JP7445944B1 - Method for manufacturing activated carbon compact - Google Patents

Method for manufacturing activated carbon compact Download PDF

Info

Publication number
JP7445944B1
JP7445944B1 JP2023065247A JP2023065247A JP7445944B1 JP 7445944 B1 JP7445944 B1 JP 7445944B1 JP 2023065247 A JP2023065247 A JP 2023065247A JP 2023065247 A JP2023065247 A JP 2023065247A JP 7445944 B1 JP7445944 B1 JP 7445944B1
Authority
JP
Japan
Prior art keywords
thermoplastic resin
activated carbon
molding
carbon
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023065247A
Other languages
Japanese (ja)
Other versions
JP2024151694A (en
Inventor
武彦 大木
博 成澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohgi Technological Creation Co Ltd
Original Assignee
Ohgi Technological Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohgi Technological Creation Co Ltd filed Critical Ohgi Technological Creation Co Ltd
Priority to JP2023065247A priority Critical patent/JP7445944B1/en
Application granted granted Critical
Publication of JP7445944B1 publication Critical patent/JP7445944B1/en
Publication of JP2024151694A publication Critical patent/JP2024151694A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】熱可塑性樹脂を所定の形状に成形し炭化することにより活性炭成形体を得ることが可能な活性炭成形体の製造方法を提供する。【解決手段】この活性炭成形体1の製造方法は、PET、PP、PE、PS、PVC、PMMAなどの熱可塑性樹脂2に黒鉛、カーボンブラック、炭素繊維、カーボンナノチューブ、カーボンナノファイバー、グラフェンなどの炭素系導電材3の粉末を添加して混合する混合工程SAと、混合工程SA後の熱可塑性樹脂2を成形する成形工程SBと、成形工程SB後の熱可塑性樹脂2を炭化する炭化工程SCと、を有する。【選択図】図1An object of the present invention is to provide a method for producing an activated carbon molded body, which can obtain an activated carbon molded body by molding a thermoplastic resin into a predetermined shape and carbonizing the molded body. [Solution] This method for producing an activated carbon molded body 1 includes adding graphite, carbon black, carbon fiber, carbon nanotube, carbon nanofiber, graphene, etc. to a thermoplastic resin 2 such as PET, PP, PE, PS, PVC, or PMMA. A mixing step SA for adding and mixing powder of the carbon-based conductive material 3, a molding step SB for molding the thermoplastic resin 2 after the mixing step SA, and a carbonizing step SC for carbonizing the thermoplastic resin 2 after the molding step SB. and has. [Selection diagram] Figure 1

Description

本発明は、熱可塑性樹脂を炭化して得られる活性炭成形体の製造方法に関する。 The present invention relates to a method for producing an activated carbon molded body obtained by carbonizing a thermoplastic resin.

活性炭は、多孔質の炭化物であり、臭いや有害物質などを吸着するように微細に破砕したものを単純に集めた典型的なものの他に、所定の形状に成形したものである活性炭成形体が知られている。活性炭成形体は、例えば、特許文献1に示されているように、電気二重層キャパシタの分極性電極などに用いられている。活性炭は、様々な材料を炭化して得ることが可能であり、熱硬化性樹脂又は熱可塑性樹脂を炭化して得ることも可能である(特許文献1参照)。 Activated carbon is a porous carbide, and in addition to the typical type, which is simply a collection of finely crushed carbon that absorbs odors and harmful substances, there are also activated carbon molded bodies that are formed into a predetermined shape. Are known. Activated carbon molded bodies are used, for example, in polarizable electrodes of electric double layer capacitors, as shown in Patent Document 1. Activated carbon can be obtained by carbonizing various materials, and can also be obtained by carbonizing thermosetting resins or thermoplastic resins (see Patent Document 1).

活性炭成形体は、一般的には、微細に破砕した活性炭をバインダーで結着して成形する(特許文献1参照)ことにより得るが、特許文献2に示されるように、熱硬化性樹脂を所定の形状に成形し、それを炭化することにより得ることも可能である。後者の製造方法は、前者の製造方法に比べ、工程が簡単であり経済的である。 Activated carbon molded bodies are generally obtained by binding finely crushed activated carbon with a binder and molding it (see Patent Document 1), but as shown in Patent Document 2, thermosetting resin is It can also be obtained by molding it into a shape and carbonizing it. The latter manufacturing method has a simpler process and is more economical than the former manufacturing method.

特開2007-269518号公報JP2007-269518A 特開2002-234772号公報Japanese Patent Application Publication No. 2002-234772

ところで、熱硬化性樹脂又は熱可塑性樹脂は、それを材料とする商品の廃棄物又は商品生産時の残渣などの廃棄物を再利用できれば、炭化する材料を生成する工程が省略できてコスト削減も可能であり、また、ゴミ削減及び資源のリサイクルにも寄与する。また、世の中の商品の量及びそれに応じた廃棄物の量は、熱可塑性樹脂が熱硬化性樹脂に比べ各段に多い。しかし、熱可塑性樹脂は、それを所定の形状に成形して炭化のために加熱して高温にすると、熱可塑性のために形状を保持し難い。 By the way, if thermosetting resins or thermoplastic resins can be used to reuse waste products such as products made from them or residues from product production, the process of producing carbonized materials can be omitted and costs can be reduced. It also contributes to waste reduction and resource recycling. Furthermore, the amount of products in the world and the corresponding amount of waste are much larger for thermoplastic resins than for thermosetting resins. However, when a thermoplastic resin is molded into a predetermined shape and heated to a high temperature for carbonization, it has difficulty retaining its shape due to its thermoplastic nature.

本発明は、係る事由に鑑みてなされたものであり、その目的は、熱可塑性樹脂を所定の形状に成形しそれを炭化することにより活性炭成形体を得ることが可能な活性炭成形体の製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to provide a method for producing an activated carbon molded body, which can obtain an activated carbon molded body by molding a thermoplastic resin into a predetermined shape and carbonizing it. Our goal is to provide the following.

上記目的を達成するため、請求項1に記載の活性炭成形体の製造方法は、熱可塑性樹脂に炭素系導電材(活性炭を除く)の粉末を前記熱可塑性樹脂に対し重量比50%~100%添加して、バインダーは用いずに混合する混合工程と、該混合工程後の前記熱可塑性樹脂を成形機の中に流し込んで成形する成形工程と、該成形工程後の前記成形機から取り出した状態の前記熱可塑性樹脂を無酸素状態で加熱して炭化する炭化工程と、該炭化したものに賦活処理をする賦活処理工程と、を有する。 In order to achieve the above object, the method for producing an activated carbon molded body according to claim 1 includes adding powder of a carbon-based conductive material (excluding activated carbon) to a thermoplastic resin at a weight ratio of 50% to 100% with respect to the thermoplastic resin. A mixing step in which the thermoplastic resin is added and mixed without using a binder, a molding step in which the thermoplastic resin after the mixing step is poured into a molding machine and molded, and a state taken out from the molding machine after the molding step. The method includes a carbonization step of heating and carbonizing the thermoplastic resin in an oxygen-free state, and an activation treatment step of subjecting the carbonized resin to an activation treatment .

請求項2に記載の活性炭成形体の製造方法は、熱可塑性樹脂に炭素系導電材(活性炭を除く)の粉末を前記熱可塑性樹脂に対し重量比50%~100%添加して、バインダーは用いずに混合する混合工程と、該混合工程後の前記熱可塑性樹脂を成形機の中に流し込んで成形し、前記熱可塑性樹脂を前記成形機の中に保持したまま無酸素状態で加熱して炭化する成形炭化工程と、該炭化したものに賦活処理をする賦活処理工程と、を有する。 The method for producing an activated carbon molded article according to claim 2 includes adding powder of a carbon-based conductive material (excluding activated carbon) to a thermoplastic resin at a weight ratio of 50% to 100%, and using a binder. The thermoplastic resin after the mixing step is poured into a molding machine and molded, and the thermoplastic resin is carbonized by heating in an oxygen-free condition while being held in the molding machine. and an activation treatment step of subjecting the carbonized material to activation treatment .

本発明の活性炭成形体の製造方法によれば、熱可塑性樹脂を所定の形状に成形し炭化することにより活性炭成形体を得ることが可能になる。 According to the method for producing an activated carbon molded body of the present invention, it is possible to obtain an activated carbon molded body by molding a thermoplastic resin into a predetermined shape and carbonizing it.

本発明の実施形態に係る活性炭成形体の製造方法を示す概念図である。1 is a conceptual diagram showing a method for manufacturing an activated carbon molded body according to an embodiment of the present invention. 同上の製造方法の変形例を示す概念図である。It is a conceptual diagram which shows the modification of the manufacturing method same as the above.

以下、本発明を実施するための形態について説明する。本発明の実施形態に係る活性炭成形体の製造方法によって製造することができる活性炭成形体1は、所定の形状に成形したものである。活性炭成形体1は、用途に応じて様々な形状にすることが可能であるが、例えば、電気二重層キャパシタの分極性電極、レドックスフロー電池や淡水化CDI装置などの電極、又は建築部材(断熱材、電磁波吸収材、防音材など)等では板形状とすることができる。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated. The activated carbon molded body 1 that can be manufactured by the activated carbon molded body manufacturing method according to the embodiment of the present invention is molded into a predetermined shape. The activated carbon molded body 1 can be made into various shapes depending on the application, but for example, it can be used as a polarizable electrode of an electric double layer capacitor, an electrode of a redox flow battery or a desalination CDI device, or a building material (insulating material). material, electromagnetic wave absorbing material, soundproofing material, etc.) can be made into a plate shape.

本発明の実施形態に係る活性炭成形体の製造方法は、図1に示すように、混合工程SAと成形工程SBと炭化工程SCを有する。 As shown in FIG. 1, the method for producing an activated carbon molded body according to an embodiment of the present invention includes a mixing step SA, a forming step SB, and a carbonizing step SC.

混合工程SAは、熱可塑性樹脂2に炭素系導電材3の粉末を添加して混合する工程である。 The mixing step SA is a step in which powder of the carbon-based conductive material 3 is added to the thermoplastic resin 2 and mixed.

熱可塑性樹脂2は、常温の硬化した状態から加熱して行くと軟化し更には流動化し、その後に冷却して行くと再度硬化した状態になるものであり、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、塩化ビニール(PVC)、メタクリル(PMMA)などが含まれる。 The thermoplastic resin 2 softens and becomes fluidized when heated from a hardened state at room temperature, and then becomes hardened again when cooled. For example, polyethylene terephthalate (PET), polypropylene, etc. (PP), polyethylene (PE), polystyrene (PS), vinyl chloride (PVC), methacrylic (PMMA), etc.

炭素系導電材3は、炭素原子同士が結合して導電性を示すものであり、例えば、黒鉛、カーボンブラック(アセチレンブラックやファーネスブラックなど)、炭素繊維、カーボンナノチューブ、カーボンナノファイバー、グラフェンなどが含まれる。また、炭素系導電材3の粉末は、粉状、粒子状、短繊維状のものなどが含まれる。 The carbon-based conductive material 3 exhibits conductivity by bonding carbon atoms together, and includes, for example, graphite, carbon black (acetylene black, furnace black, etc.), carbon fiber, carbon nanotube, carbon nanofiber, graphene, etc. included. Further, the powder of the carbon-based conductive material 3 includes powder, particulate, short fiber, and the like.

熱可塑性樹脂2に炭素系導電材3の粉末を添加して混合する際は、常温で、熱可塑性樹脂2の粒状物(例えば、熱可塑性樹脂2の破砕物のペレットなど)の集合体に炭素系導電材の粉末3を添加して万遍なく混合するようにできる。 When adding and mixing the powder of the carbon-based conductive material 3 to the thermoplastic resin 2, carbon is added to the aggregate of the granules of the thermoplastic resin 2 (for example, pellets of crushed thermoplastic resin 2) at room temperature. Powder 3 of the conductive material can be added and mixed evenly.

成形工程SBは、混合工程SA後の熱可塑性樹脂2を成形する工程である。 The molding step SB is a step of molding the thermoplastic resin 2 after the mixing step SA.

具体的には、成形工程SBでは、加熱して流動化した熱可塑性樹脂2を活性炭成形体1の所定の形状に応じた成形機の中に流し込んで成形する。その後、熱可塑性樹脂2を成形機の中から取り出す。熱可塑性樹脂2の温度は、その取り出しの前後で下げるようにする。 Specifically, in the molding step SB, the heated and fluidized thermoplastic resin 2 is poured into a molding machine that corresponds to the predetermined shape of the activated carbon molded body 1 and molded. Thereafter, the thermoplastic resin 2 is taken out from the molding machine. The temperature of the thermoplastic resin 2 is lowered before and after taking it out.

炭化工程SCは、成形工程SB後の熱可塑性樹脂2の成形体1’を炭化する工程である。 The carbonization step SC is a step of carbonizing the molded body 1' of the thermoplastic resin 2 after the molding step SB.

熱可塑性樹脂2は、無酸素状態で加熱されて炭化して行き、熱可塑性樹脂2には多数の空孔が発生する。 The thermoplastic resin 2 is heated and carbonized in an oxygen-free state, and a large number of pores are generated in the thermoplastic resin 2.

一方、炭素系導電材3は、導電性を示すほどによく炭素原子同士が全体にわたって結合できるため、熱可塑性樹脂2が加熱され炭化の温度になっても、炭素原子同士の結合状態を保つことができる。また、炭素系導電材3は、炭化した熱可塑性樹脂2と同じ炭素原子からなるものなので、炭化した熱可塑性樹脂2との親和性もよく、接触部分近傍で見れば比重もほぼ変わらない。 On the other hand, in the carbon-based conductive material 3, the carbon atoms can be bonded to each other well enough to exhibit conductivity, so even if the thermoplastic resin 2 is heated to the carbonization temperature, the bonding state of the carbon atoms can be maintained. Can be done. Further, since the carbon-based conductive material 3 is made of the same carbon atoms as the carbonized thermoplastic resin 2, it has good affinity with the carbonized thermoplastic resin 2, and the specific gravity is almost unchanged when viewed near the contact portion.

こうして、混合工程SAで炭素系導電材3の粉末が混合され成形工程SBで成形された熱可塑性樹脂2は、成形時の所定の形状をほぼ保って炭化され、活性炭成形体1となる。 In this way, the thermoplastic resin 2 mixed with the powder of the carbon-based conductive material 3 in the mixing step SA and molded in the molding step SB is carbonized while maintaining almost the predetermined shape at the time of molding, and becomes the activated carbon molded body 1.

炭化工程SC後は、活性炭成形体1に一般的な賦活処理をすることができる。 After the carbonization step SC, the activated carbon molded body 1 can be subjected to a general activation treatment.

次に、本発明の実施形態に係る活性炭成形体の製造方法の変形例を説明する。ここでは、上記混合工程SA後に成形炭化工程SDを行う。成形炭化工程SDは、上記混合工程SA後の熱可塑性樹脂2を成形し炭化する工程である。 Next, a modification of the method for manufacturing an activated carbon molded body according to an embodiment of the present invention will be described. Here, the molding carbonization step SD is performed after the mixing step SA. The molding and carbonizing step SD is a step of molding and carbonizing the thermoplastic resin 2 after the mixing step SA.

具体的には、成形炭化工程SDでは、加熱して流動化した熱可塑性樹脂2を活性炭成形体1の所定の形状に応じた成形機の中に流し込んで成形し、熱可塑性樹脂2を成形機の中に保持したまま、上記炭化工程SCと同様にして炭化する。こうして、混合工程SAで炭素系導電材3の粉末が混合され成形炭化工程SDで成形されて炭化され、活性炭成形体1となる。 Specifically, in the molding carbonization step SD, the heated and fluidized thermoplastic resin 2 is poured into a molding machine according to the predetermined shape of the activated carbon molded body 1, and the thermoplastic resin 2 is molded into the molding machine. It is carbonized in the same manner as in the carbonization step SC above. In this way, the powder of the carbon-based conductive material 3 is mixed in the mixing step SA, and is molded and carbonized in the compacting and carbonizing step SD to form the activated carbon compact 1.

成形炭化工程SD後は、活性炭成形体1に一般的な賦活処理をすることができる。 After the carbonization step SD, the activated carbon compact 1 can be subjected to a general activation treatment.

次に、本願発明者の行った実験について説明する。熱可塑性樹脂2をポリエチレンテレフタレート(PET)とし、炭素系導電材3を黒鉛とした。成形機として押出器を用いてスパゲッティ状のもの(ストランド)を作製し、それを炭化して試料とした。以下の表1において、試料Aは炭素系導電材3の粉末を熱可塑性樹脂2に対し重量比100%(つまり、同じ重量)で添加したもの、試料Bは炭素系導電材3の粉末を熱可塑性樹脂2に対し重量比50%で添加したもの、試料Cは炭素系導電材3の粉末を熱可塑性樹脂2に対し重量比10%で添加したもの、試料Dは炭素系導電材3を添加しなかったものである。 Next, an experiment conducted by the inventor of the present application will be explained. The thermoplastic resin 2 was polyethylene terephthalate (PET), and the carbon-based conductive material 3 was graphite. A spaghetti-like material (strand) was produced using an extruder as a molding machine, and the strand was carbonized and used as a sample. In Table 1 below, sample A is one in which powder of carbon-based conductive material 3 is added to thermoplastic resin 2 at a weight ratio of 100% (that is, the same weight), and sample B is one in which powder of carbon-based conductive material 3 is added to thermoplastic resin 2 at a weight ratio of 100% (that is, the same weight). Sample C has carbon-based conductive material 3 powder added to thermoplastic resin 2 at a weight ratio of 50%, Sample D has carbon-based conductive material 3 added to thermoplastic resin 2 at a weight ratio of 10%. It's something I didn't do.

Figure 0007445944000002
Figure 0007445944000002

表1のように、試料C、Dでは活性炭成形体1の形状が保持できていないが、試料A、Bでは活性炭成形体1の形状が保持できている。 As shown in Table 1, the shapes of the activated carbon molded bodies 1 could not be maintained in samples C and D, but the shapes of the activated carbon molded bodies 1 could be maintained in samples A and B.

このように、熱可塑性樹脂2に適正量の炭素系導電材3の粉末を添加することにより、熱可塑性樹脂2を所定の形状に成形して炭化することにより活性炭成形体1を得ることが可能になる。また、熱可塑性樹脂2に廃棄物を用いると、コスト削減も可能であり、また、ゴミ削減及び資源のリサイクルにも寄与する。 In this way, by adding an appropriate amount of powder of the carbon-based conductive material 3 to the thermoplastic resin 2, it is possible to obtain the activated carbon molded body 1 by molding the thermoplastic resin 2 into a predetermined shape and carbonizing it. become. Further, if waste is used for the thermoplastic resin 2, it is possible to reduce costs, and also contributes to waste reduction and resource recycling.

また、活性炭成形体1は、上記バインダーを用いずに炭素系導電材3を含むために、優れた導電性を有するように容易にできる。活性炭成形体1は、電気二重層キャパシタの分極性電極には、優れた導電性を利用してそのまま用いることができる。また、活性炭成形体1は、レドックスフロー電池や淡水化CDI装置などの電極には、優れた導電性を利用してそのまま用いることができる。 Moreover, since the activated carbon molded body 1 contains the carbon-based conductive material 3 without using the binder, it can easily be made to have excellent conductivity. The activated carbon molded body 1 can be used as it is as a polarizable electrode of an electric double layer capacitor by utilizing its excellent conductivity. In addition, the activated carbon molded body 1 can be used as it is for electrodes of redox flow batteries, desalination CDI devices, etc., taking advantage of its excellent conductivity.

また、活性炭成形体1は、導電性が必要でない場合でも、建築部材(断熱材、電磁波吸収材、防音材など)又はその他の部材に用いることができる。炭素系導電材3を含むと一般的に熱伝導性を高くすることができるため、その特性を建築部材又はその他の部材で利用することも可能である。 Moreover, the activated carbon molded body 1 can be used for building members (insulating materials, electromagnetic wave absorbing materials, soundproofing materials, etc.) or other members even when electrical conductivity is not required. Including the carbon-based conductive material 3 generally increases thermal conductivity, so its properties can also be utilized in building materials or other materials.

以上、本発明の実施形態に係る活性炭成形体の製造方法について説明したが、本発明は、実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。例えば、上記成形工程SB時又は上記成形炭化工程SD時に、補強繊維などの補強材と組み入れて成形することも可能である。 Although the method for manufacturing an activated carbon molded body according to the embodiment of the present invention has been described above, the present invention is not limited to what is described in the embodiment, and can be applied to various methods within the scope of the claims. Design changes are possible. For example, it is also possible to incorporate reinforcing materials such as reinforcing fibers into the molding process during the molding step SB or the molding and carbonization step SD.

1 活性炭成形体
1’ 熱可塑性樹脂の成形体
2 熱可塑性樹脂
3 炭素系導電材
SA 混合工程
SB 成形工程
SC 炭化工程
SD 成形炭化工程
1 Activated carbon molded body 1' Thermoplastic resin molded body 2 Thermoplastic resin 3 Carbon-based conductive material SA Mixing process SB Molding process SC Carbonization process SD Molding carbonization process

Claims (2)

熱可塑性樹脂に炭素系導電材(活性炭を除く)の粉末を前記熱可塑性樹脂に対し重量比50%~100%添加して、バインダーは用いずに混合する混合工程と、
該混合工程後の前記熱可塑性樹脂を成形機の中に流し込んで成形する成形工程と、
該成形工程後の前記成形機から取り出した状態の前記熱可塑性樹脂を無酸素状態で加熱して炭化する炭化工程と、
該炭化したものに賦活処理をする賦活処理工程と、
を有する活性炭成形体の製造方法。
A mixing step of adding powder of a carbon-based conductive material (excluding activated carbon) to a thermoplastic resin at a weight ratio of 50% to 100% to the thermoplastic resin and mixing without using a binder;
a molding step of pouring the thermoplastic resin after the mixing step into a molding machine;
a carbonization step of heating and carbonizing the thermoplastic resin taken out from the molding machine after the molding step in an oxygen-free state;
an activation treatment step of subjecting the carbonized material to activation treatment;
A method for producing an activated carbon molded body having the following.
熱可塑性樹脂に炭素系導電材(活性炭を除く)の粉末を前記熱可塑性樹脂に対し重量比50%~100%添加して、バインダーは用いずに混合する混合工程と、
該混合工程後の前記熱可塑性樹脂を成形機の中に流し込んで成形し、前記熱可塑性樹脂を前記成形機の中に保持したまま無酸素状態で加熱して炭化する成形炭化工程と、
該炭化したものに賦活処理をする賦活処理工程と、
を有する活性炭成形体の製造方法。
A mixing step of adding powder of a carbon-based conductive material (excluding activated carbon) to a thermoplastic resin at a weight ratio of 50% to 100% to the thermoplastic resin and mixing without using a binder;
A molding carbonization step in which the thermoplastic resin after the mixing step is poured into a molding machine and molded, and the thermoplastic resin is heated and carbonized in an oxygen-free state while being held in the molding machine;
an activation treatment step of subjecting the carbonized material to activation treatment;
A method for producing an activated carbon molded body having the following.
JP2023065247A 2023-04-12 2023-04-12 Method for manufacturing activated carbon compact Active JP7445944B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023065247A JP7445944B1 (en) 2023-04-12 2023-04-12 Method for manufacturing activated carbon compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023065247A JP7445944B1 (en) 2023-04-12 2023-04-12 Method for manufacturing activated carbon compact

Publications (2)

Publication Number Publication Date
JP7445944B1 true JP7445944B1 (en) 2024-03-08
JP2024151694A JP2024151694A (en) 2024-10-25

Family

ID=90105497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023065247A Active JP7445944B1 (en) 2023-04-12 2023-04-12 Method for manufacturing activated carbon compact

Country Status (1)

Country Link
JP (1) JP7445944B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104710A (en) 2001-09-27 2003-04-09 Kyocera Corp Solid state activated carbon and its producing method and electric double-layer capacitor using it and its producing method
JP2004315241A (en) 2003-04-10 2004-11-11 Tokyo Gas Co Ltd Activated carbon and method for manufacturing the same
JP2017164667A (en) 2016-03-14 2017-09-21 三菱鉛筆株式会社 Carbon carrier for catalysts
JP2022067482A (en) 2020-10-20 2022-05-06 イビデン株式会社 Structure and carbon dioxide recovery device having the structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104710A (en) 2001-09-27 2003-04-09 Kyocera Corp Solid state activated carbon and its producing method and electric double-layer capacitor using it and its producing method
JP2004315241A (en) 2003-04-10 2004-11-11 Tokyo Gas Co Ltd Activated carbon and method for manufacturing the same
JP2017164667A (en) 2016-03-14 2017-09-21 三菱鉛筆株式会社 Carbon carrier for catalysts
JP2022067482A (en) 2020-10-20 2022-05-06 イビデン株式会社 Structure and carbon dioxide recovery device having the structure

Similar Documents

Publication Publication Date Title
CN101913593B (en) Graphite material for producing nanogate carbon and preparation method thereof
JP6805076B2 (en) Manufacturing method of molded products from carbon materials using recycled carbon fiber
CN111100662B (en) Continuous operation method for microwave pyrolysis of waste plastics
JPH07201677A (en) Polarizable electrode and its manufacture
KR101211134B1 (en) A method for preparing carbon nano material/polymer composites
JP4339821B2 (en) Carbon composite material for fuel cell separator, manufacturing method thereof, and fuel cell separator using the same
JP2001126744A (en) Separator for fuel cell and fabricating method therefor
JP5155676B2 (en) Bamboo fiber molding and bamboo fiber molding carbonized material
JP4565461B2 (en) Recycling method for waste materials made of CFRP
JP7445944B1 (en) Method for manufacturing activated carbon compact
JP4523829B2 (en) Carbon nanofiber / phenolic resin composite carbonized material, conductive resin composition, electrode for secondary battery, carbon material for electric double layer capacitor polarizable electrode, electric double layer capacitor polarizable electrode
JP2024151694A (en) Manufacturing method of activated carbon compact
CN116409785A (en) Spheroidized graphite tailing anode material and processing method thereof
KR20210091729A (en) Methods of Making Carbon Nanoparticle Polymer Matrix Composites Using Electromagnetic Irradiation
JP3722965B2 (en) Carbon material for electric double layer capacitors
CN101814345A (en) Method for preparing loose three-dimensional macroscopic carbon nano-tube network
JP2024519803A (en) Systems and methods for producing polymer-carbon nanomaterial blends from carbon dioxide and articles thereof
JP2003257446A (en) Composite material for molding fuel cell separator, manufacturing method therefor, and fuel cell separator by use of composite material
CN202181384U (en) Porous carbon fiber
JP3559408B2 (en) SOLID ACTIVE CARBON, PROCESS FOR PRODUCING THE SAME, AND ELECTRIC DOUBLE LAYER CAPACITOR USING THE SAME
JP2677214B2 (en) Electric double layer capacitor and method of manufacturing the same
JP2014133666A (en) Method for manufacturing a porous carbonaceous material
JP7460610B2 (en) Composition for bipolar plates and method for producing said composition
KR101737348B1 (en) The method for activating a carbon percursor
JP4591040B2 (en) Carbon fiber manufacturing method and applied products using the carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230519

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240218

R150 Certificate of patent or registration of utility model

Ref document number: 7445944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150