JP3752235B2 - Separator for electronic parts - Google Patents

Separator for electronic parts Download PDF

Info

Publication number
JP3752235B2
JP3752235B2 JP2003086753A JP2003086753A JP3752235B2 JP 3752235 B2 JP3752235 B2 JP 3752235B2 JP 2003086753 A JP2003086753 A JP 2003086753A JP 2003086753 A JP2003086753 A JP 2003086753A JP 3752235 B2 JP3752235 B2 JP 3752235B2
Authority
JP
Japan
Prior art keywords
vinylidene fluoride
separator
double layer
electric double
homopolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003086753A
Other languages
Japanese (ja)
Other versions
JP2004296760A (en
Inventor
正則 高畑
博己 戸塚
仁英 杉山
修司 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2003086753A priority Critical patent/JP3752235B2/en
Publication of JP2004296760A publication Critical patent/JP2004296760A/en
Application granted granted Critical
Publication of JP3752235B2 publication Critical patent/JP3752235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

【0001】
【発明の属する技術分野】
この発明は、電子部品、すなわちアルミニウム電解コンデンサ又は電気二重層キャパシタに使用されるセパレータに関するものである。
【0002】
【従来の技術】
近時、産業機器、民生機器に関わらず、電気・電子機器の需要の増加及びハイブリッド自動車の開発により、電子部品であるアルミニウム電解コンデンサ及び電気二重層キャパシタの需要が著しく増加している。これらの電気・電子機器は長寿命化、高機能化が日進月歩で進行しており、アルミニウム電解コンデンサ及び電気二重層キャパシタにおいても長寿命化、高機能化が要求されてきている。
【0003】
アルミニウム電解コンデンサは、エッチングしたのち、化成処理を施し誘電体皮膜を形成されたアルミニウム製正極箔と、エッチングされたアルミニウム製負極箔をセパレータを介して捲回もしくは積層された電極体に駆動用電解液を含浸しアルミニウムケースと封口体により封止され、短絡しないように正極リードと負極リードを封止体を貫通させ外部に引き出した構造のものである。
また、電気二重層キャパシタは、活性炭と導電剤及びバインダーを混練したものをアルミニウム製正極、負極各集電極の両面に貼り付け、セパレータを介して捲回もしくは積層された電極体に駆動用電解液を含浸しアルミニウムケースと封口体により梱包され、短絡しないように正極リードと負極リードを封止体を貫通させ外部に引き出した構造のものである。
【0004】
従来、上記アルミニウム電解コンデンサ及び電気二重層キャパシタのセパレータとしては、電気絶縁紙(特許文献1〜3)が使用されていた。アルミニウム電解コンデンサ及び電気二重層キャパシタには、高信頼性を得るために極力水分を除去した非水系電解液が使用されるが、従来のセパレータである電気絶縁紙は吸湿しやすいという問題を有していた。特に電気二重層キャパシタにおいては微量の水分であっても、電解液の分解、水の分解電圧の影響による耐電圧の低下等特性に大きく関わってくる。そのため、電気絶縁紙を予め加温して除湿していた。しかし従来の電気絶縁紙は、除湿のために長時間加温していると紙の強度が低下し、アルミニウム電解コンデンサ及び電気二重層キャパシタの製造工程時による機械的応力に耐えられず破損するため、アルミニウム電解コンデンサ及び電気二重層キャパシタの製造作業性が悪く、生産効率を低下させるという問題を有していた。
また、電気絶縁紙のセパレータは、電解液の液保持性、電極との密着性が悪く、かつイオン伝導度も悪く、これらの特性不良によりアルミニウム電解コンデンサ及び電気二重層キャパシタの信頼性を著しく損なう問題を有していた。
【0005】
【特許文献1】
特開2002−270470
【特許文献2】
特開平10−256088
【特許文献3】
特開平10−229030
【0006】
【発明が解決しようとする課題】
そこで本発明は、このような従来の実状に鑑みてなされたものであり、製造作業性及び生産効率を損なうことなく、アルミニウム電解コンデンサ及び電気二重層キャパシタの高信頼特性を得ることを可能とし、機械的強度が優れた電子部品用セパレータを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を達成するため本発明の請求項1によれば、フッ化ビニリデンホモポリマー、又フッ化ビニリデンと4フッ化エチレンもしくは6フッ化プロピレンのいずれか1種類以上とからなるフッ化ビニリデンを含むコポリマーを有するフッ化ビニリデン系多孔質膜であって、前記フッ化ビニリデン系多孔質膜の透気度が100秒/100cc以下であり、密度が0.5g/cm〜0.9g/cm、且つ空隙率が30%〜90%であることを特徴とする電子部品用セパレータである。
また、請求項によれば、請求項1に記載の電子部品用セパレータにおいて、アルミニウム電解コンデンサー又は電気二重層キャパシタに使用されることを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の電子部品用セパレータは、フッ化ビニリデンホモポリマー又はフッ化ビニリデンを含むコポリマーを有するフッ化ビニリデン系多孔質膜である。
本発明におけるフッ化ビニリデンホモポリマーは、フッ化ビニリデンモノマーの付加重合反応により得られ、その重合方法としては、例えば、ラジカル重合、カチオン重合、アニオン重合、光・放射線重合、懸濁重合法、乳化重合法、塊状重合法などを挙げることができる。また、フッ化ビニリデンを含むコポリマーは、フッ化ビニリデンと他のモノマーを共重合させた樹脂であり、フッ化ビニリデンと4フッ化エチレン又は6フッ化プロピレンのいずれか1種類以上とからなるコポリマーが、耐熱性と密着性が良好なため本発明に使用される。フッ化ビニリデンを含むコポリマーも上記フッ化ビニリデンホモポリマーと同様な重合方法で得ることができる。本発明で用いられるフッ化ビニリデンホモポリマー及びフッ化ビニリデンを含むコポリマーの好適な分子量は、重量平均分子量において10万から100万である
【0009】
本発明におけるフッ化ビニリデン系多孔質膜は、膜の片面からもう一方の面に多数の孔の繋がりによって通じており、孔各々の径は膜厚より小さいことが機械的強度を得るために好ましく、その透気度が100秒/100cc以下であり、且つ密度が0.5g/cmから0.9g/cmであることが必要である。透気度が100秒/100ccより大きい場合ではイオン伝導性の低下によるインピーダンスが上昇し、アルミニウム電解コンデンサ又は電気二重層キャパシタに用いた場合に充分な性能を得ることができない。また、密度が0.5g/cm未満では充分な機械的強度を得ることができないため、製造作業効率が悪く、0.9g/cmより大きい場合では電解液保持量が少なすぎることと、イオン伝導性の低下によるインピーダンスが上昇し、アルミニウム電解コンデンサ又は電気二重層キャパシタに用いた場合に充分な性能を得ることができない。
【0010】
ここでいう透気度とは、JIS P 8117(1998)に基づくガーレー試験機法によるものである。また、密度とは、JIS P 8118(1998)に基づく紙及び板紙−厚さ及び密度の試験方法によるものである。
また、本発明におけるフッ化ビニリデン系多孔質膜は、空隙率が30%から90%の範囲であることが必要である。空隙率が30%未満では電解液保持量が少なすぎることと、イオン伝導性の低下によるインピーダンスが上昇し、アルミニウム電解コンデンサ又は電気二重層キャパシタに用いた場合に充分な性能を得ることができにくく、90%より多い場合では、充分な機械的強度を得ることができにくい。ここでいう空隙率とは、坪量M(g/cm)、厚さT(μm)、上記密度D(g/cm)を用いて次式により求められる。
空隙率(%)=(1−(M/T)/D)×100
フッ化ビニリデン系多孔質膜の厚さは10μmから40μmが好ましい。
【0011】
以下に本発明の電子部品用セパレータの製造方法について一例を挙げるが、本発明の電子部品用セパレータの製造方法はこれのみに限定されるものではなく、他の製造方法でも製造することも可能である。
はじめにフッ化ビニリデンホモポリマー又はフッ化ビニリデンを含むコポリマーを溶媒に分散させる。フッ化ビニリデンホモポリマーとフッ化ビニリデンを含むコポリマーを分散させる順序は限定されない。溶媒としてはフッ化ビニリデンホモポリマー及びフッ化ビニリデンを含むコポリマーが溶解するものを選択しなければならない。例えば、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、N,N−ジメチルスルホキシド等を使用することが好ましい。分散、溶解方法としては市販の攪拌機を使用すればよい。フッ化ビニリデンホモポリマー及びフッ化ビニリデンを含むコポリマーはN,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、N,N−ジメチルスルホキシドに室温で容易に溶解するので、特に加熱する必要はない。フッ化ビニリデンホモポリマー又はフッ化ビニリデンを含むコポリマーの濃度としては、得るべきセパレータの特性を考慮に入れ適宜変更する必要がある。
【0012】
溶媒に分散されたフッ化ビニリデンホモポリマー又はフッ化ビニリデンを含むコポリマーを、例えば、ポリオレフィンフィルム、ポリエステルフィルム、ポリテトラフルオロエチレンフィルム等の樹脂フィルム又は各種ガラス等の基体上にディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等により塗布又はキャスティング法等によりシート状の被覆物を得る。これらの基体は、離型処理、易接着処理などの表面処理を施したものでもよく、塗布方法により適宜選択すれば良い。塗布により得られたシート状の被覆物を構成する溶媒を乾燥により蒸発もしくは置換させることにより、多孔性のフッ化ビニリデンホモポリマー膜又はフッ化ビニリデンを含むコポリマー膜が形成され、それを基体から剥離することにより本発明の電子部品セパレータを得ることができる。
【0013】
このようにして得られた本発明の電子部品用セパレータは、アルミニウム電解コンデンサ又は電気二重層キャパシタに好適に使用され、電子部品用セパレータが孔構造でない場合では、アルミニウム電解コンデンサ又は電気二重層キャパシタにおいて電解液中のイオン伝導性がセパレータによって阻害され内部抵抗が著しく大きくなる。
【0014】
【実施例】
以下、本発明の電子部品用セパレータを実施例に基づいて説明するが、本発明は以下の実施例に限定されるものではない。
【0015】
実施例1
重量平均分子量10万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドンに溶解し、フタル酸ジブチルを添加してフッ化ビニリデンホモポリマー成分が10重量%になるように調整したものをポリプロピレンフィルム上にキャスティング法により塗布し、乾式法により溶媒を熱によって蒸発させ、厚さ30μmのフッ化ビニリデンホモポリマー多孔質膜を形成した。そして、該フッ化ビニリデンホモポリマー多孔質膜をポリプロピレンフィルムから剥離して本発明の電子部品用セパレータを得た。この電子部品用セパレータの空隙率は62%、透気度は25秒/100cc、密度は0.80g/cmであった。
【0016】
実施例2
重量平均分子量50万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドンに溶解し、フタル酸ジブチルを添加してフッ化ビニリデンホモポリマー成分が10重量%になるように調整したものをポリプロピレンフィルム上にキャスティング法により塗布し、乾式法により溶媒を熱によって蒸発させ、厚さ15μmのフッ化ビニリデンホモポリマー多孔質膜を形成した。そして、該フッ化ビニリデンホモポリマー多孔質膜をポリプロピレンフィルムから剥離して本発明の電子部品用セパレータを得た。この電子部品用セパレータの空隙率は64%、透気度は5秒/100cc、密度は0.70g/cmであった。
【0017】
実施例3
重量平均分子量100万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドンに溶解し、フタル酸ジブチルを添加してフッ化ビニリデンホモポリマー成分が10重量%になるように調整したものをポリプロピレンフィルム上にキャスティング法により塗布し、乾式法により溶媒を熱によって蒸発させ、厚さ10μmのフッ化ビニリデンホモポリマー多孔質膜を形成した。そして、該フッ化ビニリデンホモポリマー多孔質膜をポリプロピレンフィルムから剥離して本発明の電子部品用セパレータを得た。この電子部品用セパレータの空隙率は65%、透気度は2秒/100cc、密度は0.62g/cmであった。
【0018】
実施例4
重量平均分子量35万のフッ化ビニリデンホモポリマーと、フッ化ビニリデンと4フッ化エチレンからなる重量平均分子量20万のフッ化ビニリデンを含むコポリマーとを1−メチル−2−ピロリドンに溶解し、フタル酸ジブチルを添加してフッ化ビニリデンホモポリマー成分が9重量%、フッ化ビニリデンを含むコポリマー成分が1重量%になるように調整したものをポリプロピレンフィルム上にキャスティング法により塗布し、乾式法により溶媒を熱によって蒸発させ、厚さ40μmのフッ化ビニリデンポリマー多孔質膜を形成した。そして、該フッ化ビニリデンポリマー多孔質膜をポリプロピレンフィルムから剥離して本発明の電子部品用セパレータを得た。この電子部品用セパレータの空隙率は63%、透気度は40秒/100cc、密度は0.74g/cmであった。
【0019】
実施例5
重量平均分子量50万のフッ化ビニリデンホモポリマーと、フッ化ビニリデンと4フッ化エチレンからなる重量平均分子量10万のフッ化ビニリデンを含むコポリマーとを1−メチル−2−ピロリドンに溶解し、フタル酸ジブチルを添加してフッ化ビニリデンホモポリマー成分が7重量%、フッ化ビニリデンを含むコポリマー成分が3重量%になるように調整したものをポリプロピレンフィルム上にキャスティング法により塗布し、乾式法により溶媒を熱によって蒸発させ、厚さ25μmのフッ化ビニリデンポリマー多孔質膜を形成した。そして、該フッ化ビニリデンポリマー多孔質膜をポリプロピレンフィルムから剥離して本発明の電子部品用セパレータを得た。この電子部品用セパレータの空隙率は64%、透気度は20秒/100cc、密度は0.68g/cmであった。
【0020】
比較例1
重量平均分子量50万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドンに溶解したものをポリプロピレンフィルム上にキャスティング法により塗布し、貧溶媒であるメタノール中に浸漬して溶媒置換を行う湿式法によって、厚さ30μmのフッ化ビニリデンホモポリマー多孔質膜を形成した。そして、該フッ化ビニリデンホモポリマー多孔質膜をポリプロピレンフィルムから剥離し比較用のセパレータを得た。このセパレータの空隙率は44%、透気度は300秒/100cc、密度は1.0g/cmであった。
【0021】
比較例2
フッ化ビニリデンと4フッ化エチレンからなる重量平均分子量20万のフッ化ビニリデンを含むコポリマーを1−メチル−2−ピロリドンに溶解したものをポリプロピレンフィルム上にキャスティング法により塗布し、貧溶媒であるメタノール中に浸漬して溶媒置換を行う湿式法によって厚さ20μmのフッ化ビニリデンポリマー多孔質膜を形成した。そして、該フッ化ビニリデンポリマー多孔質膜をポリプロピレンフィルムから剥離し比較用のセパレータを得た。このセパレータの空隙率は78%、透気度は110秒/100cc、密度は0.4g/cmであった。
【0022】
比較例3
厚さ30μmの電気絶縁紙を比較用のセパレータとした。この電気絶縁紙の空隙率は70%、透気度は5秒/100cc、密度は0.5g/cmであった。
【0023】
上記実施例及び比較例で得られたセパレータを電気二重層キャパシタに使用した場合の特性を下記のように評価した。
〔セパレータの液保持性〕
上記の実施例1から5、比較例1から3の8種のセパレータに電気二重層キャパシタ駆動用電解液を含浸し、セパレータの液保持性を評価した。電解液には溶媒成分にプロピレンカーボネートを使用し、溶質成分には4エチルアンモニウム4フッ化ホウ素を使用した。試験サンプルは上記8種のセパレータを各々縦5cm、横5cmに切断して個片化し、電解液に浸して減圧雰囲気下で15分間含浸し、その後セパレータ表面に付着している電解液をふき取りセパレータ内部の多孔質層にのみ電解液が含まれている状態にした。この状態のセパレータの重量を計測し、25℃50%RH湿度雰囲気下で100時間経過と250時間経過後の液保持率を確認した。結果について表1に記した。表中の%で表示してある数値は初期電解液量と比較して何%保持していたかを表したものである。
【0024】
【表1】

Figure 0003752235
【0025】
表1より明らかなように本発明の実施例1から5のセパレータは、液保持率が250時間経過後も97%以上あり優れていることが確認された。これに対し、比較例3のセパレータでは液保持率が250時間経過後で90%未満であって実施例に較べて劣っていた。この結果より、実施例に使用したセパレータはキャパシタ内部においても電解液を均一に保持することが可能であり、安定した特性の電気二重層キャパシタを作製することができることが確認された。
【0026】
〔電極との密着性〕
上記8種のセパレータと電極との密着性を次のように評価した。
まずアルミニウム製集電体に電極剤を塗布し、その上にセパレータを80℃雰囲気中で負荷圧力が15kgf/cmの圧力で押し当て密着させた後、電解液を減圧雰囲気条件下で含浸し、セパレータと電極を剥離することによって密着性を評価し、その結果を表2に記した。セパレータを剥離した際にセパレータ表面の80%以上に電極剤が付着しているものには◎、50%以上80%未満のものには○、50%未満のものには×とした。
【0027】
【表2】
Figure 0003752235
【0028】
表2より明らかなように本発明の実施例1から5のセパレータは密着性が比較例1及び3のものに較べて優れていることが確認された。これにより、キャパシタ内部で集電体若しくは電極剤からガス発生が起こったとしても、セパレータと電極が剥離する可能性は非常に少なく、特性の安定した電気二重層キャパシタを作製することができる。
【0029】
〔突き刺し強度〕
機械的強度の尺度として上記実施例及び比較例の8種のセパレータに針を突き刺し、針がセパレータを貫通する際の最大点荷重を測定した。この試験は、セパレータの強度を表し、厚みあたりの最大点荷重が大きいほど強度が優れていることを示している。表3にセパレータの厚み(X),最大点荷重(Y)および厚みあたりの最大点荷重(Y/X)を記した。
【0030】
【表3】
Figure 0003752235
【0031】
表3より明らかなように本発明の実施例1から5のセパレータは、厚みあたりの最大点荷重が、比較例1及び2と較べ優れた強度を有しており、キャパシタ内部の電極材等による微小短絡を防止する効果があることが確認された。
【0032】
〔イオン伝導度〕
セパレータを構成する樹脂成分が一部ゲル化することにより、インピーダンスの悪化が起こるかどうかを確認するために、上記実施例及び比較例の8種のセパレータを使用してコイン型セルを作製し、セルのイオン伝導度を測定した。イオン伝導度はソーラトロン社製の電気化学測定装置を使用し交流インピーダンス法により測定したもので、数値が高い方が優れた特性を表している。
【0033】
【表4】
Figure 0003752235
【0034】
表4より、本発明の実施例1から5のセパレータは、比較例1及び2のセパレータに較べてイオン伝導度が高く、優れた特性を有することが確認された。
表1〜4の結果から明らかなとおり、本発明の電子部品用セパレータは、液保持性、電極との密着性、突き刺し強度およびイオン伝導度の全ての特性を満足するものであったが、比較例のセパレータは、これらの特性を同時に満たすものではなかった。
【0035】
【発明の効果】
上記の如く本発明に係る電子部品用セパレータは、アルミニウム電解コンデンサ又は電気二重層キャパシタの低インピーダンス化等の信頼性向上を可能にし、機械的強度も高く、又電極とセパレータの密着性をも向上することを可能とする優れた電子部品用セパレータである。したがって、アルミニウム電解コンデンサ又は電気二重層キャパシタとして使用した場合、製造工程時による機械的応力に充分耐えることが可能となり、優れた製造作業性を有し、生産効率を向上させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a separator used for an electronic component, that is, an aluminum electrolytic capacitor or an electric double layer capacitor.
[0002]
[Prior art]
In recent years, regardless of industrial equipment and consumer equipment, demand for electrical and electronic equipment and the development of hybrid vehicles have significantly increased demand for aluminum electrolytic capacitors and electric double layer capacitors, which are electronic components. These electric / electronic devices have long life and high functionality, and aluminum electrolytic capacitors and electric double layer capacitors are required to have long life and high functions.
[0003]
An aluminum electrolytic capacitor is formed by subjecting a positive electrode foil made of a chemical film to a dielectric film after etching and an electrode body obtained by winding or laminating the etched aluminum negative electrode foil with a separator interposed therebetween. The liquid is impregnated and sealed with an aluminum case and a sealing body, and a positive electrode lead and a negative electrode lead are passed through the sealing body and pulled out to prevent short circuit.
In addition, the electric double layer capacitor is prepared by mixing a mixture of activated carbon, a conductive agent and a binder on both surfaces of the aluminum positive electrode and the negative electrode, and winding or laminating the electrode body with a separator through a separator. And is packed with an aluminum case and a sealing body, and the positive electrode lead and the negative electrode lead are passed through the sealing body and pulled out to prevent short circuit.
[0004]
Conventionally, electrical insulating paper (Patent Documents 1 to 3) has been used as a separator for the aluminum electrolytic capacitor and the electric double layer capacitor. For aluminum electrolytic capacitors and electric double layer capacitors, non-aqueous electrolyte from which moisture is removed as much as possible is used in order to obtain high reliability. However, conventional insulating paper, which is a separator, has a problem that it easily absorbs moisture. It was. Particularly in an electric double layer capacitor, even a very small amount of water is greatly related to characteristics such as decomposition of the electrolytic solution and lowering of withstand voltage due to the influence of water decomposition voltage. For this reason, the electrical insulating paper is preheated and dehumidified. However, the conventional electrical insulating paper, when heated for a long time for dehumidification, the strength of the paper decreases, and it cannot withstand the mechanical stress due to the manufacturing process of aluminum electrolytic capacitors and electric double layer capacitors and breaks. In addition, the manufacturing workability of the aluminum electrolytic capacitor and the electric double layer capacitor is poor, and there is a problem that the production efficiency is lowered.
In addition, the separator of the electrical insulating paper has poor electrolyte retention, adhesion to the electrode, and poor ionic conductivity, and the reliability of aluminum electrolytic capacitors and electric double layer capacitors is significantly impaired due to these characteristic defects. Had a problem.
[0005]
[Patent Document 1]
JP 2002-270470
[Patent Document 2]
JP 10-256088 A
[Patent Document 3]
JP-A-10-229030
[0006]
[Problems to be solved by the invention]
Therefore, the present invention has been made in view of such a conventional situation, making it possible to obtain highly reliable characteristics of an aluminum electrolytic capacitor and an electric double layer capacitor without impairing manufacturing workability and production efficiency. An object of the present invention is to provide a separator for electronic parts having excellent mechanical strength.
[0007]
[Means for Solving the Problems]
According to a first aspect of the present invention for achieving the above object, a vinylidene fluoride homopolymer, or a vinylidene fluoride consisting of any one or more of vinylidene fluoride and tetrafluoroethylene or hexafluoropropylene comprising a vinylidene fluoride-based porous film having a copolymer, air permeability of the vinylidene fluoride porous membrane is not more than 100 sec / 100 cc, density is 0.5g / cm 3 ~0.9g / It is a separator for electronic parts characterized by having a porosity of 30% to 90% at cm 3 .
According to claim 2 , the electronic component separator according to claim 1 is used for an aluminum electrolytic capacitor or an electric double layer capacitor.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The separator for electronic components of the present invention is a vinylidene fluoride-based porous film having a vinylidene fluoride homopolymer or a copolymer containing vinylidene fluoride.
The vinylidene fluoride homopolymer in the present invention is obtained by an addition polymerization reaction of a vinylidene fluoride monomer. Examples of the polymerization method include radical polymerization, cationic polymerization, anionic polymerization, light / radiation polymerization, suspension polymerization, and emulsion. Examples thereof include a polymerization method and a bulk polymerization method. Moreover, copolymers containing vinylidene fluoride, and a is a resin obtained by copolymerizing vinylidene fluoride with other monomers, full Kka vinylidene 4 any one or more fluorinated ethylene or hexafluoropropylene copolymer However, it is used in the present invention because of its good heat resistance and adhesion. A copolymer containing vinylidene fluoride can also be obtained by the same polymerization method as the above-mentioned vinylidene fluoride homopolymer. The preferred molecular weight of the vinylidene fluoride homopolymer and the copolymer containing vinylidene fluoride used in the present invention is 100,000 to 1,000,000 in weight average molecular weight .
[0009]
The vinylidene fluoride porous membrane in the present invention communicates from one side of the membrane to the other side by a large number of pores, and it is preferable that the diameter of each pore is smaller than the thickness to obtain mechanical strength. It is necessary that the air permeability is 100 seconds / 100 cc or less and the density is 0.5 g / cm 3 to 0.9 g / cm 3 . When the air permeability is greater than 100 seconds / 100 cc, the impedance increases due to the decrease in ion conductivity, and sufficient performance cannot be obtained when used for an aluminum electrolytic capacitor or an electric double layer capacitor. Moreover, since sufficient mechanical strength cannot be obtained when the density is less than 0.5 g / cm 3 , the production work efficiency is poor, and when it is greater than 0.9 g / cm 3 , the electrolyte retention amount is too small, Impedance increases due to a decrease in ion conductivity, and sufficient performance cannot be obtained when used for an aluminum electrolytic capacitor or an electric double layer capacitor.
[0010]
Air permeability here is based on the Gurley tester method based on JIS P 8117 (1998). The density is based on a paper and paperboard-thickness and density test method based on JIS P 8118 (1998).
In addition, the vinylidene fluoride porous film in the present invention needs to have a porosity in the range of 30% to 90%. When the porosity is less than 30%, the amount of electrolyte retained is too small, and the impedance due to the decrease in ionic conductivity increases, making it difficult to obtain sufficient performance when used for aluminum electrolytic capacitors or electric double layer capacitors. In the case of more than 90%, it is difficult to obtain sufficient mechanical strength. The porosity here is calculated | required by following Formula using basis weight M (g / cm < 2 >), thickness T (micrometer), and the said density D (g / cm < 3 >).
Porosity (%) = (1− (M / T) / D) × 100
The thickness of the vinylidene fluoride porous membrane is preferably 10 μm to 40 μm.
[0011]
An example of the method for manufacturing an electronic component separator according to the present invention will be described below, but the method for manufacturing an electronic component separator according to the present invention is not limited to this, and other manufacturing methods can also be used. is there.
First, a vinylidene fluoride homopolymer or a copolymer containing vinylidene fluoride is dispersed in a solvent. The order in which the vinylidene fluoride homopolymer and the copolymer containing vinylidene fluoride are dispersed is not limited. As the solvent, a solvent capable of dissolving the vinylidene fluoride homopolymer and the copolymer containing vinylidene fluoride must be selected. For example, it is preferable to use N, N-dimethylacetamide, N, N-dimethylformamide, 1-methyl-2-pyrrolidone, N, N-dimethylsulfoxide and the like. A commercially available stirrer may be used as a dispersion and dissolution method. Since vinylidene fluoride homopolymers and copolymers containing vinylidene fluoride are readily soluble in N, N-dimethylacetamide, N, N-dimethylformamide, 1-methyl-2-pyrrolidone, N, N-dimethylsulfoxide at room temperature, There is no need for heating. The concentration of the vinylidene fluoride homopolymer or the copolymer containing vinylidene fluoride needs to be appropriately changed in consideration of the properties of the separator to be obtained.
[0012]
A vinylidene fluoride homopolymer or a copolymer containing vinylidene fluoride dispersed in a solvent, for example, a dip coating method or spray coating on a substrate such as a polyolefin film, a polyester film, a resin film such as a polytetrafluoroethylene film, or various glasses A sheet-like coating is obtained by a coating method, a casting method or the like by a method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method or the like. These substrates may be those subjected to surface treatment such as mold release treatment and easy adhesion treatment, and may be appropriately selected depending on the coating method. Porous vinylidene fluoride homopolymer film or copolymer film containing vinylidene fluoride is formed by evaporating or replacing the solvent constituting the sheet-like coating obtained by coating by drying, and peeling it from the substrate By doing so, the electronic component separator of the present invention can be obtained.
[0013]
The separator for electronic parts of the present invention thus obtained is preferably used for an aluminum electrolytic capacitor or an electric double layer capacitor. In the case where the separator for electronic parts is not of a hole structure, in the aluminum electrolytic capacitor or the electric double layer capacitor. Ion conductivity in the electrolyte is hindered by the separator, and the internal resistance is significantly increased.
[0014]
【Example】
Hereinafter, although the separator for electronic components of this invention is demonstrated based on an Example, this invention is not limited to a following example.
[0015]
Example 1
A polypropylene film prepared by dissolving a vinylidene fluoride homopolymer having a weight average molecular weight of 100,000 in 1-methyl-2-pyrrolidone and adding dibutyl phthalate to adjust the vinylidene fluoride homopolymer component to 10% by weight. It was coated on the top by a casting method, and the solvent was evaporated by heat by a dry method to form a vinylidene fluoride homopolymer porous film having a thickness of 30 μm. And this vinylidene fluoride homopolymer porous membrane was peeled from the polypropylene film, and the separator for electronic components of this invention was obtained. This electronic component separator had a porosity of 62%, an air permeability of 25 seconds / 100 cc, and a density of 0.80 g / cm 3 .
[0016]
Example 2
Polypropylene film prepared by dissolving a vinylidene fluoride homopolymer having a weight average molecular weight of 500,000 in 1-methyl-2-pyrrolidone and adding dibutyl phthalate to adjust the vinylidene fluoride homopolymer component to 10% by weight On top of this, coating was carried out by a casting method, and the solvent was evaporated by heat by a dry method to form a vinylidene fluoride homopolymer porous film having a thickness of 15 μm. And this vinylidene fluoride homopolymer porous membrane was peeled from the polypropylene film, and the separator for electronic components of this invention was obtained. This separator for electronic parts had a porosity of 64%, an air permeability of 5 seconds / 100 cc, and a density of 0.70 g / cm 3 .
[0017]
Example 3
Polypropylene film prepared by dissolving a vinylidene fluoride homopolymer having a weight average molecular weight of 1,000,000 in 1-methyl-2-pyrrolidone and adding dibutyl phthalate to adjust the vinylidene fluoride homopolymer component to 10% by weight It was coated on the top by a casting method, and the solvent was evaporated by heat by a dry method to form a vinylidene fluoride homopolymer porous film having a thickness of 10 μm. And this vinylidene fluoride homopolymer porous membrane was peeled from the polypropylene film, and the separator for electronic components of this invention was obtained. This separator for electronic parts had a porosity of 65%, an air permeability of 2 seconds / 100 cc, and a density of 0.62 g / cm 3 .
[0018]
Example 4
A homopolymer of vinylidene fluoride having a weight average molecular weight of 350,000 and a copolymer containing vinylidene fluoride having a weight average molecular weight of 200,000 composed of vinylidene fluoride and tetrafluoroethylene are dissolved in 1-methyl-2-pyrrolidone, and phthalic acid is dissolved. After adding dibutyl and adjusting so that the vinylidene fluoride homopolymer component is 9% by weight and the copolymer component containing vinylidene fluoride is 1% by weight, it is applied onto a polypropylene film by a casting method, and the solvent is removed by a dry method. Evaporation was performed by heat to form a vinylidene fluoride polymer porous film having a thickness of 40 μm. And this vinylidene fluoride polymer porous membrane was peeled from the polypropylene film, and the separator for electronic components of this invention was obtained. This electronic component separator had a porosity of 63%, an air permeability of 40 seconds / 100 cc, and a density of 0.74 g / cm 3 .
[0019]
Example 5
A homopolymer of vinylidene fluoride having a weight average molecular weight of 500,000 and a copolymer comprising vinylidene fluoride having a weight average molecular weight of 100,000 and vinylidene fluoride consisting of ethylene tetrafluoride are dissolved in 1-methyl-2-pyrrolidone, and phthalic acid is dissolved. After adding dibutyl and adjusting so that the vinylidene fluoride homopolymer component is 7% by weight and the copolymer component containing vinylidene fluoride is 3% by weight, it is applied onto a polypropylene film by a casting method, and the solvent is removed by a dry method. Evaporated by heat, a 25 μm thick vinylidene fluoride polymer porous membrane was formed. And this vinylidene fluoride polymer porous membrane was peeled from the polypropylene film, and the separator for electronic components of this invention was obtained. The electronic component separator had a porosity of 64%, an air permeability of 20 seconds / 100 cc, and a density of 0.68 g / cm 3 .
[0020]
Comparative Example 1
A wet method in which a vinylidene fluoride homopolymer having a weight average molecular weight of 500,000 is dissolved in 1-methyl-2-pyrrolidone by coating on a polypropylene film and immersed in methanol, which is a poor solvent, to replace the solvent. Thus, a vinylidene fluoride homopolymer porous film having a thickness of 30 μm was formed. The vinylidene fluoride homopolymer porous membrane was peeled from the polypropylene film to obtain a comparative separator. This separator had a porosity of 44%, an air permeability of 300 seconds / 100 cc, and a density of 1.0 g / cm 3 .
[0021]
Comparative Example 2
Methanol, which is a poor solvent, is obtained by applying a copolymer of vinylidene fluoride and ethylene tetrafluoride containing vinylidene fluoride having a weight average molecular weight of 200,000 dissolved in 1-methyl-2-pyrrolidone to a polypropylene film by a casting method. A vinylidene fluoride polymer porous membrane having a thickness of 20 μm was formed by a wet method in which the solvent was replaced by immersion. Then, the vinylidene fluoride polymer porous membrane was peeled from the polypropylene film to obtain a comparative separator. This separator had a porosity of 78%, an air permeability of 110 seconds / 100 cc, and a density of 0.4 g / cm 3 .
[0022]
Comparative Example 3
An electrical insulating paper having a thickness of 30 μm was used as a comparative separator. The electrical insulating paper had a porosity of 70%, an air permeability of 5 seconds / 100 cc, and a density of 0.5 g / cm 3 .
[0023]
The characteristics when the separators obtained in the above Examples and Comparative Examples were used for electric double layer capacitors were evaluated as follows.
[Separator liquid retention]
The eight separators of Examples 1 to 5 and Comparative Examples 1 to 3 were impregnated with an electrolytic solution for driving an electric double layer capacitor, and the liquid retention of the separator was evaluated. In the electrolyte, propylene carbonate was used as a solvent component, and 4 ethylammonium tetrafluorofluoride was used as a solute component. The test samples were cut into individual pieces by cutting the above eight types of separators into 5 cm length and 5 cm width, soaked in an electrolyte solution and impregnated for 15 minutes in a reduced pressure atmosphere, and then the electrolyte solution adhering to the separator surface was wiped off. The electrolyte solution was contained only in the inner porous layer. The weight of the separator in this state was measured, and the liquid retention after 100 hours and 250 hours under 25 ° C. and 50% RH humidity atmosphere was confirmed. The results are shown in Table 1. The numerical value indicated by% in the table represents what percentage was retained as compared with the initial electrolyte amount.
[0024]
[Table 1]
Figure 0003752235
[0025]
As is clear from Table 1, it was confirmed that the separators of Examples 1 to 5 of the present invention had excellent liquid retention of 97% or more even after 250 hours. On the other hand, in the separator of Comparative Example 3, the liquid retention was less than 90% after 250 hours and was inferior to the Examples. From this result, it was confirmed that the separator used in the example can hold the electrolyte uniformly even inside the capacitor and can produce an electric double layer capacitor having stable characteristics.
[0026]
[Adhesion with electrode]
The adhesion between the eight types of separators and the electrodes was evaluated as follows.
First, an electrode agent is applied to an aluminum current collector, and a separator is pressed against the aluminum current collector in an 80 ° C. atmosphere at a pressure of 15 kgf / cm 2 , and then impregnated with an electrolyte under a reduced pressure atmosphere. The adhesion was evaluated by peeling the separator and the electrode, and the results are shown in Table 2. When the separator was peeled off, the electrode agent adhered to 80% or more of the separator surface was marked with ◎, when it was 50% or more but less than 80%, ○, and when it was less than 50%, it was marked with ×.
[0027]
[Table 2]
Figure 0003752235
[0028]
As is clear from Table 2, it was confirmed that the separators of Examples 1 to 5 of the present invention were superior in adhesion to those of Comparative Examples 1 and 3. Thereby, even if gas is generated from the current collector or the electrode material inside the capacitor, the possibility that the separator and the electrode are peeled off is very low, and an electric double layer capacitor having stable characteristics can be manufactured.
[0029]
[Puncture strength]
As a measure of mechanical strength, needles were pierced into the eight types of separators of the above examples and comparative examples, and the maximum point load when the needles penetrated the separators was measured. This test represents the strength of the separator, and indicates that the greater the maximum point load per thickness, the better the strength. Table 3 shows the separator thickness (X), maximum point load (Y), and maximum point load per thickness (Y / X).
[0030]
[Table 3]
Figure 0003752235
[0031]
As can be seen from Table 3, the separators of Examples 1 to 5 of the present invention have a strength that is superior to that of Comparative Examples 1 and 2 in the maximum point load per thickness. It was confirmed that there is an effect of preventing a minute short circuit.
[0032]
[Ionic conductivity]
In order to confirm whether or not the deterioration of the impedance occurs due to the gelation of the resin component constituting the separator, a coin-type cell is produced using the eight types of separators of the above-mentioned examples and comparative examples, The ionic conductivity of the cell was measured. The ionic conductivity is measured by an alternating current impedance method using an electrochemical measuring device manufactured by Solartron, and the higher the numerical value, the better the characteristics.
[0033]
[Table 4]
Figure 0003752235
[0034]
From Table 4, it was confirmed that the separators of Examples 1 to 5 of the present invention had higher ionic conductivity than the separators of Comparative Examples 1 and 2 and had excellent characteristics.
As is clear from the results of Tables 1 to 4, the separator for electronic parts of the present invention satisfied all the properties of liquid retention, adhesion to electrodes, puncture strength, and ionic conductivity. The example separator did not satisfy these properties simultaneously.
[0035]
【The invention's effect】
As described above, the separator for electronic parts according to the present invention can improve the reliability of the aluminum electrolytic capacitor or the electric double layer capacitor by reducing the impedance, has high mechanical strength, and improves the adhesion between the electrode and the separator. It is an excellent separator for electronic parts that makes it possible. Therefore, when used as an aluminum electrolytic capacitor or an electric double layer capacitor, it is possible to sufficiently withstand mechanical stress due to the manufacturing process, and it has excellent manufacturing workability and can improve production efficiency.

Claims (2)

フッ化ビニリデンホモポリマー、又フッ化ビニリデンと4フッ化エチレンもしくは6フッ化プロピレンのいずれか1種類以上とからなるフッ化ビニリデンを含むコポリマーを有するフッ化ビニリデン系多孔質膜であって、前記フッ化ビニリデン系多孔質膜の透気度が100秒/100cc以下であり、密度が0.5g/cm〜0.9g/cm、且つ空隙率が30%〜90%であることを特徴とする電子部品用セパレータ。Vinylidene fluoride homopolymer, or a vinylidene fluoride-based porous film having a copolymer comprising vinylidene fluoride consisting of any one or more of vinylidene fluoride and tetrafluoroethylene or hexafluoropropylene, the it air permeability of the vinylidene fluoride porous membrane is not more than 100 sec / 100 cc, with density is 0.5g / cm 3 ~0.9g / cm 3 , and a porosity of 30% to 90% An electronic component separator characterized by the above. アルミニウム電解コンデンサ又は電気二重層キャパシタに使用されることを特徴とする請求項1に記載の電子部品用セパレータ。The separator for electronic parts according to claim 1, which is used for an aluminum electrolytic capacitor or an electric double layer capacitor.
JP2003086753A 2003-03-27 2003-03-27 Separator for electronic parts Expired - Fee Related JP3752235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086753A JP3752235B2 (en) 2003-03-27 2003-03-27 Separator for electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086753A JP3752235B2 (en) 2003-03-27 2003-03-27 Separator for electronic parts

Publications (2)

Publication Number Publication Date
JP2004296760A JP2004296760A (en) 2004-10-21
JP3752235B2 true JP3752235B2 (en) 2006-03-08

Family

ID=33401291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086753A Expired - Fee Related JP3752235B2 (en) 2003-03-27 2003-03-27 Separator for electronic parts

Country Status (1)

Country Link
JP (1) JP3752235B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351365A (en) * 2005-06-16 2006-12-28 Tomoegawa Paper Co Ltd Separator for electronic components, and the electronic component
US9431641B2 (en) 2011-04-08 2016-08-30 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP5853400B2 (en) * 2011-04-21 2016-02-09 ソニー株式会社 Separator and non-aqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system

Also Published As

Publication number Publication date
JP2004296760A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
KR100647966B1 (en) Separator for electronic components and process for producing the same
JP5495210B2 (en) Composite porous membrane, method for producing composite porous membrane, and battery separator using the same
JP6551997B2 (en) Composite microporous membrane with excellent electrochemical stability and method for producing the same
JP2006059733A (en) Separator for electronic component and its manufacturing method
JP6193333B2 (en) Separator and manufacturing method thereof
JP5461745B2 (en) Microporous membrane and method for producing the same
JP5445885B2 (en) Separator for electrochemical device and manufacturing method thereof
KR20010034536A (en) Ion Conductive Matrixes and Their Use
JP5461744B2 (en) Microporous membrane and method for producing the same
JP5532430B2 (en) Composite porous membrane, method for producing composite porous membrane, and battery separator using the same
JP4812266B2 (en) Separator for electronic parts and method for manufacturing the same
JP4974448B2 (en) Manufacturing method of separator for electronic parts
JP2006331759A (en) Separator for electronic component and method of manufacturing the same
JPWO2007013179A1 (en) Nonaqueous secondary battery separator and method for producing the same
JPWO2019054422A1 (en) Separator for non-water secondary battery and non-water secondary battery
JP2006338918A (en) Electronic component and separator therefor
EP3920264B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP4495516B2 (en) Separator for electronic parts and method for manufacturing the same
JP2006338917A (en) Electronic component and separator therefor
JP5485741B2 (en) Manufacturing method of separator for electronic parts
EP3394917B1 (en) Composite material
JP3752235B2 (en) Separator for electronic parts
JP2006351365A (en) Separator for electronic components, and the electronic component
JP2016182816A (en) Laminate and method for producing the same
JP4691314B2 (en) Manufacturing method of separator for electronic parts

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051209

R150 Certificate of patent or registration of utility model

Ref document number: 3752235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees