JP4273215B2 - Electrode material for redox capacitor comprising metal fine particles coated with carbon, redox capacitor electrode comprising the same, and redox capacitor provided with the electrode - Google Patents

Electrode material for redox capacitor comprising metal fine particles coated with carbon, redox capacitor electrode comprising the same, and redox capacitor provided with the electrode Download PDF

Info

Publication number
JP4273215B2
JP4273215B2 JP2004248248A JP2004248248A JP4273215B2 JP 4273215 B2 JP4273215 B2 JP 4273215B2 JP 2004248248 A JP2004248248 A JP 2004248248A JP 2004248248 A JP2004248248 A JP 2004248248A JP 4273215 B2 JP4273215 B2 JP 4273215B2
Authority
JP
Japan
Prior art keywords
electrode
carbon
fine particles
redox capacitor
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004248248A
Other languages
Japanese (ja)
Other versions
JP2006063403A (en
Inventor
靖 曽根田
道夫 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004248248A priority Critical patent/JP4273215B2/en
Publication of JP2006063403A publication Critical patent/JP2006063403A/en
Application granted granted Critical
Publication of JP4273215B2 publication Critical patent/JP4273215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、レドックス型キャパシタの電極材料として有用な炭素で被覆された金属微粒子、このものからなる電極および該電極を備えたレドックス型キャパシタに関する。   The present invention relates to a metal fine particle coated with carbon useful as an electrode material of a redox capacitor, an electrode comprising the same, and a redox capacitor provided with the electrode.

電気二重層キャパシタ(Electric Double Layer Capacitor: EDLC)は、イオン伝導性の電解液と活性炭等の分極性電極との界面に形成される電気二重層に蓄積される電荷を蓄電デバイスとして利用したものであり、二次電池と比較して大電流放電、充放電サイクル特性などの点で優れており、本質的に長寿命なこと、使用温度範囲も広いことなどから、既に、パソコン等のバックアップ電源などに実用化されている。   Electric Double Layer Capacitor (EDLC) uses electric charge accumulated in the electric double layer formed at the interface between an ion conductive electrolyte and a polarizable electrode such as activated carbon as an electricity storage device. Yes, it is superior to secondary batteries in terms of large current discharge, charge / discharge cycle characteristics, etc., and has a long service life and a wide operating temperature range. Has been put to practical use.

更に、近年、このEDLCを小型分散型エネルギーシステムでのエネルギー貯蔵デバイス、あるいは電気自動車の電源等としての使用を目的とする新しい用途展開の試みや研究開発が盛んに行われている。   Furthermore, in recent years, attempts and research and development of new applications for the purpose of using this EDLC as an energy storage device in a small distributed energy system or a power source of an electric vehicle have been actively conducted.

しかし、従来の活性炭や活性炭素繊維等に代表される多孔性炭素材料を用いた電気二重相キャパシタでは、電極の高表面化にも限界があり、エネルギー密度の高度化、高容量化、高電圧駆動化が達成することが極めて困難であり、また、高容量化のために大表面積の電極を使用する必要があった。   However, conventional electric double phase capacitors using porous carbon materials typified by activated carbon and activated carbon fiber have limitations in increasing the surface of the electrode, so that the energy density is increased, the capacity is increased, and the voltage is increased. Driving is extremely difficult to achieve, and it is necessary to use an electrode with a large surface area for high capacity.

このため、電気二重層キャパシタに代わるキャパシタとして、キャパシタの作動条件下で価数変化を伴う遷移金属の酸化物を電極とし水系電解液中での該遷移金属化合物の水和酸化物の組成変化反応を利用したものや、非水系電解液中での導電性高分子電極へのイオンのドープ−脱ドープ反応、あるいは炭素電極へのイオンの挿入−脱入反応などの電荷移動を伴う反応を利用するキャパシタが提案されるに至った。   For this reason, as a capacitor instead of an electric double layer capacitor, a composition change reaction of a hydrated oxide of the transition metal compound in an aqueous electrolyte using an oxide of a transition metal accompanied by a valence change as an electrode under the operating conditions of the capacitor And reactions involving charge transfer such as doping and dedoping of ions to conductive polymer electrodes or insertion and desorption of ions to carbon electrodes in non-aqueous electrolytes Capacitors have been proposed.

このキャパシタは酸化還元(レドックス)反応を伴うことから、本来の電気二重層キャパシタ(double layer capacitor)と区別してレドックスキャパシタあるいは疑似容量キャパシタと呼ばれている。   Since this capacitor is accompanied by an oxidation-reduction (redox) reaction, it is called a redox capacitor or pseudocapacitance capacitor in distinction from an original double layer capacitor.

レドックス型キャパシタの電極材料としては、これまでに、ルテニウム、イリジウム、白金、金、ロジウム、コバルト、ニッケル、タングステン、モリブデン、マンガン、の酸化物や硫化鉄などが知られており、そのキャパシタの原理は必ずしも明確ではないが、これらの遷移金属が硫酸などの電解液中での分極の繰り返しによって、水和酸化物を形成すること、遷移金属種の価数変化が起き、水和酸化物の組成変化が起きること等による電解移動反応が広い電位範囲で生じることに依るものとされている(非特許文献1)。   As electrode materials for redox capacitors, ruthenium, iridium, platinum, gold, rhodium, cobalt, nickel, tungsten, molybdenum, manganese oxides and iron sulfides have been known. Is not always clear, but these transition metals form hydrated oxides by repeated polarization in electrolytes such as sulfuric acid, the valence change of transition metal species occurs, and the composition of hydrated oxides It is said that the electrolytic transfer reaction due to a change or the like occurs in a wide potential range (Non-Patent Document 1).

しかし、これらの遷移金属化合物は導電性が不十分であり、また割れなどのために塗布電極の作成が容易でなく、更には擬似容量発現のための水和反応が十分に進行しないといった難点があった。
したがって、燃料電池自動車、ハイブリッド型自動車等の補助電源、エネルギー回生等に使用することができる高容量型レドックスキャパシタの開発が強く望まれていた。
However, these transition metal compounds have insufficient conductivity, and it is not easy to produce a coated electrode due to cracks and the like, and furthermore, the hydration reaction for the pseudo capacity development does not proceed sufficiently. there were.
Accordingly, there has been a strong demand for the development of a high-capacity redox capacitor that can be used for auxiliary power sources such as fuel cell vehicles and hybrid vehicles, and energy regeneration.

一方、本発明者らは、アルミニウム、ケイ素、チタン、マグネシウム、カルシウム、鉄の酸化物を炭素被覆することで、炭素と酸化物の両方の機能性をもつ複合化物の合成を研究してきたが(非特許文献2)、タングステン及びモリブデンの酸化物や炭化物等を選択し、それを炭素被覆し、炭素被覆型酸化物の創生およびそのキャパシタ特性の評価検討は十分にはなされていなかった。   On the other hand, the present inventors have studied the synthesis of composites having both the functions of carbon and oxide by carbon-coating oxides of aluminum, silicon, titanium, magnesium, calcium, and iron ( Non-patent document 2), oxides and carbides of tungsten and molybdenum, etc., were selected and covered with carbon, and the creation of a carbon-covered oxide and evaluation of its capacitor characteristics were not sufficiently studied.

BE. Conway. Electrochemical Supercapacitors. New York: Kluwer Academic. 1999:259-298.BE. Conway. Electrochemical Supercapacitors. New York: Kluwer Academic. 1999: 259-298. M. Inagaki, Y. Hirose, T. Matsunaga, T. Tsumura, M. Toyoda, Carbon 41 (2003) 2619-2624.M. Inagaki, Y. Hirose, T. Matsunaga, T. Tsumura, M. Toyoda, Carbon 41 (2003) 2619-2624.

本発明は、疑似容量効果の発現のための水和反応が促進され、導電性、成型性に優れると共に金属酸化物の疑似容量効果が高く、高容量のキャパシタ特性を発現するための電極材料として有用な特定な炭素被覆金属酸化物、およびこれを電極とした、燃料電池自動車、ハイブリッド型自動車等の補助電源、エネルギー回生等としての応用が可能な高容量のレドックス型キャパシタを提供することを目的とする。   As an electrode material for the present invention, the hydration reaction for the development of the pseudocapacitance effect is promoted, the conductivity and moldability are excellent, and the pseudocapacitance effect of the metal oxide is high, and the high capacity capacitor characteristics are developed. It is an object to provide a useful specific carbon-coated metal oxide, and a high-capacity redox capacitor that can be used as an auxiliary power source, energy regeneration, etc. for fuel cell vehicles, hybrid type vehicles, etc., using this as an electrode. And

本発明者等は、種々の遷移金属化合物の炭素被覆体を鋭意検討した結果、炭素で被覆された、炭化タングステン微粒子および炭化モリブデン微粒子が導電性、成型性に優れると共に疑似容量効果が高く、高容量のキャパシタ特性を発現するための電極材料として極めて有用であることを知見し本発明を完成するに至った。
すなわち、この出願によれば、以下の発明が提供される。
〈1〉炭素で被覆された炭化タングステン微粒子又は炭素で被覆された炭化モルブデン微粒子からなるレドックス型キャパシタの電極材料。
〈2〉〈1〉に記載の電極材料からなるレドックス型キャパシタの電極。
〈3〉〈2〉に記載の電極を備えたレドックス型キャパシタ。
As a result of intensive investigations on carbon-coated bodies of various transition metal compounds, the present inventors have found that tungsten carbide fine particles and molybdenum carbide fine particles coated with carbon are excellent in conductivity and moldability, and have a high pseudocapacitance effect. The present invention has been completed by finding out that it is extremely useful as an electrode material for expressing the capacitor characteristics of the capacitance.
That is, according to this application, the following invention is provided.
<1> An electrode material for a redox capacitor comprising tungsten carbide fine particles coated with carbon or carbonized morbden fine particles coated with carbon.
<2> An electrode of a redox capacitor comprising the electrode material according to <1>.
<3> A redox capacitor comprising the electrode according to <2>.

本発明に係る炭素被覆炭化タングステン微粒子および炭素被覆炭化モリブデン微粒子は、疑似容量効果の発現のための水和反応能が高く、かつ導電性、成型性に優れると共に疑似容量効果も高く、高容量のキャパシタ特性を発現するための電極材料として有用である。
上記炭素被覆タングステン微粒子および炭素被覆モリブデン微粒子を電極材料としたレドックス型キャパシタは、疑似容量効果が高く、高容量のキャパシタ特性を示すので、燃料電池自動車、ハイブリッド型自動車等の補助電源、エネルギー回生等として応用することができる。
Carbon-coated tungsten carbide particles and carbon-coated molybdenum carbides particles according to the present invention has a high hydration capacity for the expression of pseudo-capacitive effects, and conductivity, is high pseudo capacitive effect is excellent in moldability, high capacity It is useful as an electrode material for developing capacitor characteristics.
Redox type capacitors using carbon-coated tungsten fine particles and carbon-coated molybdenum fine particles as electrode materials have a high pseudo-capacitance effect and show high-capacitance capacitor characteristics. Therefore, auxiliary power sources such as fuel cell vehicles and hybrid vehicles, energy regeneration, etc. It can be applied as

本発明に係る炭素被覆金属微粒子は、タングステン微粒子又はモリブデン微粒子の表面が炭素で被覆されていることを特徴とする。   The carbon-coated metal fine particles according to the present invention are characterized in that the surfaces of tungsten fine particles or molybdenum fine particles are coated with carbon.

本発明の炭素被覆金属微粒子の粒子径は、5〜500nm好ましくは5〜100nmである。また、炭素被覆膜の膜厚は、2〜20nm好ましくは5〜10nmである。
また、本発明の炭素被覆金属微粒子の表面積は、50〜300m/gであり、かさ密度は、2〜20g/cmである。
The particle diameter of the carbon-coated metal fine particles of the present invention is 5 to 500 nm, preferably 5 to 100 nm. The carbon coating film has a thickness of 2 to 20 nm, preferably 5 to 10 nm.
The carbon-coated metal fine particles of the present invention have a surface area of 50 to 300 m 2 / g and a bulk density of 2 to 20 g / cm 3 .

金属源である、タングステンおよびモリブデン微粒子としては、単体、酸化物、炭化物、アンモニウム塩等が挙げられる。
具体的には、酸化数が6価から4価のタングステンを含む酸化タングステン(WO3)、タングステン酸アンモニウム((NH4)6W7O24・4H2O)、H2WO4、WCl5、酸化数が6価から4価のモリブデンを含む酸化モリブデン(MoO3)、モリブデン酸アンモニウム((NH4)6Mo7O24・4H2O)、MoCl5、H2MoO4が挙げられる。
また、タングステン酸カリウム(K2WO4)およびモリブデン酸カリウム(K2MoO4)等のカリウム塩類などの水溶性塩を水溶液としても使用することができる。
Examples of the tungsten and molybdenum fine particles, which are metal sources, include simple substances, oxides, carbides, and ammonium salts.
Specifically, tungsten oxide (WO 3 ) containing tungsten having an oxidation number of 6 to 4 valence, ammonium tungstate ((NH 4 ) 6 W 7 O 24 · 4H 2 O), H 2 WO 4 , WCl 5 And molybdenum oxide (MoO 3 ) containing molybdenum having an oxidation number of 6 to 4; ammonium molybdate ((NH 4 ) 6 Mo 7 O 24 · 4H 2 O), MoCl 5 and H 2 MoO 4 .
Also, water-soluble salts such as potassium salts such as potassium tungstate (K 2 WO 4 ) and potassium molybdate (K 2 MoO 4 ) can be used as an aqueous solution.

また、炭素源は、特に制約されず、熱処理過程で溶融するものであれば何れのものも使用でき、たとえばポリビニルアルコール、ポリ塩化ビニル、ポリエチレンテレフタレートなどの熱可塑性樹脂やヒドロキプロピルセルロースなど溶媒中でゲル化できる有機物(炭素前駆体)が用いられる。   The carbon source is not particularly limited, and any carbon source can be used as long as it melts in the heat treatment process. For example, in a solvent such as a thermoplastic resin such as polyvinyl alcohol, polyvinyl chloride, polyethylene terephthalate, or hydroxypropyl cellulose. An organic substance (carbon precursor) that can be gelled is used.

本発明の炭素被覆金属微粒子は、固相法あるいは液相法のいずれでも製造することができる。   The carbon-coated metal fine particles of the present invention can be produced by either a solid phase method or a liquid phase method.

[固相法]
固相法の場合、金属源として、例えば、上記した酸化数が6価の金属を含む酸化タングステン(WO3)、タングステン酸アンモニウム((NH4)6W7O24・4H2O)、酸化モリブデン(MoO3)、モリブデン酸アンモニウム((NH4)6Mo7O24・4H2O)を使用し、炭素源として、たとえば粉末のポリビニルアルコール(PVA)を用い、原料金属源とPVAを1:1程度の質量比で乾式混合し、セラミックスボート等の容器に充填して電気炉で焼成すればよい。
焼成条件は、たとえばアルゴンなどの不活性ガス雰囲気下(60mL/min)、昇温速度(5℃/min)、焼成時間(1時間)で所定の温度まで昇温し、適宜保持したのち放冷する方法などを採ればよい。
[Solid phase method]
In the case of the solid phase method, examples of the metal source include tungsten oxide (WO 3 ), ammonium tungstate ((NH 4 ) 6 W 7 O 24 · 4H 2 O) containing a metal having an oxidation number of 6 as described above, and oxidation. Molybdenum (MoO 3 ), ammonium molybdate ((NH 4 ) 6 Mo 7 O 24 · 4H 2 O) are used, and for example, powdered polyvinyl alcohol (PVA) is used as the carbon source. : Dry mixing at a mass ratio of about 1, filling a container such as a ceramic boat and firing in an electric furnace.
The firing conditions are, for example, in an inert gas atmosphere such as argon (60 mL / min), the temperature rising rate (5 ° C / min), the firing time (1 hour) to a predetermined temperature, and holding it appropriately and then allowing to cool What is necessary is just to take the method to do.

