JP4318337B2 - Electrode for non-aqueous electrochemical device and method for producing the same - Google Patents

Electrode for non-aqueous electrochemical device and method for producing the same Download PDF

Info

Publication number
JP4318337B2
JP4318337B2 JP4689199A JP4689199A JP4318337B2 JP 4318337 B2 JP4318337 B2 JP 4318337B2 JP 4689199 A JP4689199 A JP 4689199A JP 4689199 A JP4689199 A JP 4689199A JP 4318337 B2 JP4318337 B2 JP 4318337B2
Authority
JP
Japan
Prior art keywords
solvent
electrode
electrode material
vinylidene fluoride
fluoride polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4689199A
Other languages
Japanese (ja)
Other versions
JP2000216065A (en
Inventor
和広 目黒
靖浩 多田
宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP4689199A priority Critical patent/JP4318337B2/en
Publication of JP2000216065A publication Critical patent/JP2000216065A/en
Application granted granted Critical
Publication of JP4318337B2 publication Critical patent/JP4318337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a reduction in the capacity of an electrochemical element, the expansion of the capacity of the element, a deformation of the element and the like, by a method wherein the solvent residual quantity in a disc-shaped electrode material is set in a weight lighter than a specified weight including a polyvinylidene fluoride polymer and a poor solvent, which consists of a powder carbon material and contains a polyvinylidene fluoride of a quantity detectable by a gas chromatography. SOLUTION: Active carbon powder and a carbon blacks are mixed with an N-methyl-2- pyrrolidone and a polyvinylidene fluoride and an electrode flux slurry is obtained. This electrode flux slurry is applied on the one side of an aluminum foil and is dried by heating to obtain a sheetlike electrode material. This sheetlike electrode material is dipped in a dichloromethane consisting of a poor solvent to clean and is dried by heating. The sheetlike electrode material subsequent to the cleaning and the drying is punched out into a circular form and, after the circular electrode material is pressed, a disc-shaped electrode material is obtained and the disc-shaped electrode material is formed into polarized electrodes 1 and 2. The obtained disc-shaped electrode material contains lower than 10 wt.% of a solvent, preferably 2 wt.% of a solvent, as a residual solvent quantity measured by a thermobalance. At this time, the electrode material contains the solvent in a quantity detectable the dichloromethane by a gas chromatography.

Description

【0001】
【発明の属する技術分野】
本発明は、非水系電気二重層キャパシタを構成するために好適に使用されるフッ化ビニリデン重合体系の電極の製造方法に関する。特に、非水系電気二重層キャパシタの信頼性面での改良に関する。
【0002】
【従来の技術】
近年、電子あるいは電気機器の小型軽量化を含む発展にはめざましいものがある。これに伴い、これら機器の電源となる電池あるいは電気二重層キャパシタ等の電気化学素子の大容量化ならびに小型化の要請も強く、この面では、有機溶媒系の電解液を用いる非水系電気化学素子が著しく適している。特に、電気二重層キャパシタは、大容量かつ長寿命で、急速充填が可能、充放電が容易、二次電池に比べてサイクル特性に優れている、二次電池の中で最も信頼性の高いNi−Cd電池に比べて安価であるといった特徴を有するため、新たなエネルギーデバイスとして、多くの分野で機能的な応用が期待されるようになっている。さらに、電気二重層キャパシタは、電子機器のバックアップ電源などの小電力用から、電気自動車やハイブリッドカーの補助電源などの大電力分野への応用も検討されている。それに伴って、分極性電極に対しても大容量化などの高性能化が求められている。
【0003】
電気二重層キャパシタは、分極性電極と電解質界面に生じる電気二重層に蓄積される容量を利用するキャパシタである。電気二重層キャパシタに用いられる電解液は、有機溶媒系と水溶液系に大別されるが、有機溶媒系は耐電圧が高く容量を大きくできるので、高容量キャパシタとして有利である。分極性電極は比表面積や嵩密度が大きく、電気化学的に不活性であって、電気抵抗が低いことが要求される。電気二重層キャパシタ用の分極性電極構造体は、粉末活性炭材料、電気伝導性を付与する導電材、結合材としてのバインダーおよび金属集電体で構成される。電極構造体の作製方法としては、粉末活性炭材料、導電材、バインダーからなる混合物に溶剤を添加して混合スラリーとしたものを集電体に塗布または浸漬し乾燥して作製する方法(例えば、特開平10−64765号公報)や、粉末活性炭材料、導電材、溶剤に不溶のバインダーからなる混合物に溶剤を添加して混練り成形し、乾燥して得たシートを集電体表面に導電性接着剤等を介して接合した後にプレスおよび熱処理乾燥して作製する方法(例えば、特開平9−275041号公報)などがあり、作製工程のコストを考えると、特に前者の作製方法が好ましい。
【0004】
バインダーとして電気化学的安定性などの点からポリフッ化ビニリデンが注目され、特開平8−55761号公報には、ポリフッ化ビニリデンなどの含フッ素ポリマーとN−メチル2−ピロリドン、トルエン、エチルアセテート、ジメチルフタレート等の有機溶剤と、活性炭粉末と、必要に応じて導電性付与剤からなるスラリーを集電体上にコートし、その後乾燥して有機溶剤を除去して分極性電極を形成する工程を有する電気二重層キャパシタの製法が開示されている。
【0005】
同様な方法により、但し、活性炭粉末の代りに、主として黒鉛系あるいは非黒鉛系の炭素粉末を用いて、形成した電極は、非水系二次電池の負極としても広く用いられている。
【0006】
【発明が解決しようとする課題】
しかしながら、上述のようにして形成された電極を含む電気化学素子、特に電気二重層キャパシタ、において使用の継続に伴い、素子容量が低下したり、あるいは素子ケースが膨張・変形する等の不都合がしばしば見出された。
【0007】
したがって、本発明の主要な目的は、フッ化ビニリデン系重合体バインダーを使用して形成した電極を含む非水系電気二重層キャパシタの継続使用下において、素子容量の低下、素子ケースの膨張・変形等の問題を低減し、信頼性ある素子を構成するために好適なフッ化ビニリデン重合体系の電極の製造方法を提供することにある。
【0008】
本発明者らの研究によれば、上述の目的の達成のためには製造工程に使用したフッ化ビニリデン系重合体の溶媒を効果的に低減する電極の製造方法を採用することが極めて有効であることが見出された。
【0009】
すなわち、本発明の非水系電気二重層キャパシタ用電極の製造方法は、0.5〜10重量%のフッ化ビニリデン系重合体と比表面積が500〜3000m /gの活性炭粉末とを含む電極合剤に加えてフッ化ビニリデン系重合体の良溶媒を含む電極合剤層を含む電極構造体を、該良溶媒と相溶性があり且つ該良溶媒の沸点よりも低い100℃以下の沸点を有するアルコール類および塩素化炭化水素から選ばれたフッ化ビニリデン系重合体の貧溶媒で洗浄後、乾燥することにより、熱天秤(TGA)法により測定した溶剤残留量が2重量%以下の非水系電気二重層キャパシタ用電極を製造することを特徴とするものである。
【0010】
本発明者らが、上記目的で研究して本発明に到達するに至った経緯について付言する。
【0011】
上記したような、非水系電気化学素子における、素子容量の低下、素子ケースの膨張・変形などの不都合の発生原因は、電極形成後には本来ならば電極から除去されるべき溶媒の一部が電極中に残存し、素子の継続使用中においてこの残存溶媒が電気化学的に分解することに起因している。特に、上記問題は、比表面積が大きく細孔構造に富む活性炭粉末を使用する、電気二重層キャパシタにおいてより顕在化し得る(事実、活性炭粉末と有機溶媒との組合せにもよるが電極中の10重量パーセントを超える量が残存し得る)。これらのことは、少なくとも上記問題に当面した関連技術者の一部による推測の範囲内であったと解される。
【0012】
従って、電極形成後の溶媒除去を効率的に行うために比較的低沸点でフッ化ビニリデン系重合体に対する良好な溶解能を有する有機溶媒を選択使用する試みもいくつかは行なわれている。しかしながら、フッ化ビニリデン系重合体に対する良溶媒は一般に沸点が100℃を超え、このような良溶媒の選択使用によって、電極中の溶剤残留量を効果的に低減することは困難である。特に、粉末炭素材料との組合せにより電極合剤層を形成すべきフッ化ビニリデン系重合体は、機能的には電極中の不活性物質であり、電極容量を高めるためには、その電極合剤層中での使用量は、例えば10重量%以下というようにできるだけ低減すべきである。そして、このような少量のフッ化ビニリデン系重合体により粉末炭素材料を効果的に保持して、堅牢な電極合剤層を形成するためには、フッ化ビニリデン系重合体を効率的に溶解して、均一に薄膜ならびに網状化した状態で粉末炭素材料を保持し得るようにするために、フッ化ビニリデン系重合体の良溶媒の使用は不可欠であり、その溶解能を犠牲にして、溶剤残留量を低減することは、良好な特性の電極を形成するという観点で得策ではない。本発明者らは、このような観点で、更に研究を進めた結果、フッ化ビニリデン系重合体と粉末炭素材料、特に活性炭粉末と、フッ化ビニリデン系重合体の良溶媒とで、フッ化ビニリデン系重合体が良好に薄膜化し網状化した状態で粉末炭素材料を保持する電極合剤層を有する電極構造体を形成した後、比較的低沸点で該フッ化ビニリデン系重合体の良溶媒とは相溶性を有するが自身はフッ化ビニリデン系重合体の貧溶媒である有機溶媒により電極構造体を洗浄し、その後乾燥する工程結合を採ることにより、形成される電極合剤層中の溶剤残留量を全体として著しく低減し、且つ該有機溶媒自体はフッ化ビニリデン系重合体の貧溶媒であるから、一旦形成されたフッ化ビニリデン系重合体の薄膜による粉末炭素材料の結着機能は本質的に損なわれることがないことを知見して本発明を完成したものである。
【0013】
【発明の実施の形態】
本発明の非水系電極の製造方法の典型的な実施の形態を、逐次説明する。
【0014】
電極バインダーを構成するフッ化ビニリデン系重合体としては、フッ化ビニリデンの単独重合体または、フッ化ビニリデン50重量パーセント以上とこれと共重合可能な単量体50重量パーセント以下との共重合体が適宜選択使用される。
【0015】
フッ化ビニリデン単量体と共重合可能な単量体としては、例えばエチレン、プロピレン、等の炭化水素系単量体、フッ化ビニル、3フッ化エチレン、3フッ化塩化エチレン、4フッ化エチレン、6フッ化プロピレン、フルオロアルキルビニルエーテル、等の含フッ素単量体、マレイン酸モノメチル、シトラコン酸モノメチル、等のカルボキシル基含有単量体、またはアリルグリシジルエーテル、クロトン酸グリシジルエステル、等のエポキシ基含有ビニル単量体、が挙げられるが、必ずしもこれらに限定されるものではない。なかでも6フッ化プロピレンや3フッ化塩化エチレンを含むフッ化ビニリデン共重合体が好ましく用いられる。
【0016】
バインダーとしてのフッ化ビニリデン系重合体のインヘレント粘度は、特に制限はなく目的に応じて選択することができるが、インヘレント粘度が0.5dl/gから5.0dl/gであることが電極の密着性、機械強度などの点からより好ましい。ここでいうインヘレント粘度とはポリマーの分子量の目安として用いられるもので、樹脂4gを1リットルのN,N−ジメチルホルムアミドに溶解させた溶液の30℃における対数粘度をいう。
【0017】
一般に、上記したようなフッ化ビニリデン系重合体を、一旦その良溶媒に溶解して予めバインダー溶液を形成し、その後該バインダー溶液に粉末炭素材料を分散させて、電極形成用合剤スラリーを形成する。
【0018】
本発明においてフッ化ビニリデン系重合体の良溶媒とは、室温(25℃)において、当該フッ化ビニリデン系重合体の1重量%以上、好ましくは5重量%以上の濃度のバインダー溶液を形成し得る溶解能を有する有機溶媒を云い、その好適な例としては、N−メチル−2−ピロリドン(沸点202℃)ジメチルホルムアミド(沸点163℃)、N,N−ジメチルアセトアミド(沸点165℃)、N,N−ジメチルスルホキシド(沸点189℃)、ヘキサメチルホスホアミド(沸点235℃)、テトラメチルウレア(沸点178℃)、トリエチルホスフェート(沸点215℃)など、従来非水系電気化学素子の電極形成用バインダー溶液の形成用に用いられたものが挙げられる。これら有機溶媒は、単独でまたは二種以上混合して、一般にフッ化ビニリデン系重合体濃度が0.5〜30重量%、好ましくは2〜15重量%程度のバインダー溶液が形成される。
【0019】
電極合剤スラリーは、必要に応じて40℃以上の加温下に保持された上記で得られたバインダー溶液と、粉末炭素材料及び必要に応じて添加される後記する導電材等の任意添加剤とを、スラリー固形分中のフッ化ビニリデン系重合体バインダー量が約0.5〜10重量%、より好ましくは2〜10重量%となるように、混合することにより得られる。もっとも、操作的には、一旦バインダー溶液を調製することなく、フッ化ビニリデン系重合体、有機溶媒および粉末炭素材等を一挙に混合することによっても、電極合剤スラリーは形成可能である。
【0020】
電気二重層キャパシタの分極性電極形成用の電極合剤の場合、活性炭粉末としては、比表面積が500〜3000m/gのものを好適に用いることができ、具体例としては、やしがら系活性炭、フェノール系活性炭、石油コークス系・ピッチ系活性炭、ポリ塩化ビニリデン系活性炭等が挙げられる。
【0021】
分極性電極作製用の電極合剤は、上記の溶剤とフッ化ビニリデン系重合体と活性炭粉末から構成される。電気伝導性を付与するために導電材を添加することが通常であり、導電材の具体例としては、カーボンブラック、天然黒鉛、人造黒鉛、酸化チタンや酸化ルテニウム等の金属酸化物や金属ファイバーが使用できる。中でもカーボンブラックの一種であるケッチェンブラックやアセチレンブラックは好ましく用いられる。導電材の添加量は、必要とされる導電性の程度、に応じて選択することができる。
【0022】
上記のようにして調製された合剤スラリーは集電体への良好な塗布性を有する。塗布の方法は公知の方法でよく、中でもドクターブレード法が好ましく用いられる。合剤が塗布された集電体(電極構造体)は、必要に応じて一旦20〜200℃で乾燥した後、本発明に従い、低沸点貧溶媒による洗浄工程に付される。
【0023】
洗浄溶媒として用いる低沸点貧溶媒としては、上述したフッ化ビニリデン系重合体の良溶媒であるN−メチル−2−ピロリドン(沸点202℃)やN,N−ジメチルホルムアミド(沸点163℃)などと相溶性があり、なおかつ使用した良溶媒より低い沸点をもったフッ化ビニリデン系重合体の貧溶媒であるものであれば特に限定されない。より具体的には、上述の洗浄溶媒としては、室温(25℃)において、フッ化ビニリデン系重合体に対し0.5重量%以下、好ましくは0.1重量%以下の溶解能しか示さず、且つ電極構造体製造工程で使用されるフッ化ビニリデン系重合体の良溶媒と相溶性(好ましくは無限溶解性)を有するものが好ましく用いられる。例えば、アルコール類では、メチルアルコール(沸点65℃)、イソプロピルアルコール(沸点82℃)など、塩素化炭化水素では、塩化メチレン(沸点40℃)、1,1,1−トリクロロエタン(沸点74℃)などの溶媒を例示できるが、不燃性であり乾燥が容易な塩化メチレンが特に好ましい。洗浄溶剤に良溶媒を使用した場合、洗浄中にバインダーであるフッ化ビニリデン系重合体が電極構造体より流出し、バインダーとしての機能を失うため好ましくない。
【0024】
上述したようなフッ化ビニリデン系重合体の貧溶媒は、少なくとも非水系電気化学素子の電極形成用フッ化ビニリデン系重合体バインダー溶液の形成には、従来用いられなかったものである。
【0025】
洗浄方法としては、温度5〜100℃、好ましくは10〜50℃の洗浄溶剤中に乾燥後の合剤が塗布された集電体を放置するだけでも洗浄効果があるが、必要に応じて連続的に溶剤中を移動させたり、超音波等による振動を加え洗浄効果を高めることができる。洗浄後の電極構造体は、乾燥のため40〜170℃で熱処理される。乾燥後の電極構造体は必要に応じてプレス工程を経て、非水系電気二重層キャパシタ用電極構造体として提供される。
【0026】
このようにして得られた本発明の非水系電気二重層キャパシタ用の電極構造体における電極合剤層は、溶剤残留量が2重量%以下と、極めて効果的に低減されていることに加えて、その製造方法の結果として、通常のフッ化ビニリデン系重合体系電極には見られないフッ化ビニリデン系重合体の貧溶媒をガスクロマトフラフィーにより検出可能な量で含むことが特徴的である。
【0027】
本発明で構成される電気二重層キャパシタとしては、図1に示す構造のものを例示することができる。すなわち、図1は、単セルの電気二重層キャパシタの一例の断面図である。この電気二重層キャパシタは、2つの分極性電極1、2によりセパレーター3を挟み、これらをさらにステンレススチール製キャップ4と、電解液6を入れたステンレス製缶5との間に、パッキング7を介して封入したものである。その結果、電解液6はセパレーター3に含浸され一対の分極性電極1および2間に配置されることとなる。電解液の溶媒としてはプロピレンカーボネートが一般的であり、電解質としては第4級ホスホニウム塩、第4級アンモニウム塩が一般的であり、例えば、(CNBFのプロピレンカーボネート溶液などの有機電解液を使用することができる。電解液中の電解質の濃度は5〜95重量%の範囲で適宜選択することができる。
【0028】
上記においては、本発明の電気二重層キャパシタならびにこれに含まれる分極性電極およびその形成用電極合剤について主として述べた
【0029】
【実施例】
以下、本発明を、実施例および比較例により更に具体的に説明する。
【0030】
(実施例1)
活性炭粉末(比表面積1200m/g)80重量部およびカーボンブラック(電気化学工業株式会社製「デンカブラック」)12重量部に、N−メチル−2−ピロリドンおよびポリフッ化ビニリデン(「KF#1700」呉羽化学工業株式会社製)をN−メチル−2−ピロリドンに溶解した溶液をポリフッ化ビニリデン8重量部、N−メチル−2−ピロリドン331重量部になるように添加し30℃にて混合し、電極合剤スラリーを得た。
【0031】
この電極合剤をアルミ箔の片面上にドクターブレード法で塗布し、加熱乾燥(130℃、30分)してシート状電極材料を得た。このシート状電極を25℃の塩化メチレン中に30分間浸漬して洗浄し、さらに130℃で10分間加熱乾燥した。洗浄乾燥後のシート状電極を直径17mmの円形に打ち抜き、プレス(102MPa、1分)した後、直径15mmの円形に打ち抜き、計3枚の円盤状電極材を得た。そのうち、2枚を図1に示すように分極性電極1及び2とし、残り1枚を残留溶媒試験用試料とした。この分極性電極1、2をガラス繊維製不織布のセパレーター3を挟みステンレス製キャップ4及びステンレス製缶5からなる容器中に収納した。次に、ステンレス容器中に所定の電解液6((C2H5)4NBF4のプロピレンカーボネート溶液:1mol/l)を入れ分極性電極1、2及びセパレーター3に十分に含浸させたのちポリプロピレン製パッキング7を介してキャップ4及び缶5の端部をかしめ一体化した。
【0032】
このようにして作製した図1に示すような構成の電気二重層キャパシタの信頼性を下記のようにして、60℃の恒温槽中での加速試験をすることにより評価した(60℃の200時間は20℃の4ケ月余りに相当すると考えられる)。すなわち、該キャパシタを、60℃の恒温槽中に保持し、電流密度1.6mA/cmで2.5Vまで充電し、3時間充電状態を保持した後に、同電流密度で0Vまで放電しそのエネルギー量を求め、この値を初期エネルギー容量とした。その後すぐに同条件で再充電し充電状態で200時間保持後に、同条件で放電し放電容量を測定した。容量は、電極中の活性炭単位重量当りエネルギー容量(mWh/g)として算出した。上記試験後の電極を取り出し目視観察したが、形状変化は観察されなかった。
【0033】
別途、上記で得られた円盤状電極材の一部を、熱天秤(Mettler社製「TGA」)に載せ、窒素気流中で20℃/分で600℃まで昇温した。途中、約40℃〜約350℃で見られる減少重量分を、残留溶媒量として、アルミ箔を除いた電極合剤に対する重量%で算出したところ0.2重量%であった。
【0034】
結果を以下の実施例、比較例のそれとともに後記表1にまとめて記す。
【0035】
別途、円盤状電極材の一部を、溶媒二硫化炭素中に分散させ、濾過後、母液をガスクロマトグラフィー((株)島津製作所製「GC−9A」)により分析したところ、重量比でN−メチル−2−ピロリドン4.6ppmに対し、1.5ppmの塩化メチレンが含まれていることが確認された。
【0036】
(実施例2)
実施例1と同様にして得られた合剤スラリーを使用し、洗浄溶媒を塩化メチレンからメチルアルコールに変えた以外は、実施例1と同様にして、分極性電極および電気二重層キャパシタを作成し、評価した。
【0037】
(比較例1)
実施例1と同様にして得られた合剤スラリーを使用し、塩化メチレン洗浄をしないこと以外は実施例1と同様にして、分極性電極および電気二重層キャパシタを作製し、評価した。
【0038】
【表1】

Figure 0004318337
【0039】
表1によれば本発明の実施例にかかる電極は、比較例に比べ、容量劣化が小さく信頼性が高いことがわかる。
【0040】
【発明の効果】
上述したように、本発明によれば、一旦フッ化ビニリデン系重合体の良溶媒を用いて形成したフッ化ビニリデン系重合体系電極構造体を、更に低沸点のフッ化ビニリデン系重合体の貧溶媒で洗浄後に乾燥することにより、従来に比べて、著しく溶剤残留量を低減した非水系電気二重層キャパシタ用電極が提供され、これにより残留溶剤により惹き起されていた素子容量の低下、素子ケースの膨張変形などの従来素子に見られた問題が著しく低減した信頼性の高い電気二重層キャパシタ、が得られる。
【図面の簡単な説明】
【図1】 本発明により構成される電気二重層キャパシタの一例の構造の断面図。
【符号の説明】
1、2 分極性電極
3 セパレータ
4 キャップ
5 缶
6 電解液
7 パッキング[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a non-aqueous-based electric double layer Capacity vinylidene polymer system of electrodes is preferably used to configure the data. In particular, it relates to an improvement in the reliability of a non-aqueous electric double layer capacitor .
[0002]
[Prior art]
In recent years, there have been remarkable developments including reductions in size and weight of electronic or electrical equipment. Along with this, there is a strong demand for increasing the capacity and miniaturization of electrochemical elements such as batteries or electric double layer capacitors that serve as power sources for these devices. In this aspect, non-aqueous electrochemical elements that use organic solvent electrolytes Is remarkably suitable. In particular, the electric double layer capacitor has a large capacity, long life, can be rapidly filled, is easily charged / discharged, and has excellent cycle characteristics compared to the secondary battery. Since it has a feature that it is cheaper than a -Cd battery, functional applications are expected in many fields as a new energy device. In addition, electric double layer capacitors are being studied for applications in low power applications such as backup power supplies for electronic devices, and in high power applications such as auxiliary power supplies for electric vehicles and hybrid cars. Along with this, high performance such as a large capacity is also required for polarizable electrodes.
[0003]
An electric double layer capacitor is a capacitor that utilizes a capacity accumulated in an electric double layer generated at an interface between a polarizable electrode and an electrolyte. Electrolytic solutions used for electric double layer capacitors are roughly classified into organic solvent systems and aqueous solution systems. Organic solvent systems are advantageous as high-capacitance capacitors because of their high withstand voltage and large capacity. A polarizable electrode is required to have a large specific surface area and bulk density, be electrochemically inactive, and have a low electrical resistance. A polarizable electrode structure for an electric double layer capacitor is composed of a powdered activated carbon material, a conductive material imparting electrical conductivity, a binder as a binder, and a metal current collector. The electrode structure is manufactured by adding a solvent to a mixture of a powdered activated carbon material, a conductive material, and a binder to form a mixed slurry, which is applied to or immersed in a current collector and dried (for example, a special material). No. 10-64765), powdered activated carbon material, conductive material, a mixture of a binder insoluble in a solvent, a solvent is added, kneaded and dried, and a sheet obtained by conductive bonding to the surface of the current collector There are methods (for example, Japanese Patent Laid-Open No. 9-275041) for producing by pressing and heat treatment drying after joining via an agent, and the former production method is particularly preferred in view of the cost of the production process.
[0004]
Polyvinylidene fluoride has attracted attention as a binder in terms of electrochemical stability. JP-A-8-55761 discloses fluorine-containing polymers such as polyvinylidene fluoride and N-methyl 2-pyrrolidone, toluene, ethyl acetate, dimethyl. A step of coating a current collector with a slurry comprising an organic solvent such as phthalate, activated carbon powder, and a conductivity-imparting agent as necessary, followed by drying to remove the organic solvent to form a polarizable electrode. A method of manufacturing an electric double layer capacitor is disclosed.
[0005]
An electrode formed by a similar method, but using mainly graphite-based or non-graphite-based carbon powder instead of activated carbon powder, is widely used as a negative electrode for non-aqueous secondary batteries.
[0006]
[Problems to be solved by the invention]
However, in the electrochemical element including the electrode formed as described above, particularly the electric double layer capacitor, there is often a problem that the element capacity is reduced or the element case is expanded or deformed with continued use. It was found.
[0007]
Therefore, the main object of the present invention is to reduce the element capacity, expand and deform the element case, etc. under continuous use of the non-aqueous electric double layer capacitor including the electrode formed using the vinylidene fluoride polymer binder. It is an object of the present invention to provide a method for producing an electrode of a vinylidene fluoride polymer system suitable for reducing the above-mentioned problem and constituting a reliable device.
[0008]
According to the study by the present inventors, it is extremely effective to adopt an electrode manufacturing method that effectively reduces the solvent of the vinylidene fluoride polymer used in the manufacturing process in order to achieve the above-mentioned object. It was found that there was.
[0009]
That is, the method for producing an electrode for a non-aqueous electric double layer capacitor according to the present invention comprises an electrode assembly comprising 0.5 to 10 % by weight of a vinylidene fluoride polymer and an activated carbon powder having a specific surface area of 500 to 3000 m 2 / g. An electrode structure including an electrode mixture layer containing a good solvent for vinylidene fluoride polymer in addition to the agent has a boiling point of 100 ° C. or lower that is compatible with the good solvent and lower than the boiling point of the good solvent A non-aqueous electrical system having a solvent residual amount of 2% by weight or less measured by a thermobalance (TGA) method by washing with a poor solvent of a vinylidene fluoride polymer selected from alcohols and chlorinated hydrocarbons and then drying. An electrode for a double layer capacitor is manufactured .
[0010]
The background that the present inventors have studied for the above-mentioned purpose and arrived at the present invention will be added.
[0011]
In the non-aqueous electrochemical element as described above, the cause of the inconvenience such as reduction in element capacity and expansion / deformation of the element case is that part of the solvent that should be removed from the electrode after electrode formation is This is caused by electrochemical decomposition of the residual solvent during continuous use of the device. In particular, the above problem can be more apparent in an electric double layer capacitor using activated carbon powder having a large specific surface area and a rich pore structure (in fact, 10 wt% in the electrode depending on the combination of activated carbon powder and an organic solvent). An amount exceeding percent can remain). It is understood that these were at least within the scope of speculation by some of the related engineers who faced the above problem.
[0012]
Therefore, some attempts have been made to selectively use an organic solvent having a relatively low boiling point and a good solubility in a vinylidene fluoride polymer in order to efficiently remove the solvent after forming the electrode. However, a good solvent for a vinylidene fluoride polymer generally has a boiling point exceeding 100 ° C., and it is difficult to effectively reduce the residual amount of the solvent in the electrode by selecting and using such a good solvent. In particular, a vinylidene fluoride polymer that should form an electrode mixture layer in combination with a powdered carbon material is an inactive substance in the electrode functionally, and in order to increase the electrode capacity, the electrode mixture The amount used in the layer should be reduced as much as possible, for example 10% by weight or less. In order to effectively hold the powdered carbon material with such a small amount of vinylidene fluoride polymer and form a robust electrode mixture layer, the vinylidene fluoride polymer is efficiently dissolved. Therefore, in order to be able to hold the powdered carbon material uniformly in a thin film and in a reticulated state, it is indispensable to use a good solvent for the vinylidene fluoride polymer, and at the expense of its dissolving ability, Reducing the amount is not a good idea in terms of forming electrodes with good characteristics. As a result of further researches from such a viewpoint, the present inventors have found that a vinylidene fluoride polymer and a powdered carbon material , in particular, activated carbon powder, and a good solvent for the vinylidene fluoride polymer, vinylidene fluoride. What is a good solvent for the vinylidene fluoride polymer at a relatively low boiling point after forming an electrode structure having an electrode mixture layer that retains the powdered carbon material in a state where the polymer is well thinned and reticulated? Residual amount of solvent in the electrode mixture layer formed by adopting the process combination of washing the electrode structure with an organic solvent which is a poor solvent for vinylidene fluoride polymer and then drying it. Since the organic solvent itself is a poor solvent for the vinylidene fluoride polymer, the binding function of the powdered carbon material by the thin film of the vinylidene fluoride polymer once formed is essentially Spoiled Is it and completed the knowledge to the present invention that there is no.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
A typical embodiment of the method for producing a non-aqueous electrode of the present invention will be described sequentially.
[0014]
Examples of the vinylidene fluoride polymer constituting the electrode binder include a homopolymer of vinylidene fluoride or a copolymer of 50 weight percent or more of vinylidene fluoride and 50 weight percent or less of a monomer copolymerizable therewith. It is appropriately selected and used.
[0015]
Examples of the monomer copolymerizable with the vinylidene fluoride monomer include hydrocarbon monomers such as ethylene and propylene, vinyl fluoride, ethylene trifluoride, ethylene trifluoride, tetrafluoroethylene. , Fluorine-containing monomers such as propylene hexafluoride and fluoroalkyl vinyl ether, carboxyl group-containing monomers such as monomethyl maleate and monomethyl citraconic acid, or epoxy groups such as allyl glycidyl ether and crotonic acid glycidyl ester Examples of the vinyl monomer include, but are not necessarily limited to these. Of these, a vinylidene fluoride copolymer containing propylene hexafluoride or ethylene trifluoride chloride is preferably used.
[0016]
The inherent viscosity of the vinylidene fluoride polymer as a binder is not particularly limited and can be selected according to the purpose. However, the inherent viscosity is 0.5 dl / g to 5.0 dl / g. From the viewpoints of properties, mechanical strength, etc. Here, the inherent viscosity is used as a measure of the molecular weight of the polymer, and refers to the logarithmic viscosity at 30 ° C. of a solution in which 4 g of resin is dissolved in 1 liter of N, N-dimethylformamide.
[0017]
Generally, a vinylidene fluoride polymer as described above is once dissolved in a good solvent to form a binder solution in advance, and then a powder carbon material is dispersed in the binder solution to form a mixture slurry for electrode formation. To do.
[0018]
In the present invention, the good solvent for the vinylidene fluoride polymer can form a binder solution having a concentration of 1% by weight or more, preferably 5% by weight or more of the vinylidene fluoride polymer at room temperature (25 ° C.). Examples of the organic solvent having a dissolving ability include N-methyl-2-pyrrolidone (boiling point 202 ° C.) dimethylformamide (boiling point 163 ° C.), N, N-dimethylacetamide (boiling point 165 ° C.), N, N-dimethyl sulfoxide (boiling point 189 ° C.), hexamethylphosphoamide (boiling point 235 ° C.), tetramethylurea (boiling point 178 ° C.), triethyl phosphate (boiling point 215 ° C.), etc. What was used for formation of this is mentioned. These organic solvents may be used alone or in combination of two or more to form a binder solution having a vinylidene fluoride polymer concentration of generally 0.5 to 30% by weight, preferably about 2 to 15% by weight.
[0019]
The electrode mixture slurry is an optional additive such as a binder solution obtained as described above held under heating at 40 ° C. or higher as necessary, a powdered carbon material, and a conductive material added later if necessary. Are mixed so that the amount of the vinylidene fluoride polymer binder in the slurry solid content is about 0.5 to 10 % by weight, more preferably 2 to 10 % by weight. However, in terms of operation, an electrode mixture slurry can be formed by mixing a vinylidene fluoride polymer, an organic solvent, a powdered carbon material, and the like all at once without preparing a binder solution.
[0020]
In the case of an electrode mixture for forming a polarizable electrode for an electric double layer capacitor, the activated carbon powder having a specific surface area of 500 to 3000 m 2 / g can be suitably used. activated carbon, phenol-based activated carbon, petroleum coke, pitch-based activated carbon, polyvinylidene chloride-based active carbon, and the like.
[0021]
An electrode mixture for producing a polarizable electrode is composed of the above-mentioned solvent, a vinylidene fluoride polymer, and activated carbon powder . In order to impart electrical conductivity, it is usual to add a conductive material. Specific examples of the conductive material include carbon black, natural graphite, artificial graphite, metal oxides such as titanium oxide and ruthenium oxide, and metal fibers. Can be used. Among them, ketjen black and acetylene black which are a kind of carbon black are preferably used. The amount of the conductive material added can be selected according to the required degree of conductivity.
[0022]
The mixture slurry prepared as described above has good coatability to the current collector. The application method may be a known method, among which the doctor blade method is preferably used. The current collector (electrode structure) coated with the mixture is once dried at 20 to 200 ° C., if necessary, and then subjected to a washing step with a low-boiling poor solvent according to the present invention.
[0023]
Examples of the low-boiling poor solvent used as the cleaning solvent include N-methyl-2-pyrrolidone (boiling point 202 ° C.) and N, N-dimethylformamide (boiling point 163 ° C.), which are good solvents for the above-mentioned vinylidene fluoride polymer. It is not particularly limited as long as it is a poor solvent for the vinylidene fluoride polymer having compatibility and having a boiling point lower than that of the good solvent used. More specifically, as the above-mentioned washing solvent, at room temperature (25 ° C.), it exhibits a solubility of not more than 0.5% by weight, preferably not more than 0.1% by weight, based on the vinylidene fluoride polymer, And what has compatibility (preferably infinite solubility) with the good solvent of the vinylidene fluoride polymer used at an electrode structure manufacturing process is used preferably. For example, alcohols include methyl alcohol (boiling point 65 ° C.), isopropyl alcohol (boiling point 82 ° C.), and chlorinated hydrocarbons include methylene chloride (boiling point 40 ° C.), 1,1,1-trichloroethane (boiling point 74 ° C.), etc. Examples of these solvents are methylene chloride, which is nonflammable and easy to dry. When a good solvent is used as the cleaning solvent, the vinylidene fluoride polymer as a binder flows out of the electrode structure during cleaning, and the function as the binder is lost.
[0024]
The poor solvent for the vinylidene fluoride polymer as described above has not been used in the past to form at least a vinylidene fluoride polymer binder solution for electrode formation of a non-aqueous electrochemical element.
[0025]
As a cleaning method, there is a cleaning effect just by leaving a current collector coated with a mixture after drying in a cleaning solvent at a temperature of 5 to 100 ° C., preferably 10 to 50 ° C., but if necessary, continuous In particular, the cleaning effect can be enhanced by moving through the solvent or applying vibrations such as ultrasonic waves. The electrode structure after cleaning is heat-treated at 40 to 170 ° C. for drying. The electrode structure after drying is provided as an electrode structure for a non-aqueous electric double layer capacitor through a pressing process as necessary.
[0026]
The electrode mixture layer in the electrode structure for a non-aqueous electric double layer capacitor of the present invention thus obtained has a residual solvent amount of 2 % by weight or less and is extremely effectively reduced. As a result of the production method, it is characteristic that a poor solvent for a vinylidene fluoride polymer not found in an ordinary vinylidene fluoride polymer electrode is contained in an amount detectable by gas chromatography.
[0027]
The electric double layer capacitor composed of the onset bright, can be exemplified by the structure shown in FIG. That is, FIG. 1 is a cross-sectional view of an example of a single cell electric double layer capacitor. In this electric double layer capacitor, a separator 3 is sandwiched between two polarizable electrodes 1 and 2, and these are further sandwiched between a stainless steel cap 4 and a stainless steel can 5 containing an electrolyte 6 through a packing 7. Is enclosed. As a result, the electrolytic solution 6 is impregnated in the separator 3 and disposed between the pair of polarizable electrodes 1 and 2. Propylene carbonate is generally used as the solvent for the electrolytic solution, and quaternary phosphonium salts and quaternary ammonium salts are commonly used as the electrolyte. For example, a propylene carbonate solution of (C 2 H 5 ) 4 NBF 4 The organic electrolyte solution can be used. The concentration of the electrolyte in the electrolytic solution can be appropriately selected within a range of 5 to 95% by weight.
[0028]
In the above, the electric double layer capacitor of the present invention, the polarizable electrode contained therein, and the electrode mixture for forming the electrode have been mainly described .
[0029]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0030]
Example 1
To 80 parts by weight of activated carbon powder (specific surface area 1200 m 2 / g) and 12 parts by weight of carbon black (“DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd.), N-methyl-2-pyrrolidone and polyvinylidene fluoride (“KF # 1700”) Kureha Chemical Industry Co., Ltd.) dissolved in N-methyl-2-pyrrolidone was added to 8 parts by weight of polyvinylidene fluoride and 331 parts by weight of N-methyl-2-pyrrolidone and mixed at 30 ° C. An electrode mixture slurry was obtained.
[0031]
This electrode mixture was applied onto one surface of an aluminum foil by a doctor blade method and dried by heating (130 ° C., 30 minutes) to obtain a sheet-like electrode material. The sheet-like electrode was washed by being immersed in methylene chloride at 25 ° C. for 30 minutes, and further dried by heating at 130 ° C. for 10 minutes. The sheet-like electrode after washing and drying was punched into a circle having a diameter of 17 mm, pressed (102 MPa, 1 minute), and then punched into a circle having a diameter of 15 mm to obtain a total of three disc-shaped electrode materials. Of these, two were used as polarizable electrodes 1 and 2 as shown in FIG. 1, and the remaining one was used as a residual solvent test sample. The polarizable electrodes 1 and 2 were accommodated in a container composed of a stainless steel cap 4 and a stainless steel can 5 with a glass fiber nonwoven fabric separator 3 interposed therebetween. Next, a predetermined electrolytic solution 6 ((C2H5) 4NBF4 propylene carbonate solution: 1 mol / l) is placed in a stainless steel container, and the polarizable electrodes 1 and 2 and the separator 3 are sufficiently impregnated, and then passed through a polypropylene packing 7. The ends of the cap 4 and the can 5 were caulked and integrated.
[0032]
The reliability of the electric double layer capacitor constructed as shown in FIG. 1 was evaluated by performing an acceleration test in a constant temperature bath at 60 ° C. as follows (200 hours at 60 ° C. Is considered to be equivalent to about 4 months at 20 ° C). That is, the capacitor is held in a constant temperature bath at 60 ° C., charged to 2.5 V at a current density of 1.6 mA / cm 2 , held in a charged state for 3 hours, and then discharged to 0 V at the same current density. The amount of energy was determined and this value was taken as the initial energy capacity. Immediately after that, the battery was recharged under the same conditions, held in a charged state for 200 hours, discharged under the same conditions, and the discharge capacity was measured. The capacity was calculated as the energy capacity (mWh / g) per unit weight of activated carbon in the electrode. The electrode after the test was taken out and visually observed, but no change in shape was observed.
[0033]
Separately, a part of the disk-shaped electrode material obtained above was placed on a thermobalance (“TGA” manufactured by Mettler) and heated to 600 ° C. at 20 ° C./min in a nitrogen stream. On the way, the reduced weight observed at about 40 ° C. to about 350 ° C. was calculated as a residual solvent amount, which was 0.2% by weight based on the weight of the electrode mixture excluding the aluminum foil.
[0034]
The results are shown in Table 1 below together with those of the following examples and comparative examples.
[0035]
Separately, a part of the disk-shaped electrode material was dispersed in a solvent carbon disulfide, and after filtration, the mother liquor was analyzed by gas chromatography (“GC-9A” manufactured by Shimadzu Corporation). -It was confirmed that 1.5 ppm of methylene chloride was contained with respect to 4.6 ppm of methyl-2-pyrrolidone.
[0036]
(Example 2)
A polarizable electrode and an electric double layer capacitor were prepared in the same manner as in Example 1 except that the mixture slurry obtained in the same manner as in Example 1 was used and the washing solvent was changed from methylene chloride to methyl alcohol. ,evaluated.
[0037]
(Comparative Example 1)
A polarizable electrode and an electric double layer capacitor were prepared and evaluated in the same manner as in Example 1 except that the mixture slurry obtained in the same manner as in Example 1 was used and methylene chloride was not washed.
[0038]
[Table 1]
Figure 0004318337
[0039]
According to Table 1, it can be seen that the electrode according to the example of the present invention has less capacity deterioration and higher reliability than the comparative example.
[0040]
【The invention's effect】
As described above, according to the present invention, a vinylidene fluoride polymer-based electrode structure once formed using a good solvent of a vinylidene fluoride polymer is a poor solvent for a vinylidene fluoride polymer having a lower boiling point. By drying after washing, a non-aqueous electric double layer capacitor electrode is provided in which the residual amount of solvent is remarkably reduced as compared with the prior art, thereby reducing the device capacity caused by the residual solvent, expansion deformation problems seen in the conventional device, such as a significantly reduced high reliability have electric double layer capacitors, is obtained.
[Brief description of the drawings]
Cross-sectional view of an example of the structure of the electric double layer capacitor constituted by the present invention; FIG.
[Explanation of symbols]
1, 2 Polarized electrode 3 Separator 4 Cap 5 Can 6 Electrolyte 7 Packing

Claims (2)

0.5〜10重量%のフッ化ビニリデン系重合体と比表面積が500〜3000m /gの活性炭粉末とを含む電極合剤に加えてフッ化ビニリデン系重合体の良溶媒を含む電極合剤層を含む電極構造体を、該良溶媒と相溶性があり且つ該良溶媒の沸点よりも低い100℃以下の沸点を有するアルコール類および塩素化炭化水素から選ばれたフッ化ビニリデン系重合体の貧溶媒で洗浄後、乾燥することを特徴とする、熱天秤(TGA)法により測定した溶剤残留量が2重量%以下の非水系電気二重層キャパシタ用電極の製造方法。 In addition to an electrode mixture containing 0.5 to 10 % by weight of a vinylidene fluoride polymer and an activated carbon powder having a specific surface area of 500 to 3000 m 2 / g, an electrode mixture containing a good solvent for the vinylidene fluoride polymer An electrode structure including a layer is formed of a vinylidene fluoride polymer selected from alcohols having a boiling point of 100 ° C. or lower that is compatible with the good solvent and lower than the boiling point of the good solvent , and a chlorinated hydrocarbon . A method for producing an electrode for a non-aqueous electric double layer capacitor having a solvent residual amount of 2% by weight or less measured by a thermobalance (TGA) method, wherein the electrode is washed with a poor solvent and then dried. 前記良溶媒がN−メチルー2−ピロリドンであり、前記貧溶媒が塩化メチレンである請求項1に記載の製造方法。The production method according to claim 1, wherein the good solvent is N-methyl-2-pyrrolidone and the poor solvent is methylene chloride.
JP4689199A 1999-01-19 1999-01-19 Electrode for non-aqueous electrochemical device and method for producing the same Expired - Fee Related JP4318337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4689199A JP4318337B2 (en) 1999-01-19 1999-01-19 Electrode for non-aqueous electrochemical device and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4689199A JP4318337B2 (en) 1999-01-19 1999-01-19 Electrode for non-aqueous electrochemical device and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000216065A JP2000216065A (en) 2000-08-04
JP4318337B2 true JP4318337B2 (en) 2009-08-19

Family

ID=12759996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4689199A Expired - Fee Related JP4318337B2 (en) 1999-01-19 1999-01-19 Electrode for non-aqueous electrochemical device and method for producing the same

Country Status (1)

Country Link
JP (1) JP4318337B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020070392A (en) * 2001-12-18 2002-09-09 (주)카마텍 Electric Double Layer Capacitor and Method of Fabrication the Same
JP4581888B2 (en) * 2005-07-25 2010-11-17 Tdk株式会社 Electrode element manufacturing method and electrochemical element manufacturing method
JP2009076862A (en) * 2007-08-28 2009-04-09 Japan Pionics Co Ltd Electrode sheet and electrochemical capacitor using the same

Also Published As

Publication number Publication date
JP2000216065A (en) 2000-08-04

Similar Documents

Publication Publication Date Title
US6327136B1 (en) Electrode-forming composition, activated carbon electrode and electric double layer capacitor
KR101287435B1 (en) Electric double layer capacitor
JP6382981B2 (en) Low resistance ultracapacitor electrode and manufacturing method thereof
MX2007016485A (en) Current collector for double electric layer electrochemical capacitors and method of manufacture thereof.
CN104335308B (en) The electrode for capacitors with surface modified additive for lead-acid battery
KR20060119819A (en) Method for producing electrochemical capacitor electrode
JP4226704B2 (en) Non-aqueous electrochemical element electrode binder solution, electrode mixture, electrode and electrochemical element
JP4973882B2 (en) Capacitors
JP4318337B2 (en) Electrode for non-aqueous electrochemical device and method for producing the same
JP2006324287A (en) Process for producing electrode of electrochemical capacitor
JP2008010613A (en) Electric double layer capacitor
JP3846930B2 (en) Manufacturing method of electric double layer capacitor
JP2006351365A (en) Separator for electronic components, and the electronic component
US6033803A (en) Hydrophilic electrode for an alkaline electrochemical cell, and method of manufacture
JP3800810B2 (en) Electric double layer capacitor
JP4488572B2 (en) Electrode mixture for forming activated carbon electrode and activated carbon electrode obtained from the mixture
JP2004281208A (en) Separator for electronic part
JPH11283871A (en) Current collector for electric double layer capacitor and electric double layer capacitor provided with the current collector
JP3752235B2 (en) Separator for electronic parts
JP4822555B2 (en) Non-woven nickel chrome current collector for capacitor, electrode and capacitor using the same
KR101932966B1 (en) Super capacitor and method for manufacturing the same
JP3385226B2 (en) Electrode for electric double layer capacitor and method of manufacturing the same
JP2003234248A (en) Electrode material, its manufacturing method and electrochemical storage device using the same
JP4026806B2 (en) Electric double layer capacitor
JP2000012404A (en) Electric double-layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees