JPH11121295A - Electric double-layer capacitor, electrode, and manufacturing method therefor - Google Patents

Electric double-layer capacitor, electrode, and manufacturing method therefor

Info

Publication number
JPH11121295A
JPH11121295A JP9280518A JP28051897A JPH11121295A JP H11121295 A JPH11121295 A JP H11121295A JP 9280518 A JP9280518 A JP 9280518A JP 28051897 A JP28051897 A JP 28051897A JP H11121295 A JPH11121295 A JP H11121295A
Authority
JP
Japan
Prior art keywords
electrode
electric double
layer capacitor
double layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9280518A
Other languages
Japanese (ja)
Inventor
Hideki Shibuya
秀樹 渋谷
Toshikazu Takeda
敏和 竹田
Takashi Noji
貴 野地
Shigeru Murakami
繁 村上
Tsutomu Masuko
努 増子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Advanced Engineering Center Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Isuzu Advanced Engineering Center Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Isuzu Advanced Engineering Center Ltd filed Critical Showa Denko KK
Priority to JP9280518A priority Critical patent/JPH11121295A/en
Publication of JPH11121295A publication Critical patent/JPH11121295A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide an electric double-layer capacitor and an electrode having high capacity at a high current density and adequate strength for practical use. SOLUTION: An electrode 2 for an electric double-layer capacitor made of PVDC(polyvinylidene chloride) resin carbide is set to have a density of 0.65 to 0.75 g/cc, and a sheet resistance of 0.9 to 3.0 Ω/(square). The PVDC resin carbide is carbonized at a temperature range of 180 to 600 deg.C and is crushed into a powder having a means particle size of 8 to 12 μm. The carbide powder is sintered at a temperature range of 600 to 950 deg.C for its manufacture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層コンデ
ンサ、電極及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor, an electrode and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電気二重層コンデンサは、活性炭の粉末
に電解液をしみこませ、活性炭と電解液の界面にできる
電気二重層の静電容量を利用したコンデンサである。耐
電圧、最高使用温度は、電解液の分解電圧・温度に依存
しており、定格電圧は数Vと低いが、ファラッドオーダ
の静電容量が容易に得られることから、電池の代わりに
半導体メモリ(D−RAM)のバックアップ用等の低電
流密度の用途に多く用いられるようになっており、最近
では、もっと電流密度の高い用途、例えば車載鉛蓄電池
の代わり、にも使用することが研究されている。
2. Description of the Related Art An electric double layer capacitor is a capacitor utilizing an electrostatic solution of an activated carbon powder and an electrolytic solution impregnated in an activated carbon powder. The withstand voltage and the maximum operating temperature depend on the decomposition voltage and temperature of the electrolytic solution, and the rated voltage is as low as several volts. However, since the capacitance in the farad order can be easily obtained, a semiconductor memory is used instead of a battery. It has been widely used for low current density applications such as backup of (D-RAM), and has recently been studied for use in applications having higher current densities, for example, in place of in-vehicle lead-acid batteries. ing.

【0003】従来、電気二重層コンデンサ用電極とし
て、活性炭にバインダを混入させ焼結したものや焼結後
に腑活処理(酸化による不純物除去処理)したものを用
いていた。しかし、これらの電極を使用すると、次のよ
うな問題点が生じていた。 a)活性炭はマクロポアが多く細孔体積比率が高いた
め、密度が低い。 b)比表面積は大きいが細孔径の分布が広いため、電気
二重層コンデンサ用電極として働く実効的な細孔は少な
い。 c)焼結を促進する目的で比較的高温で焼結するため、
電気二重層コンデンサ用電極として働く実効的な細孔は
少ない。 d)低温(850℃以下)で焼結すると、グラファイト
化が進まないため、粒子間焼結強度がなく、そして、抵
抗値が高い。
Heretofore, as an electrode for an electric double layer capacitor, a material obtained by mixing a binder with activated carbon and sintering or a material subjected to an activation treatment (impurity removal treatment by oxidation) after sintering has been used. However, the use of these electrodes has caused the following problems. a) Activated carbon has a low density because it has many macropores and a high pore volume ratio. b) Although the specific surface area is large, the distribution of the pore diameter is wide, so that there are few effective pores acting as electrodes for electric double layer capacitors. c) sintering at a relatively high temperature to promote sintering,
There are few effective pores acting as electrodes for electric double layer capacitors. d) When sintering at a low temperature (850 ° C. or lower), graphitization does not proceed, so there is no intergranular sintering strength and the resistance value is high.

【0004】活性炭や炭素繊維にフェノール樹脂を担持
させて後繰返し賦活する方法が、特開昭63−3148
21号公報により知られているが、工程が複雑であり、
コストがかかっていた。フェノール樹脂を添加して炭化
した電極が特開昭63−226019号公報に記載され
ているが、フェノール樹脂炭化物は電気二重層コンデン
サ用電極に最適な細孔が少なく、容量が小さい。
Japanese Patent Application Laid-Open No. 63-3148 discloses a method in which a phenol resin is supported on activated carbon or carbon fiber and then activated repeatedly.
No. 21, the process is complicated,
It was costly. An electrode carbonized by adding a phenolic resin is described in JP-A-63-226019, but a phenolic resin carbide has a small number of pores and a small capacity that are optimal for an electrode for an electric double layer capacitor.

【0005】これらの問題点を解決するため、PVDC
(ポリ塩化ビニリデン)樹脂の炭化物を使用することが
提案されている(特開平7−249551号公報参
照)。PVDC樹脂(あるいは塩化ビニリデン系共重合
体)炭化物を使用すると、他の活性炭と比較して長所を
有しており、その理由として、次のことによるといわれ
ている。PVDC樹脂は、2つの脱塩酸反応温度を有し
ている。第一点は180℃から250℃で自己分子鎖内
での脱塩酸反応であり、第二点は450℃から550℃
での分子鎖間の脱塩酸反応で、その際分子間結合が生じ
ている。第一点の温度範囲で加熱すると脱塩酸反応によ
り細孔が形成され、その細孔は、36Å以下のマイクロ
ポアとよばれるものであって、これが電気二重層コンデ
ンサ用電極として使用されると電解液との界面として有
効に働く。このため、電極としての腑活処理は不必要で
ある。また、第二点の温度範囲以上で加熱すると、脱塩
酸反応により有効マイクロポアを保持しつつ比較的低温
でも焼結を進行させることができる。このため、電気二
重層コンデンサ用電極には不要である大きな径のメソポ
アやマクロポアの発生を抑えることができる。このた
め、PVDC樹脂炭化物は、比表面積は活性炭に比べて
少ないが、焼結密度が活性炭に比べて高くなり、体積あ
たりの容量は大きくなる。
In order to solve these problems, PVDC
It has been proposed to use a carbide of (polyvinylidene chloride) resin (see JP-A-7-249551). The use of PVDC resin (or vinylidene chloride-based copolymer) carbide has advantages over other activated carbons because of the following. PVDC resins have two dehydrochlorination reaction temperatures. The first point is a dehydrochlorination reaction within its own molecular chain at 180 ° C to 250 ° C, and the second point is 450 ° C to 550 ° C.
In this case, an intermolecular bond is generated in the dehydrochlorination reaction between the molecular chains. When heated in the temperature range of the first point, pores are formed by the dehydrochlorination reaction, and the pores are called micropores having a diameter of 36 ° or less. It works effectively as an interface with the liquid. For this reason, activation treatment as an electrode is unnecessary. Further, when the heating is performed at a temperature not lower than the temperature range of the second point, sintering can be advanced even at a relatively low temperature while maintaining effective micropores by the dehydrochlorination reaction. For this reason, generation of mesopores or macropores having a large diameter, which is unnecessary for the electrode for an electric double layer capacitor, can be suppressed. For this reason, the PVDC resin carbide has a smaller specific surface area than activated carbon, but has a higher sintering density than activated carbon and a larger capacity per volume.

【0006】しかし、PVDC樹脂炭化物は、次のよう
な問題点を有している。 a)バインダレスであるため、成形しにくい。 b)低温(850℃以下)での焼結ではグラファイトが
進まないため、オーミックな抵抗が高い。そのため高電
流密度においてはIRドロップが大きく容量が取り出せ
ない。 c)PVDC樹脂炭化物は高密度に焼結できるが、粒子
間の空隙やマクロポアが少ないため拡散抵抗が高い。
[0006] However, PVDC resin carbide has the following problems. a) It is difficult to mold because it is binderless. b) Ohmic resistance is high because graphite does not advance during sintering at low temperature (850 ° C. or lower). Therefore, at a high current density, the IR drop is large and the capacity cannot be taken out. c) The PVDC resin carbide can be sintered at a high density, but has a high diffusion resistance due to few voids and macropores between particles.

【0007】また、従来、活性炭粉末を用いた電極を製
造するために、粉末を含有するスラリをドクターブレー
ド法などによりシート上に塗布しホットプレスなどによ
りプレス成形したり、あるいは、スラリを用いずに粉末
をバインダとともにそのまま型に詰め、ホットプレスに
よって圧縮成形する方法などが用いられていた。
Conventionally, in order to manufacture an electrode using activated carbon powder, a slurry containing the powder is applied to a sheet by a doctor blade method or the like and press-formed by hot pressing or the like, or without using a slurry. In this case, a method of directly packing the powder together with a binder into a mold and compression molding by hot pressing has been used.

【0008】しかし、前記のいずれの方法も圧力を用い
た成形のため、電極の充填密度が0.9〜1.2g/c
cとなって、密度が高くなりすぎるため、電気二重層コ
ンデンサの特性に必要な粒子間の空隙が少なく、高電流
密度における容量が取り出せないという問題があった。
However, in any of the above-mentioned methods, since the molding is performed using pressure, the packing density of the electrodes is 0.9 to 1.2 g / c.
c, the density becomes too high, so that there are few gaps between particles required for the characteristics of the electric double layer capacitor, and there is a problem that the capacity at a high current density cannot be taken out.

【0009】また、バインダとして残炭率の高いフェノ
ール樹脂のようなものを使用する場合、特に添加量が多
くなると容量が低下してしまう問題があった。
Further, when a binder such as a phenol resin having a high residual carbon ratio is used as a binder, there is a problem that the capacity is reduced particularly when the amount of addition is large.

【0010】[0010]

【発明が解決しようとする課題】本発明は、高電流密度
においても高容量を有し、かつ、実用に十分な強度を有
する電気二重層コンデンサ及び電極を提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electric double layer capacitor and an electrode having a high capacity even at a high current density and having a strength sufficient for practical use.

【0011】[0011]

【課題を解決するための手段】本発明は、PVDC樹脂
炭化物からなる電気二重層コンデンサ用電極において、
密度は0.65〜0.75g/ccであり、かつ、シー
ト抵抗は0.9〜3.0Ω/□である電気二重層コンデ
ンサ用電極である。
SUMMARY OF THE INVENTION The present invention relates to an electrode for an electric double layer capacitor comprising a PVDC resin carbide.
It is an electrode for an electric double layer capacitor having a density of 0.65 to 0.75 g / cc and a sheet resistance of 0.9 to 3.0 Ω / □.

【0012】また、本発明は、PVDC樹脂炭化物から
なる電極を具備する電気二重層コンデンサにおいて、前
記電極の密度は0.65〜0.75g/ccであり、か
つ、電極のシート抵抗は0.9〜3.0Ω/□である電
気二重層コンデンサである。
Further, the present invention relates to an electric double layer capacitor having an electrode made of a PVDC resin carbide, wherein the density of the electrode is 0.65 to 0.75 g / cc, and the sheet resistance of the electrode is 0.1 to 0.5 g / cc. It is an electric double layer capacitor having a resistance of 9 to 3.0Ω / □.

【0013】そして、本発明は、PVDC樹脂を180
℃〜600℃で炭化したのち、平均粒度を8〜12μm
に粉砕し、得られた炭化物粉末を600℃〜950℃で
焼結する電気二重層コンデンサ用電極の製造方法であ
る。
[0013] The present invention relates to a PVDC resin of 180
After carbonization at ℃ to 600 ℃, the average particle size is 8 to 12μm
This is a method for producing an electrode for an electric double layer capacitor in which the obtained carbide powder is sintered at 600 to 950 ° C.

【0014】更に、本発明は、水又は水とアルコール系
溶媒との混合物からなる溶媒にPVDC樹脂炭化物を分
散させたスラリを成形型に流し込む工程と、該スラリの
揮発成分を除する工程と、を有する電気二重層コンデン
サ用電極の製造方法である。
Further, the present invention comprises a step of pouring a slurry in which a PVDC resin carbide is dispersed in a solvent comprising water or a mixture of water and an alcohol-based solvent into a mold, a step of removing volatile components of the slurry, This is a method for producing an electrode for an electric double layer capacitor having the following.

【0015】また、本発明は、上記スラリは、分子量2
百万までのポリエチレングリコール又はその誘導体と、
レゾールタイプのフェノール樹脂と、粉末状又は繊維状
の残炭率30%以下の樹脂と、を有する電気二重層コン
デンサ用電極の製造方法である。
In the present invention, the slurry has a molecular weight of 2
Up to one million polyethylene glycol or derivatives thereof;
This is a method for producing an electrode for an electric double layer capacitor, comprising a resol type phenol resin and a powdery or fibrous resin having a residual carbon ratio of 30% or less.

【0016】そして、本発明は、上記分子量2百万まで
のポリエチレングリコール又はその誘導体の添加量は、
PVDC樹脂炭化物に対して5〜18wt%であり、レ
ゾールタイプのフェノール樹脂の添加量は、同5〜8w
t%であり、粉末状又は繊維状の残炭率30%以下の樹
脂は、同0.5〜2.5wt%である電気二重層コンデ
ンサ用電極の製造方法である。
[0016] The present invention relates to the present invention, wherein the addition amount of polyethylene glycol or a derivative thereof having a molecular weight of up to 2 million is as follows:
It is 5 to 18 wt% based on the PVDC resin carbide, and the resol type phenol resin is added in an amount of 5 to 8 w
The method for producing an electrode for an electric double layer capacitor, wherein the resin having a residual carbon ratio of 30% or less in the form of a powder or a fibrous material having a residual carbon ratio of 30% or less is 0.5% to 2.5% by weight.

【0017】更に、本発明は、スラリの揮発性分を除す
る工程は、室温〜90℃で乾燥させる工程である電気二
重層コンデンサ用電極の製造方法である。
Further, the present invention is a method for producing an electrode for an electric double layer capacitor, wherein the step of removing volatile components of the slurry is a step of drying at room temperature to 90 ° C.

【0018】また、本発明は、成形は、無加圧状態で行
う電気二重層コンデンサ用電極の製造方法である。
Further, the present invention is a method for producing an electrode for an electric double layer capacitor, wherein molding is performed in a non-pressurized state.

【0019】[0019]

【発明の実施の形態】本発明の発明の実施の形態を説明
する。本発明の電気二重層コンデンサ、電極及びその製
造方法について、説明する。本発明の電気二重層コンデ
ンサ用電極の製造方法の一実施例を、順に、PVDC樹
脂の初期炭化、PVDC樹脂炭化物粉末の特性、スラリ
の作製及び成形、焼結処理、焼結電極の特性、比較例に
ついて述べることにより、説明する。図1〜図4を用い
て、実施例1を説明する。図1はPVDC樹脂炭化物粉
末粒度と電極容量の説明図であり、図2はポリエチレン
グリコール添加量と電極容量の説明図であり、図3はフ
ェノール樹脂と電極容量の説明図であり、図4は本実施
例の製造方法で作製した電極の特性の測定方法の説明図
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described. The electric double layer capacitor, the electrode and the method for manufacturing the same according to the present invention will be described. One embodiment of the method for manufacturing an electrode for an electric double layer capacitor according to the present invention, in order, initial carbonization of PVDC resin, characteristics of PVDC resin carbide powder, production and molding of slurry, sintering process, characteristics of sintered electrode, comparison This will be explained by describing an example. First Embodiment A first embodiment will be described with reference to FIGS. FIG. 1 is an explanatory diagram of PVDC resin carbide powder particle size and electrode capacity, FIG. 2 is an explanatory diagram of polyethylene glycol addition amount and electrode capacity, FIG. 3 is an explanatory diagram of phenol resin and electrode capacity, and FIG. FIG. 5 is an explanatory diagram of a method for measuring characteristics of an electrode manufactured by the manufacturing method according to the embodiment.

【0020】(1)まず、PVDC樹脂の初期炭化につ
いて、述べる。PVDC樹脂を石英管に2kg詰め、熱
電対、排気管、ガス注入管を配置し、ゴム栓等で密閉す
る。前記石英管を管状炉に設置し、180〜600℃で
加熱した。ピーク温度までは脱塩酸反応で排出される塩
化水素ガス自身の圧力で排気管から排出させ、冷却時に
はガス注入管から空気を毎分0.2〜0.5L(リット
ル)で流し、100℃以下になったところで、PVDC
樹脂炭化物を取り出し、平均粒度8〜12μmになるよ
うに粉砕を行い、PVDC樹脂炭化物粉末を得た。平均
粒度が12μmを超えたものを使用して電極を作製する
と高電流密度における容量が急激に低下する。また、8
μm以下では粉砕に時間がかかり、かつ、粒子が細かく
なりすぎて電極の成形時や焼結時にクラックが入りやす
くなり、そして、容量は、平均粒度8μm未満にしても
顕著な向上は認められなかった。(図1参照)
(1) First, the initial carbonization of the PVDC resin will be described. 2 kg of PVDC resin is packed in a quartz tube, a thermocouple, an exhaust tube, and a gas injection tube are arranged, and sealed with a rubber stopper or the like. The quartz tube was set in a tubular furnace and heated at 180 to 600 ° C. Until the peak temperature, the hydrogen chloride gas discharged by the dehydrochlorination reaction is discharged from the exhaust pipe at its own pressure. During cooling, air flows at 0.2 to 0.5 L (liter) per minute from the gas injection pipe, and is 100 ° C. or less. Became PVDC
The resin carbide was taken out and pulverized to an average particle size of 8 to 12 μm to obtain a PVDC resin carbide powder. When an electrode is manufactured using an electrode having an average particle size exceeding 12 μm, the capacity at a high current density sharply decreases. Also, 8
If it is less than μm, it takes a long time to pulverize, and the particles are too fine, so that cracks are apt to be formed during molding or sintering of the electrode, and the capacity is not significantly improved even if the average particle size is less than 8 μm. Was. (See Fig. 1)

【0021】(2)次に、PVDC樹脂炭化物粉末の特
性について、述べる。前記の炭化工程で得られたPVD
C樹脂炭化物粉末をイオン交換水に入れて60分間煮沸
し室温まで冷却した後、炭化物をろ別し、ろ液の水素イ
オン濃度を測定したところ、0.012〜0.25mm
ol/gであった。また、水で抽出されずに炭化物に残
っている酸性基の量を測定したところ、0.22〜0.
33mmol/gであった。以上のことから、(1)の
初期炭化工程では水に抽出される酸性成分と水に抽出さ
れない酸性基とを持ったPVDC樹脂炭化物を得ること
ができたことがわかる。
(2) Next, the characteristics of the PVDC resin carbide powder will be described. PVD obtained in the above carbonization step
The C resin carbide powder was put into ion-exchanged water, boiled for 60 minutes and cooled to room temperature. Then, the carbide was filtered off, and the hydrogen ion concentration of the filtrate was measured to be 0.012 to 0.25 mm.
ol / g. Also, when the amount of acidic groups remaining in the carbide without being extracted with water was measured, it was found to be 0.22-0.
33 mmol / g. From the above, it can be seen that in the initial carbonization step (1), a PVDC resin carbide having an acidic component extracted into water and an acidic group not extracted into water could be obtained.

【0022】(3)スラリの作製及び成形について、述
べる。水:アルコール=7:3の混合溶媒に、炭化物に
対して分子量200のポリエチレングリコール(PE
G)を5〜18wt%を添加し、レゾールタイプのフェ
ノール樹脂を5〜8wt%添加して撹拌しながら、長さ
0.5〜5mmのポリエステル繊維を0.5〜2.5w
t%添加した後、前記PVDC樹脂炭化物を入れて2時
間撹拌した。PVDC樹脂炭化物に含まれる酸性物質及
び表面の酸性基によりpHが次第に低下して室温で1〜
6時間でpH2〜4になり、スラリが良好な分散状態に
バランスした。この撹拌したスラリを120cm□の型
に流し込み、そのまま加圧することなく、室温〜90℃
の温度範囲で4〜24時間乾燥させた。pHが前記条件
よりアルカリ側では分散がうまく行われず、特にフェノ
ール樹脂の分散及び吸着が不良であるため、成形体及び
焼結体は、粉状となって強度がないものとなる。逆に、
酸性側ではフェノール樹脂の重合が速く起こりすぎ、不
均一化しやすく、硬く、そして、クラックが発生するた
め、成形体及び焼結体は、密度が高くなりすぎる。な
お、酸でpHを調整しようとしても、バランスは取れな
いため、成形はうまくいかない。これは、表面酸性基が
存在するためであり、レゾールを中和して酸性側にpH
をシフトさせてしまうからである。レゾールは、酸が存
在すると重合する。そのため、炭化物表面に存在する酸
性基で、重合し、吸着される。また、酸性基のために分
散状態がバランスして良好な成形体を得ることができ
る。このように、表面酸性基は、分散のバランスに関与
し、かつ、フェノール樹脂の吸着を促進する。PEG
(ポリエチレングリコール)の添加は、ポリエステル繊
維の分散、フェノール樹脂の分散を良好にする。PEG
の分子量が200万を超えると、スラリ中のフェノール
樹脂やその他の添加物が凝集してしまい、良好な成形体
を得ることは困難である。そして、PEGの添加量と高
電流密度における容量との関係を図2に示す。すなわ
ち、PEG添加量が18wt%を超えると容量が急激に
低下し、また、5wt%未満では、スラリの分散性が悪
化し、成形体の強度が低下するため、実用的ではない。
ポリエステル繊維は、成形体を補強し、クラックや割れ
の発生を防止し、かつ、焼結段階で焼失して均一な空隙
を電極に形成する。この空隙は、電解質のパスとして働
くため、拡散抵抗を下げ、特に、高電流密度における損
失を最小にする。この特性は、密度との相関が強く、密
度を調整することによって性能をコントロールすること
ができる。添加物にポリエステル繊維を用いたのは60
0℃以上での残炭率が0.3〜15%前後と低いためで
あり、比較として残炭率が40〜50%のセルロース繊
維を添加した場合は、高電流密度における容量の低下が
みられた。(比較例3参照)しかし、残炭率が約30%
である可塑化フェノール樹脂を添加した場合はポリエス
テル繊維と同等の容量を得た。すなわち、最適な粒子間
の空隙を形成するには、残炭率が30%以下の樹脂であ
ればよく、ポリエステル繊維に限ったものではない。そ
して、これらの樹脂の添加量は、0.5wt%以上であ
れば高電流密度における容量向上に寄与するが、2.5
wt%を超えるとスラリ中での分散が悪くなり、密度の
「むら」が発生しやすくなる。フェノール樹脂は、バイ
ンダとして働き、電極の強度及び抵抗値に影響を及ぼ
す。電極の抵抗値もまた高電流密度側の損失に影響を及
ぼすため、電極の密度と合わせて調整することで、より
絞り込んだ性能の管理ができる。フェノール樹脂添加量
は5〜8wt%が好ましく、5wt%未満では成形及び
焼結後の電極強度が弱く、実用に耐えない。また、8w
t%を超えると容量の低下がみられた。(図3参照) この成形方法は、溶媒の沸点以下で行うため、気泡等の
発生がなく、均一な電極を得ることができる。そして、
無加圧状態で行っているため、電極の密度が上がりすぎ
ず、更に、電極に残留応力などを生じさせることもない
ため、容易に安定した特性の電極を得ることができる。
(3) The preparation and molding of the slurry will be described. Water: alcohol = 7: 3 mixed solvent, polyethylene glycol (PE)
G) is added in an amount of 5 to 18% by weight, and a resol type phenol resin is added in an amount of 5 to 8% by weight.
After adding t%, the PVDC resin carbide was added and stirred for 2 hours. Due to the acidic substances contained in the PVDC resin carbide and the acidic groups on the surface, the pH gradually decreases, and
The pH became 2 to 4 in 6 hours, and the slurry was balanced in a good dispersion state. Pour the stirred slurry into a 120 cm square mold and press
For 4 to 24 hours. When the pH is more alkaline than the above conditions, the dispersion is not performed well, and the dispersion and adsorption of the phenol resin are particularly poor. Therefore, the molded body and the sintered body become powdery and have no strength. vice versa,
On the acidic side, polymerization of the phenol resin occurs too quickly, tends to be non-uniform, is hard, and cracks are generated, so that the molded body and the sintered body have too high densities. It should be noted that even if an attempt is made to adjust the pH with an acid, the molding cannot be performed because the balance cannot be obtained. This is due to the presence of surface acidic groups.
Is shifted. Resoles polymerize in the presence of an acid. Therefore, it is polymerized and adsorbed by the acidic group present on the carbide surface. In addition, the dispersion state is balanced by the acidic group, so that a good molded product can be obtained. Thus, the surface acidic groups contribute to the balance of dispersion and promote the adsorption of the phenolic resin. PEG
The addition of (polyethylene glycol) improves the dispersion of the polyester fiber and the dispersion of the phenol resin. PEG
If the molecular weight exceeds 2,000,000, the phenolic resin and other additives in the slurry will aggregate, making it difficult to obtain a good molded product. FIG. 2 shows the relationship between the amount of PEG added and the capacity at a high current density. That is, when the amount of PEG added exceeds 18 wt%, the capacity sharply decreases, and when it is less than 5 wt%, the dispersibility of the slurry deteriorates and the strength of the molded body decreases, which is not practical.
The polyester fiber reinforces the molded body, prevents cracks and cracks from occurring, and burns out at the sintering step to form uniform voids in the electrode. This void serves as a path for the electrolyte, thus reducing diffusion resistance and minimizing losses, especially at high current densities. This property has a strong correlation with the density, and the performance can be controlled by adjusting the density. The use of polyester fiber as an additive is 60
This is because the residual carbon ratio at 0 ° C. or higher is as low as about 0.3 to 15%. For comparison, when a cellulose fiber having a residual carbon ratio of 40 to 50% is added, the capacity decreases at a high current density. Was done. (Refer to Comparative Example 3) However, the residual coal rate is about 30%
When a plasticized phenol resin was added, a capacity equivalent to that of polyester fiber was obtained. That is, in order to form an optimal gap between particles, a resin having a residual carbon ratio of 30% or less may be used, and is not limited to polyester fiber. If the addition amount of these resins is 0.5 wt% or more, it contributes to the improvement in capacity at high current density.
If the content exceeds wt%, dispersion in the slurry becomes poor, and “unevenness” in the density tends to occur. The phenol resin acts as a binder and affects the strength and resistance of the electrode. Since the resistance value of the electrode also affects the loss on the high current density side, the performance can be controlled more narrowly by adjusting it in accordance with the electrode density. The addition amount of the phenol resin is preferably 5 to 8% by weight, and if it is less than 5% by weight, the electrode strength after molding and sintering is weak, and is not practical. Also, 8w
When the content exceeded t%, a decrease in capacity was observed. (See FIG. 3) Since this molding method is performed at a temperature equal to or lower than the boiling point of the solvent, a uniform electrode can be obtained without generating bubbles or the like. And
Since the operation is performed in a non-pressurized state, the density of the electrode does not increase too much, and furthermore, no residual stress or the like is generated in the electrode, so that an electrode having stable characteristics can be easily obtained.

【0023】(4)焼結処理について、述べる。前記成
形体をカーボン板などで挾み込み、中性または還元雰囲
気で600〜950℃で焼結する。スラリ組成が一定で
あるならば、電極のシート抵抗は焼結温度に依存する。
温度が高くなるほど、シート抵抗は低くなって損失は低
下するが、950℃を超えると、焼結が進みすぎて電気
二重層コンデンサ用電極に有効な細孔がなくなるために
容量は減少する。また、温度が600℃未満では、粒界
の焼結が不十分なため、シート抵抗が非常に高くなって
しまう。その結果、損失が大きくなる。
(4) The sintering process will be described. The compact is sandwiched between carbon plates and sintered at 600 to 950 ° C. in a neutral or reducing atmosphere. If the slurry composition is constant, the sheet resistance of the electrode depends on the sintering temperature.
The higher the temperature, the lower the sheet resistance and the lower the loss. However, if the temperature exceeds 950 ° C., the sintering proceeds too much and there is no effective pore in the electrode for the electric double layer capacitor, so that the capacity decreases. If the temperature is lower than 600 ° C., the sintering of the grain boundaries is insufficient, and the sheet resistance becomes extremely high. As a result, the loss increases.

【0024】(5)焼結電極の特性について、述べる。
以上の工程で作製した電極の密度は、0.65〜0.7
5g/ccであり、かつ、電極のシート抵抗が0.9〜
3.0Ω/□であった。また、前記の電極の断面を電子
顕微鏡で観察したところ、5〜20μmの粒子間空隙が
分布しているのが認められた。
(5) The characteristics of the sintered electrode will be described.
The density of the electrode manufactured in the above steps is 0.65 to 0.7.
5 g / cc and the sheet resistance of the electrode is 0.9 to 0.9 g / cc.
It was 3.0Ω / □. When the cross section of the electrode was observed with an electron microscope, it was found that interparticle voids of 5 to 20 μm were distributed.

【0025】(6)比較例について、述べる。比較例1
を説明する。PVDC樹脂炭化粉を加圧力200kg/
cm2で圧粉成形し、850℃で焼結を行い、密度0.
64g/cc、シート抵抗1.3Ω/□の電極を得た。
比較例2を説明する。PVDC樹脂炭化粉のスラリを2
0Kg/cm2で加圧成形し、850℃で焼結を行い、
密度0.82g/cc、シート抵抗0.6Ω/□の電極
を得た。比較例3を説明する。スラリにセルロース繊維
を2wt%添加して成形した。その他の工程は、実施例
と同様とした。得られた電極は、密度0.61g/c
c、シート抵抗1.8Ω/□であった。比較例4を説明
する。実施例と同じ成形品を960℃で焼結した。電極
密度0.68g/cc、シート抵抗0.55Ω/□の電
極を得た。比較例5を説明する。スラリに添加するポリ
エチレングリコール(PEG)を21wt%にした。そ
の他の工程は、実施例と同様にした。得られた電極は、
密度0.76g/cc、シート抵抗0.6Ω/□であっ
た。
(6) A comparative example will be described. Comparative Example 1
Will be described. 200kg /
compacting in cm 2, it was sintered at 850 ° C., density 0.
An electrode having 64 g / cc and a sheet resistance of 1.3Ω / □ was obtained.
Comparative Example 2 will be described. 2 slurry of PVDC resin carbonized powder
Pressure molding at 0 kg / cm 2 , sintering at 850 ° C,
An electrode having a density of 0.82 g / cc and a sheet resistance of 0.6 Ω / □ was obtained. Comparative Example 3 will be described. The slurry was formed by adding 2% by weight of cellulose fiber to the slurry. Other steps were the same as in the example. The obtained electrode has a density of 0.61 g / c.
c, sheet resistance was 1.8Ω / □. Comparative Example 4 will be described. The same molded product as in the example was sintered at 960 ° C. An electrode having an electrode density of 0.68 g / cc and a sheet resistance of 0.55 Ω / □ was obtained. Comparative Example 5 will be described. The amount of polyethylene glycol (PEG) added to the slurry was 21% by weight. Other steps were the same as in the example. The resulting electrode is
The density was 0.76 g / cc and the sheet resistance was 0.6 Ω / □.

【0026】以上の実施例1及び比較例1〜5で得られ
た電極を1mmの厚さに研磨した後、4端子4深針法で
シート抵抗を測定した。次に、電極2を水や希硫酸を含
浸させた後、大気中で200℃の温度で90分間加熱
し、35wt%硫酸に再び浸漬し、減圧含浸を24時間
行い、200μm厚のガラス不織繊維のセパレータ1を
挾んで電極2を対向させ、その外側にPt板を配して集
電板3とし、更にその外側からテフロンからなる固定板
4で挾み込んで固定してセルを作製した(図4参照)。
このセルを35wt%硫酸に浸漬して、電極投影面積に
対する電流密度0.5A/cm2のときの電極体積容量
を測定した。測定結果を表1に示す。
After the electrodes obtained in Example 1 and Comparative Examples 1 to 5 were polished to a thickness of 1 mm, the sheet resistance was measured by a four-terminal four-needle method. Next, after impregnating the electrode 2 with water or diluted sulfuric acid, the electrode 2 is heated in the air at a temperature of 200 ° C. for 90 minutes, immersed again in 35 wt% sulfuric acid, and impregnated under reduced pressure for 24 hours to form a 200 μm thick glass nonwoven. An electrode 2 is opposed to the separator 1 made of fiber, a Pt plate is disposed outside the collector 2 to form a current collector plate 3, and a cell is produced by sandwiching and fixing the outer side with a fixing plate 4 made of Teflon. (See FIG. 4).
This cell was immersed in 35 wt% sulfuric acid, and the electrode volume capacity at a current density of 0.5 A / cm 2 with respect to the electrode projected area was measured. Table 1 shows the measurement results.

【表1】 [Table 1]

【0027】表1の結果からもわかるように、実施例1
−1〜5の電極(密度が0.65〜0.75g/ccで
あり、かつ、シート抵抗が0.9〜3.0Ω/□)は、
比較例1〜5の電極(密度が0.65未満あるいは0.
75g/cc超過、又は、シート抵抗が0.9Ω/□未
満)に比較して、電極体積容量が増加している。これ
は、0.5A/cm2という高電流密度における容量
は、セルの等価直列抵抗と拡散抵抗の影響を受け、これ
らの抵抗が高いほど抵抗損失が大きくなり容量を取り出
せなくなるからである。そして、電極の密度は、セルの
拡散抵抗との相関が高く、密度が低下すると拡散抵抗も
下がる傾向にあるが、密度が低下しすぎて、0.65g
/cc未満となると、比較例1、3のように、全体の電
極量が少なくなるために容量が減少する。逆に、密度が
高くなると拡散抵抗も上がる傾向にあり、比較例2の電
極のように密度が0.75g/cc超過ではシート抵抗
は増加していないが、容量は小さくなる。また、シート
抵抗は、セルの等価直列抵抗(ESR)との相関が高
く、そして、焼結の進行状態のあらわれでもある。シー
ト抵抗が下がるとESRも下がるが、比較例2、4、5
の電極のように0.6Ω/□前後まで低下した電極で
は、焼結が進み過ぎ、電気二重層コンデンサとして有効
に利用できる電極構造が減少するため、密度が低くて
も、容量は小さい。すなわち、電極の密度とシート抵抗
が最適にバランスする領域があり、その領域以外では高
い容量を得ることは困難であることがわかった。その範
囲は本実施例の工程で作製した電極の密度0.65〜
0.75g/ccであり、かつ、電極のシート抵抗が
0.9〜3.0Ω/□である。この範囲の密度とシート
抵抗を有する電極は、26F/cc前後の高い容量を示
す。
As can be seen from the results in Table 1, Example 1
-1 to 5 electrodes (the density is 0.65 to 0.75 g / cc and the sheet resistance is 0.9 to 3.0 Ω / □)
The electrodes of Comparative Examples 1 to 5 (the density is less than 0.65
The electrode volume capacity is increased as compared with the case of exceeding 75 g / cc or the sheet resistance is less than 0.9 Ω / □. This is because the capacitance at a high current density of 0.5 A / cm 2 is affected by the equivalent series resistance and the diffusion resistance of the cell, and the higher these resistances, the greater the resistance loss and the more the capacitance cannot be taken out. The density of the electrode has a high correlation with the diffusion resistance of the cell, and as the density decreases, the diffusion resistance tends to decrease.
When the ratio is less than / cc, the capacitance decreases because the total amount of electrodes decreases as in Comparative Examples 1 and 3. Conversely, as the density increases, the diffusion resistance tends to increase. When the density exceeds 0.75 g / cc as in the electrode of Comparative Example 2, the sheet resistance does not increase, but the capacity decreases. Further, the sheet resistance has a high correlation with the equivalent series resistance (ESR) of the cell, and is also a sign of the progress of sintering. When the sheet resistance decreases, the ESR also decreases.
In the electrode lowered to about 0.6Ω / □ as in the case of the above electrode, the sintering proceeds too much, and the electrode structure that can be effectively used as an electric double layer capacitor is reduced. Therefore, even if the density is low, the capacity is small. That is, it has been found that there is a region where the electrode density and the sheet resistance are optimally balanced, and it is difficult to obtain a high capacitance in other regions. The range is from 0.65 to the density of the electrode manufactured in the steps of this embodiment.
0.75 g / cc, and the sheet resistance of the electrode is 0.9 to 3.0 Ω / □. Electrodes having a density and sheet resistance in this range exhibit a high capacity of around 26 F / cc.

【0028】[0028]

【発明の効果】本発明によれば、高電流密度においても
高容量を有し、かつ、実用に十分な強度を有する電気二
重層コンデンサ及び電極を得ることができる。
According to the present invention, it is possible to obtain an electric double layer capacitor and an electrode having a high capacity even at a high current density and having a strength sufficient for practical use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】PVDC樹脂炭化物粉末粒度と電極容量の説明
図。
FIG. 1 is an explanatory diagram of PVDC resin carbide powder particle size and electrode capacity.

【図2】ポリエチレングリコール添加量と電極容量の説
明図。
FIG. 2 is an explanatory diagram of the amount of polyethylene glycol added and the electrode capacity.

【図3】フェノール樹脂と電極容量の説明図。FIG. 3 is an explanatory diagram of a phenol resin and an electrode capacity.

【図4】本実施例の製造方法で作製した電極の特性の測
定方法の説明図。
FIG. 4 is an explanatory diagram of a method for measuring characteristics of an electrode manufactured by the manufacturing method according to the present embodiment.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 電極 3 集電板 4 固定板 DESCRIPTION OF SYMBOLS 1 Separator 2 Electrode 3 Current collector 4 Fixing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野地 貴 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 村上 繁 長野県大町市大字大町6850番地 昭和電工 株式会社大町工場内 (72)発明者 増子 努 長野県大町市大字大町6850番地 昭和電工 株式会社大町工場内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Takashi Noji 8 Tsuchinana, Fujisawa-shi, Kanagawa Prefecture Isuzu Central Research Institute Co., Ltd. (72) Inventor Tsutomu Masuko 6850 Omachi, Omachi City, Nagano Prefecture Showa Denko Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 PVDC樹脂炭化物からなる電気二重層
コンデンサ用電極において、 密度は0.65〜0.75g/ccであり、かつ、シー
ト抵抗は0.9〜3.0Ω/□であることを特徴とする
電気二重層コンデンサ用電極。
1. An electrode for an electric double layer capacitor made of PVDC resin carbide, wherein the density is 0.65 to 0.75 g / cc and the sheet resistance is 0.9 to 3.0 Ω / □. Characteristic electrode for electric double layer capacitors.
【請求項2】 PVDC樹脂炭化物からなる電極を具備
する電気二重層コンデンサにおいて、 前記電極の密度は0.65〜0.75g/ccであり、
かつ、電極のシート抵抗は0.9〜3.0Ω/□である
ことを特徴とする電気二重層コンデンサ。
2. An electric double layer capacitor comprising an electrode made of PVDC resin carbide, wherein the density of the electrode is 0.65 to 0.75 g / cc,
An electric double layer capacitor characterized in that the electrode has a sheet resistance of 0.9 to 3.0 Ω / □.
【請求項3】 PVDC樹脂を180℃〜600℃で炭
化したのち、平均粒度を8〜12μmに粉砕し、得られ
た炭化物粉末を600℃〜950℃で焼結することを特
徴とする電気二重層コンデンサ用電極の製造方法。
3. An electric machine characterized in that a PVDC resin is carbonized at 180 ° C. to 600 ° C., and then pulverized to an average particle size of 8 to 12 μm, and the obtained carbide powder is sintered at 600 ° C. to 950 ° C. A method for manufacturing an electrode for a multilayer capacitor.
【請求項4】 請求項3記載の電気二重層コンデンサ用
電極の製造方法において、 水又は水とアルコール系溶媒との混合物からなる溶媒に
PVDC樹脂炭化物を分散させたスラリを成形型に流し
込む工程と、該スラリの揮発成分を除する工程と、を有
することを特徴とする電気二重層コンデンサ用電極の製
造方法。
4. A method for producing an electrode for an electric double layer capacitor according to claim 3, wherein a slurry in which a PVDC resin carbide is dispersed in water or a solvent composed of a mixture of water and an alcohol solvent is poured into a mold. And a step of removing volatile components of the slurry.
【請求項5】 請求項4記載の電気二重層コンデンサ用
電極の製造方法において、 上記スラリは、分子量2百万までのポリエチレングリコ
ール又はその誘導体と、レゾールタイプのフェノール樹
脂と、粉末状又は繊維状の残炭率30%以下の樹脂と、
を有することを特徴とする電気二重層コンデンサ用電極
の製造方法。
5. The method for manufacturing an electrode for an electric double layer capacitor according to claim 4, wherein the slurry comprises polyethylene glycol or a derivative thereof having a molecular weight of up to 2 million, a resole type phenol resin, a powdery or fibrous material. A resin with a residual carbon ratio of 30% or less,
A method for producing an electrode for an electric double layer capacitor, comprising:
【請求項6】 請求項5記載の電気二重層コンデンサ用
電極の製造方法において、 上記分子量2百万までのポリエチレングリコール又はそ
の誘導体の添加量は、PVDC樹脂炭化物に対して5〜
18wt%であり、レゾールタイプのフェノール樹脂の
添加量は、同5〜8wt%であり、粉末状又は繊維状の
残炭率30%以下の樹脂は、同0.5〜2.5wt%で
あることを特徴とする電気二重層コンデンサ用電極の製
造方法。
6. The method for producing an electrode for an electric double layer capacitor according to claim 5, wherein the amount of polyethylene glycol or a derivative thereof having a molecular weight of up to 2 million is 5 to 5% with respect to the PVDC resin carbide.
18 wt%, the amount of resol type phenolic resin added is 5 to 8 wt%, and the powdery or fibrous resin having a residual carbon ratio of 30% or less is 0.5 to 2.5 wt%. A method for producing an electrode for an electric double layer capacitor, characterized by comprising:
【請求項7】 請求項4〜6のいずれか1項に記載の電
気二重層コンデンサ用電極の製造方法において、 スラリの揮発性分を除する工程は、室温〜90℃で乾燥
させる工程であることを特徴とする電気二重層コンデン
サ用電極の製造方法。
7. The method for producing an electrode for an electric double layer capacitor according to claim 4, wherein the step of removing volatile components of the slurry is a step of drying at room temperature to 90 ° C. A method for producing an electrode for an electric double layer capacitor, characterized by comprising:
【請求項8】 請求項4〜7のいずれか1項に記載の電
気二重層コンデンサ用電極の製造方法において、 成形は、無加圧状態で行うことを特徴とする電気二重層
コンデンサ用電極の製造方法。
8. The method for producing an electrode for an electric double layer capacitor according to claim 4, wherein the molding is performed in a non-pressurized state. Production method.
JP9280518A 1997-10-14 1997-10-14 Electric double-layer capacitor, electrode, and manufacturing method therefor Pending JPH11121295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9280518A JPH11121295A (en) 1997-10-14 1997-10-14 Electric double-layer capacitor, electrode, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9280518A JPH11121295A (en) 1997-10-14 1997-10-14 Electric double-layer capacitor, electrode, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JPH11121295A true JPH11121295A (en) 1999-04-30

Family

ID=17626228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9280518A Pending JPH11121295A (en) 1997-10-14 1997-10-14 Electric double-layer capacitor, electrode, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JPH11121295A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188366A (en) * 2004-12-08 2006-07-20 Lignyte Co Ltd Composite carbonized material, its manufacturing method, composite activated carbon, conductive resin composition, electrode for secondary battery and polarizable electrode for electric double layer capacitor
WO2008029865A1 (en) * 2006-09-01 2008-03-13 Japan Gore-Tex Inc. Electric double layer capacitor
KR100849889B1 (en) 2006-09-25 2008-08-04 주식회사 디지털텍 Carbonization method for aluminum electrolytic polymer condenser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188366A (en) * 2004-12-08 2006-07-20 Lignyte Co Ltd Composite carbonized material, its manufacturing method, composite activated carbon, conductive resin composition, electrode for secondary battery and polarizable electrode for electric double layer capacitor
WO2008029865A1 (en) * 2006-09-01 2008-03-13 Japan Gore-Tex Inc. Electric double layer capacitor
JP2008060457A (en) * 2006-09-01 2008-03-13 Japan Gore Tex Inc Electric double layer capacitor
US8848338B2 (en) 2006-09-01 2014-09-30 W. L. Gore & Associates, Co., Ltd. Electric double layer capacitor
KR100849889B1 (en) 2006-09-25 2008-08-04 주식회사 디지털텍 Carbonization method for aluminum electrolytic polymer condenser

Similar Documents

Publication Publication Date Title
KR0143178B1 (en) Polarizanble electrode
JP3446339B2 (en) Activated carbon production method
JP2000138140A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP3602933B2 (en) Activated carbon substrate
JPH11121295A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
JPH11340103A (en) Manufacture of activated carbon material
JP5242216B2 (en) Carbon material for electric double layer capacitor electrode and manufacturing method thereof
JP3722965B2 (en) Carbon material for electric double layer capacitors
JPH11121294A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
JP4394208B2 (en) Polyvinylidene chloride resin powder and activated carbon
JP4518223B2 (en) Polarizable electrode for electric double layer capacitor and manufacturing method thereof
JPH11121296A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
JP3417206B2 (en) Activated carbon material for electric double layer capacitors
JPH1197317A (en) Electric double layer capacitor, electrode and manufacturing method thereof
JP3070796B2 (en) Manufacturing method of polarized electrode
JPH11121293A (en) Electric double-layer capacitor, electrode and manufacture thereof
JP3559408B2 (en) SOLID ACTIVE CARBON, PROCESS FOR PRODUCING THE SAME, AND ELECTRIC DOUBLE LAYER CAPACITOR USING THE SAME
JPH11251197A (en) Method for manufacturing carbon electrode for electric double layer capacitor
JP3111195B2 (en) Method for producing electrode catalyst sheet for fuel cell
JP4394209B2 (en) Method for producing activated carbon
JPH11121287A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
JPH11121291A (en) Electric double-layer capacitor, electrode and manufacture thereof
JPH11121288A (en) Electric double-layer capacitor
JP2000068163A (en) Manufacture of electric double layer capacitor electrode
JPH1197305A (en) Electric double layer capacitor, electrode and its manufacture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040714

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619