
electric double
coal
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010248997A
Other languages
Japanese (ja)
Inventor
Aki Fujimura
亜紀 藤村
Noriyasu Akamatsu
徳康 赤松
Junichi Yasumaru
純一 安丸
Yasuyuki Takarada
恭之 宝田
Kazuyoshi Sato
和好 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Kansai Coke and Chemicals Co Ltd
Original Assignee
Gunma University NUC
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, Kansai Coke and Chemicals Co Ltd filed Critical Gunma University NUC
Priority to JP2010248997A priority Critical patent/JP2012101948A/en
Publication of JP2012101948A publication Critical patent/JP2012101948A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide activated carbon which contains few impurities, has a high specific surface area, and has a large micropore volume in a micropore size range of 1 nm or more and 2 nm or less.SOLUTION: The method for producing activated carbon includes heat-treating ashless coal at a temperature below 800°C in an inert atmosphere or without performing the heat treatment, mixing the resulting ashless coal with an alkali activator, and subjecting the mixture to activation treatment at a temperature of 600°C or higher and 950°C or lower.

Description

本発明は、活性炭の製造方法に関するものである。   The present invention relates to a method for producing activated carbon.

現在、活性炭は、高比表面積を有することから電気二重層キャパシタの分極性電極、吸着剤などの用途に利用されている。特に、活性炭を分極性電極に用いた電気二重層キャパシタは、エレクトロニクス分野の進展に伴い、さらなる高性能化が求められている。そして、電気二重層キャパシタの高性能化、特に高容量化のためには、その電極に用いられる活性炭の高比表面積化が必須となっている。   Currently, activated carbon has a high specific surface area and is used for applications such as polarizable electrodes and adsorbents in electric double layer capacitors. In particular, an electric double layer capacitor using activated carbon as a polarizable electrode is required to have higher performance as the electronics field advances. In order to improve the performance of the electric double layer capacitor, in particular, to increase the capacity, it is essential to increase the specific surface area of the activated carbon used for the electrode.

従来、電気二重層キャパシタに用いられる活性炭は、一般にヤシガラ炭化物、フェノール樹脂炭化物、石炭などの原料を水蒸気賦活、薬品賦活することにより製造されている。このような活性炭の製造方法として、例えば、石炭の溶剤抽出物(無灰炭)を不活性雰囲気下で800℃から950℃の温度範囲において加熱し、得られた固体残渣をアルカリ賦活する方法(特許文献1(請求項1)参照);石炭系ピッチを400℃〜600℃及び600℃〜900℃の2段階の温度範囲で熱処理し、熱処理した石炭系ピッチをアルカリ賦活する方法(特許文献2(請求項17)参照);粒状の等方性ピッチを不融化した後、薬剤で賦活する方法(特許文献3(請求項1)参照);が開示されている。   Conventionally, activated carbon used for an electric double layer capacitor is generally manufactured by steam activation and chemical activation of raw materials such as coconut shell carbide, phenol resin carbide, and coal. As a method for producing such activated carbon, for example, a solvent extract of coal (ashless coal) is heated in a temperature range of 800 ° C. to 950 ° C. in an inert atmosphere, and the resulting solid residue is alkali activated ( Patent Document 1 (see claim 1)): A method in which a coal-based pitch is heat-treated in a two-step temperature range of 400 ° C. to 600 ° C. and 600 ° C. to 900 ° C., and the heat-treated coal-based pitch is alkali-activated (Patent Document 2). (See claim 17)); a method of inactivating granular isotropic pitch and then activating with a drug (see Patent Document 3 (claim 1)).

特開2007−142204号公報JP 2007-142204 A 特開2004−149399号公報JP 2004-149399 A 特開2002−104817号公報JP 2002-104817 A

石炭の溶剤抽出物(いわゆる無灰炭)は、金属不純物の含有量が非常に少ないため、これを賦活することにより不純物の少ない活性炭が得られる。ここで、アルカリ賦活法により活性炭を製造する場合、通常、賦活収率を高めるために、賦活原料には800℃以上の高温で炭化した炭化物が用いられている。しかしながら、上記石炭の溶剤抽出物は、高温で炭化してしまうと、アルカリ賦活が進行しにくく、得られる活性炭は比表面積が低く、細孔径が小さくなる傾向があった。また、このような活性炭を電気二重層キャパシタ用電極材料として用いた場合、充放電後の膨張率が高くなる傾向があった。   Since the solvent extract of coal (so-called ashless coal) has a very low content of metal impurities, activated carbon can be obtained by activating this. Here, when manufacturing activated carbon by the alkali activation method, in order to raise an activation yield, the carbide | carbonized_material carbonized at the high temperature of 800 degreeC or more is normally used for the activation raw material. However, if the solvent extract of coal is carbonized at a high temperature, alkali activation is difficult to proceed, and the obtained activated carbon tends to have a low specific surface area and a small pore diameter. Moreover, when such activated carbon was used as an electrode material for an electric double layer capacitor, the expansion rate after charge / discharge tended to increase.

本発明は上記事情に鑑みてなされたものであり、不純物が少なく、かつ、高比表面積を有し、1nm以上2nm以下の細孔径範囲における細孔容積が大きい活性炭を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an activated carbon having a small amount of impurities, a high specific surface area, and a large pore volume in a pore diameter range of 1 nm to 2 nm. .

本発明者らは、無灰炭を賦活原料に用いることにより、不純物含有量がより低減された活性炭が得られることに着目し、当該無灰炭を賦活原料に使用して、高比表面積を有する活性炭を製造する方法をさらに研究した。その結果、無灰炭を炭化させる熱処理温度を低くする、あるいは、一切熱処理を施さないことにより、得られる活性炭をより高比表面化できることを見出し、本発明を完成した。   The present inventors pay attention to the fact that activated carbon with a reduced impurity content can be obtained by using ashless coal as an activation raw material. Using the ashless coal as an activation raw material, a high specific surface area can be obtained. The method of producing activated carbon with further researched. As a result, the inventors have found that the activated carbon obtained can be made to have a higher specific surface by lowering the heat treatment temperature for carbonizing ashless coal, or by not performing any heat treatment, thereby completing the present invention.

すなわち、上記課題を解決することができた本発明の活性炭の製造方法は、無灰炭を、不活性雰囲気下800℃未満の温度で熱処理した後で、または、該熱処理をしないで、アルカリ賦活剤と混合し600℃以上950℃以下の温度で賦活処理することを特徴とする。   That is, the method for producing activated carbon according to the present invention that has solved the above-described problem is that alkali-activation is performed after heat treatment of ashless coal at a temperature of less than 800 ° C. in an inert atmosphere or without the heat treatment. It is characterized by being mixed with an agent and subjected to activation treatment at a temperature of 600 ° C. or more and 950 ° C. or less.

前記アルカリ賦活剤の使用量は、前記無灰炭および/または無灰炭熱処理物の合計100質量部に対して150質量部以上550質量部以下であることが好ましい。   It is preferable that the usage-amount of the said alkali activator is 150 to 550 mass parts with respect to a total of 100 mass parts of the said ashless coal and / or ashless coal heat-processed material.

本発明には、上記の製造方法により得られた活性炭、該活性炭を含有する電極材料、該電極材料を用いた電気二重層キャパシタ電極、および、該電極を用いた電気二重層キャパシタも含まれる。   The present invention also includes activated carbon obtained by the above production method, an electrode material containing the activated carbon, an electric double layer capacitor electrode using the electrode material, and an electric double layer capacitor using the electrode.

本発明によれば、不純物が少なく、かつ、高比表面積を有し、1nm以上2nm以下の細孔径範囲における細孔容積が大きい活性炭が得られる。当該活性炭を電極材料に用いることで、静電容量が高く、内部抵抗が低く、かつ、充放電後の膨張率の小さい電気二重層キャパシタが得られる。   ADVANTAGE OF THE INVENTION According to this invention, activated carbon with few impurities, a high specific surface area, and a large pore volume in the pore diameter range of 1 nm or more and 2 nm or less is obtained. By using the activated carbon as an electrode material, an electric double layer capacitor having a high electrostatic capacity, a low internal resistance, and a low expansion coefficient after charging and discharging can be obtained.

製造例1〜4の活性炭の細孔径分布を示す図である。It is a figure which shows the pore diameter distribution of the activated carbon of manufacture examples 1-4. 製造例5、6の活性炭の細孔径分布を示す図である。It is a figure which shows the pore diameter distribution of the activated carbon of the manufacture examples 5 and 6. 製造例の活性炭を使用して製造した電気二重層キャパシタを説明するための図である。It is a figure for demonstrating the electric double layer capacitor manufactured using the activated carbon of a manufacture example.

本発明の活性炭の製造方法は、無灰炭を、不活性雰囲気下800℃未満の温度で熱処理した後で、または、該熱処理をしないで、アルカリ賦活剤と混合し、600℃以上950℃以下の温度で賦活処理することを特徴とする。   In the method for producing activated carbon of the present invention, ashless charcoal is mixed with an alkali activator after heat treatment at a temperature of less than 800 ° C. in an inert atmosphere or without the heat treatment, and 600 ° C. or more and 950 ° C. or less. The activation treatment is performed at a temperature of

本発明に用いられる無灰炭は特に限定されない。ここで、無灰炭とは、石炭を溶剤で抽出処理し、この溶剤に溶ける成分だけを分離して、その後、溶剤を除去することによって製造されたものである。   The ashless coal used in the present invention is not particularly limited. Here, ashless coal is produced by extracting coal with a solvent, separating only the components soluble in the solvent, and then removing the solvent.

前記無灰炭の原料となる石炭は、特に限定されず、亜炭(炭素含有量が70質量%未満)、褐炭(炭素含有量が70質量%以上78質量%未満)、瀝青炭(炭素含有量が78質量%以上90質量%未満)、無煙炭(炭素含有量が90質量%以上)のいずれも使用できる。これらの中でも、無灰炭の原料となる石炭としては、瀝青炭、無煙炭が好ましい。   The coal used as the raw material of the ashless coal is not particularly limited, and lignite (carbon content is less than 70% by mass), lignite (carbon content is 70% by mass or more and less than 78% by mass), and bituminous coal (carbon content is less than 70% by mass). 78 mass% or more and less than 90 mass%) and anthracite (carbon content is 90 mass% or more) can be used. Among these, bituminous coal and anthracite coal are preferable as coal used as a raw material for ashless coal.

抽出処理に用いる溶剤としては、N−メチル−2−ピロリドンなどの複素環式化合物類;ベンゼン、トルエン、キシレンなどの1環芳香族化合物類;ナフタレン、メチルナフタレン、ジメチルナフタレン、トリメチルナフタレンなどの2環芳香族化合物類;キノリン、ピリジン、テトラヒドロフランなどの複素環式芳香族化合物類;二硫化炭素、四塩化炭素などが挙げられる。これらの中でも芳香族化合物を含む芳香族系溶媒が好適である。また、溶剤として、石炭乾留油(石炭を乾留してコークスを製造する際の副生油を生成したもの)を用いてもよい。石炭乾留油は、石炭との親和性に優れているため、溶剤に抽出される可溶成分の割合(以下、「抽出率」と称する場合がある。)が高い。なお、前記溶剤の沸点は180℃以上330℃以下が好ましい。   Solvents used for the extraction treatment include heterocyclic compounds such as N-methyl-2-pyrrolidone; monocyclic aromatic compounds such as benzene, toluene and xylene; naphthalene, methylnaphthalene, dimethylnaphthalene, trimethylnaphthalene and the like Ring aromatic compounds; heterocyclic aromatic compounds such as quinoline, pyridine and tetrahydrofuran; and carbon disulfide and carbon tetrachloride. Among these, an aromatic solvent containing an aromatic compound is preferable. Moreover, you may use coal dry distillation oil (what produced | generated the byproduct oil at the time of dry distillation of coal and manufacturing coke) as a solvent. Since coal dry distillation oil is excellent in affinity with coal, the proportion of soluble components extracted into the solvent (hereinafter, sometimes referred to as “extraction rate”) is high. The boiling point of the solvent is preferably 180 ° C. or higher and 330 ° C. or lower.

石炭の抽出処理は、室温(20℃)で行ってもよいが、加熱することが好ましい。該加熱温度は300℃以上450℃以下が好ましい。加熱温度をこの範囲とすることにより、石炭を構成する分子間の結合が緩み、緩和な熱分解が起こるため、抽出率が高くなる。抽出時間は、石炭の粒子径、溶剤の種類に応じて適宜調節すればよい。また、必要に応じて加圧などを行ってもよい。   The coal extraction process may be performed at room temperature (20 ° C.), but is preferably heated. The heating temperature is preferably 300 ° C. or higher and 450 ° C. or lower. By setting the heating temperature within this range, the bonds between the molecules constituting the coal are loosened and mild thermal decomposition occurs, so that the extraction rate is increased. What is necessary is just to adjust extraction time suitably according to the particle diameter of coal, and the kind of solvent. Moreover, you may pressurize etc. as needed.

前記溶剤に抽出された(溶解した)石炭成分を含む溶液と、溶剤に不溶な灰分、不溶石炭などの固体成分とを分離する方法は特に限定されず、ろ過法、圧搾分離法、遠心分離法、重力沈降法などを採用すればよい。また、溶液中に含有されている金属(塩)を除去するために、必要に応じてイオン交換処理を行ってもよい。そして、得られた溶液から溶剤を除去する方法も特に限定されず、蒸留法、蒸発法(スプレードライ法など)などを採用すればよい。   The method for separating the solution containing the coal component extracted (dissolved) in the solvent from the solid component such as ash and insoluble coal insoluble in the solvent is not particularly limited, and is a filtration method, a pressure separation method, a centrifugal separation method. Gravity sedimentation method or the like may be employed. Moreover, in order to remove the metal (salt) contained in the solution, an ion exchange treatment may be performed as necessary. A method for removing the solvent from the obtained solution is not particularly limited, and a distillation method, an evaporation method (spray dry method or the like) may be employed.

本発明では、前記無灰炭を、不活性雰囲気下800℃未満の温度で熱処理した無灰炭熱処理物、または、該熱処理をしない無灰炭を賦活原料とする。   In the present invention, the ashless coal heat-treated at a temperature of less than 800 ° C. in an inert atmosphere or the ashless coal not subjected to the heat treatment is used as an activation raw material.

前記無灰炭に熱処理を施す場合、該熱処理温度は800℃未満であり、700℃以下が好ましく、より好ましくは600℃以下、さらに好ましくは500℃以下である。無灰炭に施す熱処理温度が800℃未満であれば、炭素の結晶構造が未発達であるため、賦活反応に寄与する活性なエッジ面が数多く存在することとなる。これらのエッジ面の存在により、高比表面積化を達成することができる。   When heat-treating the ashless coal, the heat treatment temperature is less than 800 ° C, preferably 700 ° C or less, more preferably 600 ° C or less, and still more preferably 500 ° C or less. If the heat treatment temperature applied to the ashless coal is less than 800 ° C., since the carbon crystal structure is not developed, there are many active edge surfaces that contribute to the activation reaction. Due to the presence of these edge surfaces, a high specific surface area can be achieved.

次に、賦活処理について説明する。本発明では、前記無灰炭および/または無灰炭熱処理物と、アルカリ賦活剤とを混合し、加熱することにより賦活処理を行う。   Next, the activation process will be described. In the present invention, the activation treatment is performed by mixing and heating the ashless coal and / or the ashless coal heat-treated product and the alkali activator.

前記アルカリ賦活剤としては、アルカリ金属化合物が好ましい。前記アルカリ金属化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどの水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸リチウムなどの炭酸塩;などが挙げられる。これらのアルカリ賦活剤は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、水酸化カリウムが好適である。   As the alkali activator, an alkali metal compound is preferable. Examples of the alkali metal compound include hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; carbonates such as sodium carbonate, potassium carbonate, and lithium carbonate; These alkali activators may be used alone or in combination of two or more. Of these, potassium hydroxide is preferred.

前記アルカリ賦活剤の使用量は、無灰炭および/または無灰炭炭化物の合計100質量部に対して150質量部以上が好ましく、より好ましくは250質量部以上、さらに好ましくは350質量部以上であり、550質量部以下が好ましく、より好ましくは500質量部以下、さらに好ましくは450質量部以下である。アルカリ賦活剤の使用量が150質量部以上であれば、得られる活性炭の比表面積がより向上し、該活性炭を電極材料として用いた場合、優れた静電容量が得られ、550質量部以下であれば、得られる活性炭の過度の密度低下を抑制できる。   The amount of the alkali activator used is preferably 150 parts by mass or more, more preferably 250 parts by mass or more, and further preferably 350 parts by mass or more with respect to 100 parts by mass in total of ashless coal and / or ashless coal carbide. Yes, 550 parts by mass or less is preferable, more preferably 500 parts by mass or less, and still more preferably 450 parts by mass or less. When the amount of the alkali activator used is 150 parts by mass or more, the specific surface area of the obtained activated carbon is further improved, and when the activated carbon is used as an electrode material, an excellent capacitance is obtained, and at 550 parts by mass or less. If it exists, the excessive density fall of the activated carbon obtained can be suppressed.

また、アルカリ賦活剤を添加する際、賦活原料との混合を十分とするために、アルカリ賦活剤を水溶液として使用しても良い。このときの水の使用量は、アルカリ賦活剤の0.05質量倍〜10質量倍が好ましい。なお、アルカリ賦活剤を水溶液として使用する場合には、賦活処理のための加熱を行う前に、アルカリ賦活剤水溶液に由来する水分の突沸防止のため、賦活処理における加熱温度よりも低温での加熱を行って、水分を除去しておくことが好ましい。   Moreover, when adding an alkali activator, in order to fully mix with an activation raw material, you may use an alkali activator as aqueous solution. The amount of water used at this time is preferably 0.05 times by mass to 10 times by mass of the alkali activator. In addition, when using an alkali activator as an aqueous solution, before performing heating for the activation treatment, heating at a temperature lower than the heating temperature in the activation treatment is performed to prevent bumping of moisture derived from the alkaline activator aqueous solution. It is preferable to remove the moisture by performing the above.

賦活処理を行う際の加熱温度は600℃以上が好ましく、より好ましくは650℃以上であり、950℃以下が好ましく、より好ましくは900℃以下である。なお、アルカリ賦活剤には、微量ながら水分が含まれているため、賦活処理温度に到達する前に、アルカリ賦活剤中に含まれる水分を除去しておくことが好ましい。アルカリ賦活剤中の水分を除去するための加熱条件は、例えば、400℃で30分間程度である。また、賦活処理を行う際の加熱時間は0.1時間以上が好ましく、より好ましくは1.5時間以上であり、3.5時間以下が好ましく、より好ましくは3時間以下である。なお、加熱時の雰囲気は、アルゴン、ヘリウム、窒素などの不活性ガス雰囲気が好ましい。   The heating temperature for performing the activation treatment is preferably 600 ° C. or higher, more preferably 650 ° C. or higher, preferably 950 ° C. or lower, more preferably 900 ° C. or lower. Since the alkali activator contains a small amount of moisture, it is preferable to remove the moisture contained in the alkali activator before reaching the activation treatment temperature. The heating conditions for removing moisture in the alkali activator are, for example, about 400 minutes at 400 ° C. In addition, the heating time in performing the activation treatment is preferably 0.1 hour or longer, more preferably 1.5 hours or longer, 3.5 hours or shorter, more preferably 3 hours or shorter. The atmosphere during heating is preferably an inert gas atmosphere such as argon, helium, or nitrogen.

本発明の製造方法では、賦活物の洗浄、官能基量を調整するための熱処理、粉砕を行ってもよい。洗浄は、賦活物の表面には、アルカリ賦活剤として使用した水酸化アルカリ金属などが付着しているので、このような付着物を除去するために行う。   In the production method of the present invention, the activated product may be washed, heat-treated for adjusting the functional group amount, and pulverized. Washing is performed in order to remove such deposits because the alkali metal hydroxide used as the alkali activator is adhered to the surface of the activator.

賦活物(活性炭)の洗浄としては、水洗、酸洗浄などを挙げることができる。水洗方法は、特に限定されないが、例えば、賦活物を水に投入し、必要に応じて撹拌、分散させた後、濾取することにより行うことが好ましい。前記撹拌、分散は、機械的撹拌、気体吹込み、超音波照射によって行うことができるが、加熱煮沸させることによっても行うことができる。水洗時の水温は、30℃以上が好ましく、より好ましくは40℃以上、さらに好ましくは50℃以上である。撹拌、分散時間は1分間以上が好ましく、より好ましくは10分間以上、さらに好ましくは30分間以上である。   As washing | cleaning of an activation material (activated carbon), water washing, acid washing, etc. can be mentioned. The method for washing with water is not particularly limited, but it is preferable to carry out, for example, by putting the activated material into water, stirring and dispersing as necessary, and then collecting by filtration. The stirring and dispersion can be performed by mechanical stirring, gas blowing, and ultrasonic irradiation, but can also be performed by heating and boiling. The water temperature during washing is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and further preferably 50 ° C. or higher. The stirring and dispersing time is preferably 1 minute or longer, more preferably 10 minutes or longer, and further preferably 30 minutes or longer.

酸洗浄では、無機酸、有機酸などを含有する洗浄液を用いて活性炭を洗浄する。なお、洗浄液の溶媒は特に限定されないが、通常は水である。酸洗浄を行うことによって、アルカリ賦活剤として使用した水酸化アルカリ金属などを効率よく除去できる。   In the acid cleaning, the activated carbon is cleaned using a cleaning liquid containing an inorganic acid, an organic acid, or the like. The solvent for the cleaning liquid is not particularly limited, but is usually water. By performing the acid cleaning, the alkali metal hydroxide used as the alkali activator can be efficiently removed.

前記無機酸としては、例えば、塩酸、硝酸、硫酸、リン酸、炭酸などが挙げられる。これらの無機酸は単独で使用してもよいし、2種以上を併用してもよい。無機酸を使用する場合、洗浄液中の無機酸濃度は、0.5mol/L〜3.5mol/Lが好ましい。無機酸を用いて酸洗浄する場合、例えば、賦活物と、無機酸を含有する洗浄液とを混合して、50℃〜100℃の温度で、10分間〜120分間撹拌すればよい。   Examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and carbonic acid. These inorganic acids may be used alone or in combination of two or more. When the inorganic acid is used, the concentration of the inorganic acid in the cleaning liquid is preferably 0.5 mol / L to 3.5 mol / L. When acid cleaning is performed using an inorganic acid, for example, an activation product and a cleaning liquid containing an inorganic acid may be mixed and stirred at a temperature of 50 ° C. to 100 ° C. for 10 minutes to 120 minutes.

前記有機酸としては、例えば、ギ酸、シュウ酸、マロン酸、コハク酸、酢酸、プロピオン酸などを挙げることができる。これらの有機酸は、単独で使用してもよいし、2種以上を併用してもよい。前記有機酸を含有する洗浄液中の有機酸の濃度は、1vol%〜100vol%が好ましい。有機酸を用いて酸洗浄する場合、例えば、賦活物と、有機酸を含有する洗浄液とを混合して、得られた混合物を20℃〜80℃の温度で、1分間〜120分間撹拌すればよい。   Examples of the organic acid include formic acid, oxalic acid, malonic acid, succinic acid, acetic acid, propionic acid, and the like. These organic acids may be used alone or in combination of two or more. The concentration of the organic acid in the cleaning liquid containing the organic acid is preferably 1 vol% to 100 vol%. When acid cleaning is performed using an organic acid, for example, an activation product and a cleaning solution containing an organic acid are mixed, and the resulting mixture is stirred at a temperature of 20 ° C. to 80 ° C. for 1 minute to 120 minutes. Good.

洗浄工程では、酸洗浄と水洗とを行うことが好ましく、より好ましくは酸洗浄を行った後、水洗を複数回行う態様である。洗浄後の活性炭は、50℃〜120℃で、0.5時間〜2.0時間乾燥させることが好ましい。   In the washing step, it is preferable to perform acid washing and water washing, and more preferably, after acid washing, water washing is performed a plurality of times. The activated carbon after washing is preferably dried at 50 to 120 ° C. for 0.5 to 2.0 hours.

官能基量を調整するための熱処理は必ずしも必要でないが、得られる活性炭の表面の官能基量を調整したい場合には、賦活後あるいは洗浄後の賦活物を、さらに不活性ガス雰囲気下で熱処理してもよい。前記不活性ガスとしては、例えば、アルゴン、窒素、ヘリウムなどを使用することができる。また、前記熱処理温度は、特に限定されないが、好ましくは400℃〜1200℃である。   Heat treatment for adjusting the amount of functional groups is not necessarily required. However, when the amount of functional groups on the surface of the obtained activated carbon is to be adjusted, the activated product after activation or after washing is further heat-treated in an inert gas atmosphere. May be. As said inert gas, argon, nitrogen, helium etc. can be used, for example. Moreover, the said heat processing temperature is although it does not specifically limit, Preferably it is 400 to 1200 degreeC.

粉砕は、活性炭の粒径を調整するために行う。活性炭の粉砕方法は、特に限定されるものでなく、ディスクミル、ボールミル、ビーズミルなどを用いて行えばよい。なお、活性炭の体積平均粒子径は1μm以上とすることが好ましく、より好ましくは2μm以上であり、15μm以下とすることが好ましく、より好ましくは10μm以下である。平均粒子径が余りに小さいと、電極における集電板と電極材料層との結着性が悪くなり、実用的な結着性を保持するためには電極材料層に要するバインダー量が増加するおそれがある。   The pulverization is performed to adjust the particle size of the activated carbon. The method for pulverizing the activated carbon is not particularly limited, and may be performed using a disk mill, a ball mill, a bead mill, or the like. In addition, it is preferable that the volume average particle diameter of activated carbon shall be 1 micrometer or more, More preferably, it is 2 micrometers or more, It is preferable to set it as 15 micrometers or less, More preferably, it is 10 micrometers or less. If the average particle diameter is too small, the binding property between the current collector plate and the electrode material layer in the electrode is deteriorated, and the amount of binder required for the electrode material layer may be increased in order to maintain the practical binding property. is there.

本発明の製造方法で得られる活性炭の比表面積は2200m2/g以上が好ましく、より好ましくは2300m2/g以上、さらに好ましくは2400m2/g以上であり、3500m2/g以下が好ましく、より好ましくは3200m2/g以下、さらに好ましくは3000m2/g以下である。ここで、本発明において比表面積とは、活性炭の窒素吸着等温線を測定するBET法により求められる値である。 The specific surface area of the activated carbon obtained by the production method of the present invention is preferably 2200 m 2 / g or more, more preferably 2300 m 2 / g or more, further preferably 2400 m 2 / g or more, preferably 3500 m 2 / g or less, more Preferably it is 3200 m < 2 > / g or less, More preferably, it is 3000 m < 2 > / g or less. Here, in the present invention, the specific surface area is a value determined by the BET method for measuring the nitrogen adsorption isotherm of activated carbon.

本発明の製造方法で得られる活性炭の1nm以上2nm以下の細孔径範囲における細孔容積は0.35cm3/g以上が好ましく、より好ましくは0.45cm3/g以上であり、1.0cm3/g以下が好ましく、より好ましくは0.95cm3/g以下である。ここで、本発明において細孔容積とは、相対圧P/P0(P:吸着平衡にある吸着質の気体の圧力、P0:吸着温度における吸着質の飽和蒸気圧)が0.99までの窒素吸着量を測定するMP法により求められる値である。 Pore volume in the 1nm or more 2nm or less pore size range of the activated carbon obtained by the process of the present invention is 0.35 cm 3 / g or more, more preferably 0.45 cm 3 / g or more, 1.0 cm 3 / G or less, more preferably 0.95 cm 3 / g or less. Here, in the present invention, the pore volume means the relative pressure P / P 0 (P: pressure of the adsorbate gas in the adsorption equilibrium, P 0 : saturated vapor pressure of the adsorbate at the adsorption temperature) up to 0.99. It is a value calculated | required by MP method which measures the nitrogen adsorption amount of.

本発明の製造方法により得られる活性炭は、電気二重層キャパシタ用電極材料として用いることができ、当該電極材料を使用して、電気二重層キャパシタ用電極や電気二重層キャパシタを製造することが可能である。本発明の製造方法によれば、不純物が少なく、かつ、高比表面積を有し、1nm以上2nm以下の細孔径範囲における細孔容積が大きい活性炭が得られる。この活性炭を電極材料に用いれば、静電容量が大きく、内部抵抗が低く、かつ、充電後の電極膨張率が小さい電気二重層キャパシタが得られる。   Activated carbon obtained by the production method of the present invention can be used as an electrode material for an electric double layer capacitor, and an electrode for an electric double layer capacitor or an electric double layer capacitor can be produced using the electrode material. is there. According to the production method of the present invention, activated carbon having a small amount of impurities, a high specific surface area, and a large pore volume in a pore diameter range of 1 nm to 2 nm can be obtained. If this activated carbon is used as an electrode material, an electric double layer capacitor having a large capacitance, a low internal resistance, and a small electrode expansion coefficient after charging can be obtained.

次に、本発明の電気二重層キャパシタについて説明する。本発明の電気二重層キャパシタは、前記の製造方法により得られた活性炭を電極構成材料に用いたことを特徴とする。   Next, the electric double layer capacitor of the present invention will be described. The electric double layer capacitor of the present invention is characterized in that activated carbon obtained by the above-described manufacturing method is used as an electrode constituent material.

電気二重層キャパシタ用電極としては、例えば、活性炭、導電性付与剤およびバインダーを混練し、さらに溶媒を添加してペーストを調製し、このペーストをアルミ箔などの集電板に塗布した後、溶媒を乾燥除去したものが挙げられる。   As an electrode for an electric double layer capacitor, for example, activated carbon, a conductivity-imparting agent and a binder are kneaded, a solvent is further added to prepare a paste, and this paste is applied to a current collector plate such as an aluminum foil. Is obtained by drying and removing.

前記電気二重層キャパシタ用電極に使用されるバインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系高分子化合物や、カルボキシメチルセルロース、スチレン−ブタジエンゴム、石油ピッチ、フェノール樹脂などを使用できる。また、導電性付与剤としては、アセチレンブラック、ケッチェンブラックなどを使用できる。   As the binder used for the electrode for the electric double layer capacitor, fluorine-based polymer compounds such as polytetrafluoroethylene and polyvinylidene fluoride, carboxymethyl cellulose, styrene-butadiene rubber, petroleum pitch, phenol resin, and the like can be used. As the conductivity imparting agent, acetylene black, ketjen black, or the like can be used.

電気二重層キャパシタは、一般的には、電極、電解液、およびセパレータを主要構成とし、一対の電極間にセパレータを配置した構造となっている。前記電解液としては、例えば、プロピレンカーボネート、エチレンカーボネート、メチルエチルカーボネートなどの有機溶剤に、アミジン塩を溶解した電解液;過塩素酸の4級アンモニウム塩を溶解した電解液;4級アンモニウムやリチウムなどのアルカリ金属の四フッ化ホウ素塩や六フッ化リン塩を溶解した電解液;4級ホスホニウム塩を溶解した電解液などが挙げられる。また、前記セパレータとしては、例えば、セルロース、ガラス繊維、または、ポリエチレンやポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルムが挙げられる。   An electric double layer capacitor generally has a structure in which an electrode, an electrolytic solution, and a separator are main components, and a separator is disposed between a pair of electrodes. Examples of the electrolytic solution include an electrolytic solution in which an amidine salt is dissolved in an organic solvent such as propylene carbonate, ethylene carbonate, and methyl ethyl carbonate; an electrolytic solution in which a quaternary ammonium salt of perchloric acid is dissolved; quaternary ammonium or lithium An electrolytic solution in which an alkali metal boron tetrafluoride salt or phosphorous hexafluoride salt is dissolved; an electrolytic solution in which a quaternary phosphonium salt is dissolved may be mentioned. Examples of the separator include cellulose, glass fiber, or a nonwoven fabric, cloth, or microporous film mainly composed of polyolefin such as polyethylene or polypropylene.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.

評価方法
比表面積、細孔容積
活性炭0.2gを300℃にて真空加熱した後、窒素吸着装置(日本ベル社製、「BELSORP−max」)を用いて、吸着等温線を求め、BET法により比表面積を算出した。また、活性炭に形成された細孔の形状をスリット状と仮定し、MP法により細孔径分布を算出し、細孔容積を求めた。
Evaluation Method Specific Surface Area, Pore Volume After 0.2 g of activated carbon was vacuum heated at 300 ° C., an adsorption isotherm was determined using a nitrogen adsorption device (“BELSORP-max” manufactured by Nippon Bell Co., Ltd.), and the BET method was used. The specific surface area was calculated. Further, assuming that the shape of the pores formed in the activated carbon is a slit shape, the pore size distribution was calculated by the MP method to obtain the pore volume.

静電容量、内部抵抗、電極膨張率
充放電装置(楠本化成社製、「ETAC(登録商標) Ver.4.4」)の充放電端子を電気二重層キャパシタの集電板に接続し、集電板間電圧が2.5Vになるまで40mAの定電流充電を行い、続けて、2.5Vの定電圧で30分間充電を行った。充電後、定電流(放電電流10mA)で電気二重層キャパシタの放電を行った。このとき、集電板間電圧がV1、V2となるまでに要した放電時間t1、t2を測定し、下記式(1)を用いて静電容量を求めた。得られた静電容量を、キャパシタ用電極における電極材料層中の活性炭質量で除することにより質量基準静電容量(F/g)算出した。また、下記式(2)を用いて内部抵抗を求めた。なお、静電容量および内部抵抗の測定は、25℃および−30℃の温度下で行った。電気二重層キャパシタについて、電圧を印加する前と、印加した後の電極厚みの変化から、膨張率を求めた。
Capacitance, internal resistance, electrode expansion rate The charge / discharge terminal of the charge / discharge device (“ETAC (registered trademark) Ver. 4.4” manufactured by Enomoto Kasei Co., Ltd.) is connected to the current collector plate of the electric double layer capacitor, The battery was charged at a constant current of 40 mA until the voltage between the electric plates reached 2.5 V, and then charged at a constant voltage of 2.5 V for 30 minutes. After charging, the electric double layer capacitor was discharged with a constant current (discharge current 10 mA). At this time, the discharge times t1 and t2 required until the voltage between the current collector plates became V1 and V2 were measured, and the capacitance was obtained using the following formula (1). The obtained capacitance was divided by the mass of activated carbon in the electrode material layer in the capacitor electrode to calculate a mass-based capacitance (F / g). Moreover, internal resistance was calculated | required using following formula (2). The capacitance and internal resistance were measured at 25 ° C. and −30 ° C. For the electric double layer capacitor, the expansion coefficient was determined from the change in electrode thickness before and after applying the voltage.


I:10(mA)
t1:電気二重層キャパシタ電圧がV1となるまでに要した放電時間(sec)
t2:電気二重層キャパシタ電圧がV2となるまでに要した放電時間(sec)
V0:2.5(V)
V1:2.0(V)
V2:1.0(V)

I: 10 (mA)
t1: Discharge time required for the electric double layer capacitor voltage to reach V1 (sec)
t2: Discharge time (sec) required for the electric double layer capacitor voltage to reach V2
V0: 2.5 (V)
V1: 2.0 (V)
V2: 1.0 (V)

1.活性炭の製造方法
製造例1
無灰炭100質量部、水酸化カリウム400質量部(水酸化カリウム/無灰炭(質量比)=4)を混合し、当該混合物を窒素雰囲気下、昇温速度10℃/minで800℃まで加熱し、800℃で2時間熱処理し、アルカリ賦活を行った。
得られた賦活物とカリウム成分の混合物に、水と塩酸を加え、100℃で2時間加熱後、賦活物を濾取することにより塩酸洗浄を行った。その後、塩酸洗浄を終えた賦活物に水を加え、100℃に加熱して2時間煮沸した後、賦活物を濾取することにより温水洗浄を行った。同様の操作を繰り返してろ液のpHが6以上になるまで温水洗浄を行った。塩酸洗浄1回と温水洗浄を経た賦活物を、110℃で2時間乾燥した。乾燥後の賦活物を、ボールミルで粉砕し、平均粒子径が3μmとなるように調整し、活性炭を得た。
1. Production method 1 of activated carbon
100 parts by mass of ashless coal, 400 parts by mass of potassium hydroxide (potassium hydroxide / ashless coal (mass ratio) = 4) are mixed, and the mixture is heated to 800 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere. The mixture was heated and heat treated at 800 ° C. for 2 hours to activate the alkali.
Water and hydrochloric acid were added to the obtained mixture of the activated product and the potassium component, and after heating at 100 ° C. for 2 hours, the activated product was collected by filtration to wash with hydrochloric acid. Thereafter, water was added to the activated product after washing with hydrochloric acid, heated to 100 ° C. and boiled for 2 hours, and then washed with warm water by filtering the activated product. The same operation was repeated, and washing with warm water was performed until the pH of the filtrate reached 6 or more. The activated product that had been washed once with hydrochloric acid and washed with warm water was dried at 110 ° C. for 2 hours. The activated product after drying was pulverized with a ball mill and adjusted so that the average particle size was 3 μm, to obtain activated carbon.

製造例2
無灰炭を、窒素雰囲気中、500℃で7分間熱処理し、無灰炭熱処理物を得た。得られた無灰炭熱処理物100質量部に対して水酸化カリウム400質量部を混合し、当該混合物を窒素雰囲気下、昇温速度10℃/minで800℃まで加熱し、800℃で2時間熱処理し、アルカリ賦活を行った。得られた賦活物とカリウム成分の混合物について、製造例1と同様に塩酸洗浄、温水洗浄、乾燥、粉砕を行い、平均粒子径3μmの活性炭を得た。
Production Example 2
Ashless charcoal was heat-treated at 500 ° C. for 7 minutes in a nitrogen atmosphere to obtain a heat-treated ashless charcoal. 400 parts by mass of potassium hydroxide is mixed with 100 parts by mass of the heat-treated ashless coal, and the mixture is heated to 800 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere, and at 800 ° C. for 2 hours. It heat-processed and alkali activation was performed. The mixture of the obtained activated substance and potassium component was washed with hydrochloric acid, washed with warm water, dried and ground in the same manner as in Production Example 1 to obtain activated carbon having an average particle diameter of 3 μm.

製造例3〜6
無灰炭の熱処理温度を表1に示す温度に変更したこと以外は製造例2と同様にして活性炭を得た。
Production Examples 3-6
Activated carbon was obtained in the same manner as in Production Example 2 except that the heat treatment temperature of ashless coal was changed to the temperature shown in Table 1.

2.電気二重層キャパシタの製造
上記製造例1〜6で得られた活性炭を用いて電気二重層キャパシタを製造した。具体的には、活性炭に、ポリテトラフルオロエチレン(PTFE)粉末とアセチレンブラックとを、活性炭:PTFE:アセチレンブラック=8:1:1(質量比)になるように混合し、これをプレス成形してキャパシタ用電極を作成した。
2. Production of Electric Double Layer Capacitor An electric double layer capacitor was produced using the activated carbon obtained in Production Examples 1-6. Specifically, polytetrafluoroethylene (PTFE) powder and acetylene black are mixed with activated carbon so that activated carbon: PTFE: acetylene black = 8: 1: 1 (mass ratio), and this is press-molded. Thus, an electrode for a capacitor was prepared.

得られたキャパシタ用電極を真空条件下、200℃、1時間の条件で乾燥した後、窒素ガスを流通させたグローブボックス内で電解液(1Mテトラエチルアンモニウムテトラフルオロボレートのプロピレンカーボネート溶液)を電極に真空含浸させた。この電極を使用して図3に示すように電気二重層キャパシタを組み立てた。図3に示す電気二重層キャパシタは、前記電解液を含浸させたセパレータ(Celgard社製、「セルガード(登録商標)#3501」)1を前記キャパシタ用電極2で挟み、電極をOリング3で囲繞した後、さらに集電板としてのアルミニウム板4で挟んで作成した。   The obtained capacitor electrode was dried under vacuum conditions at 200 ° C. for 1 hour, and then an electrolyte (1M tetraethylammonium tetrafluoroborate propylene carbonate solution) was used as an electrode in a glove box in which nitrogen gas was circulated. Vacuum impregnated. Using this electrode, an electric double layer capacitor was assembled as shown in FIG. The electric double layer capacitor shown in FIG. 3 has a separator (Celgard, “Celguard (registered trademark) # 3501”) 1 impregnated with the electrolytic solution sandwiched between the capacitor electrodes 2, and the electrodes are surrounded by an O-ring 3. Then, it was further sandwiched between aluminum plates 4 as current collector plates.

製造例1〜6で得られた活性炭の評価結果および、これらの活性炭を用いて製造した電気二重層キャパシタについての評価結果を表1に示した。また、製造例1〜6で得られた活性炭の細孔径分布を図1、図2に示した。なお、細孔径分布図において、縦軸はlog微分細孔容積dV/dlogD(cm3/g)(Vは細孔容積)、横軸は細孔径D(nm)である。 Table 1 shows the evaluation results of the activated carbon obtained in Production Examples 1 to 6 and the evaluation results of the electric double layer capacitor produced using these activated carbons. Moreover, the pore diameter distribution of the activated carbon obtained in Production Examples 1 to 6 is shown in FIGS. In the pore diameter distribution chart, the vertical axis is log differential pore volume dV / dlogD (cm 3 / g) (V is the pore volume), and the horizontal axis is pore diameter D (nm).

製造例1〜4は、賦活原料として、熱処理していない無灰炭(製造例1)または無灰炭を800℃未満で熱処理した無灰炭熱処理物(製造例2〜4)を用いた場合である。これらの場合、得られた活性炭の比表面積は2450m2/gと高い値となり、かつ、細孔径分布の1nm以上2nm以下の細孔径範囲における細孔容積が0.38cm3/g以上と大きかった。これに対して、賦活原料として、無灰炭を800℃以上で熱処理した無灰炭熱処理物を用いた場合、比表面積は1820m2/g以下と低い値であり、細孔径分布の1nm以上2nm以下の細孔径範囲における細孔容積が0.20cm3/g以下と小さい値であった。 In Production Examples 1 to 4, ashless coal that has not been heat-treated (Production Example 1) or ashless coal heat-treated product that has been heat-treated at less than 800 ° C. (Production Examples 2 to 4) is used as the activation raw material. It is. In these cases, the specific surface area of the obtained activated carbon was as high as 2450 m 2 / g, and the pore volume in the pore diameter range of 1 nm to 2 nm in the pore diameter distribution was as large as 0.38 cm 3 / g or more. . On the other hand, when an ashless coal heat-treated product obtained by heat treating ashless coal at 800 ° C. or higher is used as the activation raw material, the specific surface area is a low value of 1820 m 2 / g or less, and the pore size distribution is 1 nm to 2 nm. The pore volume in the following pore diameter range was a small value of 0.20 cm 3 / g or less.

上記製造例1〜4の活性炭を用いた電気二重層キャパシタでは、製造例5,6の活性炭を用いた場合に比べて、静電容量が大きく、かつ、内部抵抗が低くなり、さらに、充電時の電極膨張率が低減していることがわかる。   In the electric double layer capacitors using the activated carbons of Production Examples 1 to 4, the capacitance is larger and the internal resistance is lower than when the activated carbons of Production Examples 5 and 6 are used. It can be seen that the electrode expansion coefficient is reduced.

本発明は、電気二重層キャパシタに適した細孔径分布を有し、かつ、高比表面積を有する活性炭の製造に有用である。   The present invention is useful for producing activated carbon having a pore size distribution suitable for an electric double layer capacitor and having a high specific surface area.

1:セパレータ、2:キャパシタ用電極、3:Oリング、4:アルミニウム板、5:ポリテトラフルオロエチレン板、6:ステンレス鋼板 1: Separator, 2: Electrode for capacitor, 3: O-ring, 4: Aluminum plate, 5: Polytetrafluoroethylene plate, 6: Stainless steel plate

Claims (6)

無灰炭を、不活性雰囲気下800℃未満の温度で熱処理した後で、または、該熱処理をしないで、アルカリ賦活剤と混合し600℃以上950℃以下の温度で賦活処理することを特徴とする活性炭の製造方法。   The ashless charcoal is heat-treated at a temperature of less than 800 ° C. under an inert atmosphere, or without heat treatment, and mixed with an alkali activator and activated at a temperature of 600 ° C. or higher and 950 ° C. or lower. To produce activated carbon. 前記アルカリ賦活剤の使用量が、前記無灰炭および/または無灰炭熱処理物の合計100質量部に対して150質量部以上550質量部以下である請求項1に記載の活性炭の製造方法。   2. The method for producing activated carbon according to claim 1, wherein the amount of the alkali activator used is 150 parts by mass or more and 550 parts by mass or less with respect to a total of 100 parts by mass of the ashless coal and / or heat treated ashless coal. 請求項1又は2に記載の製造方法により得られたことを特徴とする活性炭。   Activated carbon obtained by the production method according to claim 1 or 2. 請求項3に記載の活性炭を含有することを特徴とする電気二重層キャパシタ用電極材料。   An electrode material for an electric double layer capacitor, comprising the activated carbon according to claim 3. 請求項4に記載の電極材料を用いたことを特徴とする電気二重層キャパシタ用電極。   An electrode for an electric double layer capacitor, wherein the electrode material according to claim 4 is used. 請求項5に記載の電極を用いたことを特徴とする電気二重層キャパシタ。   An electric double layer capacitor comprising the electrode according to claim 5.
JP2010248997A 2010-11-05 2010-11-05 Method for producing activated carbon Pending JP2012101948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010248997A JP2012101948A (en) 2010-11-05 2010-11-05 Method for producing activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248997A JP2012101948A (en) 2010-11-05 2010-11-05 Method for producing activated carbon

Publications (1)

Publication Number Publication Date
JP2012101948A true JP2012101948A (en) 2012-05-31

Family

ID=46392838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010248997A Pending JP2012101948A (en) 2010-11-05 2010-11-05 Method for producing activated carbon

Country Status (1)

Country Link
JP (1) JP2012101948A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034475A (en) * 2012-08-07 2014-02-24 Osaka Univ Method for producing activated carbon
WO2014077305A1 (en) * 2012-11-16 2014-05-22 ニチアス株式会社 Silanol compound remover
JPWO2012101949A1 (en) * 2011-01-28 2014-06-30 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, non-aqueous electrolyte secondary battery positive electrode using the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode
WO2014175121A1 (en) * 2013-04-26 2014-10-30 株式会社神戸製鋼所 Method for manufacturing ashless coal, and method for manufacturing carbon material
JP2015056502A (en) * 2013-09-11 2015-03-23 株式会社キャタラー Active carbon for hybrid capacitor and method for manufacturing the same
JPWO2014017588A1 (en) * 2012-07-26 2016-07-11 関西熱化学株式会社 Activated carbon with high active surface area
KR20180046545A (en) * 2016-10-28 2018-05-09 한국에너지기술연구원 Method for manufacturing activated carbons using thermal solvent extraction
JP2018523623A (en) * 2015-05-19 2018-08-23 キー チーム エンタープライゼス リミテッド Method for preparing graphene from coal
CN111874905A (en) * 2020-07-13 2020-11-03 宁夏新龙蓝天科技股份有限公司 Novel activated carbon process
WO2022114235A1 (en) * 2020-11-30 2022-06-02 日本ゼオン株式会社 Carbon film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632314A (en) * 1979-08-16 1981-04-01 Lancashire Tar Distillers Manufacture of porous carbon
JPH10121336A (en) * 1996-10-09 1998-05-12 Petoca:Kk Mesophase pitch-based activated carbon fiber, its production and electric double layer capacitor
JPH10149957A (en) * 1996-09-17 1998-06-02 Honda Motor Co Ltd Manufacturing method of activated carbon for electrode of organic solvent-based electrical double layered capacitor
JPH10335188A (en) * 1997-06-05 1998-12-18 Furukawa Co Ltd Electric double layer capacitor
JP2002104817A (en) * 2000-07-25 2002-04-10 Kuraray Co Ltd Activated carbon, its manufacturing method, polarizable electrode and capacitor with electrical double layer
JP2004149399A (en) * 2002-04-11 2004-05-27 Showa Denko Kk Activated carbon, its manufacturing method and its use
JP2007142204A (en) * 2005-11-18 2007-06-07 Gunma Univ Carbon material for electric double layer capacitor and manufacturing method
JP2008037733A (en) * 2006-08-10 2008-02-21 Sangyo Gijutsu Kenkyusho:Kk Manufacturing methods of activated carbon and electric double layer capacitor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632314A (en) * 1979-08-16 1981-04-01 Lancashire Tar Distillers Manufacture of porous carbon
JPH10149957A (en) * 1996-09-17 1998-06-02 Honda Motor Co Ltd Manufacturing method of activated carbon for electrode of organic solvent-based electrical double layered capacitor
JPH10121336A (en) * 1996-10-09 1998-05-12 Petoca:Kk Mesophase pitch-based activated carbon fiber, its production and electric double layer capacitor
JPH10335188A (en) * 1997-06-05 1998-12-18 Furukawa Co Ltd Electric double layer capacitor
JP2002104817A (en) * 2000-07-25 2002-04-10 Kuraray Co Ltd Activated carbon, its manufacturing method, polarizable electrode and capacitor with electrical double layer
JP2004149399A (en) * 2002-04-11 2004-05-27 Showa Denko Kk Activated carbon, its manufacturing method and its use
JP2007142204A (en) * 2005-11-18 2007-06-07 Gunma Univ Carbon material for electric double layer capacitor and manufacturing method
JP2008037733A (en) * 2006-08-10 2008-02-21 Sangyo Gijutsu Kenkyusho:Kk Manufacturing methods of activated carbon and electric double layer capacitor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014029086; 鎌本隼平 他: '"ハイパーコールからの高活性電気二重層キャパシタ用炭素材料の製造"' 日本エネルギー学会第45回石炭科学会議発表論文集 , 20081009, p.132-133 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012101949A1 (en) * 2011-01-28 2014-06-30 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, non-aqueous electrolyte secondary battery positive electrode using the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode
JPWO2014017588A1 (en) * 2012-07-26 2016-07-11 関西熱化学株式会社 Activated carbon with high active surface area
JP2014034475A (en) * 2012-08-07 2014-02-24 Osaka Univ Method for producing activated carbon
WO2014077305A1 (en) * 2012-11-16 2014-05-22 ニチアス株式会社 Silanol compound remover
WO2014175121A1 (en) * 2013-04-26 2014-10-30 株式会社神戸製鋼所 Method for manufacturing ashless coal, and method for manufacturing carbon material
JP2014214267A (en) * 2013-04-26 2014-11-17 株式会社神戸製鋼所 Method for manufacturing ashless coal, and method for manufacturing carbon material
JP2015056502A (en) * 2013-09-11 2015-03-23 株式会社キャタラー Active carbon for hybrid capacitor and method for manufacturing the same
JP2018523623A (en) * 2015-05-19 2018-08-23 キー チーム エンタープライゼス リミテッド Method for preparing graphene from coal
US10703634B2 (en) 2015-05-19 2020-07-07 Enn Graphene Technology Co., Ltd. Method for preparing graphene using coal as raw material
KR20180046545A (en) * 2016-10-28 2018-05-09 한국에너지기술연구원 Method for manufacturing activated carbons using thermal solvent extraction
KR101897676B1 (en) * 2016-10-28 2018-09-12 한국에너지기술연구원 Method for manufacturing activated carbons using thermal solvent extraction
CN111874905A (en) * 2020-07-13 2020-11-03 宁夏新龙蓝天科技股份有限公司 Novel activated carbon process
WO2022114235A1 (en) * 2020-11-30 2022-06-02 日本ゼオン株式会社 Carbon film

Similar Documents

Publication Publication Date Title
JP2012101948A (en) Method for producing activated carbon
JP5027849B2 (en) Method for producing activated carbon, and electric double layer capacitor using activated carbon obtained by the method
CN102460620B (en) Carbon material for electric double layer capacitor electrode and method for producing same
JP4616052B2 (en) Electrode material for electric double layer capacitor and manufacturing method thereof, electrode for electric double layer capacitor, and electric double layer capacitor
JP5770550B2 (en) Activated carbon and manufacturing method thereof
JP5271851B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP5202460B2 (en) Activated carbon and electric double layer capacitor using the activated carbon
WO2011122309A1 (en) Activated charcoal for electric double-layer capacitor electrode and method for producing the same
TWI751290B (en) Carbonaceous material and its manufacturing method, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor containing the carbon material
AU2018205516B2 (en) Materials derived from coal using environmentally friendly solvents
JP5390790B2 (en) Method for producing mesopore activated carbon
JP6371787B2 (en) Activated carbon, method for producing the same, and electric double layer capacitor using the activated carbon
JP5619367B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP5718423B2 (en) Electrode material for electric double layer capacitor, electrode for electric double layer capacitor, and electric double layer capacitor
KR101381710B1 (en) Method for manufacturing active carbon for electrode using cokes and method for manufacturing active carbon composition for electrode
WO2015146459A1 (en) Activated carbon, method for producing activated carbon and method for treating activated carbon
JP2008021833A (en) Porous carbon material for electric double layer capacitor, manufacturing method thereof, and non-aqueous electric double layer capacitor
JP2005200259A (en) Porous carbon and manufacturing method of porous carbon as well as manufacturing method of porous carbon for electrical double layer capacitor, porous carbon for electrical double layer obtained from the method and electrical double layer capacitor using the same
JP2007153639A (en) Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor
JP4096653B2 (en) Method for producing activated carbon, polarizable electrode and electric double layer capacitor
JP2003206121A (en) Activated carbon and method for manufacturing the same
JP2006278364A (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor
JP5208160B2 (en) Method for producing porous carbon for electric double layer capacitor, porous carbon for electric double layer capacitor obtained by the production method, and electric double layer capacitor using porous carbon for electric double layer capacitor
JP5065856B2 (en) Electrode material for electric double layer capacitor, electrode and electric double layer capacitor
JP2009260112A (en) Producing method of positive-electrode active material for electrochemical capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111