JP2000068163A - Manufacture of electric double layer capacitor electrode - Google Patents

Manufacture of electric double layer capacitor electrode

Info

Publication number
JP2000068163A
JP2000068163A JP10235207A JP23520798A JP2000068163A JP 2000068163 A JP2000068163 A JP 2000068163A JP 10235207 A JP10235207 A JP 10235207A JP 23520798 A JP23520798 A JP 23520798A JP 2000068163 A JP2000068163 A JP 2000068163A
Authority
JP
Japan
Prior art keywords
double layer
layer capacitor
electric double
capacitor electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10235207A
Other languages
Japanese (ja)
Inventor
Takashi Noji
貴 野地
Toshikazu Takeda
敏和 竹田
Hideki Shibuya
秀樹 渋谷
Shigeru Murakami
繁 村上
Tsutomu Masuko
努 増子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Advanced Engineering Center Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Isuzu Advanced Engineering Center Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Isuzu Advanced Engineering Center Ltd filed Critical Showa Denko KK
Priority to JP10235207A priority Critical patent/JP2000068163A/en
Publication of JP2000068163A publication Critical patent/JP2000068163A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide the manufacturing method of an electric double layer capacitor electrode capable of reinforcing the molding of an electrode, preventing the generation of cracks, lowering the diffusion resistance of ions, increasing capacitance at a high current density, and manufacturing a large-sized electrode. SOLUTION: In this manufacturing method of the electric double layer capacitor electrode 2 for using a PVDC resin carbide and forming and molding slurry, the phenol resin of a resol type and fibrous resin whose actual carbon ratio is equal to or less than 30 wt.% are added at the time of forming the slurry, polyethylene glycol or the derivative up to 2,000,000 molecular weight.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層コンデ
ンサ電極の製造方法であり、特に、バインダを添加する
電気二重層コンデンサ電極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electric double layer capacitor electrode, and more particularly to a method for manufacturing an electric double layer capacitor electrode to which a binder is added.

【0002】[0002]

【従来の技術】電気二重層コンデンサは、活性炭の粉末
に電解液をしみこませ、活性炭と電解液の界面にできる
電気二重層の静電容量を利用したコンデンサである。耐
電圧、最高使用温度は、電解液の分解電圧・温度に依存
しており、定格電圧は数Vと低いが、ファラッドオーダ
の静電容量が容易に得られることから、電池の代わりに
半導体メモリ(D−RAM)のバックアップ用等の低電
流密度の用途に多く用いられるようになっており、最近
では、もっと電流密度の高い用途、例えば車載鉛蓄電池
の代わり、にも使用することが研究されている。
2. Description of the Related Art An electric double layer capacitor is a capacitor utilizing an electrostatic solution of an activated carbon powder and an electrolytic solution impregnated in an activated carbon powder. The withstand voltage and the maximum operating temperature depend on the decomposition voltage and temperature of the electrolytic solution, and the rated voltage is as low as several volts. However, since the capacitance in the farad order can be easily obtained, a semiconductor memory is used instead of a battery. It has been widely used for low current density applications such as backup of (D-RAM), and has recently been studied for use in applications having higher current densities, for example, in place of in-vehicle lead-acid batteries. ing.

【0003】従来、電気二重層コンデンサの電極を製作
するにあたり、通電焼結により行っていた。この方法は
バインダを必要とせず、短時間での焼結が可能であった
が、大型の電極の焼結には不向きな方法であった。ま
た、得られる電極は0.9〜1.2g/ccと高過ぎる
電極密度となって、電気二重層コンデンサの特性に必要
な粒子間の空隙が少なく、高電流密度における静電容量
が取り出せないという問題があった。そこでより簡易な
方法としてスラリーを製作し、形に流し込み常圧、常温
〜90℃で成形を行った。この方法ではバインダなどの
添加が必要となるが、密度は0.7前後となり、高電流
密度側で有効な粒子間空隙ができた。
[0003] Conventionally, in producing electrodes of an electric double layer capacitor, electric sintering has been performed. This method does not require a binder and allows sintering in a short time, but is not suitable for sintering large electrodes. In addition, the obtained electrode has an electrode density of 0.9 to 1.2 g / cc, which is too high, and there are few voids between particles required for the characteristics of the electric double layer capacitor, and the capacitance at a high current density cannot be taken out. There was a problem. Therefore, as a simpler method, a slurry was prepared, poured into a shape, and formed at normal pressure and normal temperature to 90 ° C. Although this method requires the addition of a binder or the like, the density is about 0.7, and effective interparticle voids are formed on the high current density side.

【0004】また、電極を成形する場合、電極のサイズ
を大きくしたり、粒度の小さい炭化粉を用いると、成形
時にヒビや割れが生じる。これをなくす為にセルロース
繊維を添加することが提案されている。そして、セルロ
ース繊維を添加する事により成形性は向上したが、電極
の抵抗は増加し、静電容量は低下することとなった。セ
ルロースは、残炭率が40〜50重量%の繊維であり、
かつ、その炭化物は静電容量には寄与しない為、添加量
を増加すると静電容量の低下をきたしていた。
[0004] When molding an electrode, if the size of the electrode is increased or if carbonized powder having a small particle size is used, cracks and cracks occur during molding. It has been proposed to add cellulose fibers to eliminate this. Although the moldability was improved by adding the cellulose fiber, the resistance of the electrode was increased and the capacitance was decreased. Cellulose is a fiber having a residual carbon ratio of 40 to 50% by weight,
In addition, since the carbide does not contribute to the capacitance, the capacitance is decreased when the added amount is increased.

【0005】以上のように、電極の大型化に伴う成形時
のヒビや割れの問題、抵抗の増加および静電容量の低下
が見られた。
As described above, problems such as cracks and cracks during molding, an increase in resistance, and a decrease in capacitance have been observed with the enlargement of electrodes.

【0006】[0006]

【発明が解決しようとする課題】本発明は、電極の成形
体を補強しクラック、われの発生を防止し、イオンの拡
散抵抗を下げ、高電流密度における静電容量を増加さ
せ、大型の電極の作製が可能となる電気二重層コンデン
サ電極の製造方法を提供することである。
SUMMARY OF THE INVENTION The present invention reinforces an electrode compact, prevents cracks and cracks, reduces ion diffusion resistance, increases the capacitance at high current densities, and provides a large electrode. It is an object of the present invention to provide a method for manufacturing an electric double layer capacitor electrode which enables the production of an electrode.

【0007】[0007]

【課題を解決するための手段】本発明は、ポリ塩化ビニ
リデン樹脂(以下、「PVDC樹脂」という。)の炭化
物を使用し、スラリーを作製し、成形する電気二重層コ
ンデンサ電極の製造方法において、スラリーを作製する
際に、分子量2百万までのポリエチレングリコール又は
その誘導体と、レゾールタイプのフエノール樹脂と、残
炭率30重量%以下の繊維状の樹脂と、を添加する電気
二重層コンデンサ電極の製造方法である。
SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing an electric double layer capacitor electrode in which a slurry is prepared and molded using a carbide of polyvinylidene chloride resin (hereinafter referred to as "PVDC resin"). When preparing a slurry, an electric double layer capacitor electrode to which polyethylene glycol or a derivative thereof having a molecular weight of up to 2 million, a resole type phenol resin, and a fibrous resin having a residual carbon ratio of 30% by weight or less are added. It is a manufacturing method.

【0008】また、本発明は、上記ポリエチレングリコ
ール又はその誘導体の添加量は、PVDC樹脂炭化物に
対して5〜20重量%である電気二重層コンデンサ電極
の製造方法である。
The present invention is also a method for producing an electric double layer capacitor electrode wherein the amount of the polyethylene glycol or a derivative thereof added is 5 to 20% by weight based on the PVDC resin carbide.

【0009】そして、本発明は、上記レゾールタイプの
フエノール樹脂の添加量は、PVDC樹脂炭化物に対し
て5〜10重量%である電気二重層コンデンサ電極の製
造方法である。
Further, the present invention is a method for producing an electric double layer capacitor electrode, wherein the resol type phenol resin is added in an amount of 5 to 10% by weight based on the PVDC resin carbide.

【0010】更に、本発明は、上記残炭率30重量%以
下の繊維状の樹脂の添加量は、PVDC樹脂炭化物に対
して0.5〜2.5重量%である電気二重層コンデンサ
電極の製造方法である。
Further, the present invention provides an electric double layer capacitor electrode wherein the amount of the fibrous resin having a residual carbon ratio of 30% by weight or less is 0.5 to 2.5% by weight based on the PVDC resin carbide. It is a manufacturing method.

【0011】また、本発明は、上記繊維状の樹脂は、ポ
リエステル繊維である電気二重層コンデンサ電極の製造
方法である。
The present invention is also a method for producing an electric double layer capacitor electrode wherein the fibrous resin is a polyester fiber.

【0012】[0012]

【発明の実施の形態】本発明の発明の実施の形態を説明
する。本発明の電気二重層コンデンサ電極の製造方法に
ついて、一実施例により説明する。本実施例は、1)ポ
リエステル繊維を添加し成形体を補強し、クラック、わ
れの発生を防止し、かつ、焼結段階で焼失して均−な空
隙を電極全体に形成する。2)ポリエステル繊維が消失
して出来た空隙は、電解質のパスとして働き、イオンの
拡散抵抗を下げ、高電流密度において静電容量を増加さ
せる。3)ポリエステル繊維(直径5〜15μm、長さ
0.5〜5mm、残炭率30重量%以下)を0.5〜
2.5重量%添加することにより、スラリーの成形性が
向上し、大型の電極の作製が可能になった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described. The manufacturing method of the electric double layer capacitor electrode of the present invention will be described by way of an example. In this embodiment, 1) a polyester fiber is added to reinforce a molded body, cracks and cracks are prevented, and burned out in a sintering step to form uniform voids throughout the electrode. 2) The voids created by the disappearance of the polyester fibers act as electrolyte paths, lowering the ion diffusion resistance and increasing the capacitance at high current densities. 3) polyester fiber (diameter 5 to 15 μm, length 0.5 to 5 mm, residual carbon ratio 30% by weight or less)
By adding 2.5% by weight, the moldability of the slurry was improved, and a large-sized electrode could be manufactured.

【0013】実施例を説明する。 1)PVDC樹脂の初期炭化方法 PVDC樹脂を石英管に2kg詰め、熱電対、排気管、
ガス注入管を配置し、ゴム栓などで密閉する。前記石英
管を管状炉に設置し、180〜450℃で加熱した。ピ
ーク温度までは脱塩酸反応で排出される塩化水素ガス自
身の圧力で排気管から排出させ、冷却時にはガス注入管
から空気を毎分0.2〜0.5Lで流し、100℃以下
になったところでPVDC樹脂炭化物を取り出し、平均
粒度8〜12μmになるように粉砕を行った。
An embodiment will be described. 1) Initial method of carbonizing PVDC resin 2 kg of PVDC resin is packed in a quartz tube, and a thermocouple, an exhaust pipe,
Place a gas injection tube and seal with a rubber stopper. The quartz tube was set in a tube furnace and heated at 180 to 450 ° C. Until the peak temperature, the hydrogen chloride gas discharged in the dehydrochlorination reaction was discharged from the exhaust pipe at its own pressure. During cooling, air flowed at 0.2 to 0.5 L / min from the gas injection pipe to 100 ° C. or less. By the way, the PVDC resin carbide was taken out and pulverized so as to have an average particle size of 8 to 12 μm.

【0014】2)スラリーの作製及び成形 水:アルコール=(7:3)の混合溶媒に、分子量20
0〜2000のポリエチレングリコールをPVDC樹脂
炭化物に対して5〜20重量%を添加し、レゾールタイ
プのフエノール樹脂を5〜10重量%添加して撹拌しな
がら、直径5〜15μm、長さ0.5〜5mm、残存率
30重量%以下のポリエステル繊維(ポリエチレンテレ
フタレート繊維、クラレ製、商品名「EP101」)を
0.5〜2.5重量%添加した後、前記PVDC樹脂炭
化物を入れて2〜6時間撹拌した。PVDC樹脂炭化物
に含まれる酸性物質及び表面の酸性基により、pHは次
第に低下して室温で1〜6時間でpH2〜4になり、ス
ラリーが良好な分散状態にバランスする。撹拌したスラ
リーを120cm□の型に流し込み、そのまま室温から
90℃の温度範囲で4〜24時間乾燥させ、成形した。
2) Preparation and shaping of slurry A mixed solvent of water: alcohol = (7: 3) was added with a molecular weight of 20
5 to 20% by weight of polyethylene glycol of 0 to 2000 is added to the PVDC resin carbide, and 5 to 10% by weight of a resole type phenol resin is added. After adding 0.5 to 2.5% by weight of a polyester fiber (polyethylene terephthalate fiber, manufactured by Kuraray, trade name "EP101") having a residual rate of 30% by weight or less and 5 to 2.5% by weight, the PVDC resin carbide is added and 2 to 6% by weight. Stirred for hours. Due to the acidic substances contained in the PVDC resin carbide and the acidic groups on the surface, the pH gradually decreases to pH 2 to 4 in 1 to 6 hours at room temperature, and the slurry balances in a good dispersion state. The stirred slurry was poured into a 120 cm square mold, dried as it was in a temperature range from room temperature to 90 ° C for 4 to 24 hours, and molded.

【0015】3)焼成 前記成形体をカーボン板などで挟み込み、中性または還
元雰囲気で600〜950℃で焼成する。
3) Firing The molded body is sandwiched between carbon plates or the like and fired at 600 to 950 ° C. in a neutral or reducing atmosphere.

【0016】4)焼結電極の特性 以上の工程で作成した電極の密度は0.65〜0.75
g/ccであり、かつ、電極のシート抵抗は1.0〜
3.0Ω/□であった。また、前記の電極の断面を走査
型電子顕微鏡で観察したところ、5〜20μmの粒子間
空隙が分布しているのが電極全体に認められた。
4) Characteristics of Sintered Electrode The density of the electrode prepared in the above steps is 0.65 to 0.75.
g / cc, and the sheet resistance of the electrode is 1.0 to
It was 3.0Ω / □. In addition, when the cross section of the electrode was observed with a scanning electron microscope, it was observed that interparticle voids of 5 to 20 μm were distributed throughout the electrode.

【0017】5)比較例 比較例1として、PVDC樹脂炭化物を加圧力200k
g/cm2で圧粉成形し、850℃で通電焼結を行っ
て、電極を得た。比較例2として、PVDC樹脂炭化物
とフエノール樹脂のスラリーに成形性を向上させるため
にセルロース繊維を0.5〜10重量%添加し、常圧、
常温〜90℃で成形させ、850℃で焼成して、電極を
得た。
5) Comparative Example As Comparative Example 1, PVDC resin carbide was applied at a pressure of 200 k.
The powder was compacted at g / cm 2 , and electrically sintered at 850 ° C. to obtain an electrode. As Comparative Example 2, 0.5 to 10% by weight of cellulose fibers was added to a slurry of PVDC resin carbide and phenol resin to improve moldability,
An electrode was obtained by molding at room temperature to 90 ° C. and firing at 850 ° C.

【0018】6)実施例及び比較例1、2の焼結電極の
容量の測定 実施例及び比較例1、2の焼結電極2を1mmの厚さに
研削した後、水や希硫酸中で含浸した後大気中で200
℃の温度で90分加熱し、35重量%硫酸に再び浸漬
し、減圧含浸を24時間行い、200μm厚のガラス不
織繊維のセパレータ1を挟んで対向させ、さらにその外
側にPt板3を配置し集電板とし、さらにその外側から
テフロン板4で挟み込んで固定したセル(図1参照)
を、35重量%の硫酸に浸漬して電極投影面積に対する
電流密度0.5A/cm2のときの容量を測定した。測
定結果を表1に示す。
6) Measurement of capacity of sintered electrodes of Examples and Comparative Examples 1 and 2 After grinding the sintered electrodes 2 of Examples and Comparative Examples 1 and 2 to a thickness of 1 mm, the electrodes were ground in water or diluted sulfuric acid. 200 in air after impregnation
Heated at a temperature of 90 ° C. for 90 minutes, immersed again in 35% by weight sulfuric acid, impregnated under reduced pressure for 24 hours, opposed to each other with a 200 μm-thick glass nonwoven fiber separator 1 interposed therebetween, and further placed a Pt plate 3 outside thereof. A current collector plate, and a cell fixed by sandwiching it from outside with a Teflon plate 4 (see FIG. 1)
Was immersed in 35% by weight sulfuric acid, and the capacity at a current density of 0.5 A / cm 2 with respect to the electrode projected area was measured. Table 1 shows the measurement results.

【表1】 [Table 1]

【0019】7)実施例の焼結電極の評価 本実施例の電極は、比較例1及び2の電極に比べて、拡
散抵抗は低く、密度は低く、そして、静電容量は大き
い。このことは、以下のことによるものと考えられる。
本実施例の電極は、a)ポリエステル繊維を添加してお
り、大型の電気二重層電極の成形体を補強し、クラッ
ク、われの発生を防止する事が出来た。b)ポリエステ
ル繊維を添加することにより、最適な電解質のパスが出
来、イオンの拡散抵抗を下げ、高電流密度において静電
容量が増加した。c)ポリエステル繊維(直径5〜15
μm、長さ0.5〜5mm、残炭率30重量%以下)を
0.5〜2.5重量%添加することにより、スラリーの
成形性が向上し、大型の電極の作製が可能になった。
7) Evaluation of Sintered Electrode of Example The electrode of this example has lower diffusion resistance, lower density and higher capacitance than the electrodes of Comparative Examples 1 and 2. This is considered to be due to the following.
In the electrode of this example, a) polyester fiber was added, and the molded article of the large-sized electric double layer electrode was reinforced, and cracks and cracks could be prevented. b) The addition of polyester fibers provided an optimal electrolyte path, reduced ion diffusion resistance and increased capacitance at high current densities. c) polyester fiber (diameter 5 to 15)
(μm, length: 0.5 to 5 mm, residual carbon ratio: 30% by weight or less) by adding 0.5 to 2.5% by weight improves the formability of the slurry and makes it possible to produce large electrodes Was.

【0020】[0020]

【発明の効果】本発明によれば、電極の成形体を補強
し、クラック、われの発生を防止し、イオンの拡散抵抗
を下げ、高電流密度における静電容量を増加させ、大型
の電極の作製が可能となる電気二重層コンデンサ電極を
製造することができる。
According to the present invention, the electrode molded body is reinforced, cracks and cracks are prevented, the diffusion resistance of ions is reduced, the capacitance at high current density is increased, and the size of the large electrode is reduced. An electric double layer capacitor electrode that can be manufactured can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電気二重層コンデンサ電極の特性の測定方法の
説明図。
FIG. 1 is an explanatory diagram of a method for measuring characteristics of an electric double layer capacitor electrode.

【符号の説明】 1 セパレータ 2 電極 3 集電体 4 Pt板[Explanation of Signs] 1 Separator 2 Electrode 3 Current collector 4 Pt plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹田 敏和 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 渋谷 秀樹 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 村上 繁 長野県大町市大字大町6850番地 昭和電工 株式会社大町工場内 (72)発明者 増子 努 長野県大町市大字大町6850番地 昭和電工 株式会社大町工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshikazu Takeda 8 Dosana, Fujisawa City, Kanagawa Prefecture Inside Isuzu Central Research Institute Co., Ltd. (72) Inventor Hideki Shibuya 8 Dosana, Fujisawa City, Kanagawa Prefecture Isuzu Central Research Inc. (72) Inventor Shigeru Murakami 6850 Omachi Omachi, Omachi City, Nagano Prefecture Showa Denko Omachi Plant Co., Ltd. (72) Inventor Tsutomu Masuko 6850 Omachi Omachi Omachi City, Nagano Prefecture Showa Denko Omachi Plant Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 PVDC樹脂炭化物を使用し、スラリー
を作製し、成形する電気二重層コンデンサ電極の製造方
法において、 上記スラリーを作製する際に、分子量2百万までのポリ
エチレングリコール又はその誘導体と、レゾールタイプ
のフエノール樹脂と、残炭率30重量%以下の繊維状の
樹脂と、を添加することを特徴とする電気二重層コンデ
ンサ電極の製造方法。
1. A method of manufacturing an electric double layer capacitor electrode using a PVDC resin carbide to prepare and mold a slurry, wherein, when the slurry is prepared, polyethylene glycol having a molecular weight of up to 2 million or a derivative thereof; A method for producing an electric double layer capacitor electrode, comprising adding a resole type phenol resin and a fibrous resin having a residual carbon ratio of 30% by weight or less.
【請求項2】 請求項1記載の電気二重層コンデンサ電
極の製造方法において、 上記ポリエチレングリコール又はその誘導体の添加量
は、PVDC樹脂炭化物に対して5〜20重量%である
ことを特徴とする電気二重層コンデンサ電極の製造方
法。
2. The method according to claim 1, wherein the amount of the polyethylene glycol or a derivative thereof is 5 to 20% by weight based on the weight of the PVDC resin carbide. Manufacturing method of double layer capacitor electrode.
【請求項3】 請求項1又は2に記載の電気二重層コン
デンサ電極の製造方法において、 上記レゾールタイプのフエノール樹脂の添加量は、PV
DC樹脂炭化物に対して5〜10重量%であることを特
徴とする電気二重層コンデンサ電極の製造方法。
3. The method for manufacturing an electric double layer capacitor electrode according to claim 1, wherein the amount of the resol-type phenol resin is PV
A method for producing an electrode for an electric double layer capacitor, wherein the content is 5 to 10% by weight based on the DC resin carbide.
【請求項4】 請求項1〜3のいずれか1項に記載の電
気二重層コンデンサ電極の製造方法において、 上記残炭率30重量%以下の繊維状の樹脂の添加量は、
PVDC樹脂炭化物に対して0.5〜2.5重量%であ
ることを特徴とする電気二重層コンデンサ電極の製造方
法。
4. The method for producing an electric double layer capacitor electrode according to claim 1, wherein the amount of the fibrous resin having a residual carbon ratio of 30% by weight or less is:
A method for producing an electric double layer capacitor electrode, wherein the content is 0.5 to 2.5% by weight based on PVDC resin carbide.
【請求項5】 請求項1〜4のいずれか1項に記載の電
気二重層コンデンサ電極の製造方法において、 上記繊維状の樹脂は、ポリエステル繊維であることを特
徴とする電気二重層コンデンサ電極の製造方法。
5. The method for manufacturing an electric double layer capacitor electrode according to claim 1, wherein the fibrous resin is a polyester fiber. Production method.
JP10235207A 1998-08-21 1998-08-21 Manufacture of electric double layer capacitor electrode Pending JP2000068163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10235207A JP2000068163A (en) 1998-08-21 1998-08-21 Manufacture of electric double layer capacitor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10235207A JP2000068163A (en) 1998-08-21 1998-08-21 Manufacture of electric double layer capacitor electrode

Publications (1)

Publication Number Publication Date
JP2000068163A true JP2000068163A (en) 2000-03-03

Family

ID=16982674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10235207A Pending JP2000068163A (en) 1998-08-21 1998-08-21 Manufacture of electric double layer capacitor electrode

Country Status (1)

Country Link
JP (1) JP2000068163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109192521A (en) * 2018-08-08 2019-01-11 厦门大学 A kind of flexible electrode and its preparation method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109192521A (en) * 2018-08-08 2019-01-11 厦门大学 A kind of flexible electrode and its preparation method and application

Similar Documents

Publication Publication Date Title
KR0143178B1 (en) Polarizanble electrode
An et al. Electrochemical properties of high‐power supercapacitors using single‐walled carbon nanotube electrodes
JP3383953B2 (en) Method for producing graphite member for polymer electrolyte fuel cell
JP4273215B2 (en) Electrode material for redox capacitor comprising metal fine particles coated with carbon, redox capacitor electrode comprising the same, and redox capacitor provided with the electrode
An et al. Characterization of supercapacitors using singlewalled carbon nanotube electrodes
JP3616255B2 (en) Separator member for polymer electrolyte fuel cell and method for producing the same
US7209341B2 (en) Polarizing electrode, manufacturing method thereof, and electric double-layer capacitor
JPH1111921A (en) Solid activated carbon
JP3602933B2 (en) Activated carbon substrate
JPH07331201A (en) Electrically conductive adhesive and bonded structure using the same
JP3652061B2 (en) Electric double layer capacitor
JP2001506059A (en) Active carbon electrode for electric double layer capacitor
JP2000068163A (en) Manufacture of electric double layer capacitor electrode
JP3417206B2 (en) Activated carbon material for electric double layer capacitors
JP2000007316A (en) Solid active carbon and electric double layer capacitor using the same
JPH11121295A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
JPH11121294A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
JPH11251197A (en) Method for manufacturing carbon electrode for electric double layer capacitor
JPH11243038A (en) Electrode for electric double layer capacitor and manufacture of the same
JPH1197317A (en) Electric double layer capacitor, electrode and manufacturing method thereof
JPH11121296A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
JPH11121288A (en) Electric double-layer capacitor
JPH11121293A (en) Electric double-layer capacitor, electrode and manufacture thereof
JPH1197312A (en) Double electric layer capacitor and electrode and manufacture therefor
JPH11121292A (en) Electric double-layer capacitor, electrode, and manufacture thereof