JPH1197307A - Manufacture of electric double layer capacitor and electrode - Google Patents

Manufacture of electric double layer capacitor and electrode

Info

Publication number
JPH1197307A
JPH1197307A JP9256973A JP25697397A JPH1197307A JP H1197307 A JPH1197307 A JP H1197307A JP 9256973 A JP9256973 A JP 9256973A JP 25697397 A JP25697397 A JP 25697397A JP H1197307 A JPH1197307 A JP H1197307A
Authority
JP
Japan
Prior art keywords
electrode
electric double
double layer
layer capacitor
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9256973A
Other languages
Japanese (ja)
Inventor
Hideki Shibuya
秀樹 渋谷
Toshikazu Takeda
敏和 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Advanced Engineering Center Ltd
Original Assignee
Isuzu Advanced Engineering Center Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Advanced Engineering Center Ltd filed Critical Isuzu Advanced Engineering Center Ltd
Priority to JP9256973A priority Critical patent/JPH1197307A/en
Publication of JPH1197307A publication Critical patent/JPH1197307A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase capacitance, reduce leakage current, and improve reliability, by chemically oxidizing a sintered member in which polyvinylidene chloride(PVDC) resin carbide is sintered in a specified temperature range, and electrochemically oxidizing and reducting the sintered member in electrolyte. SOLUTION: A sintered member in which PVDC resin carbide is sintered at 600-950 deg.C is chemically oxidized, and electrochemically reduced in electrolyte, and an electrode for electric double layer capacitor is manufactured. After charging is performed by incorporating the electrode for electric double layer capacitor as an electric double layer capacitor, charging is repeated by changing polarities of electrodes, oxidizing and reducing treatment is electrochemically performed, and an electric double layer capacitor is manufactured. Concretely, a sintered body polished to be 1 mm in thickness is dipped in nitric acid of 1N, boiled for 60 minutes, boiled and washed with ion exchange water, and repeatedly boiled and washed as far as conductivity of cleaning fluid becomes at most 2 μS/cm. Thus an electrode is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層コンデ
ンサと電極の製造方法に関する。
The present invention relates to an electric double layer capacitor and a method for manufacturing an electrode.

【0002】[0002]

【従来の技術】電気二重層コンデンサは、活性炭の粉末
に電解液をしみこませ、活性炭と電解液の界面にできる
電気二重層の静電容量を利用したコンデンサである。耐
電圧、最高使用温度は、電解液の分解電圧・温度に依存
しており、定格電圧は数Vと低いが、ファラッドオーダ
の静電容量が容易に得られることから、電池の代わりに
半導体メモリ(D−RAM)のバックアップ用等の低電
流密度の用途に多く用いられるようになっており、最近
では、もっと電流密度の高い用途、例えば車載鉛蓄電池
の代わり、にも使用することが研究されている。
2. Description of the Related Art An electric double layer capacitor is a capacitor utilizing an electrostatic solution of an activated carbon powder and an electrolytic solution impregnated in an activated carbon powder. The withstand voltage and the maximum operating temperature depend on the decomposition voltage and temperature of the electrolytic solution, and the rated voltage is as low as several volts. However, since the Farad order capacitance can be easily obtained, the semiconductor memory is used instead of the battery. It has been widely used for low current density applications such as backup of (D-RAM), and has recently been studied for use in applications having higher current densities, for example, in place of in-vehicle lead-acid batteries. ing.

【0003】従来、電気二重層コンデンサ用電極とし
て、活性炭にバインダを混入させ焼結したものや焼結後
に腑活処理(酸化による不純物除去処理)したものを用
いていた。しかし、これらの電極を使用すると、次のよ
うな問題点が生じていた。 a)活性炭はマクロポアが多く細孔体積比率が高いた
め、密度が低い。 b)比表面積は大きいが細孔径の分布が広いため、電気
二重層コンデンサ用電極として働く実効的な細孔は少な
い。 c)焼結を促進する目的で比較的高温で焼結するため、
電気二重層コンデンサ用電極として働く実効的な細孔は
少ない。 d)低温(850℃以下)で焼結すると、グラファイト
化が進まないため、粒子間焼結強度がなく、そして、抵
抗値が高い。
Heretofore, as an electrode for an electric double layer capacitor, a material obtained by mixing a binder with activated carbon and sintering or a material subjected to an activation treatment (impurity removal treatment by oxidation) after sintering has been used. However, the use of these electrodes has caused the following problems. a) Activated carbon has a low density because it has many macropores and a high pore volume ratio. b) Although the specific surface area is large, the distribution of the pore diameter is wide, so that there are few effective pores acting as electrodes for electric double layer capacitors. c) sintering at a relatively high temperature to promote sintering,
There are few effective pores acting as electrodes for electric double layer capacitors. d) When sintering at a low temperature (850 ° C. or lower), graphitization does not proceed, so there is no intergranular sintering strength and the resistance value is high.

【0004】これらの問題点を解決するため、PVDC
(ポリ塩化ビニリデン)樹脂炭化物を使用することが提
案されている(特開平7−249551号公報参照)。
PVDC樹脂(あるいは塩化ビニリデン系共重合体)炭
化物を使用すると、他の活性炭と比較して長所を有して
おり、その理由として、次のことによるといわれてい
る。PVDC樹脂は、2つの脱塩酸反応温度を有してい
る。第一点は180℃から250℃で自己分子鎖内での
脱塩酸反応であり、第二点は450℃から550℃での
分子鎖間の脱塩酸反応で、その際分子間結合が生じてい
る。第一点の温度範囲で加熱すると脱塩酸反応により細
孔が形成され、その細孔は、36Å以下のマイクロポア
とよばれるものであって、これが電気二重層コンデンサ
用電極として使用されると電解液との界面として有効に
働く。このため、電極としての腑活処理は不必要であ
る。また、第二点の温度範囲以上で加熱すると、脱塩酸
反応により有効マイクロポアを保持しつつ比較的低温で
も焼結を進行させることができる。このため、電気二重
層コンデンサ用電極には不要である大きな径のメソポア
やマクロポアの発生を抑えることができる。このため、
PVDC樹脂炭化物は、比表面積は活性炭に比べて少な
いが、焼結密度が活性炭に比べて大きくなり、体積あた
りの容量は大きくなる。
[0004] To solve these problems, PVDC
It has been proposed to use (polyvinylidene chloride) resin carbide (see JP-A-7-249551).
The use of PVDC resin (or vinylidene chloride-based copolymer) carbide has advantages over other activated carbons because of the following. PVDC resins have two dehydrochlorination reaction temperatures. The first point is the dehydrochlorination reaction in the self-molecular chain at 180 ° C to 250 ° C, and the second point is the dehydrochlorination reaction between the molecular chains at 450 ° C to 550 ° C. I have. When heated in the temperature range of the first point, pores are formed by the dehydrochlorination reaction, and the pores are called micropores having a diameter of 36 ° or less. It works effectively as an interface with the liquid. For this reason, activation treatment as an electrode is unnecessary. Further, when the heating is performed at a temperature not lower than the temperature range of the second point, sintering can be advanced even at a relatively low temperature while maintaining effective micropores by the dehydrochlorination reaction. For this reason, generation of mesopores or macropores having a large diameter, which is unnecessary for the electrode for an electric double layer capacitor, can be suppressed. For this reason,
The PVDC resin carbide has a smaller specific surface area than activated carbon, but has a higher sintering density than activated carbon and a larger capacity per volume.

【0005】しかし、PVDC樹脂炭化物は、次のよう
な問題点を有している。 a)バインダレスであるため、成形しにくい。 b)低温(850℃以下)での焼結ではグラファイトが
進まないため、オーミックな抵抗が高い。そのため高電
流密度においてはIRドロップが大きく容量が取り出せ
ない。 c)PVDC樹脂炭化物は高密度に焼結できるが、粒子
間の空隙やマクロポアが少ないため拡散抵抗が高い。
However, the PVDC resin carbide has the following problems. a) It is difficult to mold because it is binderless. b) Ohmic resistance is high because graphite does not advance during sintering at low temperature (850 ° C. or lower). Therefore, at a high current density, the IR drop is large and the capacity cannot be taken out. c) The PVDC resin carbide can be sintered at a high density, but has a high diffusion resistance due to few voids and macropores between particles.

【0006】従来、電気二重層コンデンサの活性炭電極
を硝酸等の酸化性の物質により表面を酸化する試みがあ
るが、酸化剤が残存したりして電気二重層コンデンサと
しては不必要な表面官能基が導入されてしまい、この影
響により、クーロン効率等が悪化して、信頼性を損なっ
ていた。また、電気化学的に表面を酸化還元処理する方
法も知られているが、電気二重層コンデンサとして用い
る場合は、アノードとカソードを別途処理する必要があ
るため複雑な作業が必要となって、思ったほどの効果は
得られていない。さらに、PVDC樹脂などの腑活処理
を施していない樹脂を低温で炭化して得られた活性炭に
ついては、これらの検討が行われていない。
Conventionally, there has been an attempt to oxidize the surface of an activated carbon electrode of an electric double layer capacitor with an oxidizing substance such as nitric acid. However, surface functional groups which are unnecessary as an electric double layer capacitor due to the remaining oxidizing agent. Has been introduced, and as a result, Coulomb efficiency and the like have deteriorated, and reliability has been impaired. Also, a method of electrochemically redox-treating the surface is known, but when used as an electric double-layer capacitor, the anode and the cathode need to be treated separately, which requires complicated work. Not as effective. Furthermore, these studies have not been conducted on activated carbon obtained by carbonizing a resin that has not been subjected to activation treatment, such as a PVDC resin, at a low temperature.

【0007】[0007]

【発明が解決しようとする課題】本発明は、容量を増大
し、漏れ電流を低減して、高い信頼性を得た電気二重層
コンデンサと電極の製造方法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing an electric double layer capacitor and an electrode having a high reliability by increasing a capacity and reducing a leakage current.

【0008】[0008]

【課題を解決するための手段】本発明は、PVDC樹脂
炭化物を600〜950℃で焼結させた焼結体を化学的
に酸化処理し、次に、電解液中で電気化学的に酸化還元
処理する電気二重層コンデンサ用電極の製造方法であ
る。
According to the present invention, a sintered body obtained by sintering a PVDC resin carbide at 600 to 950 ° C. is chemically oxidized, and then electrochemically oxidized and reduced in an electrolytic solution. This is a method for producing an electrode for an electric double layer capacitor to be treated.

【0009】また、本発明は、PVDC樹脂炭化物から
なる電極を具備する電気二重層コンデンサの製造方法に
おいて、化学的に酸化処理された電極を電気二重層コン
デンサとして組み込んで充電を行い、次に電極の極性を
変えて充電することを繰り返して、電気化学的に酸化還
元処理する電気二重層コンデンサの製造方法である。
Further, the present invention relates to a method for manufacturing an electric double layer capacitor having an electrode made of PVDC resin carbide, in which a chemically oxidized electrode is incorporated as an electric double layer capacitor and charged. This is a method for manufacturing an electric double layer capacitor in which charging is repeated while changing the polarity of the electric double layer, and the oxidation and reduction are performed electrochemically.

【0010】[0010]

【発明の実施の形態】本発明の発明の実施の形態を説明
する。本発明の電気二重層コンデンサと電極の製造方法
について、実施例を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described. The manufacturing method of the electric double layer capacitor and the electrode of the present invention will be described with reference to examples.

【0011】電気二重層コンデンサ用電極の製造方法の
実施例1を説明する。まず、焼結体を作製する。PVD
C樹脂を300℃で炭化したものを振動ミリング機で粉
砕し、25mm□のカーボン製型につめて、20〜40
0kg/cm2の圧力で成形しながら温度が850℃に
なるまで通電焼結し、1mm厚に研磨して焼結体を作製
した。得られた焼結体を1Nの硝酸に浸漬し、60分間
煮沸した。次に、イオン交換水を用いて煮沸洗浄を行
い、洗浄液の導電率が2μS/cm以下になるまで煮沸
洗浄を繰り返し、電極を得た。得られた電極を35wt
%硫酸に浸漬し、減圧含浸を24時間行い、200μm
厚のガラス不織繊維のセパレータ1を挾んで電極2を対
向させ、その外側にPt板を配して集電板3とし、更に
その外側からテフロンからなる固定板4で挾み込んで固
定してセルを作製した(図1参照)。このセルを35w
t%硫酸に浸漬して1.2Vまで充電し、その電圧を1
時間保持し、次に、電極の極性を変えて1.2Vまで充
電し、その電圧を1時間保持して、電気化学的に酸化還
元処理をした後、電極投影面積に対する電流密度2mA
/cm2で0.8Vまでの充放電を繰り返して、電極体
積あたりの容量を測定した
Embodiment 1 of a method for manufacturing an electrode for an electric double layer capacitor will be described. First, a sintered body is prepared. PVD
C resin was carbonized at 300 ° C., crushed by a vibration milling machine, packed in a 25 mm square carbon mold,
While being molded at a pressure of 0 kg / cm 2 , current sintering was performed until the temperature reached 850 ° C., and polishing was performed to a thickness of 1 mm to produce a sintered body. The obtained sintered body was immersed in 1N nitric acid and boiled for 60 minutes. Next, boiling washing was performed using ion-exchanged water, and boiling washing was repeated until the conductivity of the washing liquid became 2 μS / cm or less, thereby obtaining an electrode. 35 wt% of the obtained electrode
% Sulfuric acid, vacuum impregnation for 24 hours, 200 μm
The electrodes 2 are opposed to each other with a thick glass non-woven fiber separator 1 interposed therebetween, and a Pt plate is disposed outside thereof to form a current collecting plate 3, which is further sandwiched and fixed by a fixing plate 4 made of Teflon. Thus, a cell was produced (see FIG. 1). This cell is 35w
The battery was immersed in t% sulfuric acid and charged to 1.2 V.
Then, the electrode was charged to 1.2 V by changing the polarity of the electrode, and the voltage was held for 1 hour to perform electrochemical oxidation-reduction treatment.
The charge / discharge was repeated up to 0.8 V at / cm 2 to measure the capacity per electrode volume.

【0012】比較例1を説明する。まず、実施例1と同
様に焼結体を作製する。焼結体を硝酸に浸漬し、60分
間煮沸して、化学的に酸化処理した。このときの硝酸の
濃度は、1Nと6Nで行った。次に、イオン交換水を用
いて煮沸洗浄を行い、洗浄液の導電率が2μS/cm以
下になるまで沸騰洗浄を繰り返し、電極を得た。得られ
た電極を35wt%硫酸に浸漬し、減圧含浸を24時間
行い、200μm厚のガラス不織繊維のセパレータ1を
挾んで電極2を対向させ、その外側にPt板を配して集
電板3とし、更にその外側からテフロンからなる固定板
4で挾み込んで固定してセルを作製した(図1参照)。
このセルを35wt%硫酸に浸漬して、電流密度2mA
/cm2で0.8Vまでの充放電を繰り返して、電極体
積あたりの容量を測定した
Comparative Example 1 will be described. First, a sintered body is manufactured in the same manner as in the first embodiment. The sintered body was immersed in nitric acid, boiled for 60 minutes, and chemically oxidized. The nitric acid concentration at this time was 1N and 6N. Next, boiling washing was performed using ion-exchanged water, and boiling washing was repeated until the conductivity of the washing liquid became 2 μS / cm or less, thereby obtaining an electrode. The obtained electrode was immersed in 35 wt% sulfuric acid, and impregnated under reduced pressure for 24 hours. The electrode 2 was opposed to the non-woven fiber separator 1 having a thickness of 200 μm, and a Pt plate was disposed outside the electrode 2 to collect a current collector plate. 3, and the cell was fabricated by sandwiching and fixing a Teflon fixing plate 4 from the outside (see FIG. 1).
This cell was immersed in 35 wt% sulfuric acid, and the current density was 2 mA.
The charge / discharge was repeated up to 0.8 V at / cm 2 to measure the capacity per electrode volume.

【0013】比較例2を説明する。電極には、化学的酸
化処理及び電気化学的酸化処理をすることなく、電極を
35wt%硫酸に浸漬し、減圧含浸を24時間行い、2
00μm厚のガラス不織繊維のセパレータ1を挾んで電
極2を対向させ、その外側にPt板を配して集電板3と
し、更にその外側からテフロンからなる固定板4で挾み
込んで固定してセルを作製した(図1参照)。このセル
を35wt%硫酸に浸漬して、電流密度2mA/cm2
で0.8Vまでの充放電を繰り返して、電極体積あたり
の容量を測定した。
A comparative example 2 will be described. The electrode was immersed in 35 wt% sulfuric acid without being subjected to chemical oxidation and electrochemical oxidation, and was impregnated under reduced pressure for 24 hours.
The electrodes 2 are opposed to each other with a glass non-woven fiber separator 1 having a thickness of 00 μm therebetween, a Pt plate is disposed outside the collector 2 to form a current collector plate 3, and a fixing plate 4 made of Teflon is further fixed from the outside thereof. Thus, a cell was produced (see FIG. 1). This cell was immersed in 35 wt% sulfuric acid, and the current density was 2 mA / cm 2.
The charge / discharge to 0.8 V was repeated, and the capacity per electrode volume was measured.

【0014】比較例3として、電極を35wt%硫酸に
浸漬し、減圧含浸を24時間行い、200μm厚のガラ
ス不織繊維のセパレータ1を挾んで電極2を対向させ、
その外側にPt板を配して集電板3とし、更にその外側
からテフロンからなる固定板4で挾み込んで固定してセ
ルを作製した(図1参照)。このセルを35wt%硫酸
に浸漬して、1.2Vまで充電を行い、その電圧を1時
間保持する。次に、電極の極性を変えて1.2Vまで充
電し、1時間保持して、電気化学的に酸化還元処理をし
た後、電極投影面積に対する電流密度2mA/cm2
0.8Vまでの充放電を繰り返して、電極体積あたりの
容量を測定した。
In Comparative Example 3, the electrodes were immersed in 35 wt% sulfuric acid, impregnated under reduced pressure for 24 hours, and the electrodes 2 were opposed to each other with a 200 μm-thick glass nonwoven fiber separator 1 interposed therebetween.
A Pt plate was disposed outside the collector plate 3 to form a current collector plate 3. From the outside, a cell was produced by sandwiching and fixing with a fixing plate 4 made of Teflon (see FIG. 1). This cell is immersed in 35 wt% sulfuric acid, charged to 1.2 V, and the voltage is maintained for one hour. Next, the polarity of the electrode was changed, and the battery was charged to 1.2 V, held for 1 hour, electrochemically oxidized and reduced, and then charged to 0.8 V at a current density of 2 mA / cm 2 with respect to the projected area of the electrode. The discharge was repeated, and the capacity per electrode volume was measured.

【0015】各電極の漏れ電流の測定は、0.8Vまで
125mAで定電流充電を行い、30分後の漏れ電流を
測定した。測定結果を表1に示す。
The leakage current of each electrode was measured at a constant current of 125 mA up to 0.8 V, and the leakage current after 30 minutes was measured. Table 1 shows the measurement results.

【表1】 [Table 1]

【0016】表1に示すように、実施例1の化学的に酸
化処理した後電気化学的に酸化還元した電極では、電極
体積容量が向上し、漏れ電流は小さくなっている。これ
は、化学的酸化処理で生成した、電気二重層コンデンサ
に不必要な表面官能基を還元又は可逆的反応性基に変化
させることができるため、比較例1〜3の電極に比べて
安定した性能が得られるのである。比較例1の化学的酸
化処理だけの電極では、電極体積容量は増大するが、漏
れ電流は大きくなり、一方、比較例3の電気化学的酸化
還元処理だけの電極では、漏れ電流は小さくなっている
が、電極体積容量の顕著な増加は認められなかった。
As shown in Table 1, in the electrode of Example 1, which was electrochemically oxidized and then electrochemically oxidized and reduced, the electrode volume capacity was improved and the leakage current was small. This is because the surface functional groups unnecessary for the electric double-layer capacitor generated by the chemical oxidation treatment can be changed to the reducing or reversible reactive groups, and thus are more stable than the electrodes of Comparative Examples 1 to 3. You get performance. In the electrode of Comparative Example 1 only with the chemical oxidation treatment, the electrode volume capacity increases, but the leakage current increases. On the other hand, in the electrode of Comparative Example 3 with the electrochemical oxidation only treatment, the leakage current decreases. However, no significant increase in electrode volume capacity was observed.

【0017】なお、電極の製造方法として説明したが、
化学的酸化処理した電極を電気二重層コンデンサに組み
込んで、電気化学的に酸化還元処理を行うことも可能で
あり、同様な作用効果を奏することができる。
Although the method of manufacturing the electrode has been described,
It is also possible to electrochemically perform the oxidation-reduction treatment by incorporating the electrode that has been subjected to the chemical oxidation treatment into the electric double layer capacitor, and to achieve the same effect.

【0018】[0018]

【発明の効果】本発明により、電極体積容量を増大し、
漏れ電流を低減して、高い信頼性を得た電気二重層コン
デンサと電極の製造方法を提供することができる。
According to the present invention, the electrode volume capacity can be increased,
It is possible to provide a method of manufacturing an electric double-layer capacitor and an electrode with reduced leakage current and high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例の製造方法で作製した電極の特性の測
定方法の説明図。
FIG. 1 is an explanatory diagram of a method for measuring characteristics of an electrode manufactured by a manufacturing method according to an embodiment.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 電極 3 集電板 4 固定板 DESCRIPTION OF SYMBOLS 1 Separator 2 Electrode 3 Current collector 4 Fixing plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 PVDC樹脂炭化物を600〜950℃
で焼結させた焼結体を化学的に酸化処理し、次に、電解
液中で電気化学的に酸化還元処理することを特徴とする
電気二重層コンデンサ用電極の製造方法。
1. A PVDC resin carbide at 600 to 950 ° C.
A method for producing an electrode for an electric double layer capacitor, characterized by chemically oxidizing a sintered body sintered in step (1), and then performing electrochemical oxidation and reduction in an electrolytic solution.
【請求項2】 PVDC樹脂炭化物からなる電極を具備
する電気二重層コンデンサの製造方法において、 化学的に酸化処理された電極を電気二重層コンデンサと
して組み込んで充電を行い、次に電極の極性を変えて充
電することを繰り返して、電気化学的に酸化還元処理す
ることを特徴とする電気二重層コンデンサの製造方法。
2. A method of manufacturing an electric double layer capacitor having an electrode made of a PVDC resin carbide, comprising charging a chemically oxidized electrode as an electric double layer capacitor, and then changing the polarity of the electrode. A method for producing an electric double layer capacitor, comprising repeating oxidation and reduction by electrochemical charging and charging.
JP9256973A 1997-09-22 1997-09-22 Manufacture of electric double layer capacitor and electrode Pending JPH1197307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9256973A JPH1197307A (en) 1997-09-22 1997-09-22 Manufacture of electric double layer capacitor and electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9256973A JPH1197307A (en) 1997-09-22 1997-09-22 Manufacture of electric double layer capacitor and electrode

Publications (1)

Publication Number Publication Date
JPH1197307A true JPH1197307A (en) 1999-04-09

Family

ID=17299956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9256973A Pending JPH1197307A (en) 1997-09-22 1997-09-22 Manufacture of electric double layer capacitor and electrode

Country Status (1)

Country Link
JP (1) JPH1197307A (en)

Similar Documents

Publication Publication Date Title
KR100836524B1 (en) Active Material Having High Capacitance For An Electrode, Manufacturing Method thereof, Electrode And Energy Storage Apparatus Comprising The Same
JP5473282B2 (en) Carbon material for electric double layer capacitor and manufacturing method thereof
CN111943208B (en) Method for preparing titanium carbide (MXene) flexible electrode based on high-temperature carbonization of polymer and application of method
JP2014530502A (en) High voltage electrochemical double layer capacitor
JP4053955B2 (en) Manufacturing method of electric double layer capacitor
JPH1197307A (en) Manufacture of electric double layer capacitor and electrode
KR101689479B1 (en) Active carbon for electrical-double-layer capacitor electrode and method for manufacturing the same
CN108538648A (en) A kind of method that anode stripping graphite prepares nitridation graphene
CN103280340A (en) Nickel-based electrode material and preparation method thereof
JPH1197309A (en) Manufacture of double layer capacitor and electrode
JP4039862B2 (en) Method for producing electrode material
JPH1197310A (en) Manufacture of electrode of electric double layer capacitor
JP4318337B2 (en) Electrode for non-aqueous electrochemical device and method for producing the same
JPH1197314A (en) Double electric layer capacitor and electrode and manufacture therefor
JPH1197311A (en) Double electric layer capacitor and electrode and manufacture therefor
JPH1197295A (en) Electric double layer capacitor, its manufacture, electrode, and separator
JPH11121289A (en) Electric double-layer capacitor, electrode and manufacture thereof
JPH1197317A (en) Electric double layer capacitor, electrode and manufacturing method thereof
JP4350482B2 (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor using the same
JPH10149957A (en) Manufacturing method of activated carbon for electrode of organic solvent-based electrical double layered capacitor
Saito et al. Thermal Pore Stability of Activated Carbon Materials to Heat Treatment above 1000° C and Lithium-ion Capacitors Using Heated Silicon-carbide-derived Carbon
Lee et al. Effect of high temperature treatment on electrochemical properties of carbon nanofiber membrane
JPH1197316A (en) Double electric layer capacitor and electrode and manufacture therefor
TUZLUCA YEŞİLBAĞ Investigation of Flower-like ZnCo 2 O 4 Nanowire Arrays Growth on 3D-Ni Foam as Supercapacitor Electrode Material.
JPH11121288A (en) Electric double-layer capacitor