JP3846930B2 - Manufacturing method of electric double layer capacitor - Google Patents

Manufacturing method of electric double layer capacitor Download PDF

Info

Publication number
JP3846930B2
JP3846930B2 JP7707096A JP7707096A JP3846930B2 JP 3846930 B2 JP3846930 B2 JP 3846930B2 JP 7707096 A JP7707096 A JP 7707096A JP 7707096 A JP7707096 A JP 7707096A JP 3846930 B2 JP3846930 B2 JP 3846930B2
Authority
JP
Japan
Prior art keywords
polarizable electrode
resin
carbon
electric double
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7707096A
Other languages
Japanese (ja)
Other versions
JPH09270370A (en
Inventor
和也 平塚
剛 森本
学 数原
健 河里
学 對馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP7707096A priority Critical patent/JP3846930B2/en
Publication of JPH09270370A publication Critical patent/JPH09270370A/en
Application granted granted Critical
Publication of JP3846930B2 publication Critical patent/JP3846930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To minimize the water content in a polarized electrode not to mark the decline in performance by a method wherein a polarized electrode mainly comprising an activated carbon molded in sheetlike shape is junctioned with a collector through the intermediary of carbon base conductive adhesive layer containing polyimide resin or polyamide imide resin. SOLUTION: Activated carbon particles, polytetrafluoroethylene and carbon black are kneaded with ethanol to mold the kneaded product in a sheetlike shape. Next, the produced sheet is bond-fixed on the surface of a colllector of etching processed aluminum foil through the intermediary of a conductive adhesive layer made of a binder content and a graphite fine particles. In such a constitution, the binder content is to be a solvent soluble polyimide resin, polyamide imide resin and varnish melting either one of the precursors of said resins in an organic solution.

Description

【0001】
【発明の属する技術分野】
本発明は電気二重層コンデンサ(以下、EDLCという)、特に作動信頼性に優れたEDLCの製造方法に関する。
【0002】
【従来の技術】
EDLCは、分極性電極の表面の電解液中に形成される電気二重層に電荷を蓄積することを原理としており、EDLCの容量密度を向上させるため、分極性電極には高比表面積の活性炭、カーボンブラックなどの炭素材料、金属又は導電性金属酸化物の微粒子などが用いられる。これらの高比表面積の分極性電極に効率良く充電及び放電するため、これらの分極性電極は集電体と呼ばれる金属や黒鉛などの電子伝導性の抵抗の小さい層や箔と接合されている。これらの集電体には通常電気化学的に耐食性の高いアルミウムなどのバルブ金属、SUS304、SUS316Lなどのステンレス鋼などが使用される。
【0003】
このようなEDLCには、電解液に有機電解液を用いたものと水系電解液を用いたものがあり、作動電圧が高く、充電状態のエネルギ密度を大きくできることから、有機電解液を用いたEDLCが注目されている。有機電解液を用いる場合、EDLCの内部に水分が存在するとこの水分が電気分解して性能の劣化を招くため、上記分極性電極は高度に脱水する必要があり、通常、減圧下で加熱する乾燥処理が施される。
【0004】
分極性電極には主に活性炭が使用され、活性炭は通常粉末状であるため、例えばポリテトラフルオロエチレン(PTFE)などの含フッ素樹脂を含むバインダを用いてあらかじめシート状に成形したものを集電体と電気的に接続させた電極として用いる。この際、両者を密着させ、かつ電気的な接触抵抗が小さくなるように、導電性接着層を介して接合したものも多くある。しかし、含フッ素樹脂には接着が難しいという性質があり、大きな接合強度を得ることが難しい。
【0005】
導電性接着層には電気化学的な耐食性を必要とするので、これらの導電性接着層に電子伝導性を与えるフィラーには、カーボンブラックや黒鉛などの炭素材料が好んで使用される。さらに接合強度を確保するため、導電性接着層には種々のバインダ成分が使用される。この目的に使用されるバインダ成分としては、セルロース、ポリビニルアルコールなどの樹脂(特開昭59−3915、特開昭62−200715)や、水ガラス等の無機系バインダ成分(特開平2−82608)が知られている。
【0006】
しかし、これら樹脂系バインダ成分を含む導電性接着剤を用いた場合、有機電解液に対する耐性が不充分なことによって分極性電極と集電体が剥離を起こしたりする。また、耐熱性の良いバインダであっても耐熱性が150℃前後であるため高温での乾燥処理ができず、活性炭に吸着している残存水分が電気分解することによるEDLCの性能劣化が見られるなどの問題があった。また、水ガラス等の無機系バインダでは、耐熱性は高いが金属集電体との接着強度が不充分であり、アルカリ成分の溶出や残留水分によってEDLCの性能劣化が起きる問題があった。
【0007】
【発明が解決しようとする課題】
本発明は上記従来技術における問題、すなわちEDLC中、特に分極性電極中の水分を極力少なくでき、電極と集電体との電気的接続が強く、性能劣化の起きないEDLCを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明のEDLCの製造方法は、分極性電極と、該分極性電極の表面に電気二重層を形成する有機電解液とを有する電気二重層コンデンサの製造方法であって、活性炭粉末とカーボンブラックと含フッ素樹脂との混合物をシート状に成形して分極性電極とし、この分極性電極をポリイミド樹脂、ポリアミドイミド樹脂又はこれら樹脂の前駆体をバインダ成分として含む、炭素系導電性フィラーの懸濁液からなる炭素系導電性接着剤を使用して集電体に圧着し、20℃以上で加熱乾燥することにより、前記集電体に前記分極性電極を接合し、前記分極性電極中の水分を除去することを特徴とする。
【0009】
本発明のEDLCにおいて、炭素系導電性接着層に含まれるバインダ成分は、ポリイミド樹脂又はポリアミドイミド樹脂であり、これら樹脂の耐熱温度は通常200〜400℃の範囲にあって耐熱性が高い。ポリイミド樹脂はその主鎖にイミド構造(−CO−NR−CO−)の骨格を持つものの総称であって、耐薬品性、機械的性質、寸法安定性、電気的特性において優れている。ポリイミド樹脂は、線状ポリイミド樹脂と硬化型ポリイミド樹脂に大別できる。線状ポリイミド樹脂には熱可塑性樹脂と非熱可塑性樹脂があり、硬化型樹脂には熱硬化性樹脂と光硬化性樹脂が含まれるが、いずれのタイプのポリイミド樹脂を選ぶとしても、樹脂を溶剤に溶かしたワニスを接着剤に使用するのが好ましい。
【0010】
ポリイミド樹脂のワニスには、溶剤に可溶なポリイミド樹脂を溶剤に溶かしたものと、ポリアミック酸等のポリイミド樹脂の前駆体を溶剤に溶かしたもので、高温の熱処理でイミド樹脂になるものがあり、いずれも同様に使用できる。ポリイミド樹脂のワニスには、宇部興産社の「U−ワニス」(ポリアミック酸を溶剤に溶かしたもの)、新日本理化社の「リカコート」(溶剤に可溶なポリイミド樹脂を溶剤にとかしたもの)、デュポン社の「パイヤーML」、日立化成社の「PIQ」、東レ社の「トレニース」、旭化成工業社の「パイメル」がある。また、溶剤に可溶なポリアミドイミド樹脂を溶剤に溶かしたワニスには、東洋紡社の「N7525」や「NA−11」がある。
【0011】
このように、本発明のEDLCでは、炭素系導電性接着層のバインダ成分であるポリイミド樹脂又はポリアミドイミド樹脂の耐熱性が高いため、高温下での加熱又は減圧下の加熱処理によって活性炭中にある水分を高度に乾燥除去できる。また、このバインダ成分は有機電解液に対する耐性があり、含フッ素樹脂をバインダとする分極性電極シートの金属等の集電体への接着強度もきわめて優れる。このため、大電流密度で充放電サイクルを繰り返しても、長期間にわたって電圧を印加しても、作動性能が安定しており、同時に電極の内部抵抗の増加を小さくできる。
【0012】
バインダ成分に用いる樹脂は樹脂粉末又はワニスとして入手できるので、これらの樹脂をN−メチル−2−ピロリドン(NMP)等の溶剤に溶かしたものに、導電性フィラーとしてカーボンブラックや黒鉛微粒子を高度に分散させて懸濁液の接着剤とし、この接着剤を集電体の表面に滴下、刷毛塗り、スプレー等によって塗工し、次いでこの表面に別途作製した分極性電極のシートを圧着し、好ましくは250℃以上の高温下、さらには減圧下で加熱乾燥することにより強固に接合する。
【0013】
本発明の好ましいEDLCは、バインダ成分が、溶剤に可溶なポリイミド樹脂、ポリアミドイミド樹脂又はこれら樹脂の前駆体を有機溶媒に溶かしたワニスを加熱硬化させたものであり、炭素系導電性接着層中にポリイミド樹脂又はポリアミドイミド樹脂をポリイミド樹脂又はポリアミドイミド樹脂と導電性フィラーとの合量中10〜70重量%含むものである。該ポリイミド樹脂又はポリアミドイミド樹脂は炭素系導電性接着層中に10重量%以上含むことによって実用性のある接合強度が得られ、あまり多く含まれると接着層の電気抵抗が大きくなるので70重量%以下とするのが好ましい。
【0014】
本発明のEDLCに使用される有機電解液は特に限定されず、公知の有機溶媒にイオン解離性の塩類を含む有機電解液を使用できる。なかでもR4+ 、R4+ (Rはアルキル基)などの第4級オニウムカチオンと、BF4 -、PF6 -、ClO4 -、CF3 SO3 -等のアニオンとからなる塩を有機溶媒に溶解させた有機電解液を使用するのが好ましい。
【0015】
上記有機溶媒としては、プロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート等のカーボネート類、γ−ブチルラクトン等のラクトン類、スルホラン又はこれらの混合溶媒が好ましく使用できる。
【0016】
本発明のEDLCの分極性電極材料は、電気化学的に不活性な高比表面積の材料であれば使用できるが、大きい比表面積を有する活性炭粉末を主とする分極性電極材料とするのが好ましい。活性炭粉末の他、カーボンブラック、金属微粒子、導電性金属酸化物微粒子などの大比表面積の材料を好ましく使用できる。また、これらの分極性電極材料を主とする分極性電極を、正極と負極の両方に用いてEDLCとすることが多いが、正極又は負極の一方のみを上記分極性電極とし、残りの一方を充放電可能な非分極性電極材料、すなわち二次電池用活物質材料を主とする非分極性電極としてもよい。
【0017】
上記の分極性電極を電気的に接続するための集電体は、導電性に優れ、かつ電気化学的に耐久性のある材料であればよく、アルミニウム、チタン、タンタルなどのバルブ金属、ステンレス鋼、金、白金などの貴金属、黒鉛、グラッシーカーボン、カーボンブラックを含む導電性ゴムなどの炭素系材料が好ましく使用できる。
【0018】
本発明の製造方法では、乾燥を高度に、かつ速やかに行うには、加熱乾燥を250℃以上で行うのが好ましい。
【0019】
【実施例】
以下、本発明を実施例(例1〜3)及び比較例(例4、5)によってさらに説明するが、本発明はこれらに限定されない。
【0020】
水蒸気賦活法で得られたやしがら活性炭粉末(平均粒径10μm、比表面積1800m2 /g)80重量%、PTFE10重量%及びカーボンブラック10重量%にエタノールを加えて混練し、混練物をシート状に成形し、さらに厚さ0.3mmにロール圧延後、40mm角のシートを切り取り、これをエッチング処理を施したアルミニウム箔(厚さ0.1mm)の集電体の表面に、それぞれ表1に示す種類のバインダ成分20重量%と黒鉛微粒子80重量%からなる導電性接着層を介して接着固定した。
【0021】
すなわち、バインダ成分20重量%と黒鉛微粒子80重量%にNMPを混合した懸濁液である炭素系導電性接着剤を得た。この炭素系導電性接着剤を集電体のアルミニウム箔の表面に塗工し、シート状の分極性電極をこの表面に圧着し、次に表1に示した各懸濁液中に含まれるバインダ成分の耐熱許容温度において減圧下で3時間加熱して乾燥処理し、各電極中の水分を除去した。
【0022】
【表1】

Figure 0003846930
【0023】
乾燥後の集電体と接合された分極性電極を、低湿度のアルゴンガスを充たしたグローブボックスに移し、有機電解液として1モル/リットルのテトラエチルアンモニウムテトラフルオロボレートを含むプロピレンカーボネート溶液を分極性電極中に充分含浸させ、ポリプロピレン繊維の不織布からなるセパレータを両分極性電極間に挟んで対向させ、EDLCを組み立てた。
【0024】
得られたEDLCの初期の放電容量及び内部抵抗を測定した後、40℃の恒温槽中で0〜2.8Vの間で1Aの定電流による充放電を3000サイクル繰り返し、3000サイクル後の放電容量及び内部抵抗を測定し、前後の性能変化を観察することにより、EDLCの長期的な作動信頼性を加速的に評価した。
【0025】
【発明の効果】
表1によれば、本発明によるEDLCは、高温の加速的劣化を起こす試験条件下において3000サイクルの充放電サイクルを繰り返した時の容量劣化と内部抵抗の上昇が顕著に小さく、長期間使用時の作動信頼性に優れたEDLCであることがわかる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric double layer capacitor (hereinafter referred to as EDLC), and more particularly to a method of manufacturing EDLC having excellent operation reliability.
[0002]
[Prior art]
EDLC is based on the principle of accumulating electric charges in the electric double layer formed in the electrolyte solution on the surface of the polarizable electrode. In order to improve the capacity density of EDLC, the polarizable electrode has a high specific surface area activated carbon, Carbon materials such as carbon black, fine particles of metal or conductive metal oxide, and the like are used. In order to efficiently charge and discharge these polarizable electrodes having a high specific surface area, these polarizable electrodes are joined to a layer called a current collector, such as a metal or graphite, having a low electron conductivity resistance or a foil. These are the current collector typically electrochemically valve metal, such as high corrosion resistance Aluminum, and stainless steel such as SUS304, SUS316L is used.
[0003]
There are two types of EDLC, one using an organic electrolyte and the other using an aqueous electrolyte. The EDLC uses an organic electrolyte because the operating voltage is high and the energy density of the charged state can be increased. Is attracting attention. When using an organic electrolyte, the presence of water inside the EDLC causes the water to electrolyze and degrade performance, so the polarizable electrode must be highly dehydrated and is usually dried by heating under reduced pressure. Processing is performed.
[0004]
Activated carbon is mainly used for the polarizable electrode, and the activated carbon is usually in the form of powder. For example, the current collected is formed into a sheet using a binder containing a fluorine-containing resin such as polytetrafluoroethylene (PTFE). Used as an electrode electrically connected to the body. At this time, many of them are bonded via a conductive adhesive layer so that both are brought into close contact with each other and the electrical contact resistance is reduced. However, the fluorine-containing resin has a property that it is difficult to bond, and it is difficult to obtain a large bonding strength.
[0005]
Since the conductive adhesive layer requires electrochemical corrosion resistance, a carbon material such as carbon black or graphite is preferably used as a filler for imparting electronic conductivity to these conductive adhesive layers. Further, various binder components are used for the conductive adhesive layer in order to ensure the bonding strength. Binder components used for this purpose include resins such as cellulose and polyvinyl alcohol (JP 59-3915, JP 62-200715), and inorganic binder components such as water glass (JP 2-82608). It has been known.
[0006]
However, when a conductive adhesive containing these resin binder components is used, the polarizable electrode and the current collector may be peeled off due to insufficient resistance to the organic electrolyte. Moreover, even if the binder has good heat resistance, the heat resistance is around 150 ° C., so it cannot be dried at high temperature, and the performance of EDLC is deteriorated due to the electrolysis of residual moisture adsorbed on the activated carbon. There were problems such as. In addition, inorganic binders such as water glass have high heat resistance but insufficient adhesive strength with a metal current collector, and there is a problem in that EDLC performance deteriorates due to elution of alkali components and residual moisture.
[0007]
[Problems to be solved by the invention]
The object of the present invention is to provide an EDLC that can reduce the problem in the prior art, that is, EDLC, in particular, moisture in the polarizable electrode as much as possible, has strong electrical connection between the electrode and the current collector, and does not cause performance deterioration. And
[0008]
[Means for Solving the Problems]
A method for producing an EDLC of the present invention is a method for producing an electric double layer capacitor having a polarizable electrode and an organic electrolyte that forms an electric double layer on the surface of the polarizable electrode, wherein the activated carbon powder, carbon black, A carbon-based conductive filler suspension containing a mixture of a fluorine-containing resin in the form of a sheet to form a polarizable electrode, and the polarizable electrode containing polyimide resin, polyamideimide resin or a precursor of these resins as a binder component Is bonded to the current collector using a carbon-based conductive adhesive, and is heated and dried at 25 ° C. or higher to join the polarizable electrode to the current collector. It is characterized by removing moisture .
[0009]
In the EDLC of the present invention, the binder component contained in the carbon-based conductive adhesive layer is a polyimide resin or a polyamide-imide resin, and the heat resistance temperature of these resins is usually in the range of 200 to 400 ° C. and has high heat resistance. Polyimide resin is a general term for those having an imide structure (—CO—NR—CO—) in its main chain, and is excellent in chemical resistance, mechanical properties, dimensional stability, and electrical characteristics. Polyimide resins can be broadly classified into linear polyimide resins and curable polyimide resins. Linear polyimide resins include thermoplastic resins and non-thermoplastic resins, and curable resins include thermosetting resins and photocurable resins. Regardless of which type of polyimide resin is selected, the resin must be a solvent. It is preferable to use a varnish dissolved in the adhesive.
[0010]
There are two types of polyimide resin varnishes: one in which a polyimide resin soluble in a solvent is dissolved in the solvent, and one in which a precursor of polyimide resin such as polyamic acid is dissolved in the solvent, which becomes an imide resin by high-temperature heat treatment. Can be used in the same manner. For the varnish of polyimide resin, Ube Industries' “U-varnish” (polyamic acid dissolved in solvent), Shin Nippon Rika Co., Ltd.'s “Rika Coat” (solvent dissolved polyimide resin in solvent) DuPont's "Pier ML", Hitachi Chemical's "PIQ", Toray's "Trenice" and Asahi Kasei's "Pimel". Moreover, “N7525” and “NA-11” manufactured by Toyobo Co., Ltd. are available as varnishes in which a polyamideimide resin soluble in a solvent is dissolved in a solvent.
[0011]
Thus, in the EDLC of the present invention, since the heat resistance of the polyimide resin or polyamideimide resin that is the binder component of the carbon-based conductive adhesive layer is high, it is in the activated carbon by heating at high temperature or heat treatment under reduced pressure. Moisture can be removed by high drying. In addition, this binder component is resistant to an organic electrolyte, and the adhesion strength of a polarizable electrode sheet having a fluorine-containing resin as a binder to a current collector such as metal is extremely excellent. For this reason, even if a charge / discharge cycle is repeated at a large current density or a voltage is applied for a long period of time, the operation performance is stable, and at the same time, the increase in internal resistance of the electrode can be reduced.
[0012]
Since the resin used for the binder component can be obtained as a resin powder or varnish, carbon black and graphite fine particles are highly used as conductive fillers in those resins dissolved in a solvent such as N-methyl-2-pyrrolidone (NMP). Dispersed into a suspension adhesive, and this adhesive is applied to the surface of the current collector by dropping, brushing, spraying, etc., and then a separately prepared sheet of polarizable electrode is pressure-bonded to the surface, preferably Is firmly bonded by heating and drying at a high temperature of 250 ° C. or higher, and further under reduced pressure.
[0013]
A preferred EDLC of the present invention is a carbon-based conductive adhesive layer in which a binder component is a heat-cured varnish in which a solvent-soluble polyimide resin, polyamide-imide resin or a precursor of these resins is dissolved in an organic solvent. The polyimide resin or polyamideimide resin is contained therein in an amount of 10 to 70% by weight in the total amount of the polyimide resin or polyamideimide resin and the conductive filler . When the polyimide resin or polyamideimide resin is contained in the carbon-based conductive adhesive layer in an amount of 10% by weight or more, a practical bonding strength can be obtained, and if it is contained too much, the electrical resistance of the adhesive layer increases, so that 70% by weight. The following is preferable.
[0014]
The organic electrolyte used in the EDLC of the present invention is not particularly limited, and an organic electrolyte containing ion-dissociable salts in a known organic solvent can be used. In particular, a salt comprising a quaternary onium cation such as R 4 N + or R 4 P + (R is an alkyl group) and an anion such as BF 4 , PF 6 , ClO 4 or CF 3 SO 3 −. It is preferable to use an organic electrolytic solution in which is dissolved in an organic solvent.
[0015]
As the organic solvent, carbonates such as propylene carbonate, butylene carbonate and diethyl carbonate, lactones such as γ-butyllactone, sulfolane or a mixed solvent thereof can be preferably used.
[0016]
The polarizable electrode material of the EDLC of the present invention can be used as long as it is an electrochemically inert material having a high specific surface area, but is preferably a polarizable electrode material mainly composed of activated carbon powder having a large specific surface area. . In addition to the activated carbon powder, materials having a large specific surface area such as carbon black, metal fine particles, and conductive metal oxide fine particles can be preferably used. In many cases, polarizable electrodes mainly composed of these polarizable electrode materials are used for both positive and negative electrodes to form EDLC, but only one of the positive and negative electrodes is used as the polarizable electrode, and the other is used as the other one. A nonpolarizable electrode material that can be charged and discharged, that is, a nonpolarizable electrode mainly composed of an active material for a secondary battery may be used.
[0017]
The current collector for electrically connecting the polarizable electrodes may be any material that is excellent in conductivity and electrochemically durable, such as valve metals such as aluminum, titanium, and tantalum, and stainless steel. Carbon materials such as conductive rubber containing noble metals such as gold and platinum, graphite, glassy carbon, and carbon black can be preferably used.
[0018]
In the production method of the present invention, it is preferable to perform heat drying at 250 ° C. or higher in order to perform drying highly and quickly.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example (Examples 1-3) and a comparative example (Examples 4 and 5) demonstrate this invention further, this invention is not limited to these.
[0020]
The palm activated carbon powder (average particle size 10 μm, specific surface area 1800 m 2 / g) obtained by the steam activation method is kneaded by adding ethanol to 80 wt%, PTFE 10 wt% and carbon black 10 wt%. Then, after rolling and rolling to a thickness of 0.3 mm, a 40 mm square sheet was cut out, and this was applied to the surface of an aluminum foil (thickness: 0.1 mm) current collector subjected to etching treatment, respectively. It was bonded and fixed via a conductive adhesive layer comprising 20% by weight of the binder component shown in FIG.
[0021]
That is, a carbon-based conductive adhesive which is a suspension obtained by mixing NMP with 20% by weight of the binder component and 80% by weight of the graphite fine particles was obtained. The carbon-based conductive adhesive is applied to the surface of the aluminum foil of the current collector, and a sheet-like polarizable electrode is pressure-bonded to the surface, and then the binder contained in each suspension shown in Table 1 The components were heated at a heat-resistant allowable temperature for 3 hours under reduced pressure and dried to remove moisture in each electrode.
[0022]
[Table 1]
Figure 0003846930
[0023]
The polarizable electrode joined with the dried current collector is transferred to a glove box filled with low-humidity argon gas, and a propylene carbonate solution containing 1 mol / liter of tetraethylammonium tetrafluoroborate is polarizable as an organic electrolyte. It is sufficiently impregnated in the electrode, to face each other across the separators of polypropylene fibers of the nonwoven fabric between the two polarizable electrodes were assembled EDLC.
[0024]
After measuring the initial discharge capacity and internal resistance of the obtained EDLC, the battery was charged and discharged with a constant current of 1 A between 0 and 2.8 V in a constant temperature bath at 40 ° C. for 3000 cycles, and the discharge capacity after 3000 cycles. In addition, by measuring the internal resistance and observing the change in performance before and after, the long-term operational reliability of the EDLC was evaluated in an accelerated manner.
[0025]
【The invention's effect】
According to Table 1, the EDLC according to the present invention has remarkably small capacity deterioration and increase in internal resistance when 3000 charge / discharge cycles are repeated under the test conditions causing high temperature accelerated deterioration. It can be seen that this is an EDLC with excellent operational reliability.

Claims (2)

分極性電極と、該分極性電極の表面に電気二重層を形成する有機電解液とを有する電気二重層コンデンサの製造方法であって、活性炭粉末とカーボンブラックと含フッ素樹脂との混合物をシート状に成形して分極性電極とし、この分極性電極をポリイミド樹脂、ポリアミドイミド樹脂又はこれら樹脂の前駆体をバインダ成分として含む、炭素系導電性フィラーの懸濁液からなる炭素系導電性接着剤を使用して集電体に圧着し、20℃以上で加熱乾燥することにより、前記集電体に前記分極性電極を接合し、前記分極性電極中の水分を除去することを特徴とする電気二重層コンデンサの製造方法。A method for producing an electric double layer capacitor comprising a polarizable electrode and an organic electrolyte that forms an electric double layer on the surface of the polarizable electrode, wherein a mixture of activated carbon powder, carbon black, and fluorine-containing resin is formed into a sheet A carbon-based conductive adhesive comprising a suspension of a carbon-based conductive filler, which is formed into a polarizable electrode, and the polarizable electrode includes a polyimide resin, a polyamideimide resin, or a precursor of these resins as a binder component. use crimped to the current collector, dried by heating at 2 5 0 ° C. or higher, joining the polarizable electrode to the current collector, and removing the water in the polarizable electrode Manufacturing method of electric double layer capacitor. 前記懸濁液は、溶剤に可溶なポリイミド樹脂、ポリアミドイミド樹脂又はこれら樹脂の前駆体を有機溶媒に溶かしたワニスが使用されたものである請求項1記載の電気二重層コンデンサの製造方法。  The method for producing an electric double layer capacitor according to claim 1, wherein the suspension is made of a varnish in which a solvent-soluble polyimide resin, polyamide-imide resin or a precursor of these resins is dissolved in an organic solvent.
JP7707096A 1996-03-29 1996-03-29 Manufacturing method of electric double layer capacitor Expired - Fee Related JP3846930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7707096A JP3846930B2 (en) 1996-03-29 1996-03-29 Manufacturing method of electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7707096A JP3846930B2 (en) 1996-03-29 1996-03-29 Manufacturing method of electric double layer capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003329975A Division JP2004048055A (en) 2003-09-22 2003-09-22 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPH09270370A JPH09270370A (en) 1997-10-14
JP3846930B2 true JP3846930B2 (en) 2006-11-15

Family

ID=13623544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7707096A Expired - Fee Related JP3846930B2 (en) 1996-03-29 1996-03-29 Manufacturing method of electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3846930B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3341886B2 (en) 1998-02-05 2002-11-05 日本電気株式会社 Polarizing electrode, manufacturing method thereof, and electric double layer capacitor using the polarizing electrode
JP2000223373A (en) 1999-02-03 2000-08-11 Nec Corp Polarizing electrode, manufacture thereof, electric double layer capacitor using the same and manufacture thereof
US6631074B2 (en) * 2000-05-12 2003-10-07 Maxwell Technologies, Inc. Electrochemical double layer capacitor having carbon powder electrodes
JP3669429B2 (en) 2001-03-27 2005-07-06 信越化学工業株式会社 Electrode composition and electrode material
JP4293555B2 (en) 2003-04-23 2009-07-08 Tdk株式会社 Electrochemical capacitor electrode manufacturing method, electrochemical capacitor manufacturing method, and solvent-containing porous particles used in these
JP2006253450A (en) * 2005-03-11 2006-09-21 Nisshinbo Ind Inc Composition for electrode, accumulation device and electrode therefor
US10312028B2 (en) 2014-06-30 2019-06-04 Avx Corporation Electrochemical energy storage devices and manufacturing methods
MY195773A (en) 2016-05-20 2023-02-11 Kyocera Avx Components Corp Multi-Cell Ultracapacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265114A (en) * 1988-08-31 1990-03-05 Asahi Glass Co Ltd Electric double-layer capacitor
JP2740590B2 (en) * 1991-11-01 1998-04-15 住友ベークライト株式会社 Thermoconductive adhesive film
JPH07161589A (en) * 1993-12-06 1995-06-23 Nisshinbo Ind Inc Electric double-layer capacitor
JPH07331201A (en) * 1994-06-13 1995-12-19 Nisshinbo Ind Inc Electrically conductive adhesive and bonded structure using the same

Also Published As

Publication number Publication date
JPH09270370A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
US6072692A (en) Electric double layer capacitor having an electrode bonded to a current collector via a carbon type conductive adhesive layer
MX2007016485A (en) Current collector for double electric layer electrochemical capacitors and method of manufacture thereof.
WO2008079917A2 (en) Electrochemical double layer capacitor
JP2013140977A (en) Electrode, method for manufacturing the same, and electrochemical capacitor including the same
JP3846930B2 (en) Manufacturing method of electric double layer capacitor
KR20040100991A (en) Electric double layer capacitor and electric double layer capacitor stacked body
JP3791149B2 (en) Electric double layer capacitor and manufacturing method thereof
JP2017123471A (en) Current conducting electrode and method for manufacturing the same
JPH0855761A (en) Electric double layer capacitor and manufacture
KR101331966B1 (en) Electrochemical capacitor
JP2790529B2 (en) Electric double layer capacitor
JP4822554B2 (en) Foamed nickel chromium current collector for capacitor, electrode using the same, capacitor
JP2007180444A (en) Electrochemical capacitor
JP2004048055A (en) Electric double layer capacitor
JP2014521231A5 (en)
JPH0266918A (en) Electric double layer capacitor
TWI668902B (en) Electrode and electrochemical energy storage device
JP5845896B2 (en) Power storage device
JP2011009608A (en) Nickel aluminum porous collector and electrode using the same, and capacitor
JP4919226B2 (en) Polarizable electrode for electric double layer capacitor and manufacturing method thereof
KR102157384B1 (en) Electrical double layer capacitor including granular activated carbon-carbon nanotube composite
JP4026226B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor having the electrode
JP4318337B2 (en) Electrode for non-aqueous electrochemical device and method for producing the same
JP4822555B2 (en) Non-woven nickel chrome current collector for capacitor, electrode and capacitor using the same
JPH11135368A (en) Collector for electric double layer capacitor and the electric double layer capacitor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees