JPH1197314A - Double electric layer capacitor and electrode and manufacture therefor - Google Patents

Double electric layer capacitor and electrode and manufacture therefor

Info

Publication number
JPH1197314A
JPH1197314A JP9256980A JP25698097A JPH1197314A JP H1197314 A JPH1197314 A JP H1197314A JP 9256980 A JP9256980 A JP 9256980A JP 25698097 A JP25698097 A JP 25698097A JP H1197314 A JPH1197314 A JP H1197314A
Authority
JP
Japan
Prior art keywords
electrode
layer capacitor
noble metal
sulfuric acid
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9256980A
Other languages
Japanese (ja)
Inventor
Hideki Shibuya
秀樹 渋谷
Toshikazu Takeda
敏和 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Advanced Engineering Center Ltd
Original Assignee
Isuzu Advanced Engineering Center Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Advanced Engineering Center Ltd filed Critical Isuzu Advanced Engineering Center Ltd
Priority to JP9256980A priority Critical patent/JPH1197314A/en
Publication of JPH1197314A publication Critical patent/JPH1197314A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce an IR drop, by making an electrode to have a low resis tance and to increase a capacitance during a high electric current density, by adding noble metal having a sulfuric acid resistance and a catalytic property to carbide made of polyvinylidene chloride (PVDC), and by forming an electrode for a double electric layer capacitor by the carbide. SOLUTION: An electrode for a double electric layer capacitor is formed by adding noble metal having a sulfuric acid resistance and a catalytic property to carbide made of PVDC resin, and by using the carbide. The double electric layer capacitor can be formed by the electrode building in the capacitor. The double electric layer capacitor is preferably formed by powder of PVDC resin being carbonize at 180 deg.C to 600 deg.C, by the noble metal having a sulfuric acid resistance and a catalytic property being added to the generated carbide and being nobled, and after that by being sintered at 600 deg.C to 950 deg.C. Preferable samples of the noble metal having a sulfuric acid resistance and a catalytic property to be added to the carbide is Pt, Pd or Rh and the adding volume is preferable 0.01 to 30 weight %.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層コンデ
ンサ、電極及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor, an electrode and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電気二重層コンデンサは、活性炭の粉末
に電解液をしみこませ、活性炭と電解液の界面にできる
電気二重層の静電容量を利用したコンデンサである。耐
電圧、最高使用温度は、電解液の分解電圧・温度に依存
しており、定格電圧は数Vと低いが、ファラッドオーダ
の静電容量が容易に得られることから、電池の代わりに
半導体メモリ(D−RAM)のバックアップ用等の低電
流密度の用途に多く用いられるようになっており、最近
では、もっと電流密度の高い用途、例えば車載鉛蓄電池
の代わり、にも使用することが研究されている。
2. Description of the Related Art An electric double layer capacitor is a capacitor utilizing an electrostatic solution of an activated carbon powder and an electrolytic solution impregnated in an activated carbon powder. The withstand voltage and the maximum operating temperature depend on the decomposition voltage and temperature of the electrolytic solution, and the rated voltage is as low as several volts. However, since the Farad order capacitance can be easily obtained, the semiconductor memory is used instead of the battery. It has been widely used for low current density applications such as backup of (D-RAM), and has recently been studied for use in applications having higher current densities, for example, in place of in-vehicle lead-acid batteries. ing.

【0003】従来、電気二重層コンデンサ用電極とし
て、活性炭にバインダを混入させ焼結したものや焼結後
に腑活処理(酸化による不純物除去処理)したものを用
いていた。しかし、これらの電極を使用すると、次のよ
うな問題点が生じていた。 a)活性炭はマクロポアが多く細孔体積比率が高いた
め、密度が低い。 b)比表面積は大きいが細孔径の分布が広いため、電気
二重層コンデンサ用電極として働く実効的な細孔は少な
い。 c)焼結を促進する目的で比較的高温で焼結するため、
電気二重層コンデンサ用電極として働く実効的な細孔は
少ない。 d)低温(850℃以下)で焼結すると、グラファイト
化が進まないため、粒子間焼結強度がなく、そして、抵
抗値が高い。
Heretofore, as an electrode for an electric double layer capacitor, a material obtained by mixing a binder with activated carbon and sintering or a material subjected to an activation treatment (impurity removal treatment by oxidation) after sintering has been used. However, the use of these electrodes has caused the following problems. a) Activated carbon has a low density because it has many macropores and a high pore volume ratio. b) Although the specific surface area is large, the distribution of the pore diameter is wide, so that there are few effective pores acting as electrodes for electric double layer capacitors. c) sintering at a relatively high temperature to promote sintering,
There are few effective pores acting as electrodes for electric double layer capacitors. d) When sintering at a low temperature (850 ° C. or lower), graphitization does not proceed, so there is no intergranular sintering strength and the resistance value is high.

【0004】これらの問題点を解決するため、PVDC
(ポリ塩化ビニリデン)樹脂炭化物を使用することが提
案されている(特開平7−249551号公報参照)。
PVDC樹脂(あるいは塩化ビニリデン系共重合体)炭
化物を使用すると、他の活性炭と比較して長所を有して
おり、その理由として、次のことによるといわれてい
る。PVDC樹脂は、2つの脱塩酸反応温度を有してい
る。第一点は180℃から250℃で自己分子鎖内での
脱塩酸反応であり、第二点は450℃から550℃での
分子鎖間の脱塩酸反応で、その際分子間結合が生じてい
る。第一点での脱塩酸反応により形成される細孔は、3
6Å以下のマイクロポアとよばれるものであり、これが
電気二重層コンデンサ用電極として使用されると電解液
との界面として有効に働く。このため、電極としての腑
活処理は不必要である。また、第二点での脱塩酸反応に
より有効マイクロポアを保持しつつ比較的低温でも焼結
を進行させることができる。このため、電気二重層コン
デンサ用電極には不要である大きな径のメソポアやマク
ロポアの発生を抑えることができる。このため、PVD
C樹脂炭化物は、比表面積は活性炭に比べて少ないが、
焼結密度が活性炭に比べて大きいため、体積あたりの容
量は大きくなる。
[0004] To solve these problems, PVDC
It has been proposed to use (polyvinylidene chloride) resin carbide (see JP-A-7-249551).
The use of PVDC resin (or vinylidene chloride-based copolymer) carbide has advantages over other activated carbons because of the following. PVDC resins have two dehydrochlorination reaction temperatures. The first point is the dehydrochlorination reaction in the self-molecular chain at 180 ° C to 250 ° C, and the second point is the dehydrochlorination reaction between the molecular chains at 450 ° C to 550 ° C. I have. The pores formed by the dehydrochlorination reaction at the first point are 3
It is called a micropore of 6 ° or less, and when it is used as an electrode for an electric double layer capacitor, it works effectively as an interface with an electrolytic solution. For this reason, activation treatment as an electrode is unnecessary. In addition, sintering can proceed at a relatively low temperature while maintaining effective micropores by the dehydrochlorination reaction at the second point. For this reason, generation of mesopores or macropores having a large diameter, which is unnecessary for the electrode for an electric double layer capacitor, can be suppressed. For this reason, PVD
C resin carbide has a smaller specific surface area than activated carbon,
Since the sintering density is higher than that of activated carbon, the capacity per volume is large.

【0005】しかし、PVDC樹脂炭化物は、次のよう
な問題点を有している。 a)バインダレスであるため、成形しにくい。 b)低温(850℃以下)での焼結ではグラファイトが
進まないため、オーミックな抵抗が高い。そのため高電
流密度においてはIRドロップが大きく容量が取り出せ
ない。 c)PVDC樹脂炭化物は高密度に焼結できるが、粒子
間の空隙やマクロポアが少ないため拡散抵抗が高い。
However, the PVDC resin carbide has the following problems. a) It is difficult to mold because it is binderless. b) Ohmic resistance is high because graphite does not advance during sintering at low temperature (850 ° C. or lower). Therefore, at a high current density, the IR drop is large and the capacity cannot be taken out. c) The PVDC resin carbide can be sintered at a high density, but has a high diffusion resistance due to few voids and macropores between particles.

【0006】[0006]

【発明が解決しようとする課題】本発明は、電極を低抵
抗化して、IRドロップを低減し、そして、特に高電流
密度における容量を増加して、高出力密度の電気二重層
コンデンサを提供することである。
SUMMARY OF THE INVENTION The present invention provides a high power density electric double layer capacitor with reduced electrode resistance, reduced IR drop, and increased capacitance, especially at high current densities. That is.

【0007】[0007]

【課題を解決するための手段】本発明は、PVDC樹脂
炭化物からなる電気二重層コンデンサ用電極において、
耐硫酸性でかつ触媒性の貴金属を有する電気二重層コン
デンサ用電極である。
SUMMARY OF THE INVENTION The present invention relates to an electrode for an electric double layer capacitor comprising a PVDC resin carbide.
It is an electrode for an electric double layer capacitor having a sulfuric acid resistant and catalytic noble metal.

【0008】また、本発明は、上記貴金属は、Pt、P
d、Rhのいずれか1又は2以上である電気二重層コン
デンサ用電極である。
In the present invention, the noble metal may be Pt, P
An electrode for an electric double layer capacitor, which is one or more of d and Rh.

【0009】そして、本発明は、上記貴金属の添加量
は、0.01〜30wt%である電気二重層コンデンサ
用電極である。
The present invention is the electrode for an electric double layer capacitor, wherein the amount of the noble metal added is 0.01 to 30 wt%.

【0010】更に、本発明は、電解質が硫酸である電気
二重層コンデンサ用電極である。
Further, the present invention is an electrode for an electric double layer capacitor, wherein the electrolyte is sulfuric acid.

【0011】また、本発明は、PVDC樹脂炭化物から
なる電極を具備する電気二重層コンデンサにおいて、前
記電極は、耐硫酸性でかつ触媒性の貴金属を有する電気
二重層コンデンサである。
The present invention also relates to an electric double layer capacitor provided with an electrode made of a PVDC resin carbide, wherein the electrode is a sulfuric acid resistant and catalytic noble metal containing noble metal.

【0012】そして、本発明は、PVDC樹脂粉末を1
80〜600℃で炭化し、耐硫酸性でかつ触媒性の貴金
属を添加し、成形した後、600〜950℃で焼結する
電気二重層コンデンサ用電極の製造方法である。
Further, the present invention relates to a method for preparing a PVDC resin powder by adding
This is a method for producing an electrode for an electric double layer capacitor which is carbonized at 80 to 600 ° C., added with a sulfuric acid resistant and catalytic noble metal, molded, and sintered at 600 to 950 ° C.

【0013】更に、本発明は、上記貴金属は、無電解め
っきによりPVDC樹脂粉末に付着する電気二重層コン
デンサ用電極の製造方法である。
Further, the present invention is a method for producing an electrode for an electric double layer capacitor, wherein the noble metal is attached to a PVDC resin powder by electroless plating.

【0014】[0014]

【発明の実施の形態】本発明の発明の実施の形態を説明
する。本発明の電気二重層コンデンサ用電極の製造方法
の実施例を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described. An example of the method for manufacturing an electrode for an electric double layer capacitor according to the present invention will be described.

【0015】まず、実施例1を説明する。PVDC樹脂
を180〜600℃で加熱して脱塩酸反応・炭化させ、
振動ミリング機で粉砕しふるいわけて、粒径22μ以下
の炭化粉を得る。次に、炭化粉100gを35wt%硫
酸で煮沸し、水で洗浄しながらろ過を行った後に、10
wt%の濃度になるように塩化第一すずを4wt%希塩
酸に溶かした溶液500ccに入れて5〜30分間撹拌
した。この工程で炭化粉上にSnが担持する。その後、
ろ過と水洗を3回繰り返した後、0.05wt%の濃度
になるように塩化パラジウムを0.5wt%希塩酸に溶
かした溶液500ccに浸漬し、5〜30分間撹拌し
た。この工程で前工程で炭化粉上に担持したSnがPd
に置換され、炭化粉上にPdが担持される。その後更に
ろ過と水洗を5回繰返し、非担持金属及びイオンを取り
去った。その後、120℃で4時間乾燥した。乾燥した
炭化粉を25mm□のカーボン製型につめ、20〜40
0kg/cm2の圧力で成形しながら温度が850℃に
なるまで通電焼結して電極を得た。
First, a first embodiment will be described. The PVDC resin is heated at 180 to 600 ° C. to cause a dehydrochlorination reaction and carbonization,
It is pulverized and sieved with a vibration milling machine to obtain carbonized powder having a particle size of 22 μm or less. Next, 100 g of the carbonized powder was boiled with 35 wt% sulfuric acid, filtered while washing with water, and then filtered.
The solution was added to 500 cc of a solution of stannous chloride dissolved in 4% by weight of dilute hydrochloric acid to a concentration of 5% by weight and stirred for 5 to 30 minutes. In this step, Sn is supported on the carbonized powder. afterwards,
After repeating filtration and washing three times, the resultant was immersed in 500 cc of a solution of palladium chloride dissolved in 0.5 wt% diluted hydrochloric acid to a concentration of 0.05 wt%, and stirred for 5 to 30 minutes. In this step, the Sn supported on the carbonized powder in the previous step becomes Pd
And Pd is carried on the carbonized powder. Thereafter, filtration and washing were further repeated five times to remove unsupported metals and ions. Then, it dried at 120 degreeC for 4 hours. The dried carbonized powder is packed in a 25 mm square carbon mold and 20 to 40
While molding at a pressure of 0 kg / cm 2 , current sintering was performed until the temperature reached 850 ° C. to obtain an electrode.

【0016】次に、実施例2を説明する。PVDC樹脂
を180〜600℃で加熱して脱塩酸反応・炭化させ、
振動ミリング機で粉砕しふるいわけて、粒径22μ以下
の炭化粉を得る。次に、炭化粉100gを35wt%硫
酸で煮沸し、水で洗浄しながらろ過を行った後に、塩化
パラジウムを0.75wt%希塩酸に溶かした溶液に浸
漬し、30分間撹拌した。この無電解めっき工程で炭化
粉上にPdが析出した。その後、更にろ過と水洗を5回
繰り返し、非担持金属及びイオンを取り去った。その
後、120℃で4時間乾燥した。乾燥した炭化粉を25
mm□のカーボン製型につめ、20〜400kg/cm
2の圧力で成形しながら温度が850℃になるまで通電
焼結して電極を得た。
Next, a second embodiment will be described. The PVDC resin is heated at 180 to 600 ° C. to cause a dehydrochlorination reaction and carbonization,
It is pulverized and sieved with a vibration milling machine to obtain carbonized powder having a particle size of 22 μm or less. Next, 100 g of the carbonized powder was boiled with 35 wt% sulfuric acid, filtered while washing with water, then immersed in a solution of palladium chloride in 0.75 wt% diluted hydrochloric acid, and stirred for 30 minutes. In this electroless plating step, Pd was deposited on the carbonized powder. Thereafter, filtration and water washing were further repeated five times to remove unsupported metals and ions. Then, it dried at 120 degreeC for 4 hours. 25 dried carbonized powders
mm carbon mold, 20 ~ 400kg / cm
The electrode was obtained by current sintering until the temperature reached 850 ° C. while molding at a pressure of 2 .

【0017】実施例3を説明する。PVDC樹脂を18
0〜600℃で加熱して脱塩酸反応・炭化させ、振動ミ
リング機で粉砕しふるいわけて、粒径22μ以下の炭化
粉を得る。次に、炭化粉100gを35wt%硫酸で煮
沸し、水で洗浄しながらろ過を行った後に、塩化白金を
0.75wt%希塩酸に溶かした溶液に浸漬し、65℃
で60分間撹拌した。この無電解めっき工程で炭化粉上
にPtが析出した。その後、更にろ過と水洗を5回繰り
返し、非担持金属及びイオンを取り去った。その後、1
20℃で4時間乾燥した。乾燥した炭化粉を25mm□
のカーボン製型につめ、20〜400kg/cm2の圧
力で成形しながら温度が850℃になるまで通電焼結し
て電極を得た。
Embodiment 3 will be described. 18 PVDC resin
The mixture is heated at 0 to 600 ° C. to cause a dehydrochlorination reaction and carbonized, crushed and sieved by a vibration milling machine to obtain a carbonized powder having a particle size of 22 μm or less. Next, 100 g of the carbonized powder was boiled with 35 wt% sulfuric acid, filtered after washing with water, and then immersed in a solution of platinum chloride dissolved in 0.75 wt% diluted hydrochloric acid at 65 ° C.
For 60 minutes. In this electroless plating step, Pt was deposited on the carbonized powder. Thereafter, filtration and water washing were further repeated five times to remove unsupported metals and ions. Then 1
Dry at 20 ° C. for 4 hours. Dry carbonized powder 25mm □
And sintering with current until the temperature reached 850 ° C. while molding at a pressure of 20 to 400 kg / cm 2 to obtain an electrode.

【0018】実施例4を説明する。PVDC樹脂を18
0〜600℃で加熱して脱塩酸反応・炭化させ、振動ミ
リング機で粉砕しふるいわけて、粒径22μ以下の炭化
粉を得る。次に、炭化粉100gを35wt%硫酸で煮
沸し、水で洗浄しながらろ過を行った後に、塩化ロジウ
ムを0.75wt%希塩酸に溶かした溶液に浸漬し、6
0分間撹拌した。この無電解めっき工程で炭化粉上にP
hが析出した。その後、更にろ過と水洗を5回繰り返
し、非担持金属及びイオンを取り去った。その後、12
0℃で4時間乾燥した。乾燥した炭化粉を25mm□の
カーボン製型につめ、20〜400kg/cm2の圧力
で成形しながら温度が850℃になるまで通電焼結して
電極を得た。
Embodiment 4 will be described. 18 PVDC resin
The mixture is heated at 0 to 600 ° C. to cause a dehydrochlorination reaction and carbonized, crushed and sieved by a vibration milling machine to obtain a carbonized powder having a particle size of 22 μm or less. Next, 100 g of the carbonized powder was boiled with 35 wt% sulfuric acid, filtered while washing with water, and immersed in a solution in which rhodium chloride was dissolved in 0.75 wt% diluted hydrochloric acid.
Stirred for 0 minutes. In this electroless plating process, P
h precipitated. Thereafter, filtration and water washing were further repeated five times to remove unsupported metals and ions. Then, 12
Dry at 0 ° C. for 4 hours. The dried carbonized powder was packed in a 25 mm square carbon mold, and was sintered by current conduction until the temperature reached 850 ° C. while being molded at a pressure of 20 to 400 kg / cm 2 to obtain an electrode.

【0019】比較例を説明する。PVDC樹脂を180
〜600℃で加熱して脱塩酸反応・炭化させ、振動ミリ
ング機で粉砕しふるいわけて、粒径22μ以下の炭化粉
を得る。次に、炭化粉を25mm□のカーボン製型につ
め、20〜400kg/cm2の圧力で成形しながら温
度が850℃になるまで通電焼結して電極を得た。
A comparative example will be described. 180 PVDC resin
The mixture is heated at ~ 600 ° C to cause a dehydrochlorination reaction and carbonization, and then pulverized and sieved by a vibration milling machine to obtain a carbonized powder having a particle size of 22μ or less. Next, the carbonized powder was packed in a 25 mm square carbon mold, and while being formed at a pressure of 20 to 400 kg / cm 2 , current was sintered until the temperature reached 850 ° C. to obtain an electrode.

【0020】実施例1〜4及び比較例で得られた電極を
1mmの厚さに研磨し、4端子4深針法でシート抵抗を
測定した。次に、電極を35wt%硫酸に浸漬し、減圧
含浸を24時間行い、200μm厚のガラス不織繊維の
セパレータ1を挾んで電極2を対向させ、その外側にP
t板を配して集電板3とし、更にその外側からテフロン
からなある固定板4で挾み込んで固定してセルを作製し
た(図1参照)。このセルを35wt%硫酸に浸漬し
て、電極投影面積に対する電流密度0.02A/cm2
及び0.2A/cm2のときの容量を測定した。測定結
果を表1に示す。
The electrodes obtained in Examples 1 to 4 and Comparative Example were polished to a thickness of 1 mm, and the sheet resistance was measured by a four-terminal four-needle method. Next, the electrode was immersed in 35% by weight sulfuric acid, and impregnated under reduced pressure for 24 hours. The electrode 2 was opposed to the non-woven fiber separator 1 having a thickness of 200 μm with a separator 1 therebetween.
A t-plate was arranged to form a current collector plate 3, which was then sandwiched and fixed from the outside with a fixed plate 4 made of Teflon to produce a cell (see FIG. 1). This cell was immersed in 35% by weight sulfuric acid to give a current density of 0.02 A / cm 2 with respect to the electrode projected area.
And the capacity at 0.2 A / cm 2 were measured. Table 1 shows the measurement results.

【表1】 [Table 1]

【0021】表1に示すように、実施例1〜4の焼結前
に耐硫酸性でかつ触媒性の貴金属、Pt、Pd、Rhを
炭化粉に担持させたのち、焼結することで、シート抵抗
がさがり、容量が増加している。容量の増加の理由とし
ては、添加した貴金属の触媒作用により、電気二重層コ
ンデンサの充電時に電荷を水中での水素あるいは酸素イ
オンの吸脱着反応によって貯蔵し、レドックス容量が付
加されているためである。また、高電流密度側での容量
の増加は、シート抵抗が下がったために抵抗による損失
が減少し、前記した付加されたレドックス容量が現れた
ためである。
As shown in Table 1, prior to sintering in Examples 1 to 4, sulfuric acid-resistant and catalytic noble metals, Pt, Pd, and Rh were supported on carbonized powder and then sintered. The sheet resistance has decreased and the capacity has increased. The reason for the increase in capacity is that, due to the catalytic action of the added noble metal, the charge is stored by the adsorption and desorption reaction of hydrogen or oxygen ions in water during charging of the electric double layer capacitor, and the redox capacity is added. . The increase in capacitance on the high current density side is due to the decrease in loss due to resistance due to a decrease in sheet resistance and the appearance of the added redox capacitance described above.

【0022】貴金属の添加量は、0.01〜30wt%
とすることが好ましい。0.01wt%未満にすると電
極の抵抗を下げることができず、容量も増加させること
はできない。また、30wt%を超過すると、PVDC
樹脂炭化物の量が少なくなり、電気二重層コンデンサと
しての機能が低下する。
The amount of the noble metal added is 0.01 to 30 wt%
It is preferable that If it is less than 0.01 wt%, the resistance of the electrode cannot be reduced, and the capacity cannot be increased. Also, if it exceeds 30 wt%, PVDC
The amount of resin carbide is reduced, and the function as an electric double layer capacitor is reduced.

【0023】[0023]

【発明の効果】本発明により、電極を低抵抗化してIR
ドロップを低減することができ、また、特に高電流密度
における容量を増加することができ、高出力密度の電気
二重層コンデンサを提供することができる。
According to the present invention, the resistance of the electrode is reduced and the IR
The drop can be reduced, and the capacitance at a high current density can be increased, and an electric double layer capacitor with a high output density can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例の製造方法で作製した電極の特性の測
定方法の説明図。
FIG. 1 is an explanatory diagram of a method for measuring characteristics of an electrode manufactured by a manufacturing method according to an embodiment.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 電極 3 集電板 4 固定板 DESCRIPTION OF SYMBOLS 1 Separator 2 Electrode 3 Current collector 4 Fixing plate

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 PVDC樹脂炭化物からなる電気二重層
コンデンサ用電極において、 耐硫酸性でかつ触媒性の貴金属を有することを特徴とす
る電気二重層コンデンサ用電極。
1. An electrode for an electric double layer capacitor comprising a PVDC resin carbide, wherein the electrode has a sulfuric acid resistant and catalytic noble metal.
【請求項2】 請求項1記載の電気二重層コンデンサ用
電極において、 上記貴金属は、Pt、Pd、Rhのいずれか1又は2以
上であることを特徴とする電気二重層コンデンサ用電
極。
2. The electrode for an electric double layer capacitor according to claim 1, wherein the noble metal is at least one of Pt, Pd, and Rh.
【請求項3】 請求項1又は2に記載の電気二重層コン
デンサ用電極において、 上記貴金属の添加量は、0.01〜30wt%であるこ
とを特徴とする電気二重層コンデンサ用電極。
3. The electrode for an electric double layer capacitor according to claim 1, wherein the amount of the noble metal added is 0.01 to 30 wt%.
【請求項4】 請求項1〜3のいずれか1項に記載の電
気二重層コンデンサ用電極において、 電解質が硫酸であることを特徴とする電気二重層コンデ
ンサ用電極。
4. The electrode for an electric double layer capacitor according to claim 1, wherein the electrolyte is sulfuric acid.
【請求項5】 PVDC樹脂炭化物からなる電極を具備
する電気二重層コンデンサにおいて、 前記電極は、耐硫酸性でかつ触媒性の貴金属を有するこ
とを特徴とする電気二重層コンデンサ。
5. An electric double layer capacitor provided with an electrode made of a PVDC resin carbide, wherein said electrode has a sulfuric acid-resistant and catalytic noble metal.
【請求項6】 PVDC樹脂粉末を180〜600℃で
炭化し、耐硫酸性でかつ触媒性の貴金属を添加し、成形
した後、600〜950℃で焼結することを特徴とする
電気二重層コンデンサ用電極の製造方法。
6. An electric double layer wherein PVDC resin powder is carbonized at 180 to 600 ° C., a sulfuric acid-resistant and catalytic noble metal is added, molded, and then sintered at 600 to 950 ° C. Manufacturing method for capacitor electrodes.
【請求項7】 請求項5記載の電気二重層コンデンサ用
電極の製造方法において、 上記貴金属は、無電解めっきによりPVDC樹脂粉末に
付着することを特徴とする電気二重層コンデンサ用電極
の製造方法。
7. The method for manufacturing an electrode for an electric double layer capacitor according to claim 5, wherein the noble metal is attached to the PVDC resin powder by electroless plating.
JP9256980A 1997-09-22 1997-09-22 Double electric layer capacitor and electrode and manufacture therefor Pending JPH1197314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9256980A JPH1197314A (en) 1997-09-22 1997-09-22 Double electric layer capacitor and electrode and manufacture therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9256980A JPH1197314A (en) 1997-09-22 1997-09-22 Double electric layer capacitor and electrode and manufacture therefor

Publications (1)

Publication Number Publication Date
JPH1197314A true JPH1197314A (en) 1999-04-09

Family

ID=17300058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9256980A Pending JPH1197314A (en) 1997-09-22 1997-09-22 Double electric layer capacitor and electrode and manufacture therefor

Country Status (1)

Country Link
JP (1) JPH1197314A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010623A (en) * 2008-06-30 2010-01-14 Chubu Electric Power Co Inc Electrochemical capacitor and its production process
JP2010287865A (en) * 2009-06-15 2010-12-24 Chubu Electric Power Co Inc Electrochemical capacitor and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010623A (en) * 2008-06-30 2010-01-14 Chubu Electric Power Co Inc Electrochemical capacitor and its production process
JP2010287865A (en) * 2009-06-15 2010-12-24 Chubu Electric Power Co Inc Electrochemical capacitor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5678372B2 (en) Nitrogen-containing porous carbon material, method for producing the same, and electric double layer capacitor using the nitrogen-containing porous carbon material
KR100569188B1 (en) Carbon-porous media composite electrode and preparation method thereof
JP5191483B2 (en) Porous conductive carbon materials and their use
KR101811764B1 (en) Non-Pt catalyst for oxygen reduction electrode and manufacturing method thereof
JP3602933B2 (en) Activated carbon substrate
JPH1197314A (en) Double electric layer capacitor and electrode and manufacture therefor
JPH10172870A (en) Electric double layer capacitor
CN108178141A (en) A kind of preparation method of highly conductive, high-tap density, high specific surface micro-pore charcoal
JP2003183014A (en) Porous carbon material, its producing method and electric double layer capacitor
JPH11307405A (en) Electric double layer capacitor and electrode and activated carbon and its manufacture
JPH11121290A (en) Electric double-layer capacitor, electrode and manufacture thereof
CN1810637A (en) Process of preparing active carbon with high specific surface area and process of making super capacitor
JP3872222B2 (en) Solid activated carbon structure, electric double layer capacitor using the same, and method for producing the same
JPH11162795A (en) Activated carbon powder, carbon body, carbon electrode electrode for electric double layer capacitor, and manufacture of the same
JP2001058807A (en) Polyvinylidene chloride resin powder and activated carbon
JPH1197315A (en) Electric double layer capacitor, electrode, and manufacture therefor
JPH1197311A (en) Double electric layer capacitor and electrode and manufacture therefor
JPH11121288A (en) Electric double-layer capacitor
JP2004304073A (en) Electrochemical capacitor
JP2006216748A (en) Carbon composite powder for electrode for electric dipole layer capacitor and manufacturing method for carbon composite powder and electric dipole layer capacitor using carbon composite powder
JPH1197317A (en) Electric double layer capacitor, electrode and manufacturing method thereof
JPH1197316A (en) Double electric layer capacitor and electrode and manufacture therefor
JPH1197309A (en) Manufacture of double layer capacitor and electrode
JPH11121291A (en) Electric double-layer capacitor, electrode and manufacture thereof
JPH1197307A (en) Manufacture of electric double layer capacitor and electrode