JPH07331201A - Electrically conductive adhesive and bonded structure using the same - Google Patents

Electrically conductive adhesive and bonded structure using the same

Info

Publication number
JPH07331201A
JPH07331201A JP6155299A JP15529994A JPH07331201A JP H07331201 A JPH07331201 A JP H07331201A JP 6155299 A JP6155299 A JP 6155299A JP 15529994 A JP15529994 A JP 15529994A JP H07331201 A JPH07331201 A JP H07331201A
Authority
JP
Japan
Prior art keywords
rubber
conductive adhesive
pore
forming material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6155299A
Other languages
Japanese (ja)
Inventor
Kazuo Saito
一夫 斉藤
Atsushi Hagiwara
敦 萩原
Toshiji Okamoto
利治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical Nisshinbo Industries Inc
Priority to JP6155299A priority Critical patent/JPH07331201A/en
Publication of JPH07331201A publication Critical patent/JPH07331201A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain an electrically conductive adhesive highly effective for bonding between polarizable electrodes and a collector, hard to disintegrate due to intercalation, also contributing to improving ion mobility, by incorporating a rubber material with expanded graphite and a pore-forming material. CONSTITUTION:This electrically conductive adhesive contains 30-250 pts.wt. of a rubber material as binder, 100 pts.wt. of expanded graphite and 1-1000 pts.wt. of a pore-forming material. The rubber material is a chemical-resistant butyl rubber, isobutyl-isopropylene copolymer rubber, butadiene rubber, styrene rubber, silicone rubber, ethylene-propylene rubber, epichlorohydrin rubber, nitrile rubber, acrylic rubber, urethane rubber, or fluororubber. The pore-forming material, is such as to be solid at normal temperatures and reduce its volume or vanish by melting, fusing, sublimation, or decomposition on heating. This adhesive is prepared by blending a total of 100 pts.wt. of the above three components with 100-1000 pts.wt. of a solvent such as toluene, acetone, water, or methanol. The other objective pored bonded structure is made by putting this adhesive in between a pair of adherends followed by heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性接着剤に関する
ものであり、更に詳しくは、例えば分極性電極と集電体
との接着に使用して好適な導電性接着剤に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive adhesive, and more particularly to a conductive adhesive suitable for use in bonding a polarizable electrode and a current collector.

【0002】[0002]

【従来の技術】電気二重層キャパシタなどの二次電池
は、小型且つ大容量のキャパシタとしてマイコンメモリ
等のバックアップ電源として用いられているが、この種
の電池は、分極性電極と集電体との接触抵抗が大きいた
めに、電池として組立た際に内部抵抗が高くなるという
欠点があった。
2. Description of the Related Art A secondary battery such as an electric double layer capacitor is used as a backup power source for a microcomputer memory or the like as a small and large-capacity capacitor. This type of battery has a polarizable electrode, a current collector and However, there is a drawback that the internal resistance becomes high when the battery is assembled.

【0003】上記内部抵抗を低減するには、電気伝導性
と電解液中に含まれるイオン移動性の両方を高めること
が必要とされるのであるが、その一方の電気伝導度を高
めるために、例えば分極性電極と集電体との接着に導電
性の接着剤を用いるなどして、分極性電極と集電体との
接触抵抗を低減することが提案されている。
In order to reduce the internal resistance, it is necessary to increase both electric conductivity and ion mobility contained in the electrolytic solution. In order to increase the electric conductivity of one of them, For example, it has been proposed to reduce the contact resistance between the polarizable electrode and the current collector by using a conductive adhesive for bonding the polarizable electrode and the current collector.

【0004】上記のような導電性の接着剤としては、例
えばカーボン微粒子を焼結して固めた電極と、導電性ゴ
ムのような集電体とを、熱圧着法との併用によって接着
する方法において使用されている導電性接着剤(特開平
2−083816号公報参照)や、或いは、カーボンブ
ラック、グラファイトのような粉末を、ポリカルボジイ
ミド樹脂系、ABS樹脂系、エポキシ樹脂系、ポリフェ
ニレン・サルフェート樹脂系、ウレタン樹脂系、ポリエ
ステル樹脂系、アクリル樹脂系の樹脂と混合する導電性
接着剤(特開平5−082396号公報参照)を挙げる
ことができる。
As the above-mentioned conductive adhesive, for example, a method in which an electrode obtained by sintering and hardening carbon fine particles and a current collector such as conductive rubber are bonded together by thermocompression bonding The conductive adhesive (see Japanese Patent Application Laid-Open No. 2-083816) or powder such as carbon black or graphite is used as a polycarbodiimide resin type, ABS resin type, epoxy resin type, polyphenylene sulphate resin. Examples thereof include conductive adhesives (see JP-A-5-082396) which are mixed with a resin of a resin type, a urethane resin type, a polyester resin type, or an acrylic resin type.

【0005】[0005]

【発明が解決しようとする課題】しかし、特開平2−0
83816号公報で用いられている導電性接着剤は、熱
硬化性樹脂に黒鉛粉末を混合した簡単なものであるた
め、少し熱を加えただけで電極と集電体とが分離した
り、又、電解液に電極を含浸しただけで集電体とが分離
してしまうなどの欠点があった。
However, Japanese Unexamined Patent Publication (Kokai) No. 2-0.
Since the conductive adhesive used in Japanese Patent No. 83816 is a simple one in which graphite powder is mixed with a thermosetting resin, the electrode and the current collector are separated from each other by applying a little heat, or However, there is a drawback in that the electrolyte is separated from the current collector simply by impregnating the electrode.

【0006】又、特開平5−082396号公報で用い
られている導電性接着剤は、グラファイト粉末が導電化
材として含有されているが、グラファイトは、充放電に
よって引き起こされるインタカレーション現象により崩
壊してしまい、導電性が劣化し、サイクル寿命を著しく
低下させてしまうという欠点があった。
Further, the conductive adhesive used in JP-A-5-082396 contains graphite powder as a conductive material, but graphite collapses due to an intercalation phenomenon caused by charging and discharging. However, there is a drawback that the conductivity is deteriorated and the cycle life is remarkably reduced.

【0007】このように、電気伝導度を高めるために使
用される導電性接着剤には十分な特性を示すものはな
く、まして、前記イオンの移動性の向上をも目的とした
接着剤は、これまで存在しなかった。
As described above, none of the conductive adhesives used for increasing the electric conductivity have sufficient characteristics, let alone the adhesives for the purpose of improving the mobility of the ions. It never existed.

【0008】本発明は、上記従来技術の欠点を克服し、
分極性電極材と集電体との接着に使用した場合に接着性
能が高いばかりか、インターカレーションによる崩壊が
生じにくく、イオンの移動性の向上にも寄与する導電性
接着剤を提供することを主たる目的としてなされた。
The present invention overcomes the above-mentioned drawbacks of the prior art,
To provide a conductive adhesive that not only has high adhesive performance when used for bonding a polarizable electrode material and a current collector, but also does not easily collapse due to intercalation and contributes to improved ion mobility. Was made for the main purpose.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用した導電性接着剤の構成は、バインダー
としてのゴム材30〜250重量部と、導電化材として
の膨張黒鉛100重量部と、造孔材1〜1000重量部
とを含んでなることを特徴とするものである。
In order to achieve the above object, the constitution of the conductive adhesive used in the present invention is 30 to 250 parts by weight of a rubber material as a binder and 100 parts by weight of expanded graphite as a conductive material. Parts and 1 to 1000 parts by weight of the pore-forming material.

【0010】すなわち、本発明の発明者らは、上記目的
を達成するために鋭意研究を行った結果、膨張黒鉛粉末
は十分に層間が開いているので、充放電を操り返しても
インターカレーションによる層間の膨張収縮を起こさな
いという特性を有しており、従ってグラファイト粉末の
ような崩壊が生じにくく、又、ゴム材は、特開平5−0
82396号公報でバインダーとして挙げれているプラ
スチックに比ベ、集電体との接着力に関して優れた特性
を有しているのでばないかという着想を得、更に研究を
続けた結果、本発明を完成させたものである。
That is, the inventors of the present invention have conducted earnest research to achieve the above-mentioned object, and as a result, the expanded graphite powder has a sufficiently opened interlayer, so that the intercalation can be performed even if charging and discharging are repeated. It does not cause expansion and contraction between layers due to, and therefore, it is less likely to collapse like graphite powder, and the rubber material is disclosed in JP-A-5-0.
As a result of further research, the present invention was completed as a result of the idea that it has excellent characteristics with respect to the adhesive force with the current collector, compared with the plastics listed as the binder in Japanese Patent No. 82396. It was made.

【0011】以下に本発明を具体的に説明する。The present invention will be specifically described below.

【0012】本発明でバインダーとして使用されるゴム
材は、従来公知のものから選択することができるが、例
えば電気二重層キャパシタなどのキャパシタにおける分
極性電極と集電体との接着に使用するような場合は、キ
ャパシタにおいて電解液として用いられている有機溶
媒、強酸性、強アルカリ性溶液に対して十分な耐久性を
有している耐薬品性ゴムであることが望ましく、具体的
には、ブチルゴム、イソプチル−イソプレン共重合体ゴ
ム、ブタジエンゴム、スチレンゴム、シリコーンゴム、
エチレンプロピレンゴム、エピクロルヒドリンゴム、ニ
トリルゴム、アクリルゴム、ウレタンゴム、ふっ素ゴム
を挙げることができる。尚、これらのゴム材は、単独で
も、それらの二種以上を混合して使用しても差し支えな
い。
The rubber material used as the binder in the present invention can be selected from those known in the art, and is used for bonding a polarizable electrode and a collector in a capacitor such as an electric double layer capacitor. In this case, it is desirable that the chemical resistant rubber has sufficient durability against the organic solvent used as the electrolytic solution in the capacitor, the strongly acidic and the strongly alkaline solution. Specifically, butyl rubber is preferable. , Isoptyl-isoprene copolymer rubber, butadiene rubber, styrene rubber, silicone rubber,
Examples thereof include ethylene propylene rubber, epichlorohydrin rubber, nitrile rubber, acrylic rubber, urethane rubber, and fluorine rubber. In addition, these rubber materials may be used alone or as a mixture of two or more thereof.

【0013】本発明で導電化材として使用される膨張黒
鉛は、従来公知のものであり、天然鱗片状黒鉛に濃硝酸
と濃硫酸の混酸、及び、塩素酸カリウム、重クロム酸カ
リウム、過マンガン酸カリウム等の強力な酸化剤を併用
して湿式酸化し、この湿式酸化した黒鉛を900℃以上
の高温で急熱して黒鉛の層間に含まれていた酸化剤を分
解し、50倍から300倍に層間を膨張させた黒鉛であ
り、本発明では特にその粉末を使用する。
The expansive graphite used as a conductive material in the present invention is conventionally known, and is a mixture of natural flake graphite with a mixed acid of concentrated nitric acid and concentrated sulfuric acid, potassium chlorate, potassium dichromate, and permanganese. Wet-oxidize together with a strong oxidant such as potassium acid, and rapidly heat the wet-oxidized graphite at a high temperature of 900 ° C. or higher to decompose the oxidant contained in the graphite layers, to increase the oxidant by 50 to 300 times. It is graphite whose layers are expanded, and its powder is particularly used in the present invention.

【0014】又、本発明で使用される造孔材は、本発明
の接着剤による被着材の接着の際に前後して、接着後の
接着層に微細な孔をするためのもので、この微細な孔に
より、接着層への電解液の含浸性及び電解液中のイオン
の移動性が高められ、接着層の抵抗を従来の導電性接着
剤に比べ著しく低減することができるようにするための
ものである。
Further, the pore-forming material used in the present invention is for making fine holes in the adhesive layer after adhesion before and after the adhesion of the adherend with the adhesive of the present invention, The fine pores enhance the impregnation property of the electrolytic solution into the adhesive layer and the mobility of ions in the electrolytic solution, thereby making it possible to significantly reduce the resistance of the adhesive layer as compared with the conventional conductive adhesive. It is for.

【0015】上記造孔材としては、例えば、常温或いは
その近辺の温度範囲においては固体であり、且つ、加熱
することにより溶解、融解、昇華、或いは分解等を起こ
し、その固体部分の体積を減じ或いは消失するものを挙
げることができ、すなわち、本発明で使用する造孔材
は、原則的には本発明導電性接着剤により被着物を実質
的に接着した後に、前記のように加熱によりその固体部
分の体積を減じ或いは消失することにより導電性接着剤
の層に造孔するものであるが、本発明で使用する造孔材
はこのように限定されるものではなく、被着物の接着と
同時にその体積を減じ或いは消失するものであってもよ
く、更には、被着物の接着に先立ってその体積を減じ或
いは消失するものであってもよい。
The above-mentioned pore-forming material is, for example, solid at room temperature or in a temperature range around it, and is dissolved, melted, sublimated, or decomposed by heating to reduce the volume of the solid portion. Alternatively, there may be mentioned ones that disappear, that is, the pore-forming material used in the present invention is, in principle, after the adherend is substantially adhered by the conductive adhesive of the present invention, it is heated by heating as described above. Although the volume of the solid portion is reduced or eliminated to form a hole in the conductive adhesive layer, the hole forming material used in the present invention is not limited to this, and can be used for adhesion of an adherend. At the same time, the volume may be reduced or eliminated, and further, the volume may be reduced or eliminated prior to adhering the adherend.

【0016】このような造孔材としては、例えば、ステ
アリン酸、ナフトール、ポリスチレン、パラフィンワッ
クス、ポリプロピレン、ポリメタクリル酸メチル、エチ
レン−酢酸ビニル共重合体、小麦粉、メチルセルロー
ス、メチルエチルセルロース、カルボキシメチルセルロ
ース、カルボキシメチルセルロースナトリウム等を拳げ
ることができ、又、これら造孔材の形状としては、粉末
状、粒状、繊維状を例示することができる。
Examples of such pore formers include stearic acid, naphthol, polystyrene, paraffin wax, polypropylene, polymethyl methacrylate, ethylene-vinyl acetate copolymer, wheat flour, methyl cellulose, methyl ethyl cellulose, carboxymethyl cellulose, carboxy. Methyl cellulose sodium or the like can be applied, and the shape of these pore-forming materials can be powder, granular, or fibrous.

【0017】尚、上記造孔材のサイズは、本発明の導電
性接着剤の使用目的等に応じて決定すればよく、特に限
定されることはないが、一例を挙げるならば、粉末状又
は粒状のものの場合は、数μm乃至50μm程度の粒度
分布を持つものを、又、繊維状のものの場合は、直径で
数10μm程度、長さで1〜5mmという範囲を例示す
ることができる。尚、これらのサイズは、例えば加熱に
より造孔材の固体部分の体積を減じ或いは消失させる場
合は、同時に本発明の接着剤も膨張することがあるの
で、接着後の接着構造における穴のサイズとは直接には
対応しない。
The size of the pore-forming material may be determined according to the purpose of use of the conductive adhesive of the present invention and is not particularly limited, but one example is powder or In the case of granular particles, those having a particle size distribution of several μm to 50 μm can be exemplified, and in the case of fibrous particles, the range of several tens of μm in diameter and 1 to 5 mm in length can be exemplified. Incidentally, these sizes are, for example, when the volume of the solid portion of the pore-forming material is reduced or disappeared by heating, the adhesive of the present invention may expand at the same time, so that the size of the hole in the adhesive structure after adhesion is Does not correspond directly.

【0018】上記造孔材の加熱温度と体積減少率と関係
を以下の表1に例示する。
Table 1 below shows the relationship between the heating temperature and the volume reduction rate of the pore-forming material.

【表1】 [Table 1]

【0019】作業能率等を考慮した場合は、上記膨張黒
鉛とゴム材と造孔材(これらを併せて、以下、固形分と
称することがある)は溶媒に溶解乃至懸濁することが好
ましく、このような溶媒としては、トルエン、アセト
ン、水、メタノール、エタノール、プロパノール、テト
ラクロロエチレン、トリクロルエチレン、プロムクロロ
メタン、ジアセトン、ジメチルホルムアミド、エチルエ
ーテル、クレゾール、キシレン、クロロホルム、プタノ
ール、ジメチルエーテルを挙げることができるが、特に
限定はされない。
In consideration of work efficiency and the like, it is preferable that the expanded graphite, the rubber material, and the pore-forming material (these may be collectively referred to as solid contents hereinafter) be dissolved or suspended in a solvent. Examples of such a solvent include toluene, acetone, water, methanol, ethanol, propanol, tetrachloroethylene, trichloroethylene, promchloromethane, diacetone, dimethylformamide, ethyl ether, cresol, xylene, chloroform, butanol, and dimethyl ether. However, it is not particularly limited.

【0020】而して、上記成分の混合比率について説明
すれば、以下の通りである。まず、膨張黒鉛とゴム材の
量比としては、膨張黒鉛の100重量部に対してゴム材
を30重量部乃至250重量部という範囲を挙げること
ができる。尚、ゴム材がこの範囲より少ないと十分な接
着強度が得られないという問題が生じ、又、この範囲よ
り多いと十分な導電性が得られないという問題が生じ
る。
The mixing ratio of the above components will be described below. First, the amount ratio of the expanded graphite to the rubber material may be in the range of 30 parts by weight to 250 parts by weight of the rubber material with respect to 100 parts by weight of the expanded graphite. If the amount of the rubber material is less than this range, sufficient adhesive strength cannot be obtained, and if it is more than this range, sufficient conductivity cannot be obtained.

【0021】次に、膨張黒鉛と造孔材の量比としては、
膨張黒鉛の100重量部に対して造孔材を1重量部乃至
1000重量部という範囲を拳げることができる。造孔
材がこの範囲より少ないとイオン移動性が向上しないと
いう問題点が生じ、この範囲より多いと十分な接着性能
が得られずに分極性電極と集電体とが剥離してしまうと
いう問題が生じる。
Next, the amount ratio of the expanded graphite and the pore former is
The range of 1 to 1000 parts by weight of the pore-forming material can be applied to 100 parts by weight of the expanded graphite. If the pore-forming material is less than this range, there is a problem that the ion mobility is not improved, and if it is more than this range, sufficient adhesive performance is not obtained and the polarizable electrode and the current collector are separated. Occurs.

【0022】又、上記溶媒と固形分との量比は、固形分
の100重量部に対して溶媒を100重量部乃至100
0重量部という範囲を挙げることができる。この範囲よ
り溶媒が多いと、接着部に占める固形分量が不足し、接
着強度が低下してしまうという問題が生じる。又、この
範囲より、溶媒が少ないと導電性接着剤に流動性が不足
し、分極性電極および集電体上に均一に導電性接着剤を
塗布することが困難であり、この接着層が不均一である
ためにやはり接着強度が低下するという問題が生じるこ
とになる。
The amount ratio of the solvent to the solid content is 100 parts by weight to 100 parts by weight of the solvent based on 100 parts by weight of the solid content.
A range of 0 parts by weight can be mentioned. If the amount of solvent is more than this range, the amount of solid content occupying the bonded portion will be insufficient, and the problem will occur that the adhesive strength will decrease. If the amount of the solvent is less than this range, the conductive adhesive lacks fluidity, and it is difficult to uniformly apply the conductive adhesive on the polarizable electrode and the current collector. Since it is uniform, the problem that the adhesive strength is lowered still arises.

