JP2003104710A - Solid state activated carbon and its producing method and electric double-layer capacitor using it and its producing method - Google Patents

Solid state activated carbon and its producing method and electric double-layer capacitor using it and its producing method

Info

Publication number
JP2003104710A
JP2003104710A JP2001298547A JP2001298547A JP2003104710A JP 2003104710 A JP2003104710 A JP 2003104710A JP 2001298547 A JP2001298547 A JP 2001298547A JP 2001298547 A JP2001298547 A JP 2001298547A JP 2003104710 A JP2003104710 A JP 2003104710A
Authority
JP
Japan
Prior art keywords
activated carbon
electric double
layer capacitor
solid activated
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001298547A
Other languages
Japanese (ja)
Inventor
Youji Seki
洋二 積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001298547A priority Critical patent/JP2003104710A/en
Publication of JP2003104710A publication Critical patent/JP2003104710A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide solid state activated carbon which composes a polarizable electrode having a large electrostatic capacity and excellent electric charge and discharge cycle characteristics and an electric double-layer capacitor using it. SOLUTION: The solid state activated carbon which composes the polarizable electrode has the properties as follows. The specific surface area is 500 m<2> or more and 2,500 m<2> or less. The pore volume of pore 15 having diameter of 1 nm or less measured by an argon adsorption isothermal curve is 0.35-0.70 cc/g. The intensity ratio (ID/IG) of 1,360 cm<-1> band (ID) to 1,580 cm<-1> band (IG) at Raman spectroscopy is 0.5 or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固形状活性炭及び
その製造方法並びにそれを用いた電気二重層コンデンサ
およびその製造方法に関し、特に、静電容量が大きくか
つ充放電サイクル特性に優れた分極性電極を構成する固
形状活性炭及びその製造方法並びにそれを用いた電気二
重層コンデンサおよびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to solid activated carbon, a method for producing the same, an electric double layer capacitor using the same, and a method for producing the same, and particularly to a polarizability having a large capacitance and excellent charge / discharge cycle characteristics. The present invention relates to solid activated carbon constituting electrodes, a method for producing the same, an electric double layer capacitor using the same, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、エレクトロニクス分野におけるメ
モリーバックアップ電源や自動車の駆動モータの補助電
源として、高い静電容量を有するという点から電気二重
層コンデンサが用いられている。そして、この電気二重
層コンデンサを構成する分極性電極として多孔性材料で
ある活性炭が用いられ、高容量、低抵抗化のために種々
の検討が行われている。
2. Description of the Related Art In recent years, electric double layer capacitors have been used as a memory backup power supply in the electronics field and an auxiliary power supply for automobile drive motors because of their high capacitance. Then, activated carbon, which is a porous material, is used as a polarizable electrode that constitutes this electric double layer capacitor, and various studies have been conducted to achieve high capacity and low resistance.

【0003】そのような固形状活性炭としては、例え
ば、活性炭やカーボンブラック等の炭素質と、含フッ素
重合体等の有機樹脂を混練してロール成形法等の公知の
成形手段でシート状に成形したもの等が用いられてい
た。
As such solid activated carbon, for example, a carbonaceous material such as activated carbon or carbon black and an organic resin such as a fluoropolymer are kneaded and formed into a sheet by a known forming means such as a roll forming method. What was done was used.

【0004】しかしながら、前述のような電気二重層コ
ンデンサ用の分極性電極材料としては、とりわけ高い静
電容量と低い内部抵抗という性能を満足し、かつ昨今の
電子部品の小型化の要求を満足するために、所定容量に
対する体積の極小化及び電解液の含浸性を考慮した多孔
体構造で、亀裂や破損等を起こし難く、一般の用途とし
ても、より耐久性と機械的特性に優れたものであること
等が要求されるようになっている。
However, as the polarizable electrode material for the electric double layer capacitor as described above, the performances of particularly high capacitance and low internal resistance are satisfied, and the recent demands for miniaturization of electronic parts are satisfied. Therefore, it is a porous structure that considers the minimization of the volume for a predetermined capacity and the impregnation property of the electrolytic solution, it is hard to cause cracks and damages, and it has excellent durability and mechanical properties even for general applications. Something is required.

【0005】特に、電気二重層コンデンサの静電容量
は、電気二重層が形成される分極性電極の表面積や単位
体積当たりの静電容量、分極性電極の抵抗等に支配され
るが、電気二重層を形成する電解液中のイオンの大きさ
と密接な関係があり、これは細孔の直径や比表面積が静
電容量を左右すると考えられている。
In particular, the capacitance of an electric double layer capacitor is governed by the surface area of the polarizable electrode on which the electric double layer is formed, the capacitance per unit volume, the resistance of the polarizable electrode, etc. There is a close relationship with the size of the ions in the electrolytic solution forming the multilayer, and it is considered that the diameter of the pores and the specific surface area influence the capacitance.

【0006】従って、分極性電極の単位体積当たりの静
電容量を増すために、耐久性や機械的強度を損なわない
範囲で比表面積を大きくした多孔質の固体状活性炭が必
要とされていた。
Therefore, in order to increase the electrostatic capacity per unit volume of the polarizable electrode, a porous solid activated carbon having a large specific surface area is required within a range that does not impair durability and mechanical strength.

【0007】このような分極性電極を構成する固体状活
性炭の改良に関して、例えば、特開平8−119614
号公報に開示されるようなものが知られている。この公
報に開示された活性炭は、細孔直径20Å以上のメソポ
アといわれる領域の比表面積を大きくし且つ性能に対し
て寄与度の低いミクロポア領域を徹底的に小さくして、
効率的な表面積の利用をすることにより静電容量を高め
ようとするものである。
Regarding improvement of the solid activated carbon constituting such a polarizable electrode, for example, Japanese Patent Laid-Open No. 8-119614 has been proposed.
The one disclosed in Japanese Laid-Open Patent Publication is known. The activated carbon disclosed in this publication has a large specific surface area in a region called mesopore having a pore diameter of 20 Å or more, and thoroughly reduces a micropore region having a low contribution to performance,
It is intended to increase the capacitance by efficiently using the surface area.

【0008】また、このような特定の活性炭は、例え
ば、炭素質原料を水蒸気賦活した後の細孔直径20Å以
上の比表面積と全比表面積との比が0.30以上である
ものをさらにアルカリ賦活するか、あるいは炭素質原料
を炭化した後、酸化処理し、さらにアルカリ賦活するこ
とにより得ることができると記載されている。
Further, such a specific activated carbon is, for example, one in which the ratio of the specific surface area of the pore diameter of 20 Å or more after steam activation of the carbonaceous raw material to the total specific surface area is 0.30 or more is further alkalinized. It is described that it can be obtained by activating or carbonizing a carbonaceous raw material, followed by oxidation treatment and further alkali activation.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記こ
のメソポアのサイズは電気二重層コンデンサに用いる電
解液中のイオンのサイズよりも大きいために、活性炭の
細孔に効率よく電解液をトラップすることが困難なこと
から活性炭の表面に電気二重層が形成し難くなり、この
ため低い静電容量しか得られず、また、活性炭の表面に
形成された細孔径が大きいために、分極性電極の機械的
強度が低くなるという問題があった。
However, since the size of the mesopores is larger than the size of the ions in the electrolytic solution used for the electric double layer capacitor, the electrolytic solution can be efficiently trapped in the pores of the activated carbon. Since it is difficult to form an electric double layer on the surface of activated carbon, only a low capacitance can be obtained, and since the pore size formed on the surface of activated carbon is large, the mechanical properties of the polarizable electrode are small. There was a problem of low strength.

【0010】また、このような活性炭では表面に形成さ
れるエッジ面が少ないことから細孔容積が小さく、電気
二重層が形成し難くなるために単位体積当たりの静電容
量が低くなるという問題があった。
Further, in such activated carbon, since the edge surface formed on the surface is small, the pore volume is small, and it becomes difficult to form the electric double layer, so that the electrostatic capacity per unit volume becomes low. there were.

【0011】さらに、上記活性炭は炭素質原料を水蒸気
賦活した後、あるいは炭化し酸化処理した後のいずれの
場合においても、活性炭は最終的にアルカリ賦活される
ため、活性炭の細孔を含む表面にはアルカリ金属を有す
る官能基が結合しており、これが分極性電極の充放電の
繰り返し時に分解することにより、抵抗の増加や静電容
量の低下を招き信頼性が低下するという問題があった。
Furthermore, the activated carbon is finally alkali-activated after activation of the carbonaceous raw material by steam or after carbonization and oxidation treatment, so that the surface including pores of the activated carbon is activated. Has a functional group containing an alkali metal, which decomposes during repeated charging and discharging of the polarizable electrode, resulting in an increase in resistance and a decrease in electrostatic capacity, resulting in a decrease in reliability.

【0012】従って、本発明は、静電容量が大きくかつ
充放電サイクル特性に優れた分極性電極を構成する固形
状活性炭及びその製造方法並びにそれを用いた電気二重
層コンデンサおよびその製造方法を提供することを目的
とする。
Accordingly, the present invention provides a solid activated carbon which constitutes a polarizable electrode having a large electrostatic capacity and excellent charge / discharge cycle characteristics, a method for producing the same, an electric double layer capacitor using the same, and a method for producing the same. The purpose is to do.

【0013】[0013]

【課題を解決するための手段】本発明の固形状活性炭
は、比表面積が500m2/g以上2500m2/g以下
で、アルゴン吸着等温線から得られる直径1nm以下の
細孔の細孔容積が0.35〜0.70cc/gを占め、
かつラマン分光法における1360cm-1バンド
(ID)の1580cm-1バンド(IG)に対する強度比
(ID/IG)が0.5以上であることを特徴とする。
Means for Solving the Problems The solid activated carbon of the present invention has a specific surface area of 500 m 2 / g or more and 2500 m 2 / g or less and a pore volume of pores having a diameter of 1 nm or less obtained from an argon adsorption isotherm. Occupy 0.35-0.70 cc / g,
And the intensity ratio 1580 cm -1 band of 1360 cm -1 band in the Raman spectroscopy (I D) (I G) (I D / I G) is characterized in that 0.5 or more.

【0014】このような構成によれば、固形状活性炭の
比表面積を500m2/g以上2500m2/g以下とし
ても直径が2nm以上の比較的大きな細孔を低減し、逆
に、直径1nm以下の細孔の細孔容積が0.35〜0.
70cc/gになるように調整されていることから、こ
の細孔に電気二重層コンデンサに使用する非水系電解液
中のイオンが効率よくトラップされ、このため活性炭粒
子の表面に電気二重層を形成しやすくなり、静電容量お
よび機械的強度を高めることができるまた、活性炭粒子
の表面に電気二重層が形成される容量は、活性炭粒子を
構成する黒鉛の六角網平面である基底面と、その断面で
あるエッジ面では、エッジ面の方が基底面に比べ電気二
重層が形成される容量が10倍以上高いことが知られて
いるが、ラマン分光法における1360cm-1バンド
(ID)の1580cm- 1バンド(IG)に対する強度比
(ID/IG)が0.5以上とし、活性炭粒子の表面にエ
ッジ面を多く形成することにより、電気二重層の単位体
積当たりの静電容量をさらに向上させることができる。
According to this structure, even if the specific surface area of the solid activated carbon is 500 m 2 / g or more and 2500 m 2 / g or less, relatively large pores having a diameter of 2 nm or more are reduced, and conversely, the diameter is 1 nm or less. The pore volume of the pores is 0.35 to 0.
Since it is adjusted to 70 cc / g, the ions in the non-aqueous electrolyte used in the electric double layer capacitor are efficiently trapped in the pores, so that the electric double layer is formed on the surface of the activated carbon particles. The capacity of forming an electric double layer on the surface of the activated carbon particles is the basal plane which is a hexagonal net plane of graphite constituting the activated carbon particles, and It is known that the edge surface, which is a cross section, has a capacity of forming an electric double layer 10 times or more higher than that of the basal surface in the edge surface. However, in the Raman spectroscopy, the 1360 cm −1 band ( ID ) 1580 cm - 1 band (I G) intensity ratio (I D / I G) is 0.5 or more, by increasing formation of edge surface to the surface of the activated carbon particles, electrostatic per unit volume of the electric double layer The capacity can be further improved.

【0015】本発明の固形状活性炭の製造方法は、
(a)炭素質原料に有機バインダを添加、混合し、成形
する工程と、(b)(a)工程で得られた成形体を還元
性雰囲気にて700℃〜1100℃で炭化処理する工程
と、(c)炭化処理後の成形体にアルカリ金属溶液を含
浸し、乾燥した後、還元性雰囲気にて、700℃〜10
00℃、1〜10時間でアルカリ賦活処理する工程と、
(d)アルカリ処理後の成形体を700℃〜1000℃
で水蒸気賦活処理して固形状活性炭質電極を形成する工
程と、を具備することを特徴とする。
The method for producing solid activated carbon of the present invention is as follows:
(A) a step of adding an organic binder to a carbonaceous raw material, mixing and shaping, and (b) a step of carbonizing the compact obtained in the step (a) at 700 ° C to 1100 ° C in a reducing atmosphere. , (C) impregnating the carbonized molded body with an alkali metal solution and drying the molded body in a reducing atmosphere at 700 ° C. to 10 ° C.
A step of performing alkali activation treatment at 00 ° C. for 1 to 10 hours,
(D) 700 ° C. to 1000 ° C. of the molded body after alkali treatment
And a step of forming a solid activated carbonaceous electrode by steam activation.

【0016】上記の工程を用いることにより、表面に多
くの電気二重層を有する活性炭を形成できるとともに、
特に、アルカリ賦活処理後に水蒸気賦活処理を行うこと
により、容易に分極性電極の抵抗増加の原因となるアル
カリ金属成分を除くことができる。
By using the above steps, activated carbon having many electric double layers on its surface can be formed, and
Particularly, by performing the steam activation treatment after the alkali activation treatment, it is possible to easily remove the alkali metal component that causes the increase in the resistance of the polarizable electrode.

【0017】本発明の電気二重層コンデンサは、上記の
固形状活性炭を、電気二重層コンデンサを構成する分極
性電極として用いることを特徴とする。
The electric double layer capacitor of the present invention is characterized in that the above-mentioned solid activated carbon is used as a polarizable electrode constituting the electric double layer capacitor.

【0018】分極性電極の抵抗増加を抑制できる上記の
固形状活性炭を用いることにより、静電容量が大きくか
つ充放電サイクル特性に優れた電気二重層コンデンサを
形成できる。
By using the above solid activated carbon capable of suppressing the increase in resistance of the polarizable electrode, an electric double layer capacitor having a large electrostatic capacity and excellent charge / discharge cycle characteristics can be formed.

【0019】そして、本発明の電気二重層コンデンサの
製造方法は、(e)前記工程で得られた少なくとも2枚
の固形状活性炭質電極間に多孔質セパレータを介在させ
て積層するとともに、該積層体の上下面に集電体を形成
する工程と、(f)前記固形状活性炭質電極内に電解液
を含浸する工程と、を具備することを特徴とする。
The method for producing an electric double layer capacitor according to the present invention comprises (e) laminating at least two solid activated carbonaceous electrodes obtained in the above step with a porous separator interposed therebetween, and The method is characterized by including the steps of forming current collectors on the upper and lower surfaces of the body and (f) impregnating the solid activated carbonaceous electrode with an electrolytic solution.

【0020】このように上記固形状活性炭の製造方法に
より作製した固形状活性炭を、続いて分極性電極として
電気二重層コンデンサに組み入れることにより、特に、
充放電サイクル特性に優れた電気二重層コンデンサを容
易に形成できる。
By incorporating the solid activated carbon thus produced by the above method for producing solid activated carbon into an electric double layer capacitor as a polarizable electrode,
An electric double layer capacitor having excellent charge / discharge cycle characteristics can be easily formed.

【0021】[0021]

【発明の実施の形態】(構造)本発明の電気二重層コン
デンサの一例の概略断面図である図1に基づいて説明す
る。図1によれば、電気二重層コンデンサは、電解液1
0を含浸した2枚の分極性電極1間に絶縁性を有する多
孔質のセパレータ3が配置され、また分極性電極1の上
下面には集電体5が形成されている。さらに、分極性電
極1およびセパレータ3の両端部は封止部材7により外
部から封止されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Structure) An explanation will be given based on FIG. 1 which is a schematic sectional view of an example of the electric double layer capacitor of the present invention. According to FIG. 1, the electric double layer capacitor has an electrolytic solution 1
A porous separator 3 having an insulating property is disposed between two polarizable electrodes 1 impregnated with 0, and a collector 5 is formed on the upper and lower surfaces of the polarizable electrode 1. Further, both ends of the polarizable electrode 1 and the separator 3 are sealed from the outside by a sealing member 7.

【0022】分極性電極1は、図1に付した要部拡大図
に示すように、高い比表面積を有する活性炭粒子9が凝
集して形成された固形状活性炭11と、この固形状活性
炭11を結合するために配合された炭素成分13により
構成されている。
The polarizable electrode 1, as shown in the enlarged view of the main part attached to FIG. 1, is a solid activated carbon 11 formed by agglomeration of activated carbon particles 9 having a high specific surface area, and the solid activated carbon 11 It is composed of the carbon component 13 which is compounded for bonding.

【0023】本発明によれば、固形状活性炭11の比表
面積は、大きな静電容量を得ることができるという理由
から500m2/g以上であることが重要であり、ま
た、分極性電極1としての機械的強度を確保するととも
に、固形状活性炭11からの脱粒を防止するという理由
から2500m2/g以下であることが必要であり、固
形状活性炭11の比表面積をこのような範囲にすること
によって、自己放電および充放電サイクル特性劣化が抑
制されかつ固形状活性炭11自身の電気抵抗を低くする
ことができる。
According to the present invention, it is important that the specific surface area of the solid activated carbon 11 is 500 m 2 / g or more because a large electrostatic capacity can be obtained. It is necessary to be 2500 m 2 / g or less in order to secure the mechanical strength of the solid activated carbon 11 and prevent shedding from the solid activated carbon 11, and the specific surface area of the solid activated carbon 11 should be within such a range. As a result, self-discharge and deterioration of charge / discharge cycle characteristics can be suppressed and the electric resistance of the solid activated carbon 11 itself can be lowered.

【0024】ここで、活性炭粒子9となる黒鉛の結晶構
造について、図2をもとに説明する。図2において、黒
鉛の結晶構造Gcは、六角網平面である基底面bを積層
した層状格子構造であって、その層状をなす面がエッジ
面eである。基底面bは、π電子による電子雲の遮蔽効
果によってイオンの進入が妨げられるためエッジ面eに
比べて電気二重層の容量が低く、このため静電容量が低
いとされている。
Here, the crystal structure of graphite that becomes the activated carbon particles 9 will be described with reference to FIG. In FIG. 2, the crystal structure Gc of graphite is a layered lattice structure in which basal planes b that are hexagonal net planes are laminated, and the layered surface is an edge surface e. It is said that the basal plane b has a lower capacitance of the electric double layer than the edge face e because the ion penetration is blocked by the electron cloud shielding effect of π electrons, and thus the electrostatic capacitance is low.

【0025】次に、図3に活性炭粒子9の要部拡大模式
図を示した。
Next, FIG. 3 shows an enlarged schematic view of a main part of the activated carbon particles 9.

【0026】本発明の固体状活性炭11を構成する活性
炭粒子9は、図3に示すように、層状構造を有する結晶
子cの集合体であり、この結晶子cの面内方向が基底面
bであり、基底面bに垂直な面がエッジ面eである。こ
のような活性炭粒子9では、エッジ面eは結晶子cの側
面だけではなく、基底面b側からえぐられた状態で形成
されている。また、エッジ面eは基底面bに比べて化学
反応が進行しやすいことから細孔15が形成されやすく
なっている。
As shown in FIG. 3, the activated carbon particles 9 constituting the solid activated carbon 11 of the present invention are aggregates of crystallites c having a layered structure, and the in-plane direction of the crystallites c is the basal plane b. The surface perpendicular to the base surface b is the edge surface e. In such activated carbon particles 9, the edge surface e is formed not only on the side surface of the crystallite c but also on the base surface b side. In addition, since the edge surface e is more likely to undergo a chemical reaction than the base surface b, the pores 15 are easily formed.

【0027】活性炭粒子9の表面に形成されている細孔
15の直径は、電気二重層コンデンサに用いる非水系電
解液中のイオン、例えば、テトラエチルアンモニウムイ
オンやテトラフルオロボレートイオン等を効率よくトラ
ップできるという理由から1nm以下とされており、特
に、0.3〜0.9nmであることが重要である。
The diameter of the pores 15 formed on the surface of the activated carbon particles 9 can efficiently trap ions in the non-aqueous electrolyte used in the electric double layer capacitor, such as tetraethylammonium ion and tetrafluoroborate ion. For this reason, the thickness is set to 1 nm or less, and particularly 0.3 to 0.9 nm is important.

【0028】さらに、本発明の固形状活性炭11は、H
orvath−Kawazoe法(以下、HK法と記
す)によるアルゴン吸着等温線から求める細孔分布測定
において、1nm以下の直径を有する細孔15が占める
容積の割合が0.35〜0.70cc/gであり、かつ
その細孔径が1nmを示す細孔15の容積が全細孔容積
の40〜65%を占めることが重要である。
Further, the solid activated carbon 11 of the present invention contains H
In the pore distribution measurement obtained from the argon adsorption isotherm by the orvath-Kawazoe method (hereinafter referred to as the HK method), the volume ratio of the pores 15 having a diameter of 1 nm or less is 0.35 to 0.70 cc / g. It is important that the volume of the pores 15 having the pore diameter of 1 nm accounts for 40 to 65% of the total pore volume.

【0029】これはアルゴン吸着等温線から得られる直
径1nm以下の細孔15の容積が0.35cc/gより
少ない場合は、電気二重層コンデンサの非水系電解液中
のイオン、例えばテトラエチルアンモニウムイオン、テ
トラフルオロボレートイオン等が効率よくトラップされ
るサイトの数が少なく、高い静電容量を発現することが
困難であり、また、前記細孔15の容積が0.70cc
/gを越えると、固形状活性炭11中の細孔15が多い
ために、機械的強度が極端に悪くなり、ハンドリングが
できなくなるためである。安定したハンドリングと高い
静電容量のを有し、他分野への広い適用を考慮すると、
0.40〜0.65cc/gの範囲が特に好適に用いら
れる。
This is because when the volume of the pores 15 having a diameter of 1 nm or less obtained from the argon adsorption isotherm is less than 0.35 cc / g, ions in the non-aqueous electrolyte solution of the electric double layer capacitor, for example, tetraethylammonium ion, The number of sites where tetrafluoroborate ions and the like are efficiently trapped is small, it is difficult to develop a high electrostatic capacity, and the volume of the pores 15 is 0.70 cc.
If it exceeds / g, the solid activated carbon 11 has a large number of pores 15, so that the mechanical strength becomes extremely poor and handling becomes impossible. Having stable handling and high capacitance, considering wide application to other fields,
A range of 0.40 to 0.65 cc / g is particularly preferably used.

【0030】さらに、本発明によれば、エッジ面eと基
底面bは、炭素材料のラマン分光法における1360c
-1バンド(ID)の1580cm-1バンド(IG)に対
する強度比(ID/IG)が0.5以上であることが重要
であり、エッジ面eを多く出現させることができる。特
に、活性炭粒子9同士の結合を高め、静電容量とともに
機械的強度を確保するという理由から、ラマン強度比
(ID/IG)は0.55〜1.2の範囲が望ましい。
尚、この結晶子cの結晶構造は、図3に示すような黒鉛
の結晶構造と略同様の結晶構造となっている。
Further, according to the present invention, the edge surface e and the basal surface b are 1360c in Raman spectroscopy of a carbon material.
m -1 band (I D) intensity ratio 1580 cm -1 band (I G) of the (I D / I G) is important to be 0.5 or more, it can appear more edge surfaces e . In particular, the Raman intensity ratio (I D / I G ) is preferably in the range of 0.55 to 1.2 for the purpose of increasing the bond between the activated carbon particles 9 and ensuring the mechanical strength as well as the capacitance.
The crystal structure of this crystallite c is substantially the same as the crystal structure of graphite as shown in FIG.

【0031】また、分極性電極1の機械的強度は、電気
二重層コンデンサ製造時の取り扱いや使用時の振動、衝
撃等に耐え得る機械的な信頼性の点で3点曲げによる強
度が3MPa以上、特に6MPa以上であることが望ま
しい。
Further, the mechanical strength of the polarizable electrode 1 is 3 MPa or more in terms of mechanical reliability that can withstand vibration, shock, etc. during handling and use during manufacturing of the electric double layer capacitor. It is particularly desirable that the pressure is 6 MPa or more.

【0032】分極性電極1中に含浸される電解液10と
しては、硫酸や硝酸等の水溶液や、プロピレンカーボネ
ート、γ−ブチロラクトン、N,N−ジメチルホルムア
ミド、エチレンカーボネート、スルホラン、3−メチル
スルホラン等の有機溶媒と4級アンモニウム塩、4級ス
ルホニウム塩、4級ホスホニウム塩等の電解質を組み合
わせた有機溶液が使用可能である。
As the electrolytic solution 10 to be impregnated in the polarizable electrode 1, an aqueous solution of sulfuric acid, nitric acid or the like, propylene carbonate, γ-butyrolactone, N, N-dimethylformamide, ethylene carbonate, sulfolane, 3-methylsulfolane, etc. It is possible to use an organic solution in which an organic solvent of (4) and an electrolyte such as a quaternary ammonium salt, a quaternary sulfonium salt, a quaternary phosphonium salt are combined.

【0033】さらに、セパレータ3は、パルプやポリエ
チレン、ポリプロピレン等の有機フィルムまたはガラス
繊維不織布等およびセラミックス等により形成され、分
極性電極1間を絶縁するために形成されるものである
が、分極性電極1内に含有される前記電解液10中のイ
オンを透過させることができる多孔質体により形成され
る。
Further, the separator 3 is formed of an organic film such as pulp, polyethylene, polypropylene or the like, a glass fiber non-woven fabric or the like, and ceramics or the like, and is formed to insulate the polarizable electrodes 1 from each other. It is formed of a porous body capable of permeating the ions in the electrolytic solution 10 contained in the electrode 1.

【0034】また、集電体5は、導電性を有する導電性
ブチルゴム、アルミ箔、アルミのプラズマ溶射等により
形成され、分極性電極1との間で電荷をやり取りするこ
とができる。また、封止部材7は、合成ゴム等により構
成され、集電体5および封止部材7によって分極性電極
1に含まれる電解液が外部に漏れることを防止できる。
Further, the current collector 5 is formed by conductive butyl rubber having conductivity, aluminum foil, plasma spraying of aluminum, etc., and can exchange charges with the polarizable electrode 1. Moreover, the sealing member 7 is made of synthetic rubber or the like, and the current collector 5 and the sealing member 7 can prevent the electrolytic solution contained in the polarizable electrode 1 from leaking to the outside.

【0035】(製法)上記のような固形状活性炭を作製
する方法の一例について説明する。
(Production Method) An example of a method for producing the above-mentioned solid activated carbon will be described.

【0036】炭素原料としては、ヤシ殻、木材、樹脂等
の炭素質原料およびそれに対して薬品賦活やガス賦活に
より作製される活性炭が使用可能であり、中でも、コス
トと細孔容積が大きい点でヤシ殻系活性炭が好適であ
る。また、それ以外にもカーボンブラック、カーボンフ
ァイバー、石炭等が使用できる。
As the carbon raw material, carbonaceous raw materials such as coconut shell, wood and resin, and activated carbon prepared by chemical activation or gas activation of the carbonaceous raw material can be used. Among them, the cost and the pore volume are large. Coconut shell activated carbon is preferred. Other than that, carbon black, carbon fiber, coal, etc. can be used.

【0037】また、その形状は、球状、フレーク状、突
起状、繊維状あるいは不定形があり、特に限定するもの
ではなく、また、粒状、顆粒状、繊維状のいずれであっ
てもよく、さらに、その粒径は5〜50μmであること
が望ましい。
The shape is spherical, flake-shaped, protrusion-shaped, fibrous or amorphous, and is not particularly limited, and may be granular, granular or fibrous. The particle size is preferably 5 to 50 μm.

【0038】上記の各活性炭原料に対して、所定量の有
機バインダを焼成後の炭素成分量が5〜50質量%とな
る量で添加、混合する。有機バインダとしては、フェノ
ール、テフロン(登録商標)、コールタール、ポリビニ
ルブチラール(PVB)、ポリビニルホルマール(PV
FM)等のポリビニルアセタール、酢酸ビニル等の公知
の有機バインダが挙げられ、とりわけ成形性および得ら
れる固形状活性炭の強度の点から、ポリビニルブチルア
ルコール(PVB)が最も望ましい。
A predetermined amount of organic binder is added to and mixed with each of the above-mentioned activated carbon raw materials in an amount such that the amount of carbon component after firing is 5 to 50% by mass. As the organic binder, phenol, Teflon (registered trademark), coal tar, polyvinyl butyral (PVB), polyvinyl formal (PV
Examples thereof include known organic binders such as polyvinyl acetals such as FM) and vinyl acetate. Among them, polyvinyl butyl alcohol (PVB) is most preferable in terms of moldability and strength of the resulting solid activated carbon.

【0039】得られた成形用原料をそれぞれプレス成形
法、ドクターブレード法、押し出し成形法、カレンダー
ロール法、ロール成形法等の公知の成形手段により所定
形状に成形してテープ状成形体を作製する。成形方法と
しては、生産性の高いテープ状の成形が容易であるとと
もに、成形体の密度が高くできるロール成形が好適であ
る。また、この炭素材料は空気中、100℃以上の温度
で乾燥される。
Each of the obtained molding raw materials is molded into a predetermined shape by a known molding means such as a press molding method, a doctor blade method, an extrusion molding method, a calender roll method, a roll molding method, etc., to produce a tape-shaped molded body. . As a forming method, roll forming is preferable because it is easy to form a tape-like product with high productivity and the density of the formed body can be increased. The carbon material is dried in air at a temperature of 100 ° C or higher.

【0040】次に、上記のテープ状成形体の複数枚を、
60〜100℃、20〜50MPaにて熱圧着し一体化
する。もしくは前記テープ状成形体間に密着液や接着剤
等を塗布し接着することにより一体化した成形体を形成
する。このようにしてテープ状成形体を密着させること
により後述の熱処理における層間剥離を防止することが
できる。
Next, a plurality of the above tape-shaped molded bodies are
It is integrated by thermocompression bonding at 60 to 100 ° C. and 20 to 50 MPa. Alternatively, an integral molding is formed by applying a contact liquid, an adhesive or the like between the tape-shaped moldings and adhering them. By closely adhering the tape-shaped molded body in this manner, delamination in the heat treatment described later can be prevented.

【0041】次に、この成形体を非酸化性雰囲気中、7
00〜1100℃、1〜5時間、特に800〜900
℃、1〜5時間で炭化処理して有機バインダ成分を炭化
させるとともに、活性炭粒子9間を焼結一体化させ焼結
体を形成する。このようにして固形状活性炭11間に存
在する炭素成分13の固形状活性炭11に対する割合を
5〜50質量%とすることができ、これにより固形状活
性炭11間の焼結性および結合性を高めることができ
る。
Next, the molded body was placed in a non-oxidizing atmosphere for 7 minutes.
00 to 1100 ° C, 1 to 5 hours, especially 800 to 900
The organic binder component is carbonized by carbonization at 1 ° C. for 1 to 5 hours, and the activated carbon particles 9 are sintered and integrated to form a sintered body. In this way, the ratio of the carbon component 13 existing between the solid activated carbons 11 to the solid activated carbons 11 can be set to 5 to 50% by mass, whereby the sinterability and the bondability between the solid activated carbons 11 are increased. be able to.

【0042】また、焼成温度を上記範囲に限定したの
は、700℃よりも低いと粒子間の焼結が不十分で構造
体の強度が低下するためであり、逆に1100℃よりも
高いと、焼結が進行しすぎてしまい、後述のアルカリ賦
活処理を行っても所望の細孔15を形成することが困難
であり、コンデンサの静電容量が低下するためである。
The reason why the firing temperature is limited to the above range is that if the temperature is lower than 700 ° C., the sintering between particles is insufficient and the strength of the structure is lowered. Conversely, if it is higher than 1100 ° C. This is because the sintering proceeds too much, it is difficult to form the desired pores 15 even if the alkali activation treatment described below is performed, and the capacitance of the capacitor decreases.

【0043】本発明によれば、活性炭粒子9を含む成形
体を、上記の条件で炭化(焼成)処理することにより、
エッジ面eの結合力を高めることができる。しかも、本
発明の電気二重層コンデンサの固形状活性炭11により
形成される分極性電極1は、成形体を炭化した後に賦活
処理を行うものであることから、賦活後に有機バインダ
を添加する必要がなく、活性炭粒子9の高い比表面積を
維持することができ、電気二重層コンデンサの静電容量
も向上できる。
According to the present invention, the molded body containing the activated carbon particles 9 is carbonized (calcined) under the above conditions,
The binding force of the edge surface e can be increased. Moreover, since the polarizable electrode 1 formed of the solid activated carbon 11 of the electric double layer capacitor of the present invention is activated after carbonizing the molded body, it is not necessary to add an organic binder after activation. The high specific surface area of the activated carbon particles 9 can be maintained, and the electrostatic capacity of the electric double layer capacitor can be improved.

【0044】次に、上記焼結体を水酸化カリウム(KO
H)、水酸化ナトリウム(NaOH)、水酸化バリウム
(Ba(OH)2)、水酸化カルシウム(Ca(O
H)2)等のアルカリ金属またはアルカリ土類金属水溶
液、または塩化亜鉛(ZnCl2)水溶液中に含浸し、
50℃〜100℃で乾燥した後、真空または非酸化性雰
囲気中、700℃〜1000℃、特に700℃〜900
℃で、1〜10時間処理する。特に、賦活処理は3〜5
時間であることが望ましい。
Next, the above-mentioned sintered body is treated with potassium hydroxide (KO).
H), sodium hydroxide (NaOH), barium hydroxide (Ba (OH) 2 ), calcium hydroxide (Ca (O
H) 2 ) etc. in an alkali metal or alkaline earth metal aqueous solution or zinc chloride (ZnCl 2 ) aqueous solution,
After drying at 50 ° C to 100 ° C, 700 ° C to 1000 ° C, particularly 700 ° C to 900 ° C in a vacuum or a non-oxidizing atmosphere.
Process at 1 ° C for 1-10 hours. Particularly, the activation treatment is 3 to 5
Time is desirable.

【0045】また、アルカリ賦活温度を上記範囲に限定
したのは、700℃より低い場合にはエッジ面eの生成
が困難であり、ラマン強度比(ID/IG)値が低くな
り、逆に1000℃より高いと、活性炭粒子9の表面が
削られすぎることから細孔15の容積が大きくなり、直
径1nm以下の細孔15の容積が減少するためである。
The reason why the alkali activation temperature is limited to the above range is that when the temperature is lower than 700 ° C., it is difficult to form the edge surface e, and the Raman intensity ratio ( ID / IG ) value becomes low. This is because if the temperature is higher than 1000 ° C., the surface of the activated carbon particles 9 is excessively shaved, so that the volume of the pores 15 becomes large and the volume of the pores 15 having a diameter of 1 nm or less decreases.

【0046】本発明の上記アルカリ賦活方法は、アルカ
リ性溶液を含浸させて加熱する方法であることから、ア
ルカリ金属および/またはアルカリ土類金属が活性炭粒
子9内へ浸透した後、アルカリ金属および/またはアル
カリ土類金属と活性炭粒子9との化学反応が進行し、活
性炭粒子9の基底面bおよびエッジ面eの両表面からカ
ーボンのガス化に伴う細孔15が形成されるものであ
る。このように、基底面b側がアルカリ賦活によりえぐ
られることにより、この基底面b側に新たなエッジ面e
を形成できる。また、このように炭化処理後にアルカリ
賦活を行うことによりエッジ面eの消失を抑制すること
ができ結果的に基底面bに対するエッジ面eの存在比率
を高めることができる。
Since the alkali activation method of the present invention is a method of impregnating with an alkaline solution and heating, after the alkali metal and / or alkaline earth metal has penetrated into the activated carbon particles 9, the alkali metal and / or The chemical reaction between the alkaline earth metal and the activated carbon particles 9 progresses, and pores 15 are formed from both surfaces of the basal plane b and the edge surface e of the activated carbon particles 9 due to carbonization of carbon. In this way, the base surface b side is scooped by the alkali activation, so that a new edge surface e is formed on the base surface b side.
Can be formed. Further, by activating the alkali after the carbonization treatment as described above, the disappearance of the edge surface e can be suppressed, and as a result, the existence ratio of the edge surface e with respect to the base surface b can be increased.

【0047】次に、アルカリ賦活処理された焼結体を水
蒸気あるいは二酸化炭素の雰囲気下、温度700℃〜1
000℃、1〜10時間の処理を行う。特に、温度は7
00℃〜900℃、賦活処理時間は3〜5時間が望まし
い。
Next, the alkali-activated sintered body is heated at a temperature of 700 ° C. to 1 in an atmosphere of steam or carbon dioxide.
The treatment is performed at 000 ° C. for 1 to 10 hours. Especially, the temperature is 7
00 ° C to 900 ° C, and the activation treatment time is preferably 3 to 5 hours.

【0048】また、水蒸気賦活温度を上記範囲に限定し
たのは、水蒸気処理温度が低い場合にはサイクル特性に
影響のあるアルカリ成分の除去が困難となり、逆に、水
蒸気処理温度が高いと、アルカリ賦活ほどではないが、
この場合も細孔15の容積が大きくなり、直径1nm以
下の細孔15の容積が減少するためである。
Further, the steam activation temperature is limited to the above range because it is difficult to remove the alkaline component which affects the cycle characteristics when the steam treatment temperature is low, and conversely, when the steam treatment temperature is high, the Not as much as activation,
Also in this case, the volume of the pores 15 becomes large and the volume of the pores 15 having a diameter of 1 nm or less decreases.

【0049】このようにアルカリ賦活後に、水蒸気ある
いは二酸化炭素雰囲気による賦活処理を行うことによ
り、大気中での賦活に比べ活性炭粒子9の内部にわたり
細孔15を形成することができ、特に、エッジ面eに径
の小さい細孔15を形成することができる。
By carrying out the activation treatment in the atmosphere of water vapor or carbon dioxide after the alkali activation as described above, the pores 15 can be formed over the inside of the activated carbon particles 9 as compared with the activation in the atmosphere, and in particular, the edge surface can be formed. It is possible to form small pores 15 in e.

【0050】また、この水蒸気賦活によって、アルカリ
賦活処理によりエッジ面eを含む活性炭粒子9の表面に
付着したアルカリ金属を含む官能基(例えば−COON
a等)を取り除くことができる。特に、アルカリ賦活処
理条件を真空中で、温度700〜1000℃、処理時間
を1〜10時間とし、続いて水蒸気賦活処理条件を温度
700〜1000℃、処理時間を1〜10時間とするこ
とにより、比表面積が500m2/g以上2500m2
g以下で、アルゴン吸着等温線から得られる直径1nm
以下の細孔15の容積が0.35〜0.70cc/gを
占め、かつラマン分光法における1360cm-1バンド
(ID)の1580cm-1バンド(IG)に対する強度比
(ID/IG)が0.5以上である固形状活性炭11を形
成でき、このようにして、特定の比表面積、細孔径分布
および結晶面分布を有する固体状活性炭11を得ること
ができる。
By this steam activation, a functional group containing an alkali metal (for example, -COON) attached to the surface of the activated carbon particles 9 including the edge surface e by the alkali activation treatment.
a)) can be removed. In particular, by setting the alkali activation treatment condition in vacuum to a temperature of 700 to 1000 ° C. and a treatment time of 1 to 10 hours, and subsequently setting the steam activation treatment condition to a temperature of 700 to 1000 ° C. and a treatment time of 1 to 10 hours. , a specific surface area of 500m 2 / g or more 2500m 2 /
Diameter less than 1g, diameter 1nm obtained from argon adsorption isotherm
Accounting for volume 0.35~0.70cc / g of pores 15 below, and 1580 cm -1 band (I G) intensity ratio of 1360 cm -1 band in the Raman spectroscopy (I D) (I D / I It is possible to form the solid activated carbon 11 having G 2 ) of 0.5 or more, and in this way, the solid activated carbon 11 having a specific specific surface area, pore size distribution and crystal plane distribution can be obtained.

【0051】ここで、上記のアルカリ、水蒸気あるいは
二酸化炭素による賦活の熱処理温度が700℃より低い
かまたは1時間より短いと賦活が不充分であり、基底面
bに対するエッジ面eの比率をラマン分光法の強度比
(ID/IG)で0.5以上とすることが困難となり所望
の比表面積が得られない。また、上記賦活熱処理温度が
1000℃を超えるかまたは10時間より長いと、賦活
が進行しすぎ、強度が低下する。
If the heat treatment temperature for activation with alkali, water vapor or carbon dioxide is lower than 700 ° C. or shorter than 1 hour, the activation will be insufficient and the ratio of the edge surface e to the base surface b will be determined by Raman spectroscopy. It becomes difficult to obtain a strength ratio ( ID / IG ) of 0.5 or more by the method, and a desired specific surface area cannot be obtained. If the activation heat treatment temperature exceeds 1000 ° C. or is longer than 10 hours, the activation will proceed too much and the strength will decrease.

【0052】次に、上述したようにして作製した固体状
活性炭11を用いて電気二重層コンデンサを作製するに
は、固体状活性炭11の外周表面に封止部材7を配置す
るとともにセパレータ3を介して分極性電極1を積層
し、この分極性電極1に電解液10を含浸させる。そし
て、この分極性電極1とセパレータ3により形成された
積層体の上下面に集電体5を形成して電気二重層コンデ
ンサを作製できる。
Next, in order to produce an electric double layer capacitor using the solid activated carbon 11 produced as described above, the sealing member 7 is arranged on the outer peripheral surface of the solid activated carbon 11 and the separator 3 is interposed therebetween. Then, the polarizable electrode 1 is laminated, and the polarizable electrode 1 is impregnated with the electrolytic solution 10. Then, the current collector 5 is formed on the upper and lower surfaces of the laminated body formed by the polarizable electrode 1 and the separator 3 to manufacture an electric double layer capacitor.

【0053】尚、この場合、集電体5の形成方法として
は、集電体5と同じ成分を含むペーストを塗布して焼成
する、板状の集電体5を貼り付ける、あるいは溶射等に
より形成することができる。
In this case, as a method of forming the current collector 5, a paste containing the same components as the current collector 5 is applied and baked, a plate-shaped current collector 5 is attached, or thermal spraying is performed. Can be formed.

【0054】また、固体状活性炭11へのアルカリ賦活
は、他の方法として、分極性電極1を作製するための炭
化(焼成)処理した板状体とセパレータ3とを積層した
後に行っても良いが、この場合、前記セパレータ3は、
アルカリ賦活により変質しない耐熱性および耐アルカリ
性を有することが望ましく、この方法を用いることによ
り製造時に活性炭構造体が破損する危険性が低くなる。
As another method, the alkali activation of the solid activated carbon 11 may be carried out after laminating the carbonized (fired) -treated plate-like body for producing the polarizable electrode 1 and the separator 3. However, in this case, the separator 3 is
It is desirable to have heat resistance and alkali resistance that do not deteriorate due to alkali activation, and by using this method, the risk of damaging the activated carbon structure during manufacturing is reduced.

【0055】また、水蒸気賦活も同様に、分極性電極1
を作製するための炭化(焼成)処理した板状体とセパレ
ータ3とを積層した後に行っても良いが、この場合、前
記セパレータ3は、水蒸気賦活により変質しない耐熱性
および耐水性を有することが望ましく、この方法を用い
ることにより製造時に活性炭構造体が破損する危険性が
低くなる。
Similarly, in the steam activation, the polarizable electrode 1 is also used.
It may be carried out after laminating the carbonized (fired) -treated plate-like body and the separator 3 for producing the above. In this case, the separator 3 may have heat resistance and water resistance that are not deteriorated by steam activation. Desirably, the use of this method reduces the risk of damage to the activated carbon structure during manufacture.

【0056】ここで本発明の電気二重層に用いられる分
極性電極1中に含浸される電解液10としては、硫酸や
硝酸等の水溶液や、プロピレンカーボネート、γ−ブチ
ロラクトン、N,N−ジメチルホルムアミド、エチレン
カーボネート、スルホラン、3−メチルスルホラン等の
有機溶媒と4級アンモニウム塩、4級スルホニウム塩、
4級ホスホニウム塩等の電解質を組み合わせた有機溶液
が使用可能である。また、上記の製法により作製した固
体状活性炭11は以下の方法により分析評価される。ま
ず、活性炭粒子9の比表面積は、N2ガス吸着法により
吸着ガスの体積を測定し、BETの式により求められ
る。
The electrolytic solution 10 to be impregnated in the polarizable electrode 1 used in the electric double layer of the present invention is an aqueous solution of sulfuric acid, nitric acid or the like, propylene carbonate, γ-butyrolactone, N, N-dimethylformamide. Organic solvents such as ethylene carbonate, sulfolane, and 3-methylsulfolane, and quaternary ammonium salts, quaternary sulfonium salts,
An organic solution in which an electrolyte such as a quaternary phosphonium salt is combined can be used. Further, the solid activated carbon 11 produced by the above production method is analyzed and evaluated by the following method. First, the specific surface area of the activated carbon particles 9 is determined by the BET formula by measuring the volume of the adsorbed gas by the N 2 gas adsorption method.

【0057】また、活性炭粒子9の細孔径分布は島津−
マイクロメトリック製アサップ2010M型を用いたH
K法によるアルゴン吸着等温線から細孔径分布を測定
し、活性炭粒子9試料の質量から細孔径が1nm以下の
細孔容積の割合を求めることができる。
The pore size distribution of the activated carbon particles 9 is Shimadzu-
H using Micrometric Asap 2010M type
The pore size distribution can be measured from the argon adsorption isotherm by the K method, and the ratio of the volume of pores having a pore size of 1 nm or less can be determined from the mass of the activated carbon particle 9 sample.

【0058】さらに、活性炭粒子9に形成されるエッジ
面e比率は日本分光製のラマン分光計を用い、波長51
4.5nmのアルゴンレーザー光にて固体状活性炭を測
定し、ラマンスペクトルを得、1580cm-1近傍のG
−band(IG)に対する1360cm-1近傍のD−
band(ID)の面積比を求めることができる。
Further, the edge surface e ratio formed on the activated carbon particles 9 was measured by using a Raman spectrometer manufactured by JASCO,
The solid activated carbon was measured with a 4.5 nm argon laser beam to obtain a Raman spectrum, and G near 1580 cm -1 was measured.
-Band (I G) for 1360 cm -1 vicinity of D-
The area ratio of band (I D ) can be obtained.

【0059】[0059]

【実施例】BET値が1500m2/gのヤシガラ活性
炭粉末100質量部に対して、ポリビニルブチラール1
00質量部を添加して、高速攪拌機にて攪拌し、得られ
た粉体を40メッシュにてメッシュパスを行い成形用原
料を得た。次に、得られた成形用原料を所定の条件でロ
ール成形して平板状の成形体を得た後、該成形体を大気
中200℃の温度で48時間保持し、次いで、真空中、
表1に示す条件で炭化処理を行った後、表1に示す5m
ol/Lの水酸化カリウム(KOH)水溶液または5m
ol/Lの塩化亜鉛(ZnCl2)水溶液中に1時間含
浸した。
[Example] 1 part of polyvinyl butyral was added to 100 parts by mass of coconut husk activated carbon powder having a BET value of 1500 m 2 / g.
00 parts by mass was added, and the mixture was stirred with a high-speed stirrer, and the obtained powder was mesh-passed with 40 mesh to obtain a raw material for molding. Next, the obtained forming raw material is roll-formed under predetermined conditions to obtain a flat plate-shaped formed body, and the formed body is held at a temperature of 200 ° C. for 48 hours in the air, and then in a vacuum,
After carbonization under the conditions shown in Table 1, 5 m shown in Table 1
ol / L potassium hydroxide (KOH) aqueous solution or 5m
It was impregnated with an ol / L zinc chloride (ZnCl 2 ) aqueous solution for 1 hour.

【0060】そして、50℃にて水分を乾燥させた後、
表1に示す賦活処理条件で賦活処理を施して、縦70m
m、横50mm、1mmの活性炭構造体を作製した。
After drying the water at 50 ° C.,
Activated under the activation condition shown in Table 1, 70 m in length
An activated carbon structure of m, 50 mm in width, and 1 mm was produced.

【0061】かくして得られた固体状活性炭の比表面積
(BET値)を窒素吸着法によって測定した。
The specific surface area (BET value) of the solid activated carbon thus obtained was measured by the nitrogen adsorption method.

【0062】さらに、島津−マイクロメトリック製アサ
ップ2010M型を用いたHK法によるアルゴン吸着等
温線から細孔径分布を測定し、前記固体状活性炭試料の
質量から細孔径が1nm以下の細孔容積の割合を求め
た。
Furthermore, the pore size distribution was measured from the argon adsorption isotherm by the HK method using Asatsu 2010M manufactured by Shimadzu-Micrometric Co., and the ratio of the volume of the pores having a pore size of 1 nm or less was determined from the mass of the solid activated carbon sample. I asked.

【0063】また日本分光製のラマン分光計を用い、波
長514.5nmのアルゴンレーザー光にて固体状活性
炭を測定し、ラマンスペクトルを得、1580cm-1
傍のG−band(IG)に対する1360cm-1近傍
のD−band(ID)の面積比を求めた。得られた値
をラマン強度比として表1に示した。
[0063] Also using a Nippon Bunko Raman spectrometer, a solid active carbon was measured by an argon laser beam having a wavelength of 514.5 nm, to obtain a Raman spectrum, 1360 cm for 1580 cm -1 vicinity of G-band (I G) The area ratio of D-band ( ID ) near -1 was determined. The obtained values are shown in Table 1 as the Raman intensity ratio.

【0064】一方、固体状活性炭2枚に対し、炭酸プロ
ピレン(PC)を溶媒としてテトラエチルアンモニウム
テトラフルオロボレート(Et4NBF4)の1mol/
L溶液を電解液として含浸させた後、93mm×63m
m×0.3mmのガラス繊維不織布からなる多孔質セパ
レータを介して積層し、その上下面に93mm×63m
m×0.5mmのアルミニウム製集電体を積層し、さら
に、絶縁性のブチルゴム製封止部材でこの積層体を固定
一体化して、図1の電気二重層コンデンサを作製した。
On the other hand, 1 mol / mol of tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) using propylene carbonate (PC) as a solvent to 2 sheets of solid activated carbon.
After impregnating L solution as an electrolytic solution, 93 mm x 63 m
m × 0.3 mm laminated with a porous separator made of non-woven glass fiber, 93 mm × 63 m above and below
A m × 0.5 mm aluminum current collector was laminated, and the laminated body was fixed and integrated with an insulating butyl rubber sealing member to produce the electric double layer capacitor of FIG.

【0065】得られた電気二重層コンデンサについて、
2.5Vの電圧で30分間充電した後、3mA/cm2
の定電流放電法にて電極単位質量当たりの静電容量(F
/cm3)を求めた。また、2.5V−30分間充電−
3mA/cm2の定電流放電を100回繰り返した後の
静電容量(F/cm3)およびその変化率を求め、結果
を表1に示した。
Regarding the obtained electric double layer capacitor,
After charging at 2.5V for 30 minutes, 3mA / cm 2
Capacitance per unit mass (F
/ Cm 3 ). Also, 2.5V-30 minutes charge-
The electrostatic capacity (F / cm 3 ) and the rate of change thereof were determined after repeating the constant current discharge of 3 mA / cm 2 100 times, and the results are shown in Table 1.

【0066】[0066]

【表1】 [Table 1]

【0067】表1より明らかなように、炭化処理後、1
回目にアルカリ賦活処理を行い、更に、2回目に水蒸気
賦活処理を行い、固形状活性炭の比表面積を500m2
/g以上2500m2/g以下、アルゴン吸着等温線か
ら得られる直径1nm以下の細孔の細孔容積を0.35
〜0.70cc/g、かつラマン分光法における136
0cm-1バンド(ID)の1580cm-1バンド(IG
に対する強度比(ID/IG)が0.5以上とした試料N
o.2〜5、8〜10、13〜15および17〜22で
は、いずれも初期の静電容量18.6F/cc以上でか
つ100回繰り返し充放電した後の静電容量の劣化も1
1%以内と優れた特性を有するものであった。
As is clear from Table 1, after the carbonization treatment, 1
Alkali activation treatment was performed for the second time, and steam activation treatment was performed for the second time, and the specific surface area of the solid activated carbon was 500 m 2
/ G or more and 2500 m 2 / g or less, and the pore volume of pores having a diameter of 1 nm or less obtained from an argon adsorption isotherm is 0.35.
~ 0.70 cc / g and 136 in Raman spectroscopy
0 cm -1 band (I D) 1580cm -1 band (I G)
N having an intensity ratio ( ID / IG ) of 0.5 or more
o. In all of 2 to 5, 8 to 10, 13 to 15 and 17 to 22, the initial electrostatic capacitance was 18.6 F / cc or more and the deterioration of the electrostatic capacitance after repeated charging and discharging 100 times was 1 as well.
It had excellent properties within 1%.

【0068】特に、炭化処理条件を800〜900℃で
3時間、1回目のアルカリ賦活処理をKOHを用いて温
度800℃で3時間、2回目の水蒸気処理を800℃で
3時間行った試料No.3、4では、比表面積が200
0〜2030m2/g、細孔径1nm以下の占める割合
として細孔容積が0.58〜0.62、ラマン強度が
0.8〜1となり、静電容量の変化率が−3〜−5%と
なりさらに向上した。
In particular, the sample No. was subjected to carbonization conditions of 800 to 900 ° C. for 3 hours, the first alkali activation treatment using KOH at a temperature of 800 ° C. for 3 hours, and the second steam treatment at 800 ° C. for 3 hours. . In 3 and 4, the specific surface area is 200
0~2030m 2 / g, a pore volume as a percentage occupied by a pore diameter 1nm or less from 0.58 to 0.62, the Raman intensity 0.8, and the rate of capacitance change -3 to 5% And further improved.

【0069】一方、炭化処理の温度を600℃、120
0℃とした試料No.1、6、アルカリ賦活の温度を6
00℃、1100℃とした試料No.7、11、および
水蒸気処理温度を600℃、1100℃とした試料N
o.12、16、さらには、炭化処理後、1回目のアル
カリ処理を行った後、2回目の水蒸気処理をしなかった
試料No.23では、活性炭の比表面積、細孔容積の割
合およびラマン強度のいずれかが適正な範囲から外れ、
いずれも静電容量の変化率が18%以上と大きかった。
On the other hand, the carbonization temperature is 600 ° C., 120
Sample No. 1, 6, the temperature of alkali activation is 6
Sample No. 7, 11 and sample N whose steam treatment temperature was 600 ° C. and 1100 ° C.
o. Sample Nos. 12 and 16 which were not subjected to the second steam treatment after the carbonization treatment and the first alkali treatment. In 23, any of the specific surface area of activated carbon, the ratio of pore volume and Raman intensity is out of the proper range,
In all cases, the rate of change in capacitance was as large as 18% or more.

【0070】[0070]

【発明の効果】以上詳述したように、本発明の固形状活
性炭及びそれを用いた電気二重層コンデンサによれば、
分極性電極を構成する活性炭の細孔径、細孔径分布、結
晶構造におけるエッジ面の量を所定の範囲に制御するこ
とにより、大きな静電容量を有し充放電サイクル特性の
優れた電気二重層コンデンサを作製することができる。
As described in detail above, according to the solid activated carbon of the present invention and the electric double layer capacitor using the same,
An electric double layer capacitor having a large capacitance and excellent charge / discharge cycle characteristics by controlling the pore size, pore size distribution, and amount of edge faces in the crystal structure of activated carbon that composes a polarizable electrode within a predetermined range. Can be produced.

【0071】[0071]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電気二重層コンデンサの概略断面図で
ある。
FIG. 1 is a schematic sectional view of an electric double layer capacitor of the present invention.

【図2】黒鉛の結晶構造を示す模型図である。FIG. 2 is a model diagram showing a crystal structure of graphite.

【図3】本発明の活性炭粒子を示す要部拡大模式図であ
る。
FIG. 3 is an enlarged schematic view of an essential part showing activated carbon particles of the present invention.

【符号の説明】[Explanation of symbols]

1 分極性電極 11 固体状活性炭 15 細孔 1 minute polar electrode 11 Solid activated carbon 15 pores

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】比表面積が500m2/g以上2500m2
/g以下で、アルゴン吸着等温線から得られる直径1n
m以下の細孔の細孔容積が0.35〜0.70cc/g
を占め、かつラマン分光法における1360cm-1バン
ド(ID)の1580cm-1バンド(IG)に対する強度
比(ID/IG)が0.5以上であることを特徴とする固
形状活性炭。
1. A specific surface area of 500 m 2 / g or more and 2500 m 2
/ N or less, diameter of 1n obtained from argon adsorption isotherm
Pore volume of m or less is 0.35 to 0.70 cc / g
The accounting and solid activated carbon strength ratio 1580 cm -1 band of 1360 cm -1 band in the Raman spectroscopy (I D) (I G) (I D / I G) is characterized in that at least 0.5 .
【請求項2】(a)炭素質原料に有機バインダを添加、
混合し、成形する工程と、(b)(a)工程で得られた
成形体を還元性雰囲気にて700℃〜1100℃で炭化
処理する工程と、(c)炭化処理後の成形体にアルカリ
金属溶液を含浸し、乾燥した後、還元性雰囲気にて、7
00℃〜1000℃、1〜10時間でアルカリ賦活処理
する工程と、(d)アルカリ処理後の成形体を700℃
〜1000℃で水蒸気賦活処理して固形状活性炭質電極
を形成する工程と、を具備することを特徴とする固形状
活性炭の製造方法。
2. An organic binder is added to (a) a carbonaceous raw material,
Mixing and molding, (b) a step of carbonizing the molded body obtained in the step (a) at 700 ° C. to 1100 ° C. in a reducing atmosphere, and (c) an alkali for the molded body after the carbonization treatment. After impregnating with a metal solution and drying, in a reducing atmosphere,
00 ° C. to 1000 ° C., a step of performing alkali activation treatment for 1 to 10 hours, and (d) 700 ° C. of the molded body after the alkali treatment.
A step of forming a solid activated carbonaceous electrode by steam activation at 1000 ° C to 1000 ° C.
【請求項3】請求項1に記載の固形状活性炭を、分極性
電極として用いることを特徴とする電気二重層コンデン
サ。
3. An electric double layer capacitor, wherein the solid activated carbon according to claim 1 is used as a polarizable electrode.
【請求項4】(e)前記工程で得られた少なくとも2枚
の固形状活性炭質電極間に多孔質セパレータを介在させ
て積層するとともに、該積層体の上下面に集電体を形成
する工程と、(f)前記固形状活性炭質電極内に電解液
を含浸する工程と、を具備することを特徴とする電気二
重層コンデンサの製造方法。
4. (e) A step of stacking at least two solid activated carbon electrodes obtained in the above step with a porous separator interposed therebetween, and forming a current collector on the upper and lower surfaces of the stacked body. And (f) a step of impregnating the solid activated carbonaceous electrode with an electrolytic solution, the method for producing an electric double layer capacitor.
JP2001298547A 2001-09-27 2001-09-27 Solid state activated carbon and its producing method and electric double-layer capacitor using it and its producing method Pending JP2003104710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001298547A JP2003104710A (en) 2001-09-27 2001-09-27 Solid state activated carbon and its producing method and electric double-layer capacitor using it and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001298547A JP2003104710A (en) 2001-09-27 2001-09-27 Solid state activated carbon and its producing method and electric double-layer capacitor using it and its producing method

Publications (1)

Publication Number Publication Date
JP2003104710A true JP2003104710A (en) 2003-04-09

Family

ID=19119433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001298547A Pending JP2003104710A (en) 2001-09-27 2001-09-27 Solid state activated carbon and its producing method and electric double-layer capacitor using it and its producing method

Country Status (1)

Country Link
JP (1) JP2003104710A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069833A2 (en) * 2006-05-15 2008-06-12 Drexel University Supercapacitors and methods for producing same
US7564676B2 (en) 2003-10-17 2009-07-21 Nippon Oil Corporation Electric double layer capacitor, activated carbon for electrode therefor and method for producing the same
EP2100317A2 (en) * 2006-11-15 2009-09-16 Energ2, Inc. Electric double layer capacitance device
JP2011046584A (en) * 2009-08-28 2011-03-10 Kansai Coke & Chem Co Ltd Method of manufacturing active carbon, and electric double layer capacitor using the active carbon prepared by the method
US7923411B2 (en) 2001-09-11 2011-04-12 Showa Denko K.K. Activated carbon material, and production method and use thereof
US20110292569A1 (en) * 2010-05-27 2011-12-01 Kishor Purushottam Gadkaree Multi-layered electrode for ultracapacitors
JP2012092013A (en) * 2002-04-11 2012-05-17 Showa Denko Kk Activated carbon, polarizable electrode, and electric double layer capacitor
JP2013530114A (en) * 2010-05-17 2013-07-25 エスゲーエル カーボン ソシエタス ヨーロピア Porous carbon with high volumetric capacity for double layer capacitors
JP2013544446A (en) * 2010-11-30 2013-12-12 コーニング インコーポレイテッド Porous carbon in electrochemical double layer capacitors
WO2015191523A1 (en) * 2014-06-12 2015-12-17 Corning Incorporated Electrode, energy storage device and method for making an activated carbon
JP2016000665A (en) * 2014-06-11 2016-01-07 滋賀県 Method of producing active carbon
JP2016006011A (en) * 2007-04-04 2016-01-14 ソニー株式会社 Electrode material, capacitor material and porous carbon material, and electronic device and capacitor
WO2016013619A1 (en) * 2014-07-25 2016-01-28 関西熱化学株式会社 Activated carbon with excellent adsorption performance and process for producing same
EP3006399A1 (en) * 2007-04-04 2016-04-13 Sony Corporation Porous carbon material, process for producing the same, adsorbent, mask, adsorbent sheet and supporting member
JP2017171538A (en) * 2016-03-24 2017-09-28 関西熱化学株式会社 Active carbon and method for producing the same, and electric double layer capacitor comprising the active carbon
JP2017212433A (en) * 2016-05-18 2017-11-30 株式会社クラレ Carbonaceous material, and electrode material for electric double layer capacitor containing carbonaceous material, electrode for electric double layer capacitor and electric double layer capacitor
JP7445944B1 (en) 2023-04-12 2024-03-08 株式会社大木工藝 Method for manufacturing activated carbon compact

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923411B2 (en) 2001-09-11 2011-04-12 Showa Denko K.K. Activated carbon material, and production method and use thereof
JP2012092013A (en) * 2002-04-11 2012-05-17 Showa Denko Kk Activated carbon, polarizable electrode, and electric double layer capacitor
US7564676B2 (en) 2003-10-17 2009-07-21 Nippon Oil Corporation Electric double layer capacitor, activated carbon for electrode therefor and method for producing the same
WO2008069833A3 (en) * 2006-05-15 2008-09-12 Univ Drexel Supercapacitors and methods for producing same
WO2008069833A2 (en) * 2006-05-15 2008-06-12 Drexel University Supercapacitors and methods for producing same
EP2100317A2 (en) * 2006-11-15 2009-09-16 Energ2, Inc. Electric double layer capacitance device
EP2100317A4 (en) * 2006-11-15 2013-04-10 Energ2 Inc Electric double layer capacitance device
JP2016006011A (en) * 2007-04-04 2016-01-14 ソニー株式会社 Electrode material, capacitor material and porous carbon material, and electronic device and capacitor
US10714750B2 (en) 2007-04-04 2020-07-14 Sony Corporation Porous carbon materials and production process thereof, and adsorbents, masks, adsorbing sheets and carriers
US11955638B2 (en) 2007-04-04 2024-04-09 Sony Corporation Sheet-shaped member
EP4122883A1 (en) * 2007-04-04 2023-01-25 Sony Group Corporation Carbon-polymer complex and adsorbent comprising the same
EP3006399A1 (en) * 2007-04-04 2016-04-13 Sony Corporation Porous carbon material, process for producing the same, adsorbent, mask, adsorbent sheet and supporting member
US11545665B2 (en) 2007-04-04 2023-01-03 Sony Corporation Carbon-polymer complex
US10756346B2 (en) 2007-04-04 2020-08-25 Sony Corporation Porous Carbon Material
JP2011046584A (en) * 2009-08-28 2011-03-10 Kansai Coke & Chem Co Ltd Method of manufacturing active carbon, and electric double layer capacitor using the active carbon prepared by the method
JP2013530114A (en) * 2010-05-17 2013-07-25 エスゲーエル カーボン ソシエタス ヨーロピア Porous carbon with high volumetric capacity for double layer capacitors
US8687346B2 (en) * 2010-05-27 2014-04-01 Corning Incorporated Multi-layered electrode for ultracapacitors
US20110292569A1 (en) * 2010-05-27 2011-12-01 Kishor Purushottam Gadkaree Multi-layered electrode for ultracapacitors
JP2013544446A (en) * 2010-11-30 2013-12-12 コーニング インコーポレイテッド Porous carbon in electrochemical double layer capacitors
JP2016000665A (en) * 2014-06-11 2016-01-07 滋賀県 Method of producing active carbon
US9613760B2 (en) 2014-06-12 2017-04-04 Corning Incorporated Energy storage device and methods for making and use
WO2015191523A1 (en) * 2014-06-12 2015-12-17 Corning Incorporated Electrode, energy storage device and method for making an activated carbon
US10105680B2 (en) 2014-07-25 2018-10-23 Kansai Coke And Chemicals Co., Ltd. Activated carbon with excellent adsorption performance and process for producing same
WO2016013619A1 (en) * 2014-07-25 2016-01-28 関西熱化学株式会社 Activated carbon with excellent adsorption performance and process for producing same
JP2017171538A (en) * 2016-03-24 2017-09-28 関西熱化学株式会社 Active carbon and method for producing the same, and electric double layer capacitor comprising the active carbon
EP3460816A4 (en) * 2016-05-18 2020-01-22 Kuraray Co., Ltd. Carbonaceous material, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor that contain carbonaceous material
JP2017212433A (en) * 2016-05-18 2017-11-30 株式会社クラレ Carbonaceous material, and electrode material for electric double layer capacitor containing carbonaceous material, electrode for electric double layer capacitor and electric double layer capacitor
JP7007810B2 (en) 2016-05-18 2022-01-25 株式会社クラレ A carbonaceous material, and an electrode material for an electric double layer capacitor, an electrode for an electric double layer capacitor, and an electric double layer capacitor containing the carbonaceous material.
JP2022019781A (en) * 2016-05-18 2022-01-27 株式会社クラレ Carbonaceous material, and electrode material for electric double layer capacitor containing carbonaceous material, electrode for electric double layer capacitor and electric double layer capacitor
US11551877B2 (en) 2016-05-18 2023-01-10 Kuraray Co., Ltd. Carbonaceous material, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor that contain carbonaceous material
JP7445944B1 (en) 2023-04-12 2024-03-08 株式会社大木工藝 Method for manufacturing activated carbon compact

Similar Documents

Publication Publication Date Title
EP1142831B1 (en) Process for producing a carbon material for an electric double layer capacitor electrode, and processes for producing an electric double layer capacitor electrode and an electric double layer capacitor employing it
JP2003104710A (en) Solid state activated carbon and its producing method and electric double-layer capacitor using it and its producing method
US8564934B2 (en) Ultracapacitor with improved aging performance
US9478364B2 (en) Carbon-based electrodes containing molecular sieve
US9472353B2 (en) Ultracapacitor with improved aging performance
WO2015061268A1 (en) Ultracapacitor with improved aging performance
WO2016057914A1 (en) Electrical double-layer capacitor for high-voltage operation at high-temperatures
KR100429741B1 (en) The synthetic method of Nanoporous Carbon Materials using in-situ sol-gel polymerized Inorganic Templates
JP2000068164A (en) Electric-double-layer capacitors and manufacture thereof
JPH10287412A (en) Solid active carbon
JP7184555B2 (en) positive electrode precursor
JP3904755B2 (en) Activated carbon and electric double layer capacitor using the same
JP5604227B2 (en) Method for producing activated carbon for capacitor and activated carbon
JP2000007316A (en) Solid active carbon and electric double layer capacitor using the same
JP2001015389A (en) Electric double-layer capacitor and manufacture thereof
KR102389257B1 (en) Electric double layer capacitor and method of producing the same
JP7481707B2 (en) Non-aqueous alkali metal storage element
JP7219118B2 (en) Positive electrode for non-aqueous lithium storage device
JP3801802B2 (en) Electric double layer capacitor and manufacturing method thereof
JP4025456B2 (en) Electric double layer capacitor and manufacturing method thereof
JP2000169127A (en) Solid activated carbon structure, electric double layer capacitor using the same and their production
JP2002226210A (en) Activated carbon, its production method and production method for electric double layer capacitor using the same
JP2022142971A (en) positive electrode precursor
JP2024011759A (en) Non-aqueous lithium power storage element
JP2015198169A (en) Electrode for edlc and edlc