JPH1197317A - Electric double layer capacitor, electrode and manufacturing method thereof - Google Patents

Electric double layer capacitor, electrode and manufacturing method thereof

Info

Publication number
JPH1197317A
JPH1197317A JP9253547A JP25354797A JPH1197317A JP H1197317 A JPH1197317 A JP H1197317A JP 9253547 A JP9253547 A JP 9253547A JP 25354797 A JP25354797 A JP 25354797A JP H1197317 A JPH1197317 A JP H1197317A
Authority
JP
Japan
Prior art keywords
electrode
double layer
layer capacitor
electric double
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9253547A
Other languages
Japanese (ja)
Inventor
Hideki Shibuya
秀樹 渋谷
Toshikazu Takeda
敏和 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Advanced Engineering Center Ltd
Original Assignee
Isuzu Advanced Engineering Center Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Advanced Engineering Center Ltd filed Critical Isuzu Advanced Engineering Center Ltd
Priority to JP9253547A priority Critical patent/JPH1197317A/en
Publication of JPH1197317A publication Critical patent/JPH1197317A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the diffusion resistance of an electrode and to prevent a leak of electrolytic solution by mixing carbonized material powder comprising polyvinylidene chloride(PVDC) and having a specified particle size with electrolytic gel and by forming the electrode for electric double layer capacitor. SOLUTION: Carbonized material of PVDC resin is crushed into powder having a diameter under 22 μm and the powder is mixed with electrolytic gel and then the mixed carbonized material powder is formed into an electrode for an electric double layer condenser. Preferably, the PVDC resin is carbonized at temperatures of 600 to 900 deg.C and the resulting carbonized material is crushed into powder having a diameter under 22 μm. The carbonized material powder is mixed with the electrolytic gel and the mixed carbonized material powder is formed into the electrode for the electric double layer capacitor. Preferably, the electrolytic get is made by adding polyethylene glycol having a molecular weight of 200,000 to 4,000,000 to thin sulfuric acid. More preferably, the electric double layer capacitor is formed by applying the mixed carbonized material powder on a current-collecting plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層コンデ
ンサ、電極及びそれらの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor, an electrode, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電気二重層コンデンサは、活性炭の粉末
に電解液をしみこませ、活性炭と電解液の界面にできる
電気二重層の静電容量を利用したコンデンサである。耐
電圧、最高使用温度は、電解液の分解電圧・温度に依存
しており、定格電圧は数Vと低いが、ファラッドオーダ
の静電容量が容易に得られることから、電池の代わりに
半導体メモリ(D−RAM)のバックアップ用等の低電
流密度の用途に多く用いられるようになっており、最近
では、もっと電流密度の高い用途、例えば車載鉛蓄電池
の代わり、にも使用することが研究されている。
2. Description of the Related Art An electric double layer capacitor is a capacitor utilizing an electrostatic solution of an activated carbon powder and an electrolytic solution impregnated in an activated carbon powder. The withstand voltage and the maximum operating temperature depend on the decomposition voltage and temperature of the electrolytic solution, and the rated voltage is as low as several volts. However, since the Farad order capacitance can be easily obtained, the semiconductor memory is used instead of the battery. It has been widely used for low current density applications such as backup of (D-RAM), and has recently been studied for use in applications having higher current densities, for example, in place of in-vehicle lead-acid batteries. ing.

【0003】従来、電気二重層コンデンサ用電極とし
て、活性炭にバインダを混入させ焼結したものや焼結後
に腑活処理(酸化による不純物除去処理)したものを用
いていた。しかし、これらの電極を使用すると、次のよ
うな問題点が生じていた。 a)活性炭はマクロポアが多く細孔体積比率が高いた
め、密度が低い。 b)比表面積は大きいが細孔径の分布が広いため、電気
二重層コンデンサ用電極として働く実効的な細孔は少な
い。 c)焼結を促進する目的で比較的高温で焼結するため、
電気二重層コンデンサ用電極として働く実効的な細孔は
少ない。 d)低温(850℃以下)で焼結すると、グラファイト
化が進まないため、粒子間焼結強度がなく、そして、抵
抗値が高い。
Heretofore, as an electrode for an electric double layer capacitor, a material obtained by mixing a binder with activated carbon and sintering or a material subjected to an activation treatment (impurity removal treatment by oxidation) after sintering has been used. However, the use of these electrodes has caused the following problems. a) Activated carbon has a low density because it has many macropores and a high pore volume ratio. b) Although the specific surface area is large, the distribution of the pore diameter is wide, so that there are few effective pores acting as electrodes for electric double layer capacitors. c) sintering at a relatively high temperature to promote sintering,
There are few effective pores acting as electrodes for electric double layer capacitors. d) When sintering at a low temperature (850 ° C. or lower), graphitization does not proceed, so there is no intergranular sintering strength and the resistance value is high.

【0004】これらの問題点を解決するため、PVDC
(ポリ塩化ビニリデン)樹脂炭化物を使用することが提
案されている(特開平7−249551号公報参照)。
PVDC樹脂(あるいは塩化ビニリデン系共重合体)炭
化物を使用すると、他の活性炭と比較して長所を有して
おり、その理由として、次のことによるといわれてい
る。PVDC樹脂は、2つの脱塩酸反応温度を有してい
る。第一点は180℃から250℃で自己分子鎖内での
脱塩酸反応であり、第二点は450℃から550℃での
分子鎖間の脱塩酸反応で、その際分子間結合が生じてい
る。第一点の温度範囲で加熱すると脱塩酸反応により細
孔が形成され、その細孔は、36Å以下のマイクロポア
とよばれるものであって、これが電気二重層コンデンサ
用電極として使用されると電解液との界面として有効に
働く。このため、電極としての腑活処理は不必要であ
る。また、第二点の温度範囲以上で加熱すると、脱塩酸
反応により有効マイクロポアを保持しつつ比較的低温で
も焼結を進行させることができる。このため、電気二重
層コンデンサ用電極には不要である大きな径のメソポア
やマクロポアの発生を抑えることができる。このため、
PVDC樹脂炭化物は、比表面積は活性炭に比べて少な
いが、焼結密度が活性炭に比べて大きくなり、体積あた
りの容量は大きくなる。
[0004] To solve these problems, PVDC
It has been proposed to use (polyvinylidene chloride) resin carbide (see JP-A-7-249551).
The use of PVDC resin (or vinylidene chloride-based copolymer) carbide has advantages over other activated carbons because of the following. PVDC resins have two dehydrochlorination reaction temperatures. The first point is the dehydrochlorination reaction in the self-molecular chain at 180 ° C to 250 ° C, and the second point is the dehydrochlorination reaction between the molecular chains at 450 ° C to 550 ° C. I have. When heated in the temperature range of the first point, pores are formed by the dehydrochlorination reaction, and the pores are called micropores having a diameter of 36 ° or less. It works effectively as an interface with the liquid. For this reason, activation treatment as an electrode is unnecessary. Further, when the heating is performed at a temperature not lower than the temperature range of the second point, sintering can be advanced even at a relatively low temperature while maintaining effective micropores by the dehydrochlorination reaction. For this reason, generation of mesopores or macropores having a large diameter, which is unnecessary for the electrode for an electric double layer capacitor, can be suppressed. For this reason,
The PVDC resin carbide has a smaller specific surface area than activated carbon, but has a higher sintering density than activated carbon and a larger capacity per volume.

【0005】しかし、PVDC樹脂炭化物は、次のよう
な問題点を有している。 a)バインダレスであるため、成形しにくい。 b)低温(850℃以下)での焼結ではグラファイトが
進まないため、オーミックな抵抗が高い。そのため高電
流密度においてはIRドロップが大きく容量が取り出せ
ない。 c)PVDC樹脂炭化物は高密度に焼結できるが、粒子
間の空隙やマクロポアが少ないため拡散抵抗が高い。
However, the PVDC resin carbide has the following problems. a) It is difficult to mold because it is binderless. b) Ohmic resistance is high because graphite does not advance during sintering at low temperature (850 ° C. or lower). Therefore, at a high current density, the IR drop is large and the capacity cannot be taken out. c) The PVDC resin carbide can be sintered at a high density, but has a high diffusion resistance due to few voids and macropores between particles.

【0006】また、PVDC樹脂を180〜600℃で
炭化させたものを成形した後、600〜950℃で焼結
して電極とすることも提案されているが、特に薄く成形
すると、強度が弱く、製造段階で割れなどが発生しやす
かった。また、液状の電解質溶液に含浸して用いるた
め、電解液の漏れやドライアップの問題が有った。
[0006] It has also been proposed to form a PVDC resin carbonized at 180 to 600 ° C and then sinter it at 600 to 950 ° C to form an electrode. , Cracks and the like were likely to occur in the manufacturing stage. In addition, since it is used after being impregnated with a liquid electrolyte solution, there are problems of leakage of electrolyte solution and dry-up.

【0007】[0007]

【発明が解決しようとする課題】本発明は、電極の拡散
抵抗を下げ、そして、電極を薄く成形しても強度が弱く
ならず、また、電解液の漏れやドライアップの問題が生
じない電気二重層コンデンサ及び電極を提供するもので
ある。
DISCLOSURE OF THE INVENTION The present invention reduces the diffusion resistance of an electrode, and does not reduce the strength even if the electrode is formed thin, and does not cause problems of electrolyte leakage or dry-up. A double layer capacitor and electrodes are provided.

【0008】[0008]

【課題を解決するための手段】本発明は、PVDC樹脂
炭化物からなる電気二重層コンデンサ用電極において、
前記PVDC樹脂炭化物は径22μm以下の粉末であ
り、そして、該粉末は電解質ゲルと混合したものである
電気二重層コンデンサ用電極である。
SUMMARY OF THE INVENTION The present invention relates to an electrode for an electric double layer capacitor comprising a PVDC resin carbide.
The PVDC resin carbide is a powder having a diameter of 22 μm or less, and the powder is an electrode for an electric double layer capacitor which is mixed with an electrolyte gel.

【0009】また、本発明は、上記電解質ゲルは、希硫
酸に分子量20万〜400万のポリエチレングリコール
を添加したものである電気二重層コンデンサ用電極であ
る。
Further, the present invention is an electrode for an electric double layer capacitor, wherein said electrolyte gel is obtained by adding polyethylene glycol having a molecular weight of 200,000 to 4,000,000 to dilute sulfuric acid.

【0010】そして、本発明は、PVDC樹脂炭化物か
らなる電極を具備する電気二重層コンデンサにおいて、
前記電極は径22μm以下のPVDC樹脂炭化物粉末か
らなり、そして、該粉末は電解質ゲルと混合したもので
ある電気二重層コンデンサである。
The present invention provides an electric double layer capacitor having an electrode made of PVDC resin carbide,
The electrode is a PVDC resin carbide powder having a diameter of 22 μm or less, and the powder is an electric double layer capacitor mixed with an electrolyte gel.

【0011】更に、本発明は、PVDC樹脂を600〜
950℃で炭化させ、得られた炭化物を粉砕して径22
μm以下の粉末とし、該粉末を電解質ゲルと混合する電
気二重層コンデンサ用電極の製造方法である。
[0011] Further, the present invention provides a PVDC resin of 600 to
Carbonized at 950 ° C., and the resulting carbide is pulverized to a diameter of 22
This is a method for producing an electrode for an electric double layer capacitor in which powder having a size of not more than μm is mixed and the powder is mixed with an electrolyte gel.

【0012】また、本発明は、上記電解質ゲルは、希硫
酸に分子量20万〜400万のポリエチレングリコール
を添加したものである電気二重層コンデンサ用電極の製
造方法である。
The present invention is also a method for producing an electrode for an electric double layer capacitor, wherein the electrolyte gel is obtained by adding polyethylene glycol having a molecular weight of 200,000 to 4,000,000 to dilute sulfuric acid.

【0013】そして、本発明は、PVDC樹脂炭化物粉
末を希硫酸に含浸してスラリ化したものに20万〜40
0万のポリエチレングリコールを添加する電気二重層コ
ンデンサ用電極の製造方法である。
[0013] The present invention provides a slurry obtained by impregnating PVDC resin carbide powder with dilute sulfuric acid to form a slurry.
This is a method for manufacturing an electrode for an electric double layer capacitor to which 100,000 polyethylene glycol is added.

【0014】更に、本発明は、PVDC樹脂炭化物粉末
を希硫酸に含浸した後、希硫酸をろ過した粉末を電解質
ゲルに混合する電気二重層コンデンサ用電極の製造方法
である。
Further, the present invention is a method for producing an electrode for an electric double layer capacitor, wherein a powder obtained by impregnating a PVDC resin carbide powder with dilute sulfuric acid and then filtering the diluted sulfuric acid is mixed with an electrolyte gel.

【0015】また、本発明は、PVDC樹脂炭化物粉末
と電解質ゲルとの混合物を集電板上に塗布する電気二重
層コンデンサ用電極の製造方法である。
The present invention is also a method for producing an electrode for an electric double layer capacitor, in which a mixture of a PVDC resin carbide powder and an electrolyte gel is applied on a current collector.

【0016】そして、本発明は、PVDC樹脂を600
〜950℃で炭化し、粉砕して得られた径22μm以下
の粉末で電極を作製した後、該電極を電気二重層コンデ
ンサに組込み、次に、電解質ゲルを添加して前記電極に
しみこませる電気二重層コンデンサの製造方法である。
Further, the present invention relates to a PVDC resin of 600
After producing an electrode with powder having a diameter of 22 μm or less obtained by carbonizing at −950 ° C. and pulverizing, the electrode is incorporated into an electric double-layer capacitor, and then an electrolyte gel is added to impregnate the electrode. This is a method for manufacturing a double-layer capacitor.

【0017】[0017]

【発明の実施の形態】本発明の発明の実施の形態を説明
する。本発明の電気二重層コンデンサ、電極及びそれら
の製造方法について、実施例を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described. The electric double layer capacitor, the electrode, and the method of manufacturing the same according to the present invention will be described with reference to examples.

【0018】本発明の電気二重層コンデンサの製造方法
の実施例1を説明する。まず、35wt%硫酸に分子量
400万のポリエチレングリコール(PEG)を2wt
%添加し、1日放置して硫酸ゲルを作製した。次に、P
VDC樹脂を850℃で炭化した後、22μm以下の粒
子サイズに粉砕し、35wt%の硫酸に投入し、煮沸含
浸した後、硫酸をろ過して取り除き、PVDC樹脂炭化
物粉末を得た。次に、このPVDC樹脂炭化物粉末を上
記硫酸ゲルに入れて混合し、1日放置したものを、集電
板上にドクターブレードを用いて25mm□の面積で厚
さ500μmになるよう均一に塗布して、電極2を作製
した。この電極2枚で200μm厚のガラス不織繊維の
セパレータ3を挾んでセルを組んだ。セパレータ2には
あらかじめ希硫酸を含浸させたものを用いた。(図1参
照)
Embodiment 1 of the method for manufacturing an electric double layer capacitor according to the present invention will be described. First, 2 wt% of polyethylene glycol (PEG) having a molecular weight of 4 million was added to 35 wt% sulfuric acid.
% And left for 1 day to produce a sulfuric acid gel. Next, P
The VDC resin was carbonized at 850 ° C., pulverized to a particle size of 22 μm or less, poured into 35% by weight sulfuric acid, boiled and impregnated, and filtered to remove the sulfuric acid to obtain a PVDC resin carbide powder. Next, this PVDC resin carbide powder was put into the above-mentioned sulfuric acid gel, mixed, and allowed to stand for 1 day. The resulting mixture was uniformly coated on a current collector plate using a doctor blade in an area of 25 mm square to a thickness of 500 μm. Thus, an electrode 2 was produced. A cell was assembled with the two electrodes sandwiching a 200 μm thick nonwoven glass separator 3. The separator 2 was previously impregnated with diluted sulfuric acid. (See Fig. 1)

【0019】実施例2を説明する。PVDC樹脂を85
0℃で炭化した後、22μm以下の粒子サイズに粉砕し
て、35wt%の硫酸に含浸しスラリ化した粉末を、集
電板上にドクターブレードを用いて25mm□の面積に
500μmの厚さになるよう均一に塗布した。次に、3
5wt%硫酸に分子量20万のポリエチレングリコール
(PEG)を2wt%添加して1日放置して作製した硫
酸ゲルを200μm厚のガラスセパレータに塗布し、ス
ラリ化した粉末を塗布した電極2で該セパレータ3を挾
んでセルを組んだ。電解質ゲルをセルに添加すると電極
2にしみこんだセルが得られた。(図1参照)
Embodiment 2 will be described. 85 PVDC resin
After carbonization at 0 ° C., pulverized to a particle size of 22 μm or less, impregnated with 35 wt% sulfuric acid, and slurried the powder, using a doctor blade on a current collector plate to an area of 25 mm □ to a thickness of 500 μm. It was evenly applied. Next, 3
Sulfuric acid gel prepared by adding 2 wt% of polyethylene glycol (PEG) having a molecular weight of 200,000 to 5 wt% sulfuric acid and allowed to stand for 1 day is applied to a 200 μm-thick glass separator, and the separator 2 is coated with the slurry powder by the electrode 2. I made a cell across 3 When the electrolyte gel was added to the cell, a cell soaked into the electrode 2 was obtained. (See Fig. 1)

【0020】比較例を説明する。PVDC樹脂を180
〜600℃で脱塩酸したものを22μm以下に振動ミリ
ング機で粉砕した粉をふるいわけた後、25mm□のカ
ーボン製型につめて、20〜250kg/cm2の圧力
で成形しながら温度850℃になるまで通電焼結した電
極を500μmの厚さに研磨し、35wt%硫酸に浸漬
し、減圧含浸を24時間行い、200μm厚のガラス不
織繊維のセパレータ3を挾んで対向させ、更にその外側
にPt板を配置し集電板とし、更にその外側からテフロ
ン板で挾み込んで固定した(図1参照)。
A comparative example will be described. 180 PVDC resin
After dehydrochlorination at ~ 600 ° C, the powder obtained by crushing with a vibration milling machine to 22 µm or less is sieved, packed in a 25 mm square carbon mold, and molded at a pressure of 20 to 250 kg / cm 2 at a temperature of 850 ° C. The electrode sintered by electro-sintering is polished to a thickness of 500 μm, immersed in 35 wt% sulfuric acid, impregnated under reduced pressure for 24 hours, and opposed to each other with a 200 μm-thick glass non-woven fiber separator 3 interposed therebetween. Then, a Pt plate was disposed to form a current collecting plate, and the current collecting plate was sandwiched and fixed from the outside by a Teflon plate (see FIG. 1).

【0021】実施例1、2及び比較例のセルを大気中で
保持し、容量の経時変化を観察した測定結果を表1に示
す。
Table 1 shows the measurement results obtained by observing the time-dependent changes in the capacity of the cells of Examples 1 and 2 and the comparative example while keeping them in the air.

【表1】 [Table 1]

【0022】表1に示すように、実施例1、2の硫酸ゲ
ルを電解質としたコンデンサセルは、初期容量は小さい
が、大気中での放置によっても経時変化は少ない。一
方、比較例のものでは、1000時間で半分以下の容量
になっていた。試験終了後、各セルを解体すると、比較
例のものでは電解液がドライアップしていたが、ゲル電
解質を用いたセルでは電極がゲルで覆われており、初期
状態とほとんど変わらない状態であった。
As shown in Table 1, the capacitor cells of Examples 1 and 2 using sulfuric acid gel as an electrolyte have a small initial capacity, but have little change with time even when left in the air. On the other hand, in the case of the comparative example, the capacity was reduced to half or less in 1000 hours. When the cells were disassembled after the test, the electrolyte solution was dried up in the comparative example, but in the cell using the gel electrolyte, the electrodes were covered with gel, which was almost the same as the initial state. Was.

【0023】なお、実際の製品とするときは、セルを樹
脂等で封止してドライアップ防止手段を併用すれば、更
なる長期安定化が見込まれる。
In the case of an actual product, further long-term stabilization can be expected by sealing the cell with a resin or the like and using dry-up prevention means in combination.

【0024】また、本発明は、細かい粉末を使用するた
め、粒子界面とバルクの電解液との接触面積の増大し拡
散抵抗を下げることができる。また、炭化粉を集電板上
に噴霧式や印刷法により薄く成形することも可能であ
る。
In the present invention, since a fine powder is used, the contact area between the particle interface and the bulk electrolyte can be increased and the diffusion resistance can be reduced. It is also possible to form the carbonized powder thinly on the current collector plate by spraying or printing.

【0025】[0025]

【発明の効果】本発明によれば、電極の拡散抵抗を下げ
ることができ、そして、電極を薄く成形しても強度が弱
くならず、また、電解液の漏れやドライアップの問題が
生じない電気二重層コンデンサ及び電極を得ることが可
能となる。
According to the present invention, the diffusion resistance of the electrode can be reduced, and the strength does not decrease even if the electrode is formed thin, and the problem of electrolyte leakage and dry-up does not occur. It becomes possible to obtain an electric double layer capacitor and an electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】作製した電極の特性の測定方法の説明図。FIG. 1 is an explanatory diagram of a method for measuring characteristics of a manufactured electrode.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 電極 3 集電板 4 固定板 DESCRIPTION OF SYMBOLS 1 Separator 2 Electrode 3 Current collector 4 Fixing plate

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 PVDC樹脂炭化物からなる電気二重層
コンデンサ用電極において、 前記PVDC樹脂炭化物は径22μm以下の粉末であ
り、そして、該粉末は電解質ゲルと混合したものである
ことを特徴とする電気二重層コンデンサ用電極。
1. An electrode for an electric double layer capacitor comprising a PVDC resin carbide, wherein the PVDC resin carbide is a powder having a diameter of 22 μm or less, and the powder is mixed with an electrolyte gel. Electrode for double layer capacitor.
【請求項2】 請求項1記載の電気二重層コンデンサ用
電極において、 上記電解質ゲルは、希硫酸に分子量20万〜400万の
ポリエチレングリコールを添加したものであることを特
徴とする電気二重層コンデンサ用電極。
2. The electric double layer capacitor according to claim 1, wherein said electrolyte gel is obtained by adding polyethylene glycol having a molecular weight of 200,000 to 4,000,000 to dilute sulfuric acid. Electrodes.
【請求項3】 PVDC樹脂炭化物からなる電極を具備
する電気二重層コンデンサにおいて、 前記電極は径22μm以下のPVDC樹脂炭化物粉末か
らなり、そして、該粉末は電解質ゲルと混合したもので
あることを特徴とする電気二重層コンデンサ。
3. An electric double layer capacitor provided with an electrode made of a PVDC resin carbide, wherein the electrode is made of a PVDC resin carbide powder having a diameter of 22 μm or less, and the powder is mixed with an electrolyte gel. And electric double layer capacitor.
【請求項4】 PVDC樹脂を600〜950℃で炭化
させ、得られた炭化物を粉砕して径22μm以下の粉末
とし、該粉末を電解質ゲルと混合することを特徴とする
電気二重層コンデンサ用電極の製造方法。
4. An electrode for an electric double layer capacitor, wherein a PVDC resin is carbonized at 600 to 950 ° C., and the obtained carbide is pulverized into a powder having a diameter of 22 μm or less, and the powder is mixed with an electrolyte gel. Manufacturing method.
【請求項5】 請求項4記載の電気二重層コンデンサ用
電極の製造方法において、 上記電解質ゲルは、希硫酸に分子量20万〜400万の
ポリエチレングリコールを添加したものであることを特
徴とする電気二重層コンデンサ用電極の製造方法。
5. The method for manufacturing an electrode for an electric double layer capacitor according to claim 4, wherein the electrolyte gel is obtained by adding polyethylene glycol having a molecular weight of 200,000 to 4,000,000 to dilute sulfuric acid. Manufacturing method of electrode for double layer capacitor.
【請求項6】 請求項4又は5に記載の電気二重層コン
デンサ用電極の製造方法において、 PVDC樹脂炭化物粉末を希硫酸に含浸してスラリ化し
たものに20万〜400万のポリエチレングリコールを
添加することを特徴とする電気二重層コンデンサ用電極
の製造方法。
6. The method for producing an electrode for an electric double layer capacitor according to claim 4, wherein 200,000 to 4,000,000 polyethylene glycol is added to a slurry obtained by impregnating a PVDC resin carbide powder with dilute sulfuric acid. A method of manufacturing an electrode for an electric double layer capacitor.
【請求項7】 請求項4〜6のいずれか1項に記載の電
気二重層コンデンサ用電極の製造方法において、 PVDC樹脂炭化物粉末を希硫酸に含浸した後、希硫酸
をろ過した粉末を電解質ゲルに混合することを特徴とす
る電気二重層コンデンサ用電極の製造方法。
7. The method for producing an electrode for an electric double layer capacitor according to claim 4, wherein the powder obtained by impregnating the PVDC resin carbide powder with dilute sulfuric acid and then filtering the diluted sulfuric acid is used as an electrolyte gel. A method for producing an electrode for an electric double layer capacitor, characterized in that:
【請求項8】 請求項4〜7のいずれか1項に記載の電
気二重層コンデンサ用電極の製造方法において、 PVDC樹脂炭化物粉末と電解質ゲルとの混合物を集電
板上に塗布することを特徴とする電気二重層コンデンサ
用電極の製造方法。
8. The method for manufacturing an electrode for an electric double layer capacitor according to claim 4, wherein a mixture of a PVDC resin carbide powder and an electrolyte gel is applied on a current collector plate. A method for producing an electrode for an electric double layer capacitor.
【請求項9】 PVDC樹脂を600〜950℃で炭化
し、粉砕して得られた径22μm以下の粉末で電極を作
製した後、該電極を電気二重層コンデンサに組込み、次
に、電解質ゲルを添加して前記電極にしみこませること
を特徴とする電気二重層コンデンサの製造方法。
9. An electrode is produced from a powder having a diameter of 22 μm or less obtained by carbonizing a PVDC resin at 600 to 950 ° C., and then incorporating the electrode into an electric double layer capacitor. A method for manufacturing an electric double layer capacitor, wherein the method further comprises adding and infiltrating the electrode.
JP9253547A 1997-09-18 1997-09-18 Electric double layer capacitor, electrode and manufacturing method thereof Pending JPH1197317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9253547A JPH1197317A (en) 1997-09-18 1997-09-18 Electric double layer capacitor, electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9253547A JPH1197317A (en) 1997-09-18 1997-09-18 Electric double layer capacitor, electrode and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH1197317A true JPH1197317A (en) 1999-04-09

Family

ID=17252894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9253547A Pending JPH1197317A (en) 1997-09-18 1997-09-18 Electric double layer capacitor, electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH1197317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2735008A4 (en) * 2011-07-18 2015-08-19 Indian Inst Scient An energy storage device, an inorganic gelled electrolyte and methods thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2735008A4 (en) * 2011-07-18 2015-08-19 Indian Inst Scient An energy storage device, an inorganic gelled electrolyte and methods thereof

Similar Documents

Publication Publication Date Title
KR0143178B1 (en) Polarizanble electrode
US5993996A (en) Carbon supercapacitor electrode materials
JPH1111921A (en) Solid activated carbon
JPH1197317A (en) Electric double layer capacitor, electrode and manufacturing method thereof
JP2778425B2 (en) Polarizing electrode, method of manufacturing the same, and electric double layer capacitor using the same
JPH11340103A (en) Manufacture of activated carbon material
JP3417206B2 (en) Activated carbon material for electric double layer capacitors
JP4518223B2 (en) Polarizable electrode for electric double layer capacitor and manufacturing method thereof
JPH11121295A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
JP2006278364A (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor
JP3872222B2 (en) Solid activated carbon structure, electric double layer capacitor using the same, and method for producing the same
JPH11121288A (en) Electric double-layer capacitor
JPH1197295A (en) Electric double layer capacitor, its manufacture, electrode, and separator
JPH11121294A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
JPH1197316A (en) Double electric layer capacitor and electrode and manufacture therefor
JPH1197313A (en) Double electric layer capacitor and electrode and manufacture therefor
JPH1197315A (en) Electric double layer capacitor, electrode, and manufacture therefor
JPH1197305A (en) Electric double layer capacitor, electrode and its manufacture
JPH1197310A (en) Manufacture of electrode of electric double layer capacitor
JPH1197312A (en) Double electric layer capacitor and electrode and manufacture therefor
JPH1197314A (en) Double electric layer capacitor and electrode and manufacture therefor
JPH11121287A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
JPH11121293A (en) Electric double-layer capacitor, electrode and manufacture thereof
JPH11121292A (en) Electric double-layer capacitor, electrode, and manufacture thereof
JPH1197309A (en) Manufacture of double layer capacitor and electrode