【0023】このようにして得られた本発明の導電性接
着剤は、適宜の被着体、例えば電気二重層キャパシタな
どのキャパシタにおける分極性電極や集電体等の被着体
に塗布してそれらを接着したり、或いは、被着体間に適
用して更に適宜温度で熱処理や熱プレスすることによっ
て使用するもので、熱処理等をする場合の条件は、使用
する導電性接着剤における成分、具体的にはゴム材の耐
熱温度等に基づいて決定すればよい。
The conductive adhesive of the present invention thus obtained is applied to an appropriate adherend, for example, a polarizable electrode or a collector in a capacitor such as an electric double layer capacitor. They are used by adhering them, or by applying them between adherends and further heat-treating or hot-pressing at an appropriate temperature. The conditions for heat treatment, etc. are the components in the conductive adhesive to be used, Specifically, it may be determined based on the heat resistant temperature of the rubber material and the like.

【0024】例えば、ゴム材としてブチルゴム、イソブ
チル−イソブチレン共重合体ゴム、スチレンゴム、ニト
リルゴム、エチレンプロピレンゴム、又はエピクロルヒ
ドリンゴムを使用した場合は、160℃程度以下、アク
リルゴムを使用した場合は200℃程度以下、ふっ素ゴ
ムやシリコンゴムを使用した場合は300℃程度以下で
熱処理することになるので、従って、遅くともこの熱処
理等の工程で体積を減じ或いは消失して造孔が完了する
ように、上記造孔材を選択すればよいのである。
For example, when butyl rubber, isobutyl-isobutylene copolymer rubber, styrene rubber, nitrile rubber, ethylene propylene rubber, or epichlorohydrin rubber is used as the rubber material, the temperature is about 160 ° C. or lower, and when acrylic rubber is used, it is 200. Since the heat treatment is performed at a temperature of about ℃ or less, or about 300 ℃ or less when using fluorine rubber or silicon rubber, therefore, at the latest, in order to reduce the volume or disappear in the step of this heat treatment or the like, the pouring is completed, It suffices to select the pore former.

【0025】又、溶媒を使用する場合は、適宜の被着
体、例えば電気二重層キャパシタなどのキャパシタにお
ける分極性電極や集電体等の被着体に塗布して接触させ
ることにより、それらを接着することができるので、そ
の後に、上記と同様に使用する導電性接着剤における成
分、具体的にはゴム材の耐熱温度等を考慮しつつ、造孔
材がその固体部分の体積を減じ或いは消失する温度まで
加熱すればよいのである。
When a solvent is used, it is applied to an appropriate adherend, for example, a polarizable electrode in a capacitor such as an electric double layer capacitor or an adherend such as a current collector to bring them into contact with each other. Since it can be bonded, the pore-forming material reduces the volume of its solid portion after considering the components in the conductive adhesive used in the same manner as described above, specifically, the heat resistant temperature of the rubber material, or the like. It only has to be heated to a temperature at which it disappears.

【0026】このようにして接着剤層間に形成された穴
のサイズは、水銀圧入法と走査型電子顕微鏡による観察
の結果、以下に説明する実施例の場合で、概ね10nm
乃至100μmの範囲あることが判明した。
The size of the hole thus formed between the adhesive layers is about 10 nm in the case of the examples described below as a result of observation by the mercury penetration method and the scanning electron microscope.
It was found to be in the range of 100 μm to 100 μm.

【0027】[0027]

【実施例】以下、実施例によって本発明を更に詳細に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0028】実施例1乃至8 イソプチル−イソプレン共重合体ゴム(ゴム材)と、膨
張黒鉛粉末(導電化材、平均粒径10μm)と、メチル
セルロース(造孔材)と、トルエン(溶媒)とを混合
し、導電性接着剤を作製し、この導電性接着剤を用い
て、分極性電極(活性炭とフェノール樹脂とを熱プレス
で結合させ、不活性雰囲気下で焼成したもの)と集電体
(未加硫のブチルゴムに炭素粉末を加えて混練した後、
シート状に成型したもの)とを接着し、160℃で3分
間熱処理して接着剤中のメチルセルロースを蒸散させ
た。この接着品を30wt%のH2SO4水溶液中に真空
含浸して電気2重層キャパシタを作製した。この電気2
重層キャパシタを使用して、1000サイクルまで20
mAで定電流充放電を行い、1、100、500、10
00サイクル目の等価直列抵抗を測定し、同時にその際
の電極の外観について観察した。結果を導電性接着剤の
組成と共に表2に示す。尚、等価直列抵抗は、1kH
z、10mAの定電流をこの電気2重層キャパシタに流
し、電極間の電圧より求めたものである(以下、実施例
及び比較例において同様である)。
Examples 1 to 8 Isobutyl-isoprene copolymer rubber (rubber material), expanded graphite powder (conductive material, average particle size 10 μm), methylcellulose (pore former), and toluene (solvent) After mixing, a conductive adhesive was prepared, and using this conductive adhesive, a polarizable electrode (which was obtained by binding activated carbon and phenol resin by hot press and firing in an inert atmosphere) and a current collector ( After adding carbon powder to unvulcanized butyl rubber and kneading,
The sheet was molded into a sheet) and heat-treated at 160 ° C. for 3 minutes to evaporate the methylcellulose in the adhesive. This adhesive product was vacuum impregnated into a 30 wt% H 2 SO 4 aqueous solution to prepare an electric double layer capacitor. This electricity 2
20 times up to 1000 cycles using multilayer capacitors
Constant current charge / discharge at 1, 100, 500, 10
The equivalent series resistance at the 00th cycle was measured, and at the same time, the appearance of the electrode at that time was observed. The results are shown in Table 2 together with the composition of the conductive adhesive. The equivalent series resistance is 1 kHz.
A constant current of 10 mA of 10 mA was applied to this electric double layer capacitor, and the voltage was calculated from the voltage between the electrodes (the same applies to Examples and Comparative Examples below).

【表2】 [Table 2]

【0029】実施例9乃至16 イソブチル−イソプレン共重合体ゴムと、膨張黒鉛粉末
(平均粒径10μm)と、造孔材(ステアリン酸)と、
溶媒(トルエン)とを混合し、導電性接着剤を作製し
た。この導電性接着剤を用いて、分極性電極(活性炭と
フェノール樹脂とを熱プレスで結合させ、不活性雰囲気
下で焼成したもの)と集電体(未加硫のイソブチル−イ
ソプレン共重合体ゴムに炭素粉末を加えて混練した後、
シート状に成型したもの)とを接着し、160℃で3分
間熱処理して接着剤中のステアリン酸を蒸散させた。こ
の接着品を30wt%のH2SO4水溶液中に真空含浸し
て電気2重層キャパシタを作製し、1000サイクルま
で20mAで定電流充放電を行い、1、100、50
0、1000サイクル目の等価直列抵抗を測定し、同時
にその際の電極の外観について観察した。結果を導電性
接着剤の組成と共に表3に示す。
Examples 9 to 16 Isobutyl-isoprene copolymer rubber, expanded graphite powder (average particle size 10 μm), pore former (stearic acid),
A solvent (toluene) was mixed to prepare a conductive adhesive. Using this conductive adhesive, polarizable electrodes (active carbon and phenolic resin bonded by hot press and fired in an inert atmosphere) and current collectors (unvulcanized isobutyl-isoprene copolymer rubber) After adding carbon powder and kneading,
The sheet was molded into a sheet) and heat-treated at 160 ° C. for 3 minutes to evaporate the stearic acid in the adhesive. This adhesive product was vacuum-impregnated in a 30 wt% H 2 SO 4 aqueous solution to prepare an electric double layer capacitor, which was subjected to constant current charging / discharging at 20 mA up to 1000 cycles, 1, 100, 50.
The equivalent series resistance at the 0th and 1000th cycles was measured, and at the same time, the appearance of the electrodes at that time was observed. The results are shown in Table 3 together with the composition of the conductive adhesive.

【表3】 [Table 3]

【0030】実施例17乃至24 アクリルゴムと、膨張黒鉛粉末(平均粒径10μm)
と、造孔材(ステアリン酸)と、溶媒(トルエン)とを
混合し、導電性接着剤を作製した。この導電性接着剤を
用いて、分極性電極(活性炭とフェノール樹脂とを熱プ
レスで結合させ、不活性雰囲気下で焼成したもの)と集
電体(日清紡製ガラス状カーボン)とを接着し、200
0℃で3分間熱処理して接着剤中のステアリン酸を蒸散
させた。この接着品を30wt%のH2SO4水溶液中に
真空含浸して電気2重層キャパシタを作製し、1000
サイクルまで20mAで定電流充放電を行い、1、10
0、500、1000サイクル目の等価直列抵抗を測定
し、同時にその際の電極の外観について観察した。結果
を導電性接着剤の組成と共に表4に示す。
Examples 17 to 24 Acrylic rubber and expanded graphite powder (average particle size 10 μm)
Then, the pore-forming material (stearic acid) and the solvent (toluene) were mixed to prepare a conductive adhesive. Using this conductive adhesive, polarizable electrodes (active carbon and phenol resin were bonded by hot press and fired in an inert atmosphere) and a current collector (Nisshinbo glassy carbon) were bonded, 200
Heat treatment was performed at 0 ° C. for 3 minutes to evaporate the stearic acid in the adhesive. This adhesive product was vacuum impregnated into a 30 wt% H 2 SO 4 aqueous solution to prepare an electric double layer capacitor,
Constant current charge and discharge at 20mA until cycle, 1, 10
The equivalent series resistance at the 0th, 500th, and 1000th cycles was measured, and at the same time, the appearance of the electrodes at that time was observed. The results are shown in Table 4 together with the composition of the conductive adhesive.

【表4】 [Table 4]

【0031】実施例25乃至32 ふっ素ゴムと、膨張黒鉛粉末(平均粒径10μm)と、
造孔材(ステアリン酸)と、溶媒(トルエン)とを混合
し、導電性接着剤を作製した。この導電性接着剤を用い
て、分極性電極(活性炭とフェノール樹脂とを熱プレス
で結合させ、不活性雰囲気下で焼成したもの)と集電体
(日清紡製ガラス状カーボン)とを接着し、300℃で
3分間熱処理して接着剤中のステアリン酸を蒸散させ
た。この接着品を30wt%のH2SO4水溶液中に真空
含浸して電気2重層キャパシタを作製し、1000サイ
クルまで20mAで定電流充放電を行い、1、100、
500、1000サイクル目の等価直列抵抗を測定し、
同時にその際の電極の外観について観察した。結果を導
電性接着剤の組成と共に表5に示す。
Examples 25 to 32 Fluorine rubber, expanded graphite powder (average particle size 10 μm),
A pore former (stearic acid) and a solvent (toluene) were mixed to prepare a conductive adhesive. Using this conductive adhesive, polarizable electrodes (active carbon and phenol resin were bonded by hot press and fired in an inert atmosphere) and a current collector (Nisshinbo glassy carbon) were bonded, The stearic acid in the adhesive was evaporated by heat treatment at 300 ° C. for 3 minutes. This adhesive product was vacuum-impregnated in a 30 wt% H 2 SO 4 aqueous solution to produce an electric double layer capacitor, which was charged and discharged at a constant current of 20 mA up to 1000 cycles for 1,100,
Measure the equivalent series resistance at the 500th and 1000th cycles,
At the same time, the appearance of the electrodes at that time was observed. The results are shown in Table 5 together with the composition of the conductive adhesive.

【表5】 [Table 5]

【0032】比較例1乃至8 ABS樹脂と、膨張黒鉛粉末(平均粒径10μm)と、
造孔材(ステアリン酸)と溶媒(トルエン)とを混合
し、導電性接着剤を作製した。この導電性接着剤を用い
て、分極性電極(活性炭とフェノール樹脂とを熱プレス
で結合させ、不活性雰囲気下で焼成したもの)と集電体
(未加硫のイソブチル−イソプレン共重合体ゴムゴムに
炭素粉末を加えて混練した後、シート状に成型したも
の)とを接着し、160℃で3分間熱処理して接着剤中
のステアリン酸を蒸散させた。この接着品を30wt%
のH2SO4水溶液中に真空含浸して電気2重層キャパシ
タを作製し、1000サイクルまで20mAで定電流充
放電を行い、1、100、500、1000サイクル目
の等価直列抵抗を測定し、同時にその際の電極の外観に
ついて観察した。結果を導電性接着剤の組成と共に表6
に示す。
Comparative Examples 1 to 8 ABS resin, expanded graphite powder (average particle size 10 μm),
A pore former (stearic acid) and a solvent (toluene) were mixed to prepare a conductive adhesive. Using this conductive adhesive, polarizable electrodes (active carbon and phenolic resin bonded by hot press and fired in an inert atmosphere) and current collectors (unvulcanized isobutyl-isoprene copolymer rubber rubber) Carbon powder was added and kneaded, and the mixture was then molded into a sheet) and heat-treated at 160 ° C. for 3 minutes to evaporate the stearic acid in the adhesive. 30 wt% of this adhesive
Of H 2 SO 4 aqueous solution was vacuum-impregnated to prepare an electric double layer capacitor, which was subjected to constant current charge / discharge at 20 mA up to 1000 cycles, and the equivalent series resistances at the 1st, 100th, 500th and 1000th cycles were measured, and at the same time, The appearance of the electrodes at that time was observed. The results are shown in Table 6 together with the composition of the conductive adhesive.
Shown in.

【表6】 [Table 6]

【0033】比較例9乃至16 イソブチル−イソプレン共重合体ゴムと、グラファイト
鉛粉末(平均粒径10μm)と、造孔材(ステアリン
酸)と、溶媒(トルエン)とを混合し、導電性接着剤を
作製した。この導電性接着剤を用いて、分極性電極(活
性炭とフェノール樹脂とを熱プレスで結合させ、不活性
雰囲気下で焼成したもの)と集電体(未加硫のイソブチ
ル−イソプレン共重合体ゴムに炭素粉末を加えて混練し
た後、シート状に成型したもの)とを接着し、160℃
で3分間熱処理して接着剤中のステアリン酸を蒸散させ
た。この接着品を30wt%のH2SO4水溶液中に真空
含浸して電気2重層キャパシタを作製し、1000サイ
クルまで20mAで定電流充放電を行い、1、100、
500、1000サイクル目の等価直列抵抗を測定し、
同時にその際の電極の外観について観察した。結果を導
電性接着剤の組成と共に表7に示す。
Comparative Examples 9 to 16 Isobutyl-isoprene copolymer rubber, graphite lead powder (average particle size 10 μm), pore former (stearic acid), and solvent (toluene) were mixed to obtain a conductive adhesive. Was produced. Using this conductive adhesive, polarizable electrodes (active carbon and phenolic resin bonded by hot press and fired in an inert atmosphere) and current collectors (unvulcanized isobutyl-isoprene copolymer rubber) Carbon powder was added to and kneaded, and then molded into a sheet)) and adhered at 160 ° C.
Then, the stearic acid in the adhesive was evaporated by heat treatment for 3 minutes. This adhesive product was vacuum-impregnated in a 30 wt% H 2 SO 4 aqueous solution to produce an electric double layer capacitor, which was charged and discharged at a constant current of 20 mA up to 1000 cycles for 1,100,
Measure the equivalent series resistance at the 500th and 1000th cycles,
At the same time, the appearance of the electrodes at that time was observed. The results are shown in Table 7 together with the composition of the conductive adhesive.

【表7】 [Table 7]

【0034】比較例17乃至24 イソブチル−イソプレン共重合体ゴムと、膨張黒鉛粉末
(平均粒径10μm)と、造孔材(ステアリン酸)と、
溶媒(トルエン)とを混合し、導電性接着剤を作製し
た。この導電性接着剤を用いて、分極性電極(活性炭と
フェノール樹脂とを熱プレスで結合させ、不活性雰囲気
下で焼成したもの)と集電体(未加硫のイソブチル−イ
ソプレン共重合体ゴムに炭素粉末を加えて混練した後、
シート状に成型したもの)とを接着し、160℃で3分
間熱処理して接着剤中のステアリン酸を蒸散させた。こ
の接着品を30wt%のH2SO4水溶液中に真空含浸し
て電気2重層キャパシタを作製し、1000サイクルま
で20mAで定電流充放電を行い、1、100、50
0、1000サイクル目の等価直列抵抗を測定し、同時
にその際の電極の外観について観察した。結果を導電性
接着剤の組成と共に表8に示す。
Comparative Examples 17 to 24 Isobutyl-isoprene copolymer rubber, expanded graphite powder (average particle size 10 μm), pore former (stearic acid),
A solvent (toluene) was mixed to prepare a conductive adhesive. Using this conductive adhesive, polarizable electrodes (active carbon and phenolic resin bonded by hot press and fired in an inert atmosphere) and current collectors (unvulcanized isobutyl-isoprene copolymer rubber) After adding carbon powder and kneading,
The sheet was molded into a sheet) and heat-treated at 160 ° C. for 3 minutes to evaporate the stearic acid in the adhesive. This adhesive product was vacuum-impregnated in a 30 wt% H 2 SO 4 aqueous solution to prepare an electric double layer capacitor, which was subjected to constant current charging / discharging at 20 mA up to 1000 cycles, 1, 100, 50.
The equivalent series resistance at the 0th and 1000th cycles was measured, and at the same time, the appearance of the electrodes at that time was observed. The results are shown in Table 8 together with the composition of the conductive adhesive.

【表8】 [Table 8]

【0035】[0035]

【発明の効果】以上から明らかなように、本発明の導電
性接着剤はバインダーとしてのゴム材30〜250重量
部と、導電化材としての膨張黒鉛100重量部と、造孔
材1〜1000重量部とを含んでなるものであり、又本
発明の接着構造は適宜の被着材間に、バインダーとして
のゴム材30〜250重量部と導電化材としての膨張黒
鉛100重量部と造孔材1〜1000重量部とを含んで
なる導電性接着剤を配することにより前記被着材を接着
し、前記造孔材により前記導電性接着剤の層に造孔して
なるものであるから、この構造を例えば電気二重層キャ
パシタにおける分極性電極材と集電体との接着構造に利
用すれば、両者を強固に接着できると共にインターカレ
ーションによる崩壊が生じにくく、しかもイオンの移動
性も向上した電極を提供することができる。
As is apparent from the above, the conductive adhesive of the present invention contains 30 to 250 parts by weight of a rubber material as a binder, 100 parts by weight of expanded graphite as a conductive material, and pore forming materials of 1 to 1000. The adhesive structure of the present invention comprises 30 to 250 parts by weight of a rubber material as a binder, 100 parts by weight of expanded graphite as a conductive material, and a pore-forming material between appropriate adherends. Since the adherend is adhered by disposing a conductive adhesive containing 1 to 1000 parts by weight of the material, and the hole is formed in the layer of the conductive adhesive by the hole forming material. If this structure is used, for example, in the bonding structure of the polarizable electrode material and the current collector in the electric double layer capacitor, they can be firmly bonded together, and collapse due to intercalation does not easily occur, and the ion mobility is also improved. Electrode It is possible to provide.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 バインダーとしてのゴム材30〜250
重量部と、導電化材としての膨張黒鉛100重量部と、
造孔材1〜1000重量部とを含んでなることを特徴と
する導電性接着剤。
1. A rubber material 30 to 250 as a binder.
Parts by weight, and 100 parts by weight of expanded graphite as a conductive material,
An electrically conductive adhesive comprising 1 to 1000 parts by weight of a pore-forming material.
【請求項2】 バインダーとしてのゴム材が、耐薬品性
を有するものである請求項1に記載の導電性接着剤。
2. The conductive adhesive according to claim 1, wherein the rubber material as the binder has chemical resistance.
【請求項3】 耐薬品性ゴムが、ブチルゴム、イソブチ
ル−イソプレン共重合体ゴム、ブタジエンゴム、スチレ
ンゴム、シリコーンゴム、エチレンプロピレンゴム、エ
ピクロルヒドリンゴム、ニトリルゴム、アクリルゴム、
ウレタンゴム又はふっ素ゴムの一種又はそれ以上である
請求項2に記載の導電性接着剤。
3. The chemical resistant rubber is butyl rubber, isobutyl-isoprene copolymer rubber, butadiene rubber, styrene rubber, silicone rubber, ethylene propylene rubber, epichlorohydrin rubber, nitrile rubber, acrylic rubber,
The conductive adhesive according to claim 2, which is one or more of urethane rubber and fluororubber.
【請求項4】 造孔材が、常温付近において固体であ
り、且つ、加熱することよりその体積を減じ或いは消失
するものである請求項1に記載の導電性接着剤。
4. The conductive adhesive according to claim 1, wherein the pore-forming material is a solid at around room temperature and reduces or disappears in volume by heating.
【請求項5】 造孔材が、加熱することより、溶解、融
解、昇華、或いは分解し、その固体部分の体積を減じ或
いは消失するものである請求項4に記載の導電性接着
剤。
5. The conductive adhesive according to claim 4, wherein the pore-forming material dissolves, melts, sublimes, or decomposes by heating and reduces or disappears the volume of its solid portion.
【請求項6】 溶媒を含んでいる請求項1に記載の導電
性接着剤。
6. The conductive adhesive according to claim 1, which contains a solvent.
【請求項7】 溶媒が、トルエン、アセトン、水、メタ
ノール、エタノール、プロパノール、テトラクロロエチ
レン、トリクロルエチレン、ブロムクロロメタン、ジア
セトン、ジメチルホルムアミド、エチルエーテル、クレ
ゾール、キシレン、クロロホルム、ブタノール、ジメチ
ルエーテル或いはこれら溶媒の混合物である請求項6に
記載の導電性接着剤。
7. The solvent is toluene, acetone, water, methanol, ethanol, propanol, tetrachloroethylene, trichloroethylene, bromochloromethane, diacetone, dimethylformamide, ethyl ether, cresol, xylene, chloroform, butanol, dimethyl ether or a solvent thereof. The conductive adhesive according to claim 6, which is a mixture.
【請求項8】 溶媒と、ゴム材と膨張黒鉛と造孔材との
混合物との割合が、ゴム材と膨張黒鉛と造孔材との混合
物100重量部に対して、溶媒が100重量部乃至10
00重量部である請求項6に記載の導電性接着剤。
8. The ratio of the solvent to the mixture of the rubber material, the expanded graphite and the pore-forming material is 100 parts by weight of the solvent to 100 parts by weight of the mixture of the rubber material, the expanded graphite and the pore-forming material. 10
The conductive adhesive according to claim 6, which is 100 parts by weight.
【請求項9】 適宜の被着材間に、バインダーとしての
ゴム材30〜250重量部と導電化材としての膨張黒鉛
100重量部と造孔材1〜1000重量部とを含んでな
る導電性接着剤を配することにより前記被着材を接着
し、前記造孔材により前記導電性接着剤の層に造孔して
なることを特徴とする導電性接着剤による接着構造。
9. A conductive material containing 30 to 250 parts by weight of a rubber material as a binder, 100 parts by weight of expanded graphite as a conductive material, and 1 to 1000 parts by weight of a pore-forming material between appropriate adherends. An adhesive structure using a conductive adhesive, characterized in that the adherend is bonded by disposing an adhesive, and the hole is formed in the layer of the conductive adhesive by the hole forming material.
【請求項10】 造孔材が、常温付近において固体であ
り、且つ、加熱することよりその体積を減じ或いは消失
するものである請求項9に記載の導電性接着剤による接
着構造。
10. The adhesive structure with a conductive adhesive according to claim 9, wherein the pore-forming material is solid at around room temperature, and its volume is reduced or eliminated by heating.
【請求項11】 造孔材が、加熱することより、溶解、
融解、昇華、或いは分解し、その固体部分の体積を減じ
或いは消失するものである請求項10に記載の導電性接
着剤による接着構造。
11. The pore-forming material is melted by heating,
The adhesive structure with a conductive adhesive according to claim 10, which melts, sublimes, or decomposes to reduce or eliminate the volume of its solid portion.
【請求項12】 造孔は加熱により行われる請求項10
に記載の導電性接着剤による接着構造。
12. The hole forming is performed by heating.
An adhesive structure using the conductive adhesive as described in 1.
JP6155299A 1994-06-13 1994-06-13 Electrically conductive adhesive and bonded structure using the same Pending JPH07331201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6155299A JPH07331201A (en) 1994-06-13 1994-06-13 Electrically conductive adhesive and bonded structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6155299A JPH07331201A (en) 1994-06-13 1994-06-13 Electrically conductive adhesive and bonded structure using the same

Publications (1)

Publication Number Publication Date
JPH07331201A true JPH07331201A (en) 1995-12-19

Family

ID=15602865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6155299A Pending JPH07331201A (en) 1994-06-13 1994-06-13 Electrically conductive adhesive and bonded structure using the same

Country Status (1)

Country Link
JP (1) JPH07331201A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897091A (en) * 1994-09-27 1996-04-12 Matsushita Electric Ind Co Ltd Electric double layer capacitor
JPH09270370A (en) * 1996-03-29 1997-10-14 Asahi Glass Co Ltd Electric double layer capacitor and its manufacturing method
JPH11135379A (en) * 1997-10-31 1999-05-21 Junji Ito Porous electrode and its manufacture
JPH11154630A (en) * 1997-09-22 1999-06-08 Japan Gore Tex Inc Polar electrode and manufacture thereof
US6246568B1 (en) 1997-06-16 2001-06-12 Matsushita Electric Industrial Co., Ltd. Electric double-layer capacitor and method for manufacturing the same
JP2001307966A (en) * 2000-04-27 2001-11-02 Asahi Glass Co Ltd Electric double layer capacitor, electrode body, and manufacturing method
JP2004296863A (en) * 2003-03-27 2004-10-21 Tdk Corp Electrode for electrochemical capacitor and manufacturing method thereof, and electrochemical capacitor and manufacturing method thereof
JP2005191423A (en) * 2003-12-26 2005-07-14 Tdk Corp Electrode for capacitor
WO2011001760A1 (en) * 2009-06-30 2011-01-06 日本ゼオン株式会社 Thermally conductcive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet, and electronic component
JP2011093985A (en) * 2009-10-28 2011-05-12 Nippon Zeon Co Ltd Thermoconductive pressure-sensitive adhesive composition, thermoconductive pressure-sensitive adhesive sheet and electronic part
JP2017523607A (en) * 2014-07-02 2017-08-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Method for assembling solar cell electrode using conductive paste containing organic elastomer
JP2019012630A (en) * 2017-06-30 2019-01-24 東洋インキScホールディングス株式会社 Conductive composition and method for producing conductor film
JP2019011436A (en) * 2017-06-30 2019-01-24 東洋インキScホールディングス株式会社 Conductive composition and method for producing conductor film

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897091A (en) * 1994-09-27 1996-04-12 Matsushita Electric Ind Co Ltd Electric double layer capacitor
JPH09270370A (en) * 1996-03-29 1997-10-14 Asahi Glass Co Ltd Electric double layer capacitor and its manufacturing method
US6246568B1 (en) 1997-06-16 2001-06-12 Matsushita Electric Industrial Co., Ltd. Electric double-layer capacitor and method for manufacturing the same
JPH11154630A (en) * 1997-09-22 1999-06-08 Japan Gore Tex Inc Polar electrode and manufacture thereof
JPH11135379A (en) * 1997-10-31 1999-05-21 Junji Ito Porous electrode and its manufacture
JP2001307966A (en) * 2000-04-27 2001-11-02 Asahi Glass Co Ltd Electric double layer capacitor, electrode body, and manufacturing method
JP2004296863A (en) * 2003-03-27 2004-10-21 Tdk Corp Electrode for electrochemical capacitor and manufacturing method thereof, and electrochemical capacitor and manufacturing method thereof
JP2005191423A (en) * 2003-12-26 2005-07-14 Tdk Corp Electrode for capacitor
WO2011001760A1 (en) * 2009-06-30 2011-01-06 日本ゼオン株式会社 Thermally conductcive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet, and electronic component
JPWO2011001760A1 (en) * 2009-06-30 2012-12-13 日本ゼオン株式会社 Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet, and electronic component
JP5660039B2 (en) * 2009-06-30 2015-01-28 日本ゼオン株式会社 Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet, and electronic component
JP2011093985A (en) * 2009-10-28 2011-05-12 Nippon Zeon Co Ltd Thermoconductive pressure-sensitive adhesive composition, thermoconductive pressure-sensitive adhesive sheet and electronic part
JP2017523607A (en) * 2014-07-02 2017-08-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Method for assembling solar cell electrode using conductive paste containing organic elastomer
JP2019012630A (en) * 2017-06-30 2019-01-24 東洋インキScホールディングス株式会社 Conductive composition and method for producing conductor film
JP2019011436A (en) * 2017-06-30 2019-01-24 東洋インキScホールディングス株式会社 Conductive composition and method for producing conductor film

Similar Documents

Publication Publication Date Title
KR100338291B1 (en) Electric double-layer capacitor
WO1999062131A1 (en) Method of manufacturing secondary battery negative electrode
JP2007012596A (en) Electrode for lead-acid battery, lead-acid battery and manufacturing method of lead-acid battery
JPH07331201A (en) Electrically conductive adhesive and bonded structure using the same
KR20140014142A (en) Electrode material having high capacitance
Liu et al. Metal oxides with distinctive valence states in an electron‐rich matrix enable stable high‐capacity anodes for Li ion batteries
EP2424011A1 (en) Process for producing negative plate for lead storage battery, and lead storage battery
WO1999024995A1 (en) Double layer capacitor and its manufacturing method
CN105489880A (en) Composite sodium-storage positive electrode for solid-state secondary sodium battery and preparation method for composite sodium-storage positive electrode
KR20160040873A (en) A method of manufacturing a carbon electrode, an energy storage device including a carbon electrode and carbon electrode produced by this
KR100762797B1 (en) Electrode For Energy Storage Device And Manufacturing Method thereof
KR101586536B1 (en) Manufacturing method of carbon fiber sheet current collector for all solid state rechargeable thin film lithium secondary battery, and all solid state rechargeable thin film lithium secondary battery comprising carbon fiber sheet current collector
KR101591712B1 (en) Binders in anode materials of lithium secondary battery
CN111755665B (en) Lithium ion battery negative electrode material, battery negative electrode and application thereof
JP6797519B2 (en) Negative electrode material for lithium secondary battery and its manufacturing method, composition for forming negative electrode active material layer, negative electrode for lithium secondary battery, lithium secondary battery, and resin composite silicon particles
JPH06342739A (en) Electric double layer capacitor and manufacture thereof
EP4276943A1 (en) Battery cathode material and method of preparing the same
JP2001229917A (en) Method of producing negative electrode
CN111029559A (en) Lithium titanate battery and preparation method thereof
CN107742698B (en) Preparation method and application of embedded silicon-carbon composite material
KR20060071385A (en) Anode active material for lithium secondary battery having high energy density
JP3226027B2 (en) Battery electrode and secondary battery using the same
JP3315807B2 (en) Electric double layer capacitor and method of manufacturing the same
KR100587963B1 (en) Low ESR Electric Double Layer Capacitor and Process for Producing it
EP3937301A1 (en) Separator and electrochemical device using the same