JP4026226B2 - Electrode for electric double layer capacitor and electric double layer capacitor having the electrode - Google Patents

Electrode for electric double layer capacitor and electric double layer capacitor having the electrode Download PDF

Info

Publication number
JP4026226B2
JP4026226B2 JP11383198A JP11383198A JP4026226B2 JP 4026226 B2 JP4026226 B2 JP 4026226B2 JP 11383198 A JP11383198 A JP 11383198A JP 11383198 A JP11383198 A JP 11383198A JP 4026226 B2 JP4026226 B2 JP 4026226B2
Authority
JP
Japan
Prior art keywords
electrode
electric double
double layer
layer capacitor
polytetrafluoroethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11383198A
Other languages
Japanese (ja)
Other versions
JPH11307402A (en
Inventor
克治 池田
学 数原
健 河里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP11383198A priority Critical patent/JP4026226B2/en
Publication of JPH11307402A publication Critical patent/JPH11307402A/en
Application granted granted Critical
Publication of JP4026226B2 publication Critical patent/JP4026226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

【0001】
【発明の属する技術分野】
本発明は、電気二重層キャパシタ用電極、特に、優れた機械的強度と高い容量を有する電気二重層キャパシタ用電極に関する。
【0002】
【従来の技術】
電気二重層キャパシタは、電極と電解液との界面に形成される電気二重層に電荷を蓄積することを原理としており、電気二重層キャパシタの容量密度を向上させるために、電極には高比表面積の活性炭、カーボンブラック等の炭素質材料、金属又は導電性金属酸化物の微粒子等が用いられている。電極は、効率よく充電及び放電するため、金属や黒鉛等の抵抗の低い層又は箔からなる集電体に接合されている。集電体としては、通常、電気化学的に耐食性の高いアルミニウム等のバルブ金属、SUS304、SUS316L等のステンレス鋼等が使用されている。
【0003】
電気二重層キャパシタの電解液としては有機系電解液と水系電解液があるが、作動電圧が高く、充電状態のエネルギ密度を大きくできることから、有機系電解液を用いた電気二重層キャパシタが注目されている。有機系電解液を用いる場合、電気二重層キャパシタセルの内部に水分が存在すると水分の電気分解により性能が劣化するため、電極を充分に脱水する必要があり、通常、減圧下で加熱する乾燥処理が施される。
【0004】
分極性電極としては一般的に活性炭が主成分として使用されるが、活性炭は通常は粉末状であるため、例えばポリテトラフルオロエチレン等の結合材と混合してシート状の電極に成形し、導電性接着層を介して集電体と電気的に接続させて電極体を形成している。
【0005】
結合材としては、耐熱性、化学的安定性に優れることから、ポリテトラフルオロエチレンを用い、活性炭と混合して混練した後、延伸することによりポリテトラフルオロエチレンを繊維化させて連続微細多孔質構造体を形成し、これを電極として用いることが知られている(特公平7−105316)。しかし、この場合ポリテトラフルオロエチレンが充分に繊維化しないと、炭素質微粉どうしの充分な結合が行われず、電極の機械的強度が低下する問題があった。また、機械的強度を補うために、ポリテトラフルオロエチレンの使用量を増大することもできるが、この場合、相対的に活性炭の量が少なくなるため、単位体積あたりの電気二重層キャパシタの容量が低下する。
【0006】
【発明が解決しようとする課題】
本発明は、前述した従来の問題点を解決すべくなされたものであり、優れた機械的特性を有する、高容量の電気二重層キャパシタに好適な電極及び該電極を有する電気二重層キャパシタを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、炭素質材料と結合材とを含んでなる電気二重層キャパシタ用電極において、結合材が、ポリテトラフルオロエチレンとポリテトラフルオロエチレンに対して1〜50重量%の溶融成形可能な含フッ素重合体樹脂とからなり、炭素質材料に対してポリテトラフルオロエチレンが3〜30重量%、かつ前記含フッ素重合体樹脂が0.1〜5重量%含まれることを特微とする電気二重層キャパシタ用電極、及び該電極を有する電気二重層キャパシタを提供する。
また、本発明は、炭素質材料と結合材とを含んでなる電気二重層キャパシタ用電極において、結合材が、ポリテトラフルオロエチレンと、ポリテトラフルオロエチレンに対して1〜50重量%のエチレン/テトラフルオロエチレン系共重合体又はフッ化ビニリデン系重合体とからなることを特微とする電気二重層キャパシタ用電極を提供する。
【0008】
本発明者らは、ポリテトラフルオロエチレンを結合材とする優れた機械的特性を有する高容量の電気二重層キャパシタ用電極を得るため鋭意検討した結果、ポリテトラフルオロエチレンに加え溶融成形可能な含フッ素重合体樹脂を少量添加することが有効であることを見出した。
【0009】
本発明の電極は、ポリテトラフルオロエチレンが繊維化して連続微細多孔質構造体を形成し、該構造体に炭素質材料が保持された多孔質シートであることが好ましい。ポリテトラフルオロエチレンは、剪断、圧延、延伸等の外部応力が加わることにより3次元的に繊維化して連続微細多孔質構造体を形成する。炭素質材料は、前記連続微細多孔質構造体に密に含ませることができるため、該構造体からなる電極は大きいキャパシタ容量を与え、かつ微小繊維の存在によリ適度の可撓性をもち機械的強度が大きい。そして、この場合上記含フッ素重合体樹脂は、繊維化によって結合しているポリテトラフルオロエチレンの多孔構造を熱的に融着させ安定化させていると思われる。
【0010】
上記の電極を得るには、例えば、炭素質材料、ポリテトラフルオロエチレン、上記含フッ素重合体樹脂及び液状潤滑剤からなる混合物を混練した後シート状に成形し、成形物を圧延処理及び/又は延伸処理することによって製造されることが好ましい。この場合、延伸処理は一軸方向でも多軸方向でもよく、液状澗滑剤は圧延処理及び/又は延伸処理の前又は後に除去される。特に、混合物をペースト押出し成形法又はスクリュー押出し成形法等の押出し成形をした後、圧延処理及び/又は延伸処理すると、ポリテトラフルオロエチレンが縦横に繊維化して3次元的網目構造を構成でき、また連続的に厚さの薄い電極シートも製造できるので好ましい。
【0011】
本発明におけるポリテトラフルオロエチレンは、ポリテトラフルオロエチレンの一般的な重合法の一つである、水性媒体中で行われる分散重合法により得られるディスパージョンから凝集工程を経て得られる粉末形態の、いわゆるファインパウダーが好ましく用いられる。
【0012】
また、本発明におけるポリテトラフルオロエチレンは溶融成形できないが、テトラフルオロエチレンの単独重合体だけでなく、溶融成形できない程度にコモノマーを共重合させた、いわゆるトレースコポリマーであってもよい。このようなトレースコポリマーにおいて共重合されるコモノマーとしては含フッ素エチレン性モノマーが使用でき、具体的にはヘキサフルオロプロピレン、クロロトリフルオロエチレン、パーフルオロ(アルキルビニルエーテル)、(パーフルオロアルキル)エチレン等が挙げられる。この場合、該コモノマーに基づく重合単位は、ポリテトラフルオロエチレンに1.0重量%以下含まれる。
【0013】
本発明の電極において、ポリテトラフルオロエチレンは、炭素質材料に対し、0重量%含まれる。ポリテトラフルオロエチレンの量が多いと電極の機械的強度は高くなるが、容量は小さくなる。また、ポリテトラフルオロエチレンの量が1重量%より少ないと電極の強度が弱くなる
【0014】
本発明における溶融成形可能な含フッ素重合体としては、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)系共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、テトラフルオロエチレン/エチレン系共重合体、テトラフルオロエチレン/プロピレン系共重合体、クロロトリフルオロエチレン系重合体、クロロトリフルオロエチレン/エチレン系共重合体、クロロトリフルオロエチレン/アルキルビニルエーテル系共重合体、フッ化ビニリデン系重合体、フッ化ビニリデン/ヘキサフルオロプロピレン系共重合体、フルオロアルキルアクリレート系重合体、フルオロアルキルメタクリレート系重合体、パーフルオロ(ブテニルビニルエーテル)系環化重合体等が例示される。
【0015】
なかでもテトラフルオロエチレン/エチレン系共重合体又はフッ化ビニリデン系重合体が特に好ましい。ただし、本明細書においてA/B系共重合体とは、Aに基づく重合単位とBに基づく重合単位とを含んでなる共重合体を示し、A及びB以外の単量体に基づく重合単位を含まないか又は30重量%以下含む共重合体を示すものとする。また、C系重合体とはCに基づく重合単位を主成分とする重合体であって、Cに基づく重合単位からなる単独重合体及びCに基づく重合単位以外に他の単量体に基づく重合単位を30重量%以下含んでなる共重合体を示すものとする。また、上記共重合体において、テトラフルオロエチレンに基づく重合単位を含む共重合体は、溶融成形可能な樹脂であるから、テトラフルオロエチレンに基づく重合単位の含有量は99重量%未満である。
【0016】
上記含フッ素重合体の含有量は、電極中でポリテトラフルオロエチレンに対して1〜50重量%である。1重量%未満であると上記含フッ素重合体を添加する効果が実質的に現れない。また、50重量%を超えると、電極の電気抵抗が大きくなり、また充放電サイクル耐久性が劣化する。
【0017】
上記含フッ素重合体樹脂は、電極中で炭素質材料に対して0.1〜5重量%、特には0.5〜3重量%含まれることが好ましい。0.1重量%未満であると、上記含フッ素重合体樹脂を添加する効果が実質的に現れない。また、5重量%を超えると、電極の電気抵抗が大きくなる。
【0018】
本発明では上記含フッ素重合体樹脂を加えることにより電極の強度が高まるので、電極中の結合材の量が少なくても、特に10重量%以下であっても、充分な機械的特性を発現でき、その結果電極中の炭素質材料を増量できるため高い容量を発現することができる。
【0019】
本発明において電極を構成する連続微細多孔質構造体に含まれる炭素質材料としては、比表面積が700〜3000m2 /g、特には1000〜2500m2 /gのものが容量が大きく好ましい。具体的には活性炭、カーボンブラック、ポリアセン等が挙げられる。特に比表面積が700〜3000m2 /gの活性炭を主成分とし導電材としてアセチレンブラック、ケッチェンブラックなどのカーボンブラックを電極中に5〜20重量%となるように加えると、高容量かつ高導電性の電極シートが得られるので好ましい。活性炭としては、フェノール系、レーヨン系、アクリル系、ビッチ系又はヤシガラ炭系のものがいずれも使用できる。
【0020】
本発明では炭素質材料として粉末状のものを用いると、同じ比表面積を有する場合繊維状のものに比べて高容量になるので好ましい。炭素質粉末は、粒径は0.1〜200μm、特には1〜50μmであるとシート状の電極に成形したときの強度が強く好ましい。しかし、必要に応じて、例えば粉砕された長さ0.1〜200μm、特には1〜50μmの炭素繊維も使用できる。
【0021】
本発明の電気二重層キャパシタに使用される有機系電解液は特に限定されず、公知の有機溶媒にイオン解離性の塩類を含む有機系電解液を使用できる。なかでもR1234+ 、R1234+ (ただし、R1 、R2 、R3 、R4 はアルキル基で、それぞれ同じでも異なっていてもよい)で表される第4級オニウムカチオンと、BF4 -、PF6 -、ClO4 -、CF3 SO3 -等のアニオンとからなる塩を有機溶媒に溶解させた有機系電解液を使用するのが好ましい。
【0022】
上記有機溶媒としては、プロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート等のカーボネート類、γ−ブチロラクトン等のラクトン類、スルホラン、又はこれらから選ばれる2種以上の混合溶媒が好ましい。
【0023】
本発明の電気二重層キャパシタのセパレータとしては、セルロース紙、セルロースとガラス繊維の混紗紙、ガラス繊維マット、多孔質ポリプロピレンシート、多孔質ポリテトラフルオロエチレンシート等が使用でき、なかでも耐熱性が高く、含水率の低いガラス繊維マット、薄くても高強度のセルロース紙が好ましい。
【0024】
本発明の電気二重層キャパシタは、例えば一対の帯状の電極体を正極体及び負極体とし、間に帯状のセパレータを介在させて巻回して素子とし、有底円筒型ケースに収容し、有機系電解液を該素子に含浸させ、正極端子と負極端子を有する熱硬化性絶縁樹脂からなる蓋体により封口することにより得ることが好ましい。このとき、ケース材質はアルミニウムであることが好ましく、蓋体の周縁部にはゴムリングが配置され、カール封口されることが好ましい。
【0025】
また、例えば矩形の複数枚の電極体を同数枚の正極体及び負極体とし、間にセパレータを介在させて交互に積層して素子とし、前記複数枚の正極体及び負極体からはリードを取り出して有底角型アルミニウムケースに収容し、有機系電解液を前記素子に含浸させた後、正極端子と負極端子を有する蓋体を取り付け、レーザー溶接等により封口することにより角型電気二重層キャパシタを構成してもよい。このような円筒型又は角型の構造とすることにより、高容量かつ単位体積あたりの容量が大きい電気二重層キャパシタが得られる。
【0026】
【実施例】
[例1(実施例)]
電極は、比表面積1800m2 /g、平均粒径10μmの高純度活性炭粉末80重量部、ケッチェンブラック10重量部、ポリテトラフルオロエチレンファインパウダー(旭硝子社製、商品名:フルオンCD1。)10重量部、及び溶融成形可能な樹脂であるテトラフルオロエチレン/エチレン系共重合体樹脂粉末(テトラフルオロエチレンに基づく重合単位/エチレンに基づく重合単位/(パーフルオロブチル)エチレンに基づく重合単位がモル比で56/43.5/0.5。旭硝子社製、商品名:アフロンCOP Z−8820。)2重量部を混合した後、エタノールを滴下しつつ混練し、ロール圧延して厚さ120μmの電極シートを作製した。これを200℃で30分乾燥してエタノールを除去した。このシートの引張強度を測定したところ0.3kg/cm2 であった。
【0027】
上記の電極シートを厚さ50μmのアルミニウム箔に導電性接着剤を介して接合し、加熱して接着剤を熱硬化させ電極体とした。この電極体から有効電極面積6.5cm×12cmの24枚の電極体を得て、このうち22枚を正極体、残りの22枚を負極体とした。この正極体と負極体とを厚さ160μmのガラス繊維マット製セパレータを介して交互に積層して素子を得た。この素子を高さ13cm、幅7cm、厚さ2.2cmの有底角型アルミニウムケースに収容し、正極端子と負極端子を備えたアルミニウム上蓋を用いてレーザー溶接封口し、注液口を開けた状態で200℃で5時間真空乾燥して不純物を除去した。次いで、1.5mol/lの(C253 (CH3 )NPF6 のプロピレンカーボネート溶液を電解液として素子に真空含浸させた後、注液口に安全弁を配置して幅7cm、高さ15cm、厚さ2.2cmの角型電気二重層キャパシタとした。
【0028】
得られた電気二重層キャパシタの初期の放電容量は1400F、内部抵抗は2.2mΩであった。2.5Vで100時間充電した後の漏れ電流は0.2mAであった。2.5Vで100時間充電した後、25℃で開路状態とし、30日間放置した後の保持電圧は2.30Vであり、電圧保持性は良好であった。
【0029】
次いで、45℃の恒温槽中で0〜2.5Vの間で50Aの定電流による充放電サイクルを30万回繰り返し、30万サイクル後の放電容量及び内部抵抗を測定し、初期特性と比較して電気二重層キャパシタの長期的な作動信頼性を加速的に評価した。容量維持率は90%、内部抵抗の上昇率は8%であり、大電流での充放電信頼性が高かった。
【0030】
[例2(実施例)]
溶融成形可能な含フッ素重合体樹脂として、テトラフルオロエチレン/エチレン共重合体樹脂粉末2重量部のかわりにフッ化ビニリデン系重合体樹脂粉末(フッ化ビニリデンに基づく重合単位/ヘキサフルオロエチレンに基づく重合単位がモル比で96/4。アトケム社製、商品名:カイナー2851。)2重量部を用いた以外は例1と同様にして電極を作製した。このシートの引張強度を測定したところ0.32kg/cm2 であった。
【0031】
この電極を用いて例1と同様にして電気二重層キャパシタを作製し、例1と同様に評価したところ、初期の放電容量は1390Fであり、内部抵抗は2.3mΩであり、漏れ電流は0.2mAであり、保持電圧は2.29Vであった。また、30万充放電サイクル後の容量維持率は91%、内部抵抗の上昇率は9%であった。
【0032】
[例3(比較例)]
テトラフルオロエチレン/エチレン系共重合体樹脂粉末を用いなかった以外は、例1と同様にして電極シートを作製した。このシートの引張強度を測定したところ0.15kg/cm2 であった。
この電極を用いて例1と同様にして電気二重層キャパシタを作製し、例1と同様に評価したところ、初期の放電容量は1350Fであり、内部抵抗は2.5mΩであり、漏れ電流は0.5mAであり、保持電圧は1.85Vであった。また、30万充放電サイクル後の容量維持率は80%、内部抵抗の上昇率は30%であった。
【0033】
[例4(比較例)]
テトラフルオロエチレン/エチレン系共重合体樹脂粉末の量を8重量部とした以外は、例1と同様にして電極シートを作製した。このシートの引張強度を測定したところ0.31kg/cm2 であった。
この電極を用いて例1と同様にして電気二重層キャパシタを作製し、例1と同様に評価したところ、初期の放電容量は1190Fであり、内部抵抗は4.5mΩであり、漏れ電流は0.5mAであり、保持電圧は1.78Vであった。また、30万充放電サイクル後の容量維持率は58%、内部抵抗の上昇率は25%であった。
【0034】
[例5(実施例)]
ポリテトラフルオロエチレンファインパウダーを7重量部とし、フッ化ビニリデン系重合体樹脂粉末を1重量部とした以外は例2と同様にして電極シートを作製した。このシートの引張強度を測定したところ0.5kg/cm2 であった。
この電極を用いて例1と同様にして電気二重層キャパシタを作製し、例1と同様に評価したところ、初期の放電容量は1410Fであり、内部抵抗は2.2mΩであり、漏れ電流は0.2mAであり、保持電圧は2.29Vであった。また、30万充放電サイクル後の容量維持率は89%、内部抵抗の上昇率は10%であった。
【0035】
【発明の効果】
本発明の電気二重層キャパシタ用電極は、機械的強度に優れ、内部抵抗が低く、電圧保持性の優れた電気二重層キャパシタを提供できる。また、機械的強度に優れることから、結合材としてのポリテトラフルオロエチレンファインパウダーの添加量を少なくすることもでき、電気二重層キャパシタを高容量かつ低抵抗にできる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode for an electric double layer capacitor, and more particularly to an electrode for an electric double layer capacitor having excellent mechanical strength and high capacity.
[0002]
[Prior art]
The electric double layer capacitor is based on the principle that electric charge is accumulated in the electric double layer formed at the interface between the electrode and the electrolyte. In order to improve the capacity density of the electric double layer capacitor, the electrode has a high specific surface area. Carbonaceous materials such as activated carbon and carbon black, fine particles of metal or conductive metal oxide, and the like are used. In order to charge and discharge efficiently, the electrode is joined to a current collector made of a low-resistance layer or foil such as metal or graphite. As the current collector, valve metals such as aluminum having high electrochemical corrosion resistance, stainless steel such as SUS304 and SUS316L, and the like are usually used.
[0003]
There are two types of electrolytes for electric double layer capacitors: organic electrolytes and water-based electrolytes. However, electric double layer capacitors using organic electrolytes are attracting attention because of their high operating voltage and high energy density in the charged state. ing. When using an organic electrolyte, the performance deteriorates due to the electrolysis of water if water is present inside the electric double layer capacitor cell. Therefore, it is necessary to sufficiently dehydrate the electrode. Usually, drying is performed under reduced pressure. Is given.
[0004]
As a polarizable electrode, activated carbon is generally used as a main component. However, since activated carbon is usually in the form of a powder, it is mixed with a binder such as polytetrafluoroethylene and formed into a sheet-like electrode. The electrode body is formed by being electrically connected to the current collector through the conductive adhesive layer.
[0005]
As a binder, because it is excellent in heat resistance and chemical stability, polytetrafluoroethylene is used, mixed with activated carbon, kneaded, and then stretched to fiberize polytetrafluoroethylene to produce continuous fine porous material. It is known to form a structure and use it as an electrode (Japanese Patent Publication No. 7-105316). However, in this case, unless the polytetrafluoroethylene is sufficiently fibrillated, there is a problem in that the carbonaceous fine powder is not sufficiently bonded to each other and the mechanical strength of the electrode is lowered. In order to supplement mechanical strength, the amount of polytetrafluoroethylene used can be increased, but in this case, the amount of activated carbon is relatively reduced, so that the capacity of the electric double layer capacitor per unit volume is reduced. descend.
[0006]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described conventional problems, and provides an electrode suitable for a high-capacity electric double layer capacitor having excellent mechanical characteristics and an electric double layer capacitor having the electrode. The purpose is to do.
[0007]
[Means for Solving the Problems]
The present invention relates to an electrode for an electric double layer capacitor comprising a carbonaceous material and a binder, wherein the binder comprises 1 to 50% by weight of polytetrafluoroethylene and polytetrafluoroethylene capable of being melt-molded. Ri Do and a fluoropolymer resin, polytetrafluoroethylene 3-30 wt%, and the fluoropolymer resin is wherein there the Rukoto contains 0.1 to 5% by weight relative to the carbonaceous material An electrode for an electric double layer capacitor and an electric double layer capacitor having the electrode are provided.
The present invention also provides an electrode for an electric double layer capacitor comprising a carbonaceous material and a binder, wherein the binder is polytetrafluoroethylene and 1 to 50% by weight of ethylene / polytetrafluoroethylene / polytetrafluoroethylene. Provided is an electrode for an electric double layer capacitor characterized by comprising a tetrafluoroethylene copolymer or a vinylidene fluoride polymer.
[0008]
As a result of intensive investigations to obtain a high-capacity electric double layer capacitor electrode having excellent mechanical properties using polytetrafluoroethylene as a binder, the present inventors have found that it can be melt-molded in addition to polytetrafluoroethylene. It has been found that it is effective to add a small amount of a fluoropolymer resin.
[0009]
The electrode of the present invention is preferably a porous sheet in which polytetrafluoroethylene is fiberized to form a continuous fine porous structure, and a carbonaceous material is held in the structure. Polytetrafluoroethylene is three-dimensionally fibrillated by applying external stress such as shearing, rolling, and stretching to form a continuous fine porous structure. Since the carbonaceous material can be densely contained in the continuous fine porous structure, the electrode made of the structure gives a large capacitor capacity and has an appropriate flexibility due to the presence of fine fibers. High mechanical strength. In this case, it is considered that the fluoropolymer resin thermally stabilizes the porous structure of polytetrafluoroethylene bonded by fiberization.
[0010]
In order to obtain the electrode, for example, a mixture of a carbonaceous material, polytetrafluoroethylene, the fluoropolymer resin, and a liquid lubricant is kneaded and then formed into a sheet, and the formed product is rolled and / or It is preferable to produce the film by stretching. In this case, the stretching treatment may be uniaxial or multiaxial, and the liquid lubricant is removed before or after the rolling and / or stretching treatment. In particular, when the mixture is subjected to extrusion molding such as paste extrusion molding or screw extrusion molding, and then rolling and / or stretching, polytetrafluoroethylene can be formed into fibers in the vertical and horizontal directions to form a three-dimensional network structure. Since an electrode sheet having a continuously thin thickness can be produced, it is preferable.
[0011]
The polytetrafluoroethylene in the present invention is one of the general polymerization methods of polytetrafluoroethylene, in the form of a powder obtained through a coagulation step from a dispersion obtained by a dispersion polymerization method performed in an aqueous medium. So-called fine powder is preferably used.
[0012]
In addition, the polytetrafluoroethylene in the present invention cannot be melt-molded, but it may be not only a tetrafluoroethylene homopolymer but also a so-called trace copolymer in which a comonomer is copolymerized to such an extent that it cannot be melt-molded. As a comonomer copolymerized in such a trace copolymer, a fluorine-containing ethylenic monomer can be used. Specifically, hexafluoropropylene, chlorotrifluoroethylene, perfluoro (alkyl vinyl ether), (perfluoroalkyl) ethylene and the like can be used. Can be mentioned. In this case, the polymerization unit based on the comonomer is contained in polytetrafluoroethylene by 1.0% by weight or less.
[0013]
In the electrode of the present invention, polytetrafluoroethylene, to carbonaceous materials, Ru contains 3 to 3 0% by weight. When the amount of polytetrafluoroethylene is large, the mechanical strength of the electrode increases, but the capacity decreases. On the other hand, if the amount of polytetrafluoroethylene is less than 1% by weight, the strength of the electrode becomes weak .
[0014]
Examples of the fluoropolymer that can be melt-molded in the present invention include tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymers, tetrafluoroethylene / hexafluoropropylene copolymers, and tetrafluoroethylene / ethylene copolymers. Tetrafluoroethylene / propylene copolymer, chlorotrifluoroethylene polymer, chlorotrifluoroethylene / ethylene copolymer, chlorotrifluoroethylene / alkyl vinyl ether copolymer, vinylidene fluoride polymer, fluorine Examples thereof include vinylidene fluoride / hexafluoropropylene copolymer, fluoroalkyl acrylate polymer, fluoroalkyl methacrylate polymer, perfluoro (butenyl vinyl ether) cyclized polymer, and the like.
[0015]
Of these, a tetrafluoroethylene / ethylene copolymer or a vinylidene fluoride polymer is particularly preferable. However, in this specification, the A / B copolymer refers to a copolymer comprising a polymer unit based on A and a polymer unit based on B, and a polymer unit based on a monomer other than A and B Or a copolymer containing 30% by weight or less. Further, the C-based polymer is a polymer mainly composed of polymer units based on C, and is based on homopolymers composed of polymer units based on C and polymer based on other monomers in addition to polymer units based on C. A copolymer comprising 30% by weight or less of the unit is shown. Moreover, in the said copolymer, since the copolymer containing the polymerization unit based on tetrafluoroethylene is a resin which can be melt-molded, the content of the polymerization unit based on tetrafluoroethylene is less than 99% by weight.
[0016]
Content of the said fluoropolymer is 1 to 50 weight% with respect to polytetrafluoroethylene in an electrode. If it is less than 1% by weight, the effect of adding the fluoropolymer does not substantially appear. On the other hand, if it exceeds 50% by weight, the electrical resistance of the electrode increases, and the charge / discharge cycle durability deteriorates.
[0017]
The fluoropolymer resin is preferably contained in the electrode in an amount of 0.1 to 5% by weight, particularly 0.5 to 3% by weight, based on the carbonaceous material. When the content is less than 0.1% by weight, the effect of adding the fluoropolymer resin does not substantially appear. On the other hand, if it exceeds 5% by weight, the electrical resistance of the electrode increases.
[0018]
In the present invention, since the strength of the electrode is increased by adding the above fluoropolymer resin, sufficient mechanical properties can be exhibited even if the amount of the binder in the electrode is small, particularly 10% by weight or less. As a result, the carbonaceous material in the electrode can be increased, so that a high capacity can be expressed.
[0019]
In the present invention, the carbonaceous material contained in the continuous fine porous structure constituting the electrode preferably has a specific surface area of 700 to 3000 m 2 / g, particularly 1000 to 2500 m 2 / g because of its large capacity. Specific examples include activated carbon, carbon black, and polyacene. In particular, when activated carbon having a specific surface area of 700 to 3000 m 2 / g as a main component and carbon black such as acetylene black and ketjen black as a conductive material is added to the electrode in an amount of 5 to 20% by weight, high capacity and high conductivity can be obtained. This is preferable because a conductive electrode sheet is obtained. As the activated carbon, phenol type, rayon type, acrylic type, Bitch type or coconut shell charcoal type can be used.
[0020]
In the present invention, it is preferable to use a powdery material as the carbonaceous material because it has a higher capacity than the fibrous material when having the same specific surface area. It is preferable that the carbonaceous powder has a particle size of 0.1 to 200 [mu] m, particularly 1 to 50 [mu] m, because the strength when formed into a sheet-like electrode is strong. However, if necessary, for example, pulverized carbon fibers having a length of 0.1 to 200 μm, particularly 1 to 50 μm can be used.
[0021]
The organic electrolyte used in the electric double layer capacitor of the present invention is not particularly limited, and an organic electrolyte containing ion dissociable salts in a known organic solvent can be used. Among them, R 1 R 2 R 3 R 4 N + , R 1 R 2 R 3 R 4 P + (where R 1 , R 2 , R 3 and R 4 are alkyl groups, which may be the same or different. ) And an organic electrolytic solution in which a salt made of BF 4 , PF 6 , ClO 4 , CF 3 SO 3 or the like is dissolved in an organic solvent. Is preferred.
[0022]
As the organic solvent, carbonates such as propylene carbonate, butylene carbonate and diethyl carbonate, lactones such as γ-butyrolactone, sulfolane, or a mixed solvent of two or more selected from these are preferable.
[0023]
As the separator of the electric double layer capacitor of the present invention, cellulose paper, mixed paper of cellulose and glass fiber, glass fiber mat, porous polypropylene sheet, porous polytetrafluoroethylene sheet, etc. can be used, among which heat resistance High and low moisture content glass fiber mats and thin but high strength cellulose paper are preferred.
[0024]
The electric double layer capacitor of the present invention has, for example, a pair of band-shaped electrode bodies as a positive electrode body and a negative electrode body, wound with a band-shaped separator interposed therebetween to form an element, and is housed in a bottomed cylindrical case. It is preferably obtained by impregnating the element with an electrolytic solution and sealing with a lid made of a thermosetting insulating resin having a positive electrode terminal and a negative electrode terminal. At this time, it is preferable that the case material is aluminum, and it is preferable that a rubber ring is disposed on the peripheral edge portion of the lid body to be curled.
[0025]
Further, for example, a plurality of rectangular electrode bodies are used as the same number of positive electrode bodies and negative electrode bodies, and an element is formed by alternately laminating separators therebetween, and leads are taken out from the plurality of positive electrode bodies and negative electrode bodies. A rectangular electric double-layer capacitor that is housed in a bottomed square aluminum case, impregnated with an organic electrolyte, and then attached with a lid having a positive electrode terminal and a negative electrode terminal, and sealed by laser welding or the like. May be configured. By adopting such a cylindrical or square structure, an electric double layer capacitor having a high capacity and a large capacity per unit volume can be obtained.
[0026]
【Example】
[Example 1 (Example)]
The electrode is 80 parts by weight of high-purity activated carbon powder having a specific surface area of 1800 m 2 / g and an average particle size of 10 μm, 10 parts by weight of ketjen black, and 10 weights of polytetrafluoroethylene fine powder (trade name: Fullon CD1 manufactured by Asahi Glass Co., Ltd.). Part, and tetrafluoroethylene / ethylene copolymer resin powder (polymerized unit based on tetrafluoroethylene / polymerized unit based on ethylene / polymerized unit based on (perfluorobutyl) ethylene) in a molar ratio. 56 / 43.5 / 0.5, manufactured by Asahi Glass Co., Ltd., trade name: Aflon COP Z-8820.) After mixing 2 parts by weight, kneaded while dropping ethanol, rolled and rolled into an electrode sheet having a thickness of 120 μm Was made. This was dried at 200 ° C. for 30 minutes to remove ethanol. The tensile strength of this sheet was measured and found to be 0.3 kg / cm 2 .
[0027]
The above electrode sheet was joined to an aluminum foil having a thickness of 50 μm via a conductive adhesive, and heated to thermally cure the adhesive to obtain an electrode body. From this electrode body, 24 electrode bodies having an effective electrode area of 6.5 cm × 12 cm were obtained, of which 22 sheets were used as a positive electrode body and the remaining 22 sheets were used as a negative electrode body. The positive electrode body and the negative electrode body were alternately laminated through a glass fiber mat separator having a thickness of 160 μm to obtain an element. This element was accommodated in a bottomed rectangular aluminum case having a height of 13 cm, a width of 7 cm, and a thickness of 2.2 cm, and laser welding was sealed using an aluminum top cover provided with a positive electrode terminal and a negative electrode terminal, and a liquid injection port was opened. In the state, it was vacuum-dried at 200 ° C. for 5 hours to remove impurities. Next, after the element was vacuum impregnated with 1.5 mol / l of a propylene carbonate solution of (C 2 H 5 ) 3 (CH 3 ) NPF 6 as an electrolyte, a safety valve was placed at the injection port, and a width of 7 cm was increased. A square electric double layer capacitor having a thickness of 15 cm and a thickness of 2.2 cm was obtained.
[0028]
The obtained electric double layer capacitor had an initial discharge capacity of 1400 F and an internal resistance of 2.2 mΩ. The leakage current after charging for 100 hours at 2.5 V was 0.2 mA. After charging for 100 hours at 2.5 V, the circuit was opened at 25 ° C., and after being left for 30 days, the holding voltage was 2.30 V, and the voltage holding property was good.
[0029]
Next, charge and discharge cycles with a constant current of 50 A between 0 and 2.5 V in a 45 ° C. thermostat were repeated 300,000 times, and the discharge capacity and internal resistance after 300,000 cycles were measured and compared with the initial characteristics. Thus, the long-term operational reliability of the electric double layer capacitor was accelerated. The capacity retention rate was 90% and the rate of increase in internal resistance was 8%, and the charge / discharge reliability at high current was high.
[0030]
[Example 2 (Example)]
Instead of 2 parts by weight of tetrafluoroethylene / ethylene copolymer resin powder, a vinylidene fluoride polymer resin powder (polymerized unit based on vinylidene fluoride / polymerization based on hexafluoroethylene) The unit was 96/4 in molar ratio, manufactured by Atchem, trade name: Kyner 2851.) An electrode was produced in the same manner as in Example 1 except that 2 parts by weight were used. The tensile strength of this sheet was measured and found to be 0.32 kg / cm 2 .
[0031]
Using this electrode, an electric double layer capacitor was produced in the same manner as in Example 1 and evaluated in the same manner as in Example 1. As a result, the initial discharge capacity was 1390F, the internal resistance was 2.3 mΩ, and the leakage current was 0. The holding voltage was 2.29V. Moreover, the capacity retention rate after 300,000 charge / discharge cycles was 91%, and the rate of increase in internal resistance was 9%.
[0032]
[Example 3 (comparative example)]
An electrode sheet was prepared in the same manner as in Example 1 except that the tetrafluoroethylene / ethylene copolymer resin powder was not used. The tensile strength of this sheet was measured and found to be 0.15 kg / cm 2 .
Using this electrode, an electric double layer capacitor was produced in the same manner as in Example 1 and evaluated in the same manner as in Example 1. As a result, the initial discharge capacity was 1350 F, the internal resistance was 2.5 mΩ, and the leakage current was 0. The holding voltage was 1.85V. Moreover, the capacity retention rate after 300,000 charge / discharge cycles was 80%, and the rate of increase in internal resistance was 30%.
[0033]
[Example 4 (comparative example)]
An electrode sheet was prepared in the same manner as in Example 1 except that the amount of the tetrafluoroethylene / ethylene copolymer resin powder was 8 parts by weight. The tensile strength of this sheet was measured and found to be 0.31 kg / cm 2 .
Using this electrode, an electric double layer capacitor was produced in the same manner as in Example 1 and evaluated in the same manner as in Example 1. As a result, the initial discharge capacity was 1190 F, the internal resistance was 4.5 mΩ, and the leakage current was 0. The holding voltage was 1.78V. Moreover, the capacity retention rate after 300,000 charge / discharge cycles was 58%, and the rate of increase in internal resistance was 25%.
[0034]
[Example 5 (Example)]
An electrode sheet was prepared in the same manner as in Example 2 except that the polytetrafluoroethylene fine powder was 7 parts by weight and the vinylidene fluoride polymer resin powder was 1 part by weight. The tensile strength of this sheet was measured and found to be 0.5 kg / cm 2 .
Using this electrode, an electric double layer capacitor was produced in the same manner as in Example 1 and evaluated in the same manner as in Example 1. As a result, the initial discharge capacity was 1410 F, the internal resistance was 2.2 mΩ, and the leakage current was 0. The holding voltage was 2.29V. Further, the capacity retention rate after 300,000 charge / discharge cycles was 89%, and the increase rate of internal resistance was 10%.
[0035]
【The invention's effect】
The electrode for an electric double layer capacitor of the present invention can provide an electric double layer capacitor having excellent mechanical strength, low internal resistance, and excellent voltage holding property. Moreover, since it is excellent in mechanical strength, the addition amount of the polytetrafluoroethylene fine powder as a binder can also be reduced, and the electric double layer capacitor can have high capacity and low resistance.

Claims (5)

炭素質材料と結合材とを含んでなる電気二重層キャパシタ用電極において、結合材が、ポリテトラフルオロエチレンとポリテトラフルオロエチレンに対して1〜50重量%の溶融成形可能な含フッ素重合体樹脂とからなり、炭素質材料に対してポリテトラフルオロエチレンが3〜30重量%、かつ前記含フッ素重合体樹脂が0.1〜5重量%含まれることを特微とする電気二重層キャパシタ用電極。In an electrode for an electric double layer capacitor comprising a carbonaceous material and a binder, the binder is a fluoropolymer resin capable of being melt-molded in an amount of 1 to 50% by weight based on polytetrafluoroethylene and polytetrafluoroethylene. and Ri Do from polytetrafluoroethylene 3 to 30% by weight relative to the carbonaceous material, and the fluoropolymer resin is wherein there the Rukoto contains 0.1 to 5 wt% electric double layer capacitor Electrode. 炭素質材料が、比表面積700〜3000m/gの活性炭とカーボンブラックとからなり、かつカーボンブラックは電極中に5〜20重量%含まれる請求項1記載の電気二重層キャパシタ用電極。The electrode for an electric double layer capacitor according to claim 1, wherein the carbonaceous material is composed of activated carbon having a specific surface area of 700 to 3000 m 2 / g and carbon black, and the carbon black is contained in the electrode in an amount of 5 to 20% by weight. 前記含フッ素重合体が、エチレン/テトラフルオロエチレン系共重合体又はフッ化ビニリデン系重合体である請求項1又は2記載の電気二重層キャパシタ用電極。The electrode for an electric double layer capacitor according to claim 1 or 2, wherein the fluoropolymer is an ethylene / tetrafluoroethylene copolymer or a vinylidene fluoride polymer. 炭素質材料と結合材とを含んでなる電気二重層キャパシタ用電極において、結合材が、ポリテトラフルオロエチレンと、ポリテトラフルオロエチレンに対して1〜50重量%のエチレン/テトラフルオロエチレン系共重合体又はフッ化ビニリデン系重合体とからなり、炭素質材料に対してポリテトラフルオロエチレンが3〜30重量%、かつ前記エチレン/テトラフルオロエチレン系共重合体又はフッ化ビニリデン系重合体が0.1〜5重量%含まれることを特微とする電気二重層キャパシタ用電極。In an electrode for an electric double layer capacitor comprising a carbonaceous material and a binder, the binder is polytetrafluoroethylene and an ethylene / tetrafluoroethylene copolymer weight of 1 to 50% by weight with respect to polytetrafluoroethylene Ri Do from the coalescence or vinylidene fluoride polymers, polytetrafluoroethylene 3 to 30% by weight relative to the carbonaceous material, and wherein the ethylene / tetrafluoroethylene copolymer or vinylidene fluoride polymer is 0 .1~5 wt% contained electric double layer capacitor electrode that wherein there the Rukoto. 炭素質材料と結合材とを含んでなる電極からなる正極及び負極と、有機系電解液とを有する電気二重層キャパシタにおいて、前記電極が請求項1、2、3、又記載の電極からなることを特徴とする電気二重層キャパシタ。A positive electrode and a negative electrode made of the electrode comprising a carbonaceous material and a binder, in the electric double layer capacitor having an organic electrolyte, wherein the electrode according to claim 1, 2, 3, or from the electrode 4, wherein An electric double layer capacitor characterized in that
JP11383198A 1998-04-23 1998-04-23 Electrode for electric double layer capacitor and electric double layer capacitor having the electrode Expired - Fee Related JP4026226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11383198A JP4026226B2 (en) 1998-04-23 1998-04-23 Electrode for electric double layer capacitor and electric double layer capacitor having the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11383198A JP4026226B2 (en) 1998-04-23 1998-04-23 Electrode for electric double layer capacitor and electric double layer capacitor having the electrode

Publications (2)

Publication Number Publication Date
JPH11307402A JPH11307402A (en) 1999-11-05
JP4026226B2 true JP4026226B2 (en) 2007-12-26

Family

ID=14622145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11383198A Expired - Fee Related JP4026226B2 (en) 1998-04-23 1998-04-23 Electrode for electric double layer capacitor and electric double layer capacitor having the electrode

Country Status (1)

Country Link
JP (1) JP4026226B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267187A (en) * 2000-03-22 2001-09-28 Ngk Insulators Ltd Polarizable electrode for electric double-layer capacitor
JP4507517B2 (en) * 2003-06-30 2010-07-21 日本ゼオン株式会社 Method for manufacturing electrode for electric double layer capacitor
US10741843B2 (en) * 2014-04-18 2020-08-11 Maxwell Technologies, Inc. Dry energy storage device electrode and methods of making the same

Also Published As

Publication number Publication date
JPH11307402A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
JP3791180B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor having the electrode
US6349027B1 (en) Electric double layer capacitor
US6195251B1 (en) Electrode assembly and electric double layer capacitor having the electrode assembly
JP7018555B2 (en) Conductive materials and their uses
EP2579369A1 (en) Binder composition for electrode
US20120107689A1 (en) Binder composition for electrode
Lee et al. Electrochemical double layer capacitor performance of electrospun polymer fiber-electrolyte membrane fabricated by solvent-assisted and thermally induced compression molding processes
JP3591055B2 (en) Electric double layer capacitor, method of manufacturing the same, and method of manufacturing electrodes therefor
JP2005310747A (en) Binder for forming nonaqueous electrochemical element electrode, electrode mix, electrode structure, and electrochemical element
KR101331966B1 (en) Electrochemical capacitor
JP5562688B2 (en) Lithium ion capacitor manufacturing method and positive electrode manufacturing method
JP2002175950A (en) Manufacturing method of electrode body for electric double-layer capacitor
JP2002353074A (en) Electric double-layer capacitor, paste for electrode used for the capacitor, and elctrode
JP4026226B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor having the electrode
JPH11317332A (en) Electric double-layer capacitor
WO2007029742A1 (en) Polarizable electrode
JP3846930B2 (en) Manufacturing method of electric double layer capacitor
JPH09302134A (en) Crosslinked polymeric solid electrolyte and electric cell
EP0938109A2 (en) Electric double layer capacitor
JP3951390B2 (en) Electric double layer capacitor, electrode body for the capacitor, and method for manufacturing the same
JP3692735B2 (en) Current collector for electric double layer capacitor and electric double layer capacitor
JP3951404B2 (en) Electric double layer capacitor
JPH0239513A (en) Solid electric double-layer capacitor
CN113839037B (en) Conductive agent, electrode slurry, electrode plate and battery
Rastgoo-Deylami Fluoropolymer nanocomposites for batteries and supercapacitors

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees