JPH11251197A - Method for manufacturing carbon electrode for electric double layer capacitor - Google Patents

Method for manufacturing carbon electrode for electric double layer capacitor

Info

Publication number
JPH11251197A
JPH11251197A JP10053415A JP5341598A JPH11251197A JP H11251197 A JPH11251197 A JP H11251197A JP 10053415 A JP10053415 A JP 10053415A JP 5341598 A JP5341598 A JP 5341598A JP H11251197 A JPH11251197 A JP H11251197A
Authority
JP
Japan
Prior art keywords
electric double
double layer
layer capacitor
carbon electrode
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10053415A
Other languages
Japanese (ja)
Inventor
Masahiko Taniguchi
雅彦 谷口
Toshikazu Takeda
敏和 竹田
Hideki Shibuya
秀樹 渋谷
Hiroyuki Imai
博之 今井
Eiji Okumura
英二 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Advanced Engineering Center Ltd
Original Assignee
Isuzu Advanced Engineering Center Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Advanced Engineering Center Ltd filed Critical Isuzu Advanced Engineering Center Ltd
Priority to JP10053415A priority Critical patent/JPH11251197A/en
Publication of JPH11251197A publication Critical patent/JPH11251197A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a carbon electrode for the electric double layer capacitor without deterioration in the electrode characteristic by uniformizing dispersion of carbon in a molded body and preventing carbon residue after sintering. SOLUTION: A carbide powder is made by slurry method in the method of manufacturing the carbon electrode for the electric double layer capacitor with the use of polyvinylidene chloride resin carbide powder. Resol-based phenol resin is used for the binder. Ion electrolyte is added to the slurry in the forming process. Ion concentration of the ion electrolyte in the slurry is set to be 200 ppm or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層コンデ
ンサ用炭素電極の製造方法であり、特に、スラリー法で
作製する電気二重層ニンデンサ用炭素電極の製造方法に
関する。
The present invention relates to a method for producing a carbon electrode for an electric double layer capacitor, and more particularly to a method for producing a carbon electrode for an electric double layer nindensa produced by a slurry method.

【0002】[0002]

【従来の技術】電気二重層コンデンサは、活性炭の粉末
に電解液を染み込ませ、活性炭と電解液の界面にできる
電気二重層の静電容量を利用したコンデンサである。耐
電圧、最高使用温度は、電解液の電解分圧・温度に依存
しており、定格電圧は数Vと低いが、ファラッドオーダ
ーの静電容量が容易に得られることから、電池の代わり
に半導体メモリー(D−RAM)のバックアップ用等の
低電流密度の用途に多く用いられるようになっており、
最近では、もっと電流密度の高い用途、例えば車載鉛畜
電池の代わりにも使用することが研究されている。
2. Description of the Related Art An electric double-layer capacitor is a capacitor that uses an electrostatic double layer formed at the interface between activated carbon and an electrolytic solution by impregnating an activated carbon powder with an electrolytic solution. The withstand voltage and the maximum operating temperature depend on the electrolytic partial pressure and temperature of the electrolytic solution, and the rated voltage is as low as several volts. However, a farad-order capacitance can be easily obtained. It is widely used for low current density applications such as memory (D-RAM) backup,
Recently, studies have been made to use it for applications having higher current density, for example, in place of lead-acid batteries in vehicles.

【0003】従来、電気二重層コンデンサ用炭素電極と
して、活性炭にバインダ、例えばフェノール樹脂や熱可
塑性樹脂、を混入させ焼結したものや焼結後に腑活処理
(酸化による不純物除去処理)したものを用いていた。
しかし、これらの炭素電極を使用すると、次のような問
題点が生じていた。 a)活性炭はマクロポアが多く細孔体積比率が高いた
め、密度が低い。 b)比表面積は大きいが細孔径の分布が広いため、電気
二重層コンデンサ用炭素電極として働く実効的な細孔は
少ない。 c)焼結を促進する目的で仕較的高温で焼結するため、
電気二重層ニンデンサ用炭素電極として働く実効的な細
孔は少ない。 d)低温(850℃以下)で焼結すると、グラファイト
化が進まないため、粒子間焼結強度が無く、そして抵抗
値が高い。 e)フェノール樹脂は残炭率が60%前後であるため、
焼結後電気二重層コンデンサとして有効に働かない炭化
物が残る。また、200℃以下で軟化する熱可塑性樹脂
は成形時に炭化物粒子間空隙を保持することができな
い。
Conventionally, as a carbon electrode for an electric double layer capacitor, a carbon material obtained by mixing a binder, for example, a phenol resin or a thermoplastic resin, with activated carbon and sintering it, or activating after sintering (impurity removal treatment by oxidation) is used. Was used.
However, the use of these carbon electrodes has caused the following problems. a) Activated carbon has a low density because it has many macropores and a high pore volume ratio. b) Although the specific surface area is large, the distribution of the pore diameter is wide, so that there are few effective pores acting as carbon electrodes for electric double layer capacitors. c) For sintering at a relatively high temperature for the purpose of promoting sintering,
There are few effective pores acting as carbon electrodes for electric double layer nindensa. d) When sintering at a low temperature (850 ° C. or lower), graphitization does not proceed, so there is no intergranular sintering strength and the resistance value is high. e) Since the phenol resin has a residual carbon ratio of about 60%,
After sintering, carbides that do not work effectively as electric double layer capacitors remain. Further, a thermoplastic resin that softens at a temperature of 200 ° C. or less cannot maintain voids between carbide particles during molding.

【0004】また、従来の活性炭を用いた電気二重層コ
ンデンサは、その気孔径の形状が電解液とマッチングし
ていないために30F/cc程度の容量しか得られなか
った。また、内部抵抗の低減にはモノリシックな焼結体
が有利であるが、活性炭電極は成形が困難であり、圧粉
法による成形では小型のものしか得られなかった。
Further, the conventional electric double layer capacitor using activated carbon has a capacity of only about 30 F / cc because the shape of the pore diameter does not match the electrolytic solution. Further, although a monolithic sintered body is advantageous for reducing the internal resistance, it is difficult to form the activated carbon electrode, and only a compact one can be obtained by the compacting method.

【0005】これらの問題を解決するため、PVDC
(ポリ塩化ビニリデン)樹脂炭化物を使用することが提
案されている(特開平7−249551号公報参照)。
PVDC樹脂(あるいは塩化ビニリデン樹脂系共重合
体)炭化物を使用すると、他の活性炭と比較して長所を
有しており、その理由として次のことによると言われて
いる。PVDC樹脂は、2つの脱塩酸反応温度を有して
いる。第一点は180℃から250℃で自己分子鎖内で
の脱塩酸反応であり、第二点は450℃から550℃で
の分子鎖間の脱塩酸反応で、その際分子間結合が生じて
いる。第一点での脱塩酸反応により形成される細孔は、
36Å以下のマイクロポアと呼ばれるものであり、これ
が電気二重層コンデンサ用炭素電極として使用されると
電解液との界面として有効に働く。このため、炭素電極
としての腑活処理は不要である。また、第二点での脱塩
酸反応により有効マイクロポアを保持しつつ比較的低温
でも焼結を進行させることができる。このため、電気二
重層コンデンサ用炭素電極には不要である大きな径のメ
ソポアやマクロポアの発生を押さえることができる。
In order to solve these problems, PVDC
It has been proposed to use (polyvinylidene chloride) resin carbide (see JP-A-7-249551).
The use of a PVDC resin (or a vinylidene chloride resin-based copolymer) carbide has advantages over other activated carbons, and is said to be due to the following. PVDC resins have two dehydrochlorination reaction temperatures. The first point is the dehydrochlorination reaction in the self-molecular chain at 180 ° C to 250 ° C, and the second point is the dehydrochlorination reaction between the molecular chains at 450 ° C to 550 ° C. I have. The pore formed by the dehydrochlorination reaction at the first point is
It is called a micropore of 36 ° or less, and when it is used as a carbon electrode for an electric double layer capacitor, it works effectively as an interface with an electrolytic solution. For this reason, activation treatment as a carbon electrode is unnecessary. In addition, sintering can proceed at a relatively low temperature while maintaining effective micropores by the dehydrochlorination reaction at the second point. For this reason, generation of mesopores or macropores having a large diameter, which is unnecessary for the carbon electrode for an electric double layer capacitor, can be suppressed.

【0006】このためPVDC樹脂炭化物は、比表面積
は活性炭に比べて少ないが、焼結密度が高いため、体積
当たりの容量は大きくなる。しかし、PVDC掛脂炭化
物は次のような問題点を有している。 a)バインダレスであるため、成形が困難。 b)低温(850℃以下)での焼結ではグラファイト化
が進まないため、オーミックな抵抗が高い。そのため高
電流密度においてはIRドロップが大きく、容量が取り
出せない。 c)PVDC樹脂炭化物は高密度に焼結できるが、粒子
間の空隙やマクロポアが少ないため拡散抵抗が高い。
[0006] For this reason, the PVDC resin carbide has a smaller specific surface area than activated carbon, but has a high sintering density and therefore a large capacity per volume. However, PVDC grit carbide has the following problems. a) It is difficult to mold because it is binderless. b) Since sintering at a low temperature (850 ° C. or lower) does not progress to graphitization, ohmic resistance is high. Therefore, at a high current density, the IR drop is large and the capacity cannot be taken out. c) The PVDC resin carbide can be sintered at a high density, but has a high diffusion resistance due to few voids and macropores between particles.

【0007】これらを解決する手法として、スラリー法
による成形方法が提案されているが、炭素粉末は分散性
が悪く、均一な成形体を得ることは、困難であった。こ
のため、分散均一化のための分散剤を添加する手段も考
えられるが、これらは有機物であり、上記従来活性炭を
利用した場合における問題点e)と同様な、分散剤残留
炭素が電気二重層コンデンサに適さないために、ある程
度の電気二重層コンデンサとしての容量を犠牲にする必
要性があった。
As a method for solving these problems, a molding method by a slurry method has been proposed, but carbon powder has poor dispersibility, and it has been difficult to obtain a uniform molded body. For this reason, means for adding a dispersant for uniform dispersion can be considered, but these are organic substances, and the dispersant residual carbon is similar to the problem e) in the case of using the conventional activated carbon, and the residual carbon of the electric double layer is the same. There is a need to sacrifice some capacity as an electric double layer capacitor because it is not suitable for a capacitor.

【0008】[0008]

【発明が解決しようとする課題】本発明は、これらの問
題点を解決するものであり、成形体中のカーボンの分散
を均一にし、そして、焼結後に残留しないようにするこ
とにより、電極特性の劣化の無い電気二重層用コンデン
サ用炭素電極の製造方法を提供することである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has an object to improve the electrode characteristics by making the dispersion of carbon in a molded body uniform and not remaining after sintering. It is an object of the present invention to provide a method for producing a carbon electrode for a capacitor for an electric double layer, which does not cause deterioration of the electrode.

【0009】[0009]

【課題を解決するための手段】本発明は、ポリ塩化ビニ
リデン樹脂炭化物粉末を用いる電気二重層コンデンサ用
炭素電極の製造方法において、上記炭化物粉末は、スラ
リー法で作製する電気二重層コンデンサ用炭素電極の製
造方法である。
According to the present invention, there is provided a method of manufacturing a carbon electrode for an electric double layer capacitor using a polyvinylidene chloride resin carbide powder, wherein the carbide powder is formed by a slurry method. It is a manufacturing method of.

【0010】また、本発明は、バインダは、レゾール系
フェノールレジンである電気二重層コンデンサ用炭素電
極の製造方法である
The present invention is also a method for producing a carbon electrode for an electric double layer capacitor, wherein the binder is a resol-based phenolic resin.

【0011】そして、本発明は、成形段階でスラリーに
イオン電解質を添加する電気二重層コンデンサ用炭素電
極の製造方法である。
The present invention is a method for producing a carbon electrode for an electric double layer capacitor, wherein an ionic electrolyte is added to a slurry in a molding step.

【0012】更に、本発明は、スラリー中のイオン電解
質のイオン濃度は、200ppm以上である電気二重層
コンデンサ用炭素電極の製造方法である。
Further, the present invention is a method for producing a carbon electrode for an electric double layer capacitor, wherein the ion concentration of the ionic electrolyte in the slurry is 200 ppm or more.

【0013】[0013]

【発明の実施の形態】本発明の発明の実施の形態を説明
する。本発明の電気二重層コンデンサ用炭素電極の製造
方法の一実施例を説明する。ポリ塩化ビニリデン(PV
DC)樹脂を管状炉において300℃で蒸し焼きにし、
第一脱塩素反応を完了させた樹脂炭化物を得た。これを
窒素雰囲気で振動ミリング装置を用いて粉砕した。この
時の平均粒径は8μmであった。得られた粉末40g
を、水:エタノール=3:1(体積比)の溶媒に分散さ
せ、レゾール系フェノール樹脂である昭和電工(株)製
ショウノールBRL−120Zを7wt%添加してスラ
リーを作製した。本実施例においては、このスラリーに
FeClをFeイオン濃度として0〜1000ppm
になるように調整して添加した。FeClを添加する
ことにより、カーボンの分散性が向上し、またフェノー
ル樹脂のコロイドであるショウノールが塩析を起こして
沈殿を生じ、カーボンの沈降を防ぎ、均一な成形体を得
られる。続いて、これらのスラリーを型に流し込み、オ
ーブンで60℃で一晩乾燥させることによって成形体を
作製した。さらに、これをマッフル炉で870℃で焼結
することによって焼結体を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described. An embodiment of the method for producing a carbon electrode for an electric double layer capacitor according to the present invention will be described. Polyvinylidene chloride (PV
DC) baking the resin at 300 ° C. in a tube furnace;
A resin carbide having completed the first dechlorination reaction was obtained. This was ground in a nitrogen atmosphere using a vibration milling device. The average particle size at this time was 8 μm. 40 g of the obtained powder
Was dispersed in a solvent of water: ethanol = 3: 1 (volume ratio), and 7 wt% of Showanol BRL-120Z, a resole-based phenol resin, was added to prepare a slurry. In this embodiment, FeCl 3 is added to the slurry in an amount of 0 to 1000 ppm as Fe ion concentration.
It was adjusted so as to be added. By adding FeCl 3 , the dispersibility of carbon is improved, and camphor, which is a colloid of a phenol resin, undergoes salting out and precipitates, thereby preventing sedimentation of carbon and obtaining a uniform molded article. Subsequently, these slurries were poured into a mold and dried in an oven at 60 ° C. overnight to produce a molded body. Further, this was sintered at 870 ° C. in a muffle furnace to obtain a sintered body.

【0014】次に、比較例を説明する。実施例における
FeCl3の代わりに、分散剤として分子量200のポ
リエチレングリコール(PEG)を20wt%添加し、
それ以外は実施例と同様にして焼結体を作製した。
Next, a comparative example will be described. Instead of FeCl 3 in the examples, 20 wt% of polyethylene glycol (PEG) having a molecular weight of 200 was added as a dispersant,
Otherwise, a sintered body was produced in the same manner as in the example.

【0015】実施例及び比較例で得られた焼結体につい
て、強度試験を施し、また、電気二重層コンデンサに組
立て、容量を測定した。ここで、強度試験は、3点曲げ
法によって、成形時の表側及び裏側から荷重をかけるこ
とによって実施した。また、電気二重層容量は、放電時
電圧降下の60%から50%までの時間を測定すること
によって求めた。測定結果を図1及び図2に示す。図1
は、実施例におけるスラリーに添加したFeイオン濃度
と強度の関係の説明図である。図2は、実施例及び比較
例の各電流密度における電気二重層コンデンサ容量の説
明図である。
The sintered bodies obtained in the examples and comparative examples were subjected to a strength test, assembled into an electric double-layer capacitor, and the capacitance was measured. Here, the strength test was performed by applying a load from the front side and the back side during molding by a three-point bending method. The electric double layer capacity was determined by measuring the time from 60% to 50% of the voltage drop during discharge. The measurement results are shown in FIGS. FIG.
FIG. 4 is an explanatory diagram of the relationship between the concentration of Fe ions added to the slurry and the strength in the example. FIG. 2 is an explanatory diagram of the electric double layer capacitor capacitance at each current density in the example and the comparative example.

【0016】実施例で作製した焼結体の強度は、図1に
示すとおり、Feイオンが200ppm以上で、裏側及
び表側の強度の差が無くなっているのがわかる。この結
果、スラリー中のFeイオンは、200ppm以上にお
いて樹脂炭の粉末が均一に分散することがわかった。な
お、比較例で作製した焼結体の強度は、表側が14.2
Mpa、裏側が14.9Mpaであった。したがって、
実施例で作製した焼結体は、比較例で作製したものと比
べて、強度の上では遜色無いレベルであることがわかっ
た。
As shown in FIG. 1, the strength of the sintered body produced in the example is 200 ppm or more for Fe ions, and it can be seen that there is no difference in strength between the back side and the front side. As a result, it was found that when the Fe ion in the slurry was 200 ppm or more, the resin charcoal powder was uniformly dispersed. The strength of the sintered body produced in the comparative example was 14.2 on the front side.
Mpa and the back side were 14.9 Mpa. Therefore,
It was found that the sintered body produced in the example had a strength comparable to that produced in the comparative example.

【0017】電気二重層容量について、実施例における
Feイオン500ppm添加時と比較例との測定データ
を図2に示しており、どの電流密度においても、実施例
で作製した電極は、比較例で作製したものより、大容量
であることを示している。
FIG. 2 shows the measured data of the electric double layer capacity between the case where 500 ppm of Fe ion was added in the example and the comparative example. At any current density, the electrode manufactured in the example was manufactured in the comparative example. This indicates that the capacity is larger than that obtained.

【0018】なお、実施例におけるFeイオン500p
pm添加時と比較例との焼結後のFeイオン濃度を、各
々の焼結体を水抽出し、抽出液をICP発光分光分析法
によって定量した。この結果、実施例は27ppmで、
一方、比較例は30ppmとほぼ同じ値を示していた。
これより、Feイオンは、焼結時にほとんど失われてい
ることがわかる。
In the embodiment, the Fe ion 500p
The Fe ion concentration after sintering at the time of adding pm and after sintering in the comparative example was determined by extracting each of the sintered bodies with water, and extracting the solution by ICP emission spectroscopy. As a result, the example was 27 ppm.
On the other hand, the comparative example showed almost the same value as 30 ppm.
This shows that Fe ions are almost lost during sintering.

【0019】また、実施例においてはFeCl3を用い
たが、本発明において利用している反応はコロイドの塩
析(イオンによる沈降)であるため、溶媒中においてイ
オン化するものであれば、どの様な物質であれ、同様な
効果が得られることは明白である。
In the examples, FeCl 3 was used, but the reaction used in the present invention is salting out of colloid (precipitation by ions). It is clear that the same effect can be obtained even with any substance.

【0020】[0020]

【発明の効果】本発明によれば、成形体中のカーボンの
分散を均一にし、そして、焼結後に残留しないようにす
ることにより、電極特性の劣化の無い電気二重層用コン
デンサ用炭素電極を製造することができる。
According to the present invention, a carbon electrode for a capacitor for an electric double layer without deterioration of electrode characteristics can be obtained by making the dispersion of carbon in a molded body uniform and preventing it from remaining after sintering. Can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例におけるスラリーに添加したFeイオン
濃度と強度の関係の説明図。
FIG. 1 is an explanatory diagram of the relationship between the concentration of Fe ions added to a slurry and the strength in an example.

【図2】実施例及び比較例の各電流密度における電気二
重層コンデンサ容量の説明図。
FIG. 2 is an explanatory diagram of electric double layer capacitor capacity at each current density in an example and a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今井 博之 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 奥村 英二 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiroyuki Imai 8 Dosana, Fujisawa-shi, Kanagawa Prefecture Isuzu Central Research Institute Co., Ltd. (72) Inventor Eiji Okumura 8 Dosana, Fujisawa-shi, Kanagawa Prefecture Isuzu Central Research Inc. Inside

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ポリ塩化ビニリデン樹脂炭化物粉末を用
いる電気二重層コンデンサ用炭素電極の製造方法におい
て、 上記炭化物粉末は、スラリー法で作製することを特徴と
する電気二重層コンデンサ用炭素電極の製造方法。
1. A method for producing a carbon electrode for an electric double layer capacitor using a polyvinylidene chloride resin carbide powder, wherein the carbide powder is produced by a slurry method. .
【請求項2】 請求項1記載の電気二重層コンデンサ用
炭素電極の製造方法おいて、 バインダは、レゾール系フェノールレジンであることを
特徴とする電気二重層コンデンサ用炭素電極の製造方
法。
2. The method for manufacturing a carbon electrode for an electric double layer capacitor according to claim 1, wherein the binder is a resol-based phenolic resin.
【請求項3】 請求項1又は2に記載の電気二重層コン
デンサ用炭素電極の製造方法において、 成形段階でスラリーにイオン電解質を添加することを特
徴とする電気二重層コンデンサ用炭素電極の製造方法。
3. The method for producing a carbon electrode for an electric double layer capacitor according to claim 1, wherein an ionic electrolyte is added to the slurry during the forming step. .
【請求項4】 請求項3記載の電気二重層コンデンサ用
炭素電極の製造方法において、 スラリー中のイオン電解質のイオン濃度は、200pp
m以上であることを特徴とする電気二重層コンデンサ用
炭素電極の製造方法。
4. The method for producing a carbon electrode for an electric double layer capacitor according to claim 3, wherein the ion concentration of the ionic electrolyte in the slurry is 200 pp.
m or more, and a method for producing a carbon electrode for an electric double layer capacitor.
JP10053415A 1998-03-05 1998-03-05 Method for manufacturing carbon electrode for electric double layer capacitor Pending JPH11251197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10053415A JPH11251197A (en) 1998-03-05 1998-03-05 Method for manufacturing carbon electrode for electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10053415A JPH11251197A (en) 1998-03-05 1998-03-05 Method for manufacturing carbon electrode for electric double layer capacitor

Publications (1)

Publication Number Publication Date
JPH11251197A true JPH11251197A (en) 1999-09-17

Family

ID=12942215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10053415A Pending JPH11251197A (en) 1998-03-05 1998-03-05 Method for manufacturing carbon electrode for electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPH11251197A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709560B2 (en) 2001-04-18 2004-03-23 Biosource, Inc. Charge barrier flow-through capacitor
US7368191B2 (en) 2001-07-25 2008-05-06 Biosource, Inc. Electrode array for use in electrochemical cells
JP2011077053A (en) * 2003-04-09 2011-04-14 Bac2 Ltd Conductive polymer, conductive polymer composition and their use
EP2795696B1 (en) 2011-12-20 2016-08-31 United Technologies Corporation Flow battery with carbon paper

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709560B2 (en) 2001-04-18 2004-03-23 Biosource, Inc. Charge barrier flow-through capacitor
US7833400B2 (en) 2001-04-18 2010-11-16 Biosource, Inc. Method of making a flow through capacitor
US8002963B2 (en) 2001-04-18 2011-08-23 Biosource, Incorporated Charge barrier flow-through capacitor-based method of deionizing a fluid
US7368191B2 (en) 2001-07-25 2008-05-06 Biosource, Inc. Electrode array for use in electrochemical cells
JP2011077053A (en) * 2003-04-09 2011-04-14 Bac2 Ltd Conductive polymer, conductive polymer composition and their use
JP2011100740A (en) * 2003-04-09 2011-05-19 Bac2 Ltd Conductive polymer, conductive polymer composition, and their usage
EP2795696B1 (en) 2011-12-20 2016-08-31 United Technologies Corporation Flow battery with carbon paper

Similar Documents

Publication Publication Date Title
KR0143178B1 (en) Polarizanble electrode
JP2002523329A (en) Consolidated amorphous carbon material and its production and use
An et al. Characterization of supercapacitors using singlewalled carbon nanotube electrodes
CN100492563C (en) Polarizing electrode, manufacturing method thereof, and electric double-layer capacitor
JPH11251197A (en) Method for manufacturing carbon electrode for electric double layer capacitor
JP3602933B2 (en) Activated carbon substrate
KR102040379B1 (en) Method for manufacturing activated carbon for electrode material
JP3417206B2 (en) Activated carbon material for electric double layer capacitors
JPH11340103A (en) Manufacture of activated carbon material
JP3930739B2 (en) Activated carbon for electric double layer capacitor and manufacturing method thereof
JP2004189587A (en) Activated carbon, polarizable electrode for electric double-layer capacitor, and electric double-layer capacitor using the same
JPWO2015166670A1 (en) Method for manufacturing tungsten-based capacitor element
JPH11243038A (en) Electrode for electric double layer capacitor and manufacture of the same
JPH11121293A (en) Electric double-layer capacitor, electrode and manufacture thereof
JP2000068162A (en) Manufacture of electrode for electric-double-layer capacitor
JP4350482B2 (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor using the same
JPH09171946A (en) Electric double-layered capacitor electrode and manufacture thereof
JP6597754B2 (en) Method for producing activated carbon
JP2000068163A (en) Manufacture of electric double layer capacitor electrode
JPH1197305A (en) Electric double layer capacitor, electrode and its manufacture
JPH1197312A (en) Double electric layer capacitor and electrode and manufacture therefor
JPH11121288A (en) Electric double-layer capacitor
JPH1197306A (en) Electric double layer capacitor, electrode material, electrode, and its manufacture
JPH11121291A (en) Electric double-layer capacitor, electrode and manufacture thereof
JPH1197310A (en) Manufacture of electrode of electric double layer capacitor