[液相法]
液相法の場合、金属源として、タングステン酸カリウム(K2WO4)およびモリブデン酸カリウム(K2MoO4)等の水溶性の塩を、炭素源として、たとえば、ヒドロキシプロピルセルロース(Hydroxypropyl cellulose: HPC)を用い、タングステン又はモルブデンの塩類を溶解した水溶液中にHPCを徐々に添加し、混練を続け、HPCが溶液を含んだゲル状態を得、このゲルを液体窒素温度で凍結乾燥させ、キセロゲル(Xerogel)を得た後、固相法と同様な条件で焼成すればよい。
この液相法によれば、固相法より微細な炭素被覆微粒子が得られ、また多孔質体を得ることができる。
[Liquid phase method]
In the case of the liquid phase method, water-soluble salts such as potassium tungstate (K 2 WO 4 ) and potassium molybdate (K 2 MoO 4 ) are used as the metal source, and hydroxypropyl cellulose (Hydroxypropyl cellulose: HPC), gradually add HPC into an aqueous solution in which salts of tungsten or morbuden are dissolved, continue kneading to obtain a gel state in which HPC contains the solution, freeze-dry this gel at liquid nitrogen temperature, and xerogel (Xerogel) may be obtained and then fired under the same conditions as in the solid phase method.
According to this liquid phase method, finer carbon-coated fine particles can be obtained than in the solid phase method, and a porous body can be obtained.

上記各方法によって得られた炭素被覆微粒子の同定は、これを粉砕した後、3mol/Lの塩酸および蒸留水を用いて洗浄し105℃で乾燥した後、X線回折測定(XRD)によって結晶相を、走査型電子顕微鏡(SEM)と透過型電子顕微鏡(TEM)により形態観察を、窒素吸着等温線測定から比表面積(BET法)を、微粒子の炭素含有量は熱重量測定(TG)で求めることによって行えばよい。   The carbon-coated fine particles obtained by the above methods were identified by pulverizing, washing with 3 mol / L hydrochloric acid and distilled water, drying at 105 ° C., and then measuring the crystal phase by X-ray diffraction measurement (XRD). Morphological observation with scanning electron microscope (SEM) and transmission electron microscope (TEM), specific surface area (BET method) from nitrogen adsorption isotherm measurement, and carbon content of fine particles by thermogravimetry (TG) You can do that.

上記のようにして得られる炭素被覆金属微粒子は、ナノメートルからサブマイクロメートルの微粒子であり、炭素−金属微粒子の良好な接着性、高表面積、易成型性といった特性を有することから、これを電極材料とした電気化学キャパシタは、疑似容量効果が高く、高容量のキャパシタ特性を示すので、燃料電池自動車、ハイブリッド型自動車等の補助電源、エネルギー回生等として応用することができる。   The carbon-coated metal fine particles obtained as described above are nanometer to submicrometer fine particles, and have good adhesion, high surface area, and easy moldability of the carbon-metal fine particles. The electrochemical capacitor used as a material has a high pseudo-capacitance effect and exhibits high-capacitance capacitor characteristics, so that it can be applied as an auxiliary power source, energy regeneration, etc. for fuel cell vehicles and hybrid type vehicles.

本発明の炭素被覆金属微粒子を用いて電気化学キャパシタの電極を作製するには以下のようにすればよい。
前記方法によって調整した炭素被覆金属微粒子を用いて電気化学キャパシタの電極を作製するには、該炭素被覆金属微粒子を乳鉢やミルなどで粉砕した後、ポリテトラフルオロエチレンやポリフッ化ビニリデンなどの結着剤を加えて混合し、得られた電極合剤を適宜の手法で成形すればよい。例えば、上記電極合剤を金型に充填し、加圧成形してディスク状などに成形する方法が挙げられる。また、上記電極合剤を溶剤に分散させて電極合剤含有ペーストを調整し(この場合、結着剤はあらかじめ溶剤に溶解あるいは分散させておいてから複合材料と混合してもよい)、得られた電極合剤含有ペーストを金属箔や金属網などからなる集電体に塗布し、乾燥して薄膜状の電極合剤層を形成する工程を経て電極を作製してもよい。ただし、電極の作製方法は、前記例示の方法に限られることなく、他の方法によってもよい。例えば、前記炭素被覆金属微粒子の分散液に上記同様の集電体を浸漬し、集電体に分散液を付着させた後に加熱乾燥処理することによって電極を作製してもよいし、上記炭素被覆金属微粒子の分散液にポリテトラフルオロエチレンの水性分散液などを適量加え、混合してペースト状にし、そのペーストを集電体に塗布し、加熱処理することによって電極を作製してもよい。
An electrode for an electrochemical capacitor can be produced using the carbon-coated metal fine particles of the present invention as follows.
In order to produce an electrode of an electrochemical capacitor using the carbon-coated metal fine particles prepared by the above method, the carbon-coated metal fine particles are pulverized with a mortar or a mill and then bound with polytetrafluoroethylene or polyvinylidene fluoride. An agent may be added and mixed, and the obtained electrode mixture may be formed by an appropriate technique. For example, a method of filling the above-mentioned electrode mixture into a mold and press-molding it into a disk shape or the like can be mentioned. Moreover, the electrode mixture-containing paste is prepared by dispersing the electrode mixture in a solvent (in this case, the binder may be dissolved or dispersed in the solvent in advance and then mixed with the composite material). The electrode mixture-containing paste thus obtained may be applied to a current collector made of a metal foil, a metal net, or the like, and dried to form a thin-film electrode mixture layer to produce an electrode. However, the manufacturing method of the electrode is not limited to the above-described method, and other methods may be used. For example, the electrode may be produced by immersing a current collector similar to the above in a dispersion of the carbon-coated metal fine particles, and attaching the dispersion to the current collector, followed by heat-drying treatment. An electrode may be produced by adding an appropriate amount of an aqueous dispersion of polytetrafluoroethylene or the like to a dispersion of fine metal particles, mixing it into a paste, applying the paste to a current collector, and subjecting it to a heat treatment.

また、電気化学キャパシタの電解液としては、従来公知のものがそのまま使用することができ、たとえば、硫酸、塩酸、硝酸等の種々の濃度の酸性水溶液や、水酸化カリウム、水酸化ナトリウム等の種々の濃度のアルカリ性水溶液や、塩化カリウム等を種々の濃度含む中性水溶液など、電解質を含んだ水溶液が用いられる。   In addition, as the electrolytic solution of the electrochemical capacitor, conventionally known ones can be used as they are, for example, acidic aqueous solutions having various concentrations such as sulfuric acid, hydrochloric acid and nitric acid, and various kinds such as potassium hydroxide and sodium hydroxide. An aqueous solution containing an electrolyte, such as an alkaline aqueous solution having a concentration of 1 or a neutral aqueous solution containing various concentrations of potassium chloride or the like, is used.

電気化学キャパシタを製造するにはそれ自体公知の方法がそのまま適用することができ、つぎのようにして作製すればよい。
シート状に作製した2枚の電極の間にセパレータを介在させて巻回し、その巻回構造の電極体を円筒形の容器内に装填し、封口することによって行われる。また、角形の電気化学キャパシタを製造する場合は、シート状の電極とセパレータとをサンドイッチ状に積層し、必要に応じてその積層体をさらに複数層積層し、その積層構造の電極体あるいは前記巻回構造の電極体を押圧して扁平状にしたものを角形の容器内に装填し、封口することによって行われる。さらに、コイン形の電気化学キャパシタを製造する場合は、上記積層構造の電極体を扁平な円形容器内に装填し、封口することによって行われる。したがって、その形状は円筒形、角形、コイン形など特に制限されることはない。
In order to produce an electrochemical capacitor, a method known per se can be applied as it is, and it may be produced as follows.
A sheet is wound between two electrodes produced in a sheet form, and the electrode body having the winding structure is loaded into a cylindrical container and sealed. In the case of manufacturing a rectangular electrochemical capacitor, a sheet-like electrode and a separator are laminated in a sandwich shape, and if necessary, a plurality of laminated bodies are laminated, and the laminated electrode body or the above-described winding body is laminated. This is done by pressing and flattening an electrode body having a round structure into a rectangular container and sealing it. Further, when manufacturing a coin-shaped electrochemical capacitor, the electrode body having the above laminated structure is loaded in a flat circular container and sealed. Therefore, the shape is not particularly limited, such as a cylindrical shape, a square shape, or a coin shape.

以下、本発明を実施例により更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

参考例1
[固相法]
酸化タングステン(WO3)5gと粉末のポリビニルアルコール(PVA)5gを1:1の質量比でめのう乳鉢によって乾式混合し、セラミックスボートに充填して電気炉で焼成した。焼成条件はアルゴン雰囲気(60mL/min)、昇温速度5℃/minで所定の温度まで昇温し、1時間保持したのち放冷した後、粉砕後、3mol/Lの塩酸および蒸留水を用いて洗浄し105℃で乾燥し、炭素被覆タングステン微粒子を得た。
得られた微粒子について、X線回折測定(XRD)によって結晶相を同定した。また、比表面積(BET法)を窒素吸着等温線測定により、炭素含有量を熱重量測定(TG)により、また、かさ密度をタッピング法により算出し、3回測定しその平均値として求めた。その結果を表1に示す。
なお、微粒子の形態観察を走査型電子顕微鏡(SEM)と透過型電子顕微鏡(TEM)により行った、その結果を図1及び図2に示す。
Reference example 1
[Solid phase method]
5 g of tungsten oxide (WO 3 ) and 5 g of powdered polyvinyl alcohol (PVA) were dry-mixed with an agate mortar at a mass ratio of 1: 1, filled in a ceramic boat and fired in an electric furnace. The firing conditions were an argon atmosphere (60 mL / min), the temperature was raised to a predetermined temperature at a heating rate of 5 ° C / min, held for 1 hour, allowed to cool, then pulverized, and then 3 mol / L hydrochloric acid and distilled water were used. And washed at 105 ° C. to obtain carbon-coated tungsten fine particles.
About the obtained fine particles, the crystal phase was identified by X-ray diffraction measurement (XRD). Further, the specific surface area (BET method) was calculated by nitrogen adsorption isotherm, the carbon content was calculated by thermogravimetry (TG), and the bulk density was calculated by tapping method, and measured three times to obtain the average value. The results are shown in Table 1.
In addition, the form observation of microparticles | fine-particles was performed with the scanning electron microscope (SEM) and the transmission electron microscope (TEM), and the result is shown in FIG.1 and FIG.2.

参考例2〜6
参考例1において、金属源および焼成温度を表1に記載のものに代えた以外は参考例1と同様にして炭素被覆タングステン及びモリブデン微粒子を合成した。その結果を表1に示す。
Reference Examples 2-6
Reference Example 1, except that the metal source and the firing temperature was changed to those described in Table 1 were synthesized carbon coating of tungsten and molybdenum particles in the same manner as in Reference Example 1. The results are shown in Table 1.

参考例7
[液相法]
タングステン酸カリウム(K2WO4)5gを溶解させた水溶液中にヒドロキシプロピルセルロース (Hydroxypropyl cellulose: HPC)5gを徐々に添加し、混練を続け、得られたゲルを液体窒素温度で凍結乾燥させてキセロゲル(Xerogel)を得た。このゲルを実施例1と同条件で処理し炭素被覆タングステン微粒子を得た。このものの特性を参考例1と同様な方法で測定した。その結果を表2に示す。なお、微粒子の形態観察を走査型電子顕微鏡(SEM)と透過型電子顕微鏡(TEM)により行った、その結果を図3及び図4に示す。
Reference Example 7
[Liquid phase method]
Hydroxypropyl cellulose (HPC) 5 g is gradually added to an aqueous solution in which 5 g of potassium tungstate (K 2 WO 4 ) is dissolved, kneading is continued, and the resulting gel is lyophilized at liquid nitrogen temperature. Xerogel was obtained. This gel was treated under the same conditions as in Example 1 to obtain carbon-coated tungsten fine particles. The characteristics of this product were measured by the same method as in Reference Example 1 . The results are shown in Table 2. In addition, the form observation of microparticles | fine-particles was performed with the scanning electron microscope (SEM) and the transmission electron microscope (TEM), and the result is shown in FIG.3 and FIG.4.

実施例1〜8
参考例7において、金属源、金属源と炭素源の使用割合および焼成温度を表2に記載のものに代えた以外は参考例7と同様にして炭素被覆タングステン及びモリブデン微粒子を合成した。その結果を表2に示す。
Examples 1-8
Reference Example 7, a metal source, except that the use ratio and firing temperature of the metal source and a carbon source was replaced by those described in Table 2 were synthesized carbon coating of tungsten and molybdenum particles in the same manner as in Reference Example 7. The results are shown in Table 2.

実施例9
[電気化学測定]
実施例1で得た炭素被覆タングステン微粒子を粉砕し、10mg秤量し、バインダー(ポリテトラフルオロエチレン)10重量%、カーボンブラック10重量%とともにアセトンを滴下して混練し、錠剤成型器で直径1cm、厚さ約0.5mmの円盤状ペレットを作製した。成型したペレットを100℃で1時間真空乾燥し、冷却後直ちに秤量して電極重量とした。ペレットを白金メッシュおよびガラス繊維ろ紙(孔径1μm)と共に2枚のテフロン(登録商標)板で挟みこむことによって作用極とした。対極には白金板、参照極は銀/塩化銀を使用した。電解液には1 mol/L硫酸を用い、デシケータの真空下で測定セルに充填した。常時窒素ガスをバブリングして溶存酸素を除去して試験セルを作製した。
この試験セルによって炭素被覆タングステン微粒子電極の以下の特性を調べた。すなわち、定電流充放電測定による比容量、サイクリックボルタモグラムによる電位−電流特性と比容量である。それらの測定結果を図5、図6に示し、算出された比容量を表3に示す。
図5に示した200mA/gの定電流による充放電測定において、100回目の放電曲線より、比容量は62F/g と求められた。図6に示したサイクリックボルタモグラムは良好なボックス型を示しており、0.5Vにおける比容量は104F/gと求められた。この実施例8は表1に示したとおり、13wt%の炭素含有量であるので、上記の比容量の発現は炭素分のみに由来するのではなく、タングステン微粒子の寄与があることは明らかである。図7に電気化学測定後の電極材料のX線回折図形を示す。炭化タングステンは完全に水和酸化物の状態へ変化しており、この変化に起因して電気化学的キャパシタ挙動が現れたと考える。
Example 9
[Electrochemical measurement]
The carbon-coated tungsten fine particles obtained in Example 1 were pulverized, weighed 10 mg, kneaded by adding acetone dropwise with 10% by weight of binder (polytetrafluoroethylene) and 10% by weight of carbon black, and 1 cm in diameter with a tablet molding machine. A disk-shaped pellet having a thickness of about 0.5 mm was produced. The molded pellets were vacuum-dried at 100 ° C. for 1 hour, and weighed immediately after cooling to obtain the electrode weight. The pellet was sandwiched between two Teflon (registered trademark) plates together with platinum mesh and glass fiber filter paper (pore diameter: 1 μm) to form a working electrode. A platinum plate was used for the counter electrode, and silver / silver chloride was used for the reference electrode. 1 mol / L sulfuric acid was used as the electrolyte, and the measurement cell was filled under a desiccator vacuum. A test cell was prepared by constantly bubbling nitrogen gas to remove dissolved oxygen.
This test cell investigated the following characteristics of the carbon-coated tungsten fine particle electrode. That is, specific capacity by constant current charge / discharge measurement, potential-current characteristics and specific capacity by cyclic voltammogram. The measurement results are shown in FIGS. 5 and 6, and the calculated specific capacity is shown in Table 3.
In the charge / discharge measurement at a constant current of 200 mA / g shown in FIG. 5, the specific capacity was determined to be 62 F / g from the discharge curve at the 100th time. The cyclic voltammogram shown in FIG. 6 shows a good box shape, and the specific capacity at 0.5 V was determined to be 104 F / g. Since Example 8 has a carbon content of 13 wt% as shown in Table 1, it is clear that the expression of the specific capacity is not derived only from the carbon content but contributed by the tungsten fine particles. . FIG. 7 shows an X-ray diffraction pattern of the electrode material after electrochemical measurement. Tungsten carbide is completely changed to a hydrated oxide state, and it is considered that electrochemical capacitor behavior appears due to this change.

実施例10、参考例8
実施例9において電極を作成する炭素被覆金属微粒子を表3に記載のものに代えた以外は実施例9と同様にして電極を作成し電気化学測定を行った。それらの結果を図9,及び表3に示す。なお、参考例6の炭素被覆酸化モリブデン粒子電極を用いた結果を、図8及び表3(参考例8)に示す。
Example 10, Reference Example 8
An electrode was prepared and subjected to electrochemical measurement in the same manner as in Example 9 except that the carbon-coated metal fine particles for producing the electrode in Example 9 were replaced with those shown in Table 3. The results are shown in FIG. The results obtained using the carbon-coated molybdenum oxide particle electrode of Reference Example 6 are shown in FIG. 8 and Table 3 (Reference Example 8).

比較例1
実施例9の電極を、炭素が被覆されていない市販の炭化タングステンに代えた以外は実施例9と同様にして試験セルを作製した
実施例9と同様にして電気化学挙動を調べた。その結果を表4に示す。炭素被覆されていないために、電気化学的活性が発現していないと考えられる。
Comparative Example 1
A test cell was prepared in the same manner as in Example 9 except that the electrode of Example 9 was replaced with commercially available tungsten carbide not coated with carbon.
The electrochemical behavior was examined in the same manner as in Example 9 . The results are shown in Table 4. It is considered that the electrochemical activity is not expressed because it is not coated with carbon.

比較例2〜4
実施例9の電極を、表4に示す材料に代えた以外は実施例9と同様にして試験セルを作製した。それらの電気化学挙動は表4にまとめた。いずれも比較例1と同様に、電気化学的活性を示さず、有意な比容量を与えない。
これらのことから、金属を微粒子状に調整し、かつその表面を炭素被覆した炭素被覆金属微粒子を調整することによって、良好な電気化学キャパシタ用電極材料としうることが示された。
Comparative Examples 2-4
A test cell was produced in the same manner as in Example 9 except that the electrode of Example 9 was replaced with the material shown in Table 4. Their electrochemical behavior is summarized in Table 4. None, like Comparative Example 1, does not exhibit electrochemical activity and does not give significant specific capacity.
From these facts, it was shown that a good electrode material for an electrochemical capacitor can be obtained by adjusting the metal into fine particles and adjusting the carbon-coated metal fine particles whose surface is coated with carbon.

参考例1に係る炭素被覆タングステン粒子の走査型電子顕微鏡(SEM)像Scanning electron microscope (SEM) image of carbon-coated tungsten particles according to Reference Example 1. 参考例1に係る炭素被覆タングステン粒子の透過型電子顕微鏡(TEM)像Transmission electron microscope (TEM) image of carbon-coated tungsten particles according to Reference Example 1. 参考例7に係る炭素被覆タングステン粒子の走査型電子顕微鏡(SEM)像Scanning electron microscope (SEM) image of carbon-coated tungsten particles according to Reference Example 7. 参考例7に係る炭素被覆タングステン粒子の透過型電子顕微鏡(TEM)像Transmission electron microscope (TEM) image of carbon-coated tungsten particles according to Reference Example 7. 実施例1に係る炭素被覆炭化タングステン粒子電極の定電流充放電曲線Constant current charge / discharge curve of carbon-coated tungsten carbide particle electrode according to Example 1 実施例1に係る炭素被覆炭化タングステン粒子電極のサイクリックボルタモグラムCyclic voltammogram of carbon-coated tungsten carbide particle electrode according to Example 1 実施例1に係る炭素被覆タングステン粒子電極の電解に伴う結晶相変化Crystal phase change accompanying electrolysis of carbon-coated tungsten particle electrode according to Example 1 参考例6に係る炭素被覆酸化モリブデン粒子電極のサイクリックボルタモグラムCyclic voltammogram of carbon-coated molybdenum oxide particle electrode according to Reference Example 6. 実施例7に係る炭素被覆炭化モリブデン粒子電極のサイクリックボルタモグラムCyclic voltammogram of carbon-coated molybdenum carbide particle electrode according to Example 7

Claims (3)

炭素で被覆された炭化タングステン微粒子又は炭素で被覆された炭化モリブデン微粒子からなるレドックス型キャパシタの電極材料。An electrode material for a redox capacitor comprising tungsten carbide fine particles coated with carbon or molybdenum carbide fine particles coated with carbon. 請求項1に記載の電極材料からなるレドックス型キャパシタの電極。An electrode of a redox capacitor comprising the electrode material according to claim 1. 請求項2に記載の電極を備えたレドックス型キャパシタ。   A redox capacitor comprising the electrode according to claim 2.
JP2004248248A 2004-08-27 2004-08-27 Electrode material for redox capacitor comprising metal fine particles coated with carbon, redox capacitor electrode comprising the same, and redox capacitor provided with the electrode Expired - Fee Related JP4273215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004248248A JP4273215B2 (en) 2004-08-27 2004-08-27 Electrode material for redox capacitor comprising metal fine particles coated with carbon, redox capacitor electrode comprising the same, and redox capacitor provided with the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004248248A JP4273215B2 (en) 2004-08-27 2004-08-27 Electrode material for redox capacitor comprising metal fine particles coated with carbon, redox capacitor electrode comprising the same, and redox capacitor provided with the electrode

Publications (2)

Publication Number Publication Date
JP2006063403A JP2006063403A (en) 2006-03-09
JP4273215B2 true JP4273215B2 (en) 2009-06-03

Family

ID=36110144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004248248A Expired - Fee Related JP4273215B2 (en) 2004-08-27 2004-08-27 Electrode material for redox capacitor comprising metal fine particles coated with carbon, redox capacitor electrode comprising the same, and redox capacitor provided with the electrode

Country Status (1)

Country Link
JP (1) JP4273215B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186830B2 (en) * 2006-09-21 2013-04-24 日産自動車株式会社 Capacitor electrode and manufacturing method thereof
JP5353287B2 (en) * 2008-03-21 2013-11-27 住友化学株式会社 Electrocatalyst production method and electrode catalyst
KR100949177B1 (en) 2008-05-02 2010-03-23 성균관대학교산학협력단 Method for fabricating pseudo-capacitor electrode using copper-oxide nanobelt
US8385052B2 (en) * 2008-12-10 2013-02-26 Avx Corporation Electrochemical capacitor containing ruthenium oxide electrodes
JP5387486B2 (en) * 2009-10-08 2014-01-15 新日鐵住金株式会社 Carbon-coated aluminum carbide and method for producing the same
JP5578925B2 (en) 2010-04-30 2014-08-27 日本ゴア株式会社 Polarizable electrode material for electric double layer capacitor with improved withstand voltage and electric double layer capacitor using the same
JP2013536316A (en) * 2010-07-09 2013-09-19 クライマックス・エンジニアード・マテリアルズ・エルエルシー Potassium / molybdenum composite metal powder, powder blend, product thereof, and method for producing photovoltaic cell
KR101355125B1 (en) * 2012-07-03 2014-01-29 한국화학연구원 Preparation of carbon coated nano-metal particles having pores and carbon coated nano-metal particles having pores prepared thereby
WO2013100346A1 (en) * 2011-12-29 2013-07-04 한국화학연구원 Method for producing porous carbon-coated metal nanoparticles and porous carbon-coated metal nanoparticles produced using same
WO2014017597A1 (en) * 2012-07-26 2014-01-30 日本ゴア株式会社 Polarizable electrode material and electric double layer capacitor using same
WO2015098230A1 (en) * 2013-12-27 2015-07-02 昭和電工株式会社 Positive electrode body for tungsten capacitors
CN109081347A (en) * 2018-07-16 2018-12-25 湖南大学 A method of based on mutually separation synthesis porous carbon microsphere
JP6712758B2 (en) * 2019-01-16 2020-06-24 日本ゴア合同会社 Polarizable electrodes for electric double layer capacitors
CN113185136A (en) * 2021-04-19 2021-07-30 西安交通大学 Tungsten oxide film with high specific surface area, and preparation method and application thereof
CN114506846B (en) * 2022-02-15 2023-06-06 厦门金鹭特种合金有限公司 Production method and production device of superfine carbide
TW202411162A (en) * 2022-08-05 2024-03-16 日商Dic股份有限公司 Molybdenum carbide, composite, catalyst ink, and manufacturing method of molybdenum carbide and composite wherein the molybdenum carbide has a Mo 2C crystal structure

Also Published As

Publication number Publication date
JP2006063403A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
Zhang et al. Morphology-dependent NiMoO4/carbon composites for high performance supercapacitors
Velmurugan et al. Synthesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications
Zhu et al. Hexagonal nickel oxide nanoplate-based electrochemical supercapacitor
JP4273215B2 (en) Electrode material for redox capacitor comprising metal fine particles coated with carbon, redox capacitor electrode comprising the same, and redox capacitor provided with the electrode
Duraisamy et al. Development of asymmetric device using Co 3 (PO 4) 2 as a positive electrode for energy storage application
CN103947017B (en) For the carbon lead blend in mixed tensor storage device
Guan et al. Core/shell nanorods of MnO2/carbon embedded with Ag nanoparticles as high-performance electrode materials for supercapacitors
KR20200136373A (en) Manufacturing method of carbon material
Xiao et al. Sulfidation of NiFe-layered double hydroxides as novel negative electrodes for supercapacitors with enhanced performance
US20110013344A1 (en) Polarizable electrode for capacitor and electric double layer capacitor having the same
Rajeshkhanna et al. High energy density symmetric capacitor using zinc cobaltate flowers grown in situ on Ni foam
JP2002033249A (en) Activated charcoal for electric double-layer capacitor
Li et al. Carbon electrode with conductivity improvement using silver nanowires for high-performance supercapacitor
Ma et al. String-like core-shell ZnCo 2 O 4@ NiWO 4 nanowire/nanosheet arrays on Ni foam for binder-free supercapacitor electrodes
Chen et al. Graphene-karst cave flower-like Ni–Mn layered double oxides nanoarrays with energy storage electrode
JP4174586B2 (en) High power type secondary battery
Zhou et al. Molten-NaNH2 activated carbon cloth with high areal capacitance and exceptional rate stability for flexible asymmetric supercapacitors
Song et al. Na2MoO4 as both etcher for three-dimensional holey graphene hydrogel and pseudo-capacitive feedstock for asymmetric supercapacitors
Wu et al. Nickel-cobalt oxide nanocages derived from cobalt-organic frameworks as electrode materials for electrochemical energy storage with redox electrolyte
Gao et al. Synthesis of nickel carbonate hydroxide@ zeolitic imidazolate framework-67 (Ni 2 CO 3 (OH) 2@ ZIF-67) for pseudocapacitor applications
Shi et al. Graphene oxide/Cu (OH) 2 composites as efficient multifunctional hosts for lithium-sulfur batteries
Lu et al. Properties of g-C3N4 modified mixed spinel structure (Co, Mn)(Co, Mn) 2O4 cathode material for supercapacitor
Safari-Gezaz et al. The incorporation of cobalt ions into hydroxyapatite nanostructure for a novel range of electrochemical energy storage applications
Kang et al. One-step preparation of carbon nanotubes doped mesoporous birnessite K2Mn4O9 achieving 77% of theoretical capacitance by a facile redox reaction
Zhang et al. Chitosan modified graphene oxide with MnO2 deposition for high energy density flexible supercapacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

R150 Certificate of patent or registration of utility model

Ref document number: 4273215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees