JP2001229917A - Method of producing negative electrode - Google Patents

Method of producing negative electrode

Info

Publication number
JP2001229917A
JP2001229917A JP2000034049A JP2000034049A JP2001229917A JP 2001229917 A JP2001229917 A JP 2001229917A JP 2000034049 A JP2000034049 A JP 2000034049A JP 2000034049 A JP2000034049 A JP 2000034049A JP 2001229917 A JP2001229917 A JP 2001229917A
Authority
JP
Japan
Prior art keywords
negative electrode
weight
graphite
carbonaceous material
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000034049A
Other languages
Japanese (ja)
Other versions
JP3878383B2 (en
Inventor
Toshiaki Sogabe
敏明 曽我部
Takahiro Tanaka
宇大 田中
Tetsuro Tojo
哲朗 東城
Toshiya Naruto
俊也 鳴戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Mitsubishi Chemical Corp
Original Assignee
Toyo Tanso Co Ltd
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd, Mitsubishi Chemical Corp filed Critical Toyo Tanso Co Ltd
Priority to JP2000034049A priority Critical patent/JP3878383B2/en
Publication of JP2001229917A publication Critical patent/JP2001229917A/en
Application granted granted Critical
Publication of JP3878383B2 publication Critical patent/JP3878383B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a simpler method of producing a negative electrode using a high-capacity amorphous carbon coating graphite, based carbonaceous material as the active material. SOLUTION: The method of producing the negative electrode comprises forming an amorphous carbon coating graphite based carbonaceous material, obtained by firing at 700 degrees C or higher a mixture, in which a 10-150 parts by weight of thermoplastic resin is mixed based on 100 parts by weight of a graphite carbonaceous material, and a binder into a dispersion coating, using a solvent capable of dissolving the binder, and applying the coating onto a collector and drying the same.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は二次電池用の負極の
製造法に関し、より詳細には、特定の被覆膜を有する黒
鉛性炭素物質を負極活物質とする二次電池用の負極の製
造法に関する。
The present invention relates to a method for manufacturing a negative electrode for a secondary battery, and more particularly, to a method for manufacturing a negative electrode for a secondary battery using a graphitic carbon material having a specific coating film as a negative electrode active material. Related to manufacturing method.

【0002】[0002]

【従来の技術】近年、カメラ一体型VTR装置、オーデ
ィオ機器、携帯型コンピュータ、携帯電話等様々な機器
の小型化、軽量化が進んでおり、これら機器の電源とし
ての電池に対する高性能化の要請が高まっている。中で
も高電圧、高エネルギー密度の実現が可能なリチウム二
次電池の開発が盛んになっている。リチウム二次電池
は、リチウムイオンを吸蔵放出可能な正極と負極、及び
非水電解質を含有する電解質層とからなり、従来、非水
電解質として非水系有機物からなる液体が用いられてい
た。ところが、このような非水系電解液を用いたリチウ
ム二次電池は、リチウムデンドライトの析出による内部
短絡からくる発熱、発火など、漏液や発火の危険を有し
ていた。そこで近年では安全性を向上させるために、非
水電解液、例えばゲル状ポリマ−に含有させ非流動化さ
せたポリマ−電解質の開発が行われてきた。
2. Description of the Related Art In recent years, various devices such as a camera-integrated VTR device, an audio device, a portable computer, and a cellular phone have been reduced in size and weight, and there has been a demand for higher performance of a battery as a power supply for these devices. Is growing. In particular, lithium secondary batteries capable of realizing high voltage and high energy density have been actively developed. A lithium secondary battery includes a positive electrode capable of inserting and extracting lithium ions, a negative electrode, and an electrolyte layer containing a non-aqueous electrolyte. Conventionally, a liquid composed of a non-aqueous organic substance has been used as the non-aqueous electrolyte. However, a lithium secondary battery using such a non-aqueous electrolyte has a danger of liquid leakage and fire such as heat generation and fire resulting from an internal short circuit due to precipitation of lithium dendrite. Therefore, in recent years, in order to improve safety, development of a non-aqueous electrolyte, for example, a polymer electrolyte contained in a gel polymer and made non-fluidized has been performed.

【0003】また、負極材料としては、最初にリチウム
金属を用いることが試みられたが、充放電を繰り返すう
ちにデンドライト状のリチウムが析出してセパレータを
貫通して、正極にまで達し、短絡して発火事故を起こす
可能性があることが判明した。そのため、現在では、充
放電過程における非水溶媒の出入りを層間で行ない、リ
チウム金属の析出を防止できる炭素材料を負極材料とし
て使用することが注目されている。
[0003] In addition, lithium metal was first used as a negative electrode material. However, during repeated charging and discharging, dendritic lithium was deposited and penetrated through the separator, reached the positive electrode, and short-circuited. It was found that a fire accident could occur. Therefore, at present, attention has been paid to use of a carbon material capable of preventing the deposition of lithium metal by allowing a non-aqueous solvent to enter and exit during a charge / discharge process between layers, as a negative electrode material.

【0004】この炭素材料としては、特開昭57−20
8079号公報に、黒鉛材料を使用することが提案され
ている。特に、結晶性のよい黒鉛をリチウム二次電池用
の炭素負極材料として用いると、黒鉛のリチウム吸蔵の
理論容量である372 mAh/gに近い容量が得られ、材
料として好ましいことは知られていた。しかし、黒鉛材
料は、電解液に対し活性であるため、初回の充放電時
に、皮膜形成や副反応による数十mAh/g以上の不可
逆容量を示すのが一般的であった。特開平5−2990
74号公報には炭素材料に無機酸、または加温した水酸
化ナトリウムで化学的前処理を施した後、800℃以上
の温度で真空加熱処理を施す事で充放電サイクル効率を
向上させることが可能である事が開示されている。ま
た、特開平6−20690号公報には薬液酸化、電解酸
化、または気相酸化により表面を酸化しつつ非晶質化し
た炭素質材料を作り、負極容量の増加を計る方法が開示
されており、更に、特開平6−44959号公報には炭
素質材料に酸を添加し、加熱して黒鉛の理論容量に近い
容量(370mAh/g)を得る方法が開示されてい
る。
As this carbon material, Japanese Patent Application Laid-Open No. 57-20
No. 8079 proposes to use a graphite material. In particular, it has been known that when graphite having good crystallinity is used as a carbon anode material for a lithium secondary battery, a capacity close to 372 mAh / g, which is the theoretical capacity for absorbing lithium of graphite, is obtained, which is preferable as a material. . However, since the graphite material is active with respect to the electrolytic solution, it generally shows an irreversible capacity of several tens mAh / g or more due to film formation and side reactions during the first charge and discharge. JP-A-5-2990
No. 74 discloses that the charge and discharge cycle efficiency can be improved by subjecting a carbon material to a chemical pretreatment with an inorganic acid or heated sodium hydroxide, and then performing a vacuum heat treatment at a temperature of 800 ° C. or more. It is disclosed that it is possible. JP-A-6-20690 discloses a method for producing an amorphous carbonaceous material while oxidizing the surface by chemical liquid oxidation, electrolytic oxidation, or gas phase oxidation, and measuring the increase in negative electrode capacity. Furthermore, Japanese Patent Application Laid-Open No. 6-44959 discloses a method in which an acid is added to a carbonaceous material and heated to obtain a capacity (370 mAh / g) close to the theoretical capacity of graphite.

【0005】しかしながら、黒鉛はリチウムイオンの黒
鉛結晶中へのインターカレーションを充放電の原理とし
て使用するため、常温、常圧下では最大リチウム導入化
合物のLiC6 から算出される372mAh/g以上の
容量が得られないという問題がある。従って、何れの方
法によっても黒鉛の理論容量である372mAh/gを
超える容量は得られていない。しかも、電解液との黒鉛
材料の濡れ性の低さは、充放電初期のリチウム脱ドープ
容量が、本来黒鉛材料が発現できるはずの350mAh
/g以上の容量よりも低くなるという問題を持ってい
た。また、特開平7−022037号公報などには、黒
鉛性炭素質物の表面を炭素化可能な有機物で被覆、焼成
した炭素質物が開示されている。この材料は、充放電時
の電位が、黒鉛のそれと同様リチウム金属の酸化還元電
位に近く、しかも黒鉛性炭素質物より高容量を得られる
という利点があるが、やはり黒鉛の理論容量である37
2mAh/gを超える容量は得られていない。さらに、
高容量で耐レート特性に優れた電極材料として、特開平
10−284080号公報等には、黒鉛性炭素質物の表
面を炭素化可能な有機物で被覆し、焼成し、粉砕した
後、酸性またはアルカリ性溶液で処理した炭素質物が開
示されている。しかしながら、該炭素物質を活物質とし
て含む負極は、充電時にガス発生が起こるという問題を
有していた。
However, since graphite uses the intercalation of lithium ions into graphite crystals as the principle of charge and discharge, it has a capacity of at least 372 mAh / g calculated from the maximum lithium-introducing compound LiC 6 at normal temperature and normal pressure. There is a problem that can not be obtained. Therefore, a capacity exceeding the theoretical capacity of graphite of 372 mAh / g has not been obtained by any of the methods. Moreover, the low wettability of the graphite material with the electrolytic solution is due to the fact that the lithium undoping capacity at the initial stage of charge / discharge is 350 mAh, which should be able to express the graphite material.
/ G or more. JP-A-7-022037 and the like disclose a carbonaceous material obtained by coating the surface of a graphitic carbonaceous material with an organic material capable of being carbonized and calcining. This material has the advantage that the potential at the time of charging and discharging is close to the oxidation-reduction potential of lithium metal, similar to that of graphite, and can obtain a higher capacity than that of the graphitic carbonaceous material.
A capacity exceeding 2 mAh / g has not been obtained. further,
Japanese Patent Application Laid-Open No. 10-284080 discloses an electrode material having a high capacity and excellent rate resistance characteristics. The surface of a graphitic carbonaceous material is coated with an organic substance capable of being carbonized, fired, pulverized, and then subjected to acid or alkaline treatment. A carbonaceous material treated with a solution is disclosed. However, the negative electrode containing the carbon material as an active material has a problem that gas is generated during charging.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、非晶
質炭素被覆黒鉛系炭素質物を活物質とし、充電時のガス
発生が抑制された負極のより簡便な製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a simpler method for producing a negative electrode using an amorphous carbon-coated graphite-based carbonaceous material as an active material and suppressing generation of gas during charging. is there.

【0007】[0007]

【課題を解決するための手段】本発明者等は、より簡便
な非晶質炭素被覆黒鉛系炭素質物を活物質とする負極の
製造方法を求め鋭意検討した結果、被覆膜の原料として
熱可塑性樹脂を用いることにより、焼成後の粉砕工程を
経ることなく負極を製造できることを見出し、本発明を
完成するに至った。即ち本発明の要旨は、黒鉛性炭素質
物100重量部に対し、熱可塑性樹脂10〜150重量
部が配合された混合物を700℃以上で焼成して得られ
る非晶質炭素被覆黒鉛系炭素質物及びバインダーを、該
バインダーを溶解しうる溶剤を用いて分散塗料となし、
その塗料を集電体上に塗布、乾燥することを特徴とする
負極の製造方法に存する。
Means for Solving the Problems The inventors of the present invention have intensively studied a method for manufacturing a negative electrode using an amorphous carbon-coated graphite-based carbonaceous material as an active material, and as a result, have found that a method for producing a negative electrode has been proposed. It has been found that a negative electrode can be manufactured without using a pulverizing step after firing by using a plastic resin, and the present invention has been completed. That is, the gist of the present invention is to provide an amorphous carbon-coated graphite-based carbonaceous material obtained by calcining a mixture containing 10 to 150 parts by weight of a thermoplastic resin at 700 ° C. or higher with respect to 100 parts by weight of a graphitic carbonaceous material. Binder, and a dispersion paint using a solvent capable of dissolving the binder,
The method for producing a negative electrode is characterized in that the paint is applied on a current collector and dried.

【0008】本発明の好ましい実施態様としては、黒鉛
性炭素質物と熱可塑性樹脂との混合物を加熱処理し、該
熱可塑性樹脂を溶融することを特徴とする上記の製造方
法、及び熱可塑性樹脂が、ポリ塩化ビニル、ポリビニル
アルコールまたはポリビニルピロリドンであることを特
徴とする上記の製造方法が挙げられる。
In a preferred embodiment of the present invention, the above-mentioned production method characterized by heating a mixture of a graphitic carbonaceous material and a thermoplastic resin, and melting the thermoplastic resin. , Polyvinyl chloride, polyvinyl alcohol or polyvinylpyrrolidone.

【0009】[0009]

【発明の実施の形態】本発明における負極の活物質であ
る非晶質炭素被覆黒鉛系炭素質物とは、表層に非晶性の
炭素皮膜を有する黒鉛系炭素質物を意味する。本発明に
おけるこの非晶質炭素被覆黒鉛系炭素質物を生成するた
めに使用される黒鉛性炭素質物としては、高結晶性の天
然黒鉛、高結晶性の人造黒鉛、又は天然黒鉛や人造黒鉛
の再熱処理品、膨張黒鉛の再熱処理品、或いはこれらの
黒鉛の高純度精製品が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The amorphous carbon-coated graphite-based carbonaceous material which is the active material of the negative electrode in the present invention means a graphite-based carbonaceous material having an amorphous carbon film on a surface layer. Examples of the graphitic carbonaceous material used for producing the amorphous carbon-coated graphite-based carbonaceous material in the present invention include highly crystalline natural graphite, highly crystalline artificial graphite, and natural graphite and artificial graphite. A heat-treated product, a re-heat-treated product of expanded graphite, or a high-purity purified product of these graphites is preferable.

【0010】黒鉛性炭素物質の種類としては、下記
(1)〜(4)に例示するものが挙げられ、これらの中
から選択可能である。 (1)高結晶性の天然黒鉛や人造黒鉛、(2)天然黒
鉛、人造黒鉛、或いは膨張黒鉛の2000℃以上での再
熱処理品、(3)黒鉛化可能な有機物原料の黒鉛化によ
り得る上記(1)、(2)と同等の性能を持つ黒鉛であ
り、例えば、コールタールピッチ、石炭系重質油、常圧
残油、石油系重質油、芳香族炭化水素、窒素含有環状化
合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化
ビニル、ポリビニルアルコール、ポリアクリロニトリ
ル、ポリビニルブチラール、天然高分子、ポリフェニレ
ンサイルファイド、ポリフェニレンオキシド、フルフリ
ルアルコール樹脂、フェノール−ホルムアルデヒド樹
脂、イミド樹脂から選ばれる1 種以上の有機物を250
0℃以上3200℃以下の焼成温度で黒鉛化したもの、
Examples of the type of the graphitic carbon substance include the following (1) to (4), which can be selected from these. (1) Highly crystalline natural graphite or artificial graphite; (2) Natural graphite, artificial graphite, or expanded graphite reheated at 2000 ° C. or higher; (3) Graphitization of graphitizable organic raw materials Graphite having the same performance as (1) and (2), such as coal tar pitch, coal-based heavy oil, atmospheric residual oil, petroleum-based heavy oil, aromatic hydrocarbon, nitrogen-containing cyclic compound, At least one selected from a sulfur-containing cyclic compound, polyphenylene, polyvinyl chloride, polyvinyl alcohol, polyacrylonitrile, polyvinyl butyral, natural polymer, polyphenylene sulfide, polyphenylene oxide, furfuryl alcohol resin, phenol-formaldehyde resin, and imide resin 250 organics
Graphitized at a firing temperature of 0 ° C. or more and 3200 ° C. or less,

【0011】(4)上記(3)の黒鉛化可能な有機物を
リチウム、ベリリウム、ホウ素、マグネシウム、アルミ
ニウム、珪素、カリウム、カルシウム、チタン、バナジ
ウム、クロム、マンガン、銅、亜鉛、ニッケル、白金、
パラジウム、コバルト、ルテニウム、錫、鉛、鉄、ゲル
マニウム、ジルコニウム、モリブデン、銀、バリウム、
タンタル、タングステン及びレニウムから選ばれる少な
くとも一種以上の粉体或いは薄膜などの触媒存在下で、
400 ℃以上2500℃以下、より好ましくは100
0℃以上2000℃以下で焼成することで黒鉛化したも
の。
(4) The graphitizable organic substance of (3) is lithium, beryllium, boron, magnesium, aluminum, silicon, potassium, calcium, titanium, vanadium, chromium, manganese, copper, zinc, nickel, platinum,
Palladium, cobalt, ruthenium, tin, lead, iron, germanium, zirconium, molybdenum, silver, barium,
In the presence of a catalyst such as at least one powder or thin film selected from tantalum, tungsten and rhenium,
400 ° C. or more and 2500 ° C. or less, more preferably 100 ° C.
Graphitized by firing at 0 ° C or more and 2000 ° C or less.

【0012】黒鉛性炭素質物の平均粒径は、通常4μm
以上、好ましくは10μm以上であり、通常40μm以
下、好ましくは30μm以下である。粒径が小さすぎる
と塗膜の充填密度を上げにくく、大きすぎると電極の表
面性が低下しセパレ−タ−との接着性が低下する。黒鉛
性炭素質物の比表面積は、BET法の比表面積で、通常
0.1m2/g以上、好ましくは1m2/g以上であり、
通常20m2/g以下、好ましくは10m 2/g以下であ
る。比表面積が小さすぎると急速充放電特性が低下し、
大きすぎると塗膜の強度が低下し安全性も低下する。
The average particle size of the graphitic carbonaceous material is usually 4 μm.
Or more, preferably 10 μm or more, and usually 40 μm or less.
Lower, preferably 30 μm or less. Particle size is too small
It is difficult to increase the packing density of the coating and the electrode
The surface properties are reduced, and the adhesiveness with the separator is reduced. graphite
The specific surface area of the carbonaceous material is the specific surface area of the BET method.
0.1mTwo/ G or more, preferably 1 mTwo/ G or more,
Normal 20mTwo/ G or less, preferably 10 m Two/ G or less
You. If the specific surface area is too small, the rapid charge / discharge characteristics decrease,
If it is too large, the strength of the coating film decreases, and the safety also decreases.

【0013】本発明において使用される熱可塑性樹脂と
しては、200℃にて溶融状態になる樹脂が好ましく、
具体的にはポリ塩化ビニル(PVC)、ポリ塩化ビニリ
デン(PVDC)、ポリビニルアルコール(PVA)、
ポリエチレン(PE)、ポリエチレンテレフタレート
(PET)、ポリビニルピロリドン(PVP)が挙げら
れ、特に好ましくはポリ塩化ビニル(PVC)、ポリビ
ニルアルコール(PVA)、ポリビニルピロリドン(P
VP)である。
The thermoplastic resin used in the present invention is preferably a resin which becomes molten at 200 ° C.
Specifically, polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), polyvinyl alcohol (PVA),
Examples include polyethylene (PE), polyethylene terephthalate (PET), and polyvinyl pyrrolidone (PVP). Particularly preferred are polyvinyl chloride (PVC), polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (P
VP).

【0014】黒鉛性炭素質物と熱可塑性樹脂の混合割合
は、熱可塑性樹脂が少なすぎるとガス発生抑制効果が低
下するので、黒鉛性炭素質物100重量部に対し、熱可
塑性樹脂を焼成前の重量で通常少なくとも10重量部、
好ましくは20重量部以上、より好ましくは40重量部
以上使用され、また、使用量があまり多すぎると放電時
の電圧降下及び容量低下を生ずることもあるので、黒鉛
性炭素質物100重量部に対し、通常150重量部以
下、好ましくは80重量部以下、より好ましくは60重
量部以下で用いられる。使用する熱可塑性樹脂の種類に
応じて、これらの範囲から適宜選択されるが、一般に、
黒鉛性炭素質物100重量部に対し10〜150重量
部、好ましくは20〜100重量部、特に好ましくは4
0〜60重量部である。
[0014] The mixing ratio of the graphitic carbonaceous material and the thermoplastic resin is such that if the amount of the thermoplastic resin is too small, the effect of suppressing gas generation is reduced. Usually at least 10 parts by weight,
Preferably, it is used in an amount of at least 20 parts by weight, more preferably at least 40 parts by weight. Also, if the amount is too large, a voltage drop and a capacity decrease at the time of discharge may occur. It is usually used in an amount of 150 parts by weight or less, preferably 80 parts by weight or less, more preferably 60 parts by weight or less. Depending on the type of thermoplastic resin used, it is appropriately selected from these ranges, but generally,
10 to 150 parts by weight, preferably 20 to 100 parts by weight, particularly preferably 4 to 100 parts by weight, per 100 parts by weight of the graphitic carbonaceous material.
0 to 60 parts by weight.

【0015】黒鉛性炭素質物と熱可塑性樹脂との混合
は、乾式にて、V型混合機等、公知の混合装置を用いれ
ばよく、より精密な混合を行うという観点から、せん断
力を付与できるボールミルやハンマーミル等の装置を用
いるのが好ましい。なお、黒鉛性炭素質物のわまわりに
熱可塑性樹脂が均一に行き渡るように、黒鉛性炭素質物
と熱可塑性樹脂を混合する際に、黒鉛性炭素質物と熱可
塑性樹脂との混合物を180〜220℃で加熱処理し、
該熱可塑性樹脂を溶融することが好ましい。
The mixing of the graphitic carbonaceous material and the thermoplastic resin may be performed in a dry manner using a known mixing device such as a V-type mixer, and a shearing force can be applied from the viewpoint of performing more precise mixing. It is preferable to use a device such as a ball mill or a hammer mill. When mixing the graphitic carbonaceous material and the thermoplastic resin, the mixture of the graphitic carbonaceous material and the thermoplastic resin is heated to 180 to 220 ° C. so that the thermoplastic resin is uniformly distributed around the circumference of the graphitic carbonaceous material. Heat treatment with
It is preferable to melt the thermoplastic resin.

【0016】混合物の焼成は、通常、窒素、アルゴン等
の不活性ガス雰囲気において行う。焼成の温度は、炭素
化が完了する温度以上であればよく、通常700℃以
上、好ましくは750℃以上であり、好ましくは110
0℃以下、より好ましくは1000℃以下、特に好まし
くは950℃以下である。温度が低すぎると炭素化が不
十分で、電極活物質としての充分な性能が得られない。
また、温度が高すぎると黒鉛の結晶性が高くなりすぎる
場合がある。結晶性が高すぎるとガスが発生する場合が
ある。なお、昇温速度は特に限定はないが、10〜50
0℃/h、好ましくは20〜100℃/hである。
The firing of the mixture is usually carried out in an atmosphere of an inert gas such as nitrogen or argon. The firing temperature may be at least the temperature at which carbonization is completed, and is usually 700 ° C. or higher, preferably 750 ° C. or higher, and preferably 110 ° C. or higher.
The temperature is 0 ° C or lower, more preferably 1000 ° C or lower, particularly preferably 950 ° C or lower. If the temperature is too low, carbonization is insufficient and sufficient performance as an electrode active material cannot be obtained.
If the temperature is too high, the crystallinity of the graphite may be too high. If the crystallinity is too high, gas may be generated. The heating rate is not particularly limited, but may be 10 to 50.
0 ° C./h, preferably 20 to 100 ° C./h.

【0017】焼成により得られた非晶質炭素被覆黒鉛系
炭素質物は、焼成後粉砕工程を経ることなく、バインダ
ーとともに該バインダーを溶解しうる溶剤を用いて分散
塗料化される。通常、黒鉛性炭素質物粉末と合成樹脂、
ピッチ、油類などの炭化水素が主成分のバインダ−を混
合すると黒鉛性炭素質物粉末同士が強固に結合される。
ところで黒鉛系炭素質物を負極材として利用する場合
は、黒鉛系炭素質物を粉末として使用する必用があるこ
とから、通常粉砕機等を用いて粉砕する必用があるが、
粉砕工程を用いると微粒子成分の発生による収率の低
下、表面被服されていない新たな界面が生成するという
問題が発生する。本発明方法で得られる焼成後の非晶質
炭素被覆黒鉛系炭素質物では粉砕機を用いることなく、
具体的には振動ふるい等の緩い力を与えるだけで容易に
解砕出来き、得られた非晶質炭素被覆黒鉛系炭素質物を
そのまま次の工程に用いることが出来る。
The amorphous carbon-coated graphite-based carbonaceous material obtained by calcination is formed into a dispersion coating using a binder and a solvent capable of dissolving the binder without passing through a crushing step after calcination. Usually, graphitic carbonaceous material powder and synthetic resin,
When a binder mainly composed of hydrocarbons such as pitches and oils is mixed, the graphitic carbonaceous material powders are strongly bonded to each other.
By the way, when using a graphite-based carbonaceous material as a negative electrode material, it is necessary to use a graphite-based carbonaceous material as a powder, so it is usually necessary to grind using a crusher or the like,
When the pulverizing step is used, there is a problem that the yield is reduced due to generation of the fine particle component, and a new interface not covered with the surface is generated. In the fired amorphous carbon-coated graphite-based carbonaceous material obtained by the method of the present invention, without using a pulverizer,
Specifically, it can be easily crushed only by applying a gentle force such as a vibration sieve or the like, and the obtained amorphous carbon-coated graphite-based carbonaceous material can be used as it is in the next step.

【0018】本発明におけるバインダーとしては、電解
液等に対して安定である必要があり、耐候性、耐薬品
性、耐熱性、難燃性等の観点から各種の材料が使用され
る。具体的には、シリケート、ガラスのような無機化合
物や、ポリエチレン、ポリプロピレン、ポリ−1,1−
ジメチルエチレンなどのアルカン系ポリマー;ポリブタ
ジエン、ポリイソプレンなどの不飽和系ポリマー;ポリ
スチレン、ポリメチルスチレン、ポリビニルピリジン、
ポリ−N−ビニルピロリドンなどのポリマー鎖中に環構
造を有するポリマー;ポリメタクリル酸メチル、ポリメ
タクリル酸エチル、ポリメタクリル酸ブチル、ポリアク
リル酸メチル、ポリアクリル酸エチル、ポリアクリル
酸、ポリメタクリル酸、ポリアクリルアミドなどのアク
リル誘導体系ポリマー;ポリフッ化ビニル、ポリフッ化
ビニリデン、ポリテトラフルオロエチレン等のフッ素系
樹脂;ポリアクリロニトリル、ポリビニリデンシアニド
などのCN基含有ポリマー;ポリ酢酸ビニル、ポリビニ
ルアルコールなどのポリビニルアルコール系ポリマー;
ポリ塩化ビニル、ポリ塩化ビニリデンなどのハロゲン含
有ポリマー;ポリアニリンなどの導電性ポリマーなどが
使用できる。
As the binder in the present invention, it is necessary to be stable to an electrolytic solution or the like, and various materials are used from the viewpoint of weather resistance, chemical resistance, heat resistance, flame retardancy and the like. Specifically, inorganic compounds such as silicate and glass, polyethylene, polypropylene, poly-1,1-
Alkane-based polymers such as dimethylethylene; unsaturated polymers such as polybutadiene and polyisoprene; polystyrene, polymethylstyrene, polyvinylpyridine,
Polymers having a ring structure in a polymer chain such as poly-N-vinylpyrrolidone; polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, polyacrylic acid, polymethacrylic acid , Polyacrylamides and other acrylic derivative polymers; polyvinyl fluoride, polyvinylidene fluoride, polytetrafluoroethylene and other fluorine resins; CN-containing polymers such as polyacrylonitrile and polyvinylidene cyanide; polyvinyl acetate and polyvinyl alcohol Polyvinyl alcohol-based polymer;
Halogen-containing polymers such as polyvinyl chloride and polyvinylidene chloride; conductive polymers such as polyaniline can be used.

【0019】また上記のポリマーなどの混合物、変成
体、誘導体、ランダム共重合体、交互共重合体、グラフ
ト共重合体、ブロック共重合体などであっても使用でき
る。これらの樹脂の重量平均分子量は、通常10,00
0〜3,000,000、好ましくは100,000〜1,
000,000程度である。低すぎると塗膜の強度が低
下する傾向にある。一方高すぎると粘度が高くなり電極
の形成が困難になることがある。好ましいバインダー樹
脂としては、フッ素系樹脂、CN基含有ポリマーが挙げ
られ、より好ましくはポリフッ化ビニリデンである。
Further, a mixture of the above-mentioned polymers and the like, a modified product, a derivative, a random copolymer, an alternating copolymer, a graft copolymer, a block copolymer and the like can also be used. The weight average molecular weight of these resins is usually 10,000
0 to 3,000,000, preferably 100,000 to 1,
It is about 1,000,000. If it is too low, the strength of the coating tends to decrease. On the other hand, if it is too high, the viscosity becomes high, and it may be difficult to form an electrode. Preferred examples of the binder resin include a fluorine-based resin and a CN group-containing polymer, and more preferably polyvinylidene fluoride.

【0020】バインダーの使用量は、非晶質炭素被覆黒
鉛系炭素質物100重量部に対して、通常0.1重量部
以上、好ましくは1重量部以上であり、また通常30重
量部以下、好ましくは20重量部以下である。バインダ
ーの量が少なすぎると電極の強度が低下する傾向にあ
り、バインダーの量が多すぎるとイオン伝導度が低下す
る傾向にある。本発明における溶剤としては、使用する
バインダーを溶解しうるものを適宜選択すればよく、例
えばN−メチルピロリドンや、ジメチルホルムアミドを
挙げることができ、好ましくはN−メチルピロリドンで
ある。塗料中の溶剤濃度は、少なくとも10重量%より
大きくするが、通常20重量%以上、好ましくは30重
量%以上、さらに好ましくは35重量%以上である。ま
た、上限としては、通常90重量%以下、好ましくは8
0重量%以下である。溶剤濃度が低すぎると塗布が困難
になることがあり、高すぎると塗布膜厚を上げることが
困難になると共に塗料の安定性が悪化することがある。
The amount of the binder used is usually at least 0.1 part by weight, preferably at least 1 part by weight, and usually at most 30 parts by weight, based on 100 parts by weight of the amorphous carbon-coated graphite-based carbonaceous material. Is 20 parts by weight or less. If the amount of the binder is too small, the strength of the electrode tends to decrease, and if the amount of the binder is too large, the ion conductivity tends to decrease. As the solvent in the present invention, a solvent capable of dissolving the binder to be used may be appropriately selected, and examples thereof include N-methylpyrrolidone and dimethylformamide, and N-methylpyrrolidone is preferable. The solvent concentration in the paint is at least greater than 10% by weight, but is usually at least 20% by weight, preferably at least 30% by weight, more preferably at least 35% by weight. The upper limit is usually 90% by weight or less, preferably 8% by weight.
0% by weight or less. If the solvent concentration is too low, application may be difficult, and if it is too high, it may be difficult to increase the thickness of the applied film and the stability of the coating may deteriorate.

【0021】分散塗料化には通常用いられる分散機が使
用でき、ボールミル、サンドミル、二軸混練機などが使
用できる。本発明では、このように調製した分散塗料
を、集電体上に塗布、乾燥することにより負極を製造す
る。集電体上に塗料を塗布する塗布装置に関しては特に
限定されず、スライドコーティングやエクストルージョ
ン型のダイコーティング、リバースロール、グラビアコ
ーター、ナイフコーター、キスコーター、マイクログラ
ビアコーター、ロッドコーター、ブレードコーターなど
が挙げられるが、塗料粘度および塗布膜厚等を考慮する
とエクストルージョン方式が最も好ましい。上記塗料を
集電体上に塗布した後、塗膜を、例えば120℃で10
分間乾燥させる。乾燥温度が低いとバインダ−の結晶化
が起こりにくく塗膜強度が低下する。また時間が短く乾
燥が不十分だと残存溶媒が電池特性に悪影響を与える。
逆に温度が高い又は乾燥時間が長すぎると集電体が酸化
され電池特性を劣化させる。通常は、80〜140℃、
5〜20分乾燥される。
A commonly used dispersing machine can be used for the dispersion coating, and a ball mill, a sand mill, a twin-screw kneader or the like can be used. In the present invention, the negative electrode is manufactured by applying the dispersion paint prepared as described above on a current collector and drying it. There is no particular limitation on the coating apparatus for applying the paint on the current collector, and examples include slide coating and extrusion type die coating, reverse roll, gravure coater, knife coater, kiss coater, microgravure coater, rod coater, blade coater, and the like. However, the extrusion method is most preferable in consideration of the viscosity of the coating material and the thickness of the coating film. After the above-mentioned paint is applied on the current collector, the paint film is applied, for example, at 120 ° C. for 10 minutes.
Let dry for minutes. When the drying temperature is low, the crystallization of the binder hardly occurs, and the strength of the coating film decreases. If the drying time is short and drying is insufficient, the residual solvent adversely affects the battery characteristics.
Conversely, if the temperature is high or the drying time is too long, the current collector is oxidized and battery characteristics deteriorate. Usually 80-140 ° C,
Dry for 5-20 minutes.

【0022】電極中には、電極の導電性や機械的強度を
向上させるため、導電性材料、補強材など各種の機能を
発現する添加剤、粉体、充填材などを含有させても良
い。導電性材料としては、上記非晶質炭素被覆黒鉛に適
量混合して導電性を付与できるものであれば特に制限は
無いが、通常、アセチレンブラック、カーボンブラッ
ク、黒鉛などの炭素粉末や、各種の金属のファイバー、
箔などが挙げられる。炭素粉末導電性材料のDBP吸油
量は120cc/100g以上が好ましく、特に150
cc/100g以上が電解液を保持するという理由から
好ましい。添加剤としては、トリフルオロプロピレンカ
ーボネート、1,6−ジオキサスピロ[4,4]ノナン
−2,7−ジオン、12−クラウン−4−エーテル、ビ
ニレンカーボネート、カテコールカーボネートなどが電
池の安定性、寿命を高めるために使用することができ
る。補強材としては各種の無機、有機の球状、繊維状フ
ィラーなどが使用できる。
In order to improve the conductivity and mechanical strength of the electrode, the electrode may contain additives, such as conductive materials and reinforcing materials, which exhibit various functions, powders, fillers, and the like. The conductive material is not particularly limited as long as it can impart conductivity by mixing an appropriate amount with the amorphous carbon-coated graphite, but usually, acetylene black, carbon black, carbon powder such as graphite, and various types of Metal fiber,
Foil and the like. The carbon powder conductive material preferably has a DBP oil absorption of 120 cc / 100 g or more, and
cc / 100 g or more is preferable because it holds the electrolytic solution. As the additives, trifluoropropylene carbonate, 1,6-dioxaspiro [4,4] nonane-2,7-dione, 12-crown-4-ether, vinylene carbonate, catechol carbonate, and the like can improve the stability and life of the battery. Can be used to enhance. As the reinforcing material, various inorganic or organic spherical or fibrous fillers can be used.

【0023】負極の厚さは、一般的に0.05〜200
μm程度である。この範囲の中でも、通常10μm以
上、好ましくは20μm以上であり、通常200μm以
下、好ましくは150μm以下である。薄すぎると電池
の容量が小さくなりすぎることがある。一方、あまりに
厚すぎるとレート特性が低下しすぎることがある。な
お、上記における負極とは、活物質(非晶質炭素被覆黒
鉛)を含む層を意味し、集電体は含まない。
The thickness of the negative electrode is generally 0.05 to 200.
It is about μm. Within this range, it is usually at least 10 μm, preferably at least 20 μm, and usually at most 200 μm, preferably at most 150 μm. If it is too thin, the capacity of the battery may be too small. On the other hand, if the thickness is too large, the rate characteristics may be too low. Note that the negative electrode in the above description means a layer containing an active material (amorphous carbon-coated graphite) and does not include a current collector.

【0024】本発明における集電体としては、電気化学
的に溶出等の問題が生じず、電池の集電体として機能し
うる各種のものを使用でき、通常は金属や合金が用いら
れる。例えば、負極の集電体としては、銅箔を用いる場
合が多い。これら集電体の表面を予め粗面化処理してお
くことは、電極材料層との結着効果を向上させることが
できるので好ましい方法である。表面の粗面化方法とし
ては、ブラスト処理や粗面ロールにより圧延するなどの
方法、研磨剤粒子を固着した研磨布紙、砥石、エメリバ
フ、鋼線などを備えたワイヤ−ブラシなどで集電体表面
を研磨する機械的研磨法、電解研磨法、化学研磨法など
が挙げられる。
As the current collector in the present invention, various kinds of materials which do not cause problems such as elution electrochemically and can function as a current collector of a battery can be used, and usually, metals and alloys are used. For example, a copper foil is often used as the current collector of the negative electrode. Preliminarily roughening the surface of the current collector is a preferable method because the effect of binding to the electrode material layer can be improved. Examples of the surface roughening method include a method such as blasting and rolling with a rough roll, a polishing cloth paper to which abrasive particles are fixed, a grindstone, an emery buff, a wire brush provided with a steel wire, or the like. A mechanical polishing method for polishing the surface, an electrolytic polishing method, a chemical polishing method, and the like can be given.

【0025】また、二次電池の重量を低減させる、すな
わち重量エネルギー密度を向上させるために、エキスパ
ンドメタルやパンチングメタルのような穴あきタイプの
基材を使用することもできる。この場合、その開口率を
変更することで重量も自在に変更可能となる。また、こ
のような穴あけタイプの基材の両面に接触層を形成した
場合、この穴を通しての塗膜のリベット効果により塗膜
の剥離がさらに起こりにくくなる傾向にあるが、開口率
があまりに高くなった場合には、塗膜と基材との接触面
積が小さくなるため、かえって接着強度は低くなること
がある。集電体の厚さは、通常1μm以上、好ましくは
5μm以上であり、通常100μm以下、好ましくは5
0以下である。あまりに厚すぎると、電池全体の容量が
低下しすぎることになり、逆に薄すぎると取り扱いが困
難になることがある。
Further, in order to reduce the weight of the secondary battery, that is, to improve the weight energy density, a perforated substrate such as an expanded metal or a punched metal can be used. In this case, the weight can be freely changed by changing the aperture ratio. When contact layers are formed on both surfaces of such a perforated type substrate, the peeling of the coating film tends to be less likely to occur due to the rivet effect of the coating film through this hole, but the aperture ratio becomes too high. In such a case, the contact area between the coating film and the base material becomes small, so that the adhesive strength may be rather lowered. The thickness of the current collector is usually 1 μm or more, preferably 5 μm or more, and usually 100 μm or less, preferably 5 μm or less.
0 or less. If it is too thick, the overall capacity of the battery will be too low, and if it is too thin, handling may be difficult.

【0026】集電体上にアンダーコートプライマー層を
形成することもできる。プライマー層の機能は、集電体
に対する負極の接着性を向上させることであり、プライ
マー層を設けない場合に比べ、接着性向上による電池内
部抵抗の低減、充放電サイクル試験過程における基材か
らの塗膜脱離による急速な容量低下を防ぐものである。
アンダーコートプライマー層は、例えば、導電性材料と
バインダーと溶剤を含むアンダーコートプライマー材料
塗料を集電体上に塗布した後、これを乾燥することによ
って形成することができる。アンダーコートプライマー
層に使用する導電性材料としては、カーボンブラック、
グラファイト等の炭素材料、金属粉体、導電性の有機共
役系樹脂等を挙げることができるが、好ましくは、電極
の活物質としても機能しうるカーボンブラック、グラフ
ァイト等の物質である。
An undercoat primer layer may be formed on the current collector. The function of the primer layer is to improve the adhesiveness of the negative electrode to the current collector.As compared with the case where no primer layer is provided, the internal resistance of the battery is reduced by improving the adhesiveness, This is to prevent a rapid decrease in capacity due to detachment of the coating film.
The undercoat primer layer can be formed, for example, by applying an undercoat primer material paint containing a conductive material, a binder, and a solvent on a current collector and then drying the paint. The conductive material used for the undercoat primer layer includes carbon black,
Examples of the material include a carbon material such as graphite, a metal powder, and a conductive organic conjugated resin. However, a material such as carbon black and graphite which can also function as an active material of an electrode is preferable.

【0027】アンダーコートプライマー層に使用するバ
インダーや溶剤は、前記電極材料の塗料に使用するバイ
ンダーや溶剤と同様のものを使用することができる。ま
た、ポリアニリン、ポリピロール、ポリアセン、ジスル
フィド系化合物、ポリスルフィド系化合物等の導電性樹
脂は、前記導電性材料とバインダーとの両方の機能を兼
ね備えることが可能なので、これを導電性材料とバイン
ダーの両者を兼ねてアンダーコートプライマー層に用い
ることができる。無論、アンダーコートプライマー層に
使用するバインダーや溶剤は、電極材料の塗料に使用す
るものと同一であってもよく、異なっていてもよい。
The binder and the solvent used for the undercoat primer layer may be the same as the binder and the solvent used for the coating of the electrode material. In addition, conductive resins such as polyaniline, polypyrrole, polyacene, disulfide-based compounds, and polysulfide-based compounds can have both functions of the conductive material and the binder. It can also be used for the undercoat primer layer. Of course, the binder and the solvent used for the undercoat primer layer may be the same as or different from those used for the coating of the electrode material.

【0028】導電性材料とバインダーとをそれぞれ用い
た場合、導電性材料に対するバインダーの割合は、通常
1重量%以上、好ましくは5重量%以上であり、また通
常300重量%以下、好ましくは100重量%以下であ
る。あまりに低すぎると、電池使用時、工程上での剥離
などが生じやすく、他方、あまりに高すぎると伝導度が
低下して電池特性が低下することがある。アンダーコー
トプライマー層の厚さは、一般的に0.05〜200μ
m程度である。この範囲の中でも、通常0.05μm以
上、好ましくは0.1μm以上であり、通常10μm以
下、好ましくは1μm以下である。薄すぎると均一性が
確保しにくくなり、あまりに厚すぎると電池の体積容量
が低下しすぎることがある。
When the conductive material and the binder are used, the ratio of the binder to the conductive material is usually at least 1% by weight, preferably at least 5% by weight, and usually at most 300% by weight, preferably 100% by weight. % Or less. If the temperature is too low, peeling during the process is likely to occur during use of the battery, while if it is too high, the conductivity may decrease and the battery characteristics may deteriorate. The thickness of the undercoat primer layer is generally 0.05 to 200 μm.
m. Within this range, it is usually at least 0.05 μm, preferably at least 0.1 μm, and usually at most 10 μm, preferably at most 1 μm. If it is too thin, it is difficult to ensure uniformity, and if it is too thick, the volume capacity of the battery may be too low.

【0029】[0029]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明はその要旨を越えない限りこれら
実施例により何等制限されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by these examples unless it exceeds the gist thereof.

【0030】実施例1 黒鉛粉末(平均粒径15μm、比表面積5m2/g)1
00重量部に対し、粉末状のポリ塩化ビニル50重量部
をAl23製のボールミルを用いて室温にて30分間乾
式混合し、混合した混合粉を黒鉛製のルツボに移しふた
をかぶせて900℃まで300℃/hで昇温し、900
℃にて1時間保持し、非晶質炭素被覆黒鉛を得た。得ら
れた非晶質炭素被覆黒鉛100重量部(非晶質炭素被覆
黒鉛は、焼成後粉砕することなく用いた)に対して、ポ
リフッ化ビニリデン(バインダー)10重量部、N−メ
チル−2−ピロリドン(溶剤)100重量部を調合し、
混練機により2時間混練し負極用分散塗料とした。負極
用分散塗料を、20μm厚の銅集電体基材上にエクストル
ージョン型のダイコーティングによって塗布し、120
℃にて10分間乾燥し、負極を作製した。
Example 1 Graphite powder (average particle size: 15 μm, specific surface area: 5 m 2 / g)
With respect to 00 parts by weight, 50 parts by weight of powdery polyvinyl chloride was dry-mixed at room temperature for 30 minutes using an Al 2 O 3 ball mill, and the mixed powder was transferred to a graphite crucible and covered with a lid. The temperature was raised to 900 ° C at 300 ° C / h,
C. for 1 hour to obtain graphite coated with amorphous carbon. With respect to 100 parts by weight of the obtained amorphous carbon-coated graphite (the amorphous carbon-coated graphite was used without being crushed after firing), 10 parts by weight of polyvinylidene fluoride (binder), N-methyl-2- Mix 100 parts by weight of pyrrolidone (solvent),
The mixture was kneaded with a kneader for 2 hours to obtain a dispersion paint for a negative electrode. The negative electrode dispersion paint was applied on a 20 μm thick copper current collector base material by extrusion die coating,
It dried at 10 degreeC for 10 minutes, and produced the negative electrode.

【0031】実施例2 ポリ塩化ビニルの配合量を、黒鉛粉末100重量部に対
して100重量部とした以外は実施例1と同様にして負
極を作製した。 実施例3 ポリ塩化ビニルのかわりにポリビニルアルコールを用い
た以外は実施例1と同様にして負極を作製した。
Example 2 A negative electrode was produced in the same manner as in Example 1 except that the blending amount of polyvinyl chloride was changed to 100 parts by weight with respect to 100 parts by weight of the graphite powder. Example 3 A negative electrode was produced in the same manner as in Example 1 except that polyvinyl alcohol was used instead of polyvinyl chloride.

【0032】実施例4 ポリ塩化ビニルのかわりにポリビニルピロリドンを用い
た以外は実施例1と同様にして負極を作製した。 比較例1 ポリ塩化ビニルを配合しなかった以外は実施例1と同様
にして負極を作製した。
Example 4 A negative electrode was prepared in the same manner as in Example 1 except that polyvinylpyrrolidone was used instead of polyvinyl chloride. Comparative Example 1 A negative electrode was produced in the same manner as in Example 1 except that polyvinyl chloride was not blended.

【0033】電池の形成 最初に以下の塗料を調製した。 [正極塗料]組成 コバルト酸リチウム 90部 アセチレンブラック 5部 ポリフッ化ビニリデン 5部 N-メチル-2-ヒ゜ロリト゛ン 80部 上記の全ての原料について、混練機により2時間混練し
正極用ペーストとした。
Formation of Battery First, the following paints were prepared. [Positive electrode paint] Composition : lithium cobalt oxide 90 parts Acetylene black 5 parts Polyvinylidene fluoride 5 parts N-methyl-2-hydroxylithone 80 parts All the above-mentioned raw materials were kneaded for 2 hours by a kneader to prepare a paste for a positive electrode.

【0034】 [電解質塗料] 組成 テトラエチレングルコールジアクリレート 14部 ポリエチレンオキシドトリアクリレート 7部 過塩素酸リチウム 21部 重合開始剤 1部 添加剤(スピロジラクトン) 14部 電解液(プロピレンカーボネート) 120部 電解液(エチレンカーボネート) 120部 上記組成分全部を混合攪拌溶解し、電解質塗料とした。[Electrolyte paint] Composition Tetraethylene glycol diacrylate 14 parts Polyethylene oxide triacrylate 7 parts Lithium perchlorate 21 parts Polymerization initiator 1 part Additive (spirodilactone) 14 parts Electrolyte (propylene carbonate) 120 parts Electrolyte (ethylene carbonate) 120 parts All of the above components were mixed, stirred and dissolved to obtain an electrolyte paint.

【0035】次いで正極塗料を20μm厚のアルミニウム
集電体基材上に、エクストルージョン型のダイコーティ
ングによって塗布、乾燥し、活物質がバインダーによっ
て集電体上に結着された多孔質膜を作成した。ついで、
ロールプレス(カレンダー)をもちいて、線圧100kgf/c
mの条件で圧密することによって正極を作製した。
Next, a positive electrode paint is applied on an aluminum current collector base material having a thickness of 20 μm by extrusion die coating and dried to form a porous film in which an active material is bound on the current collector by a binder. did. Then
100kgf / c linear pressure using a roll press (calendar)
A positive electrode was produced by compacting under the condition of m.

【0036】この正極ならびに実施例1〜4および比較
例1で製造した負極に電解質塗料を塗布し、別に電解質
塗料に浸した電極よりやや面積の広い高分子多孔質フィ
ルムを間に挟んで積層し、電解質塗料を添加して挟んだ
状態で90℃にて10分加熱することにより電解質を非
流動化して、正極、負極を有し、非流動化された電解質
成分を有する平板状の単位電池素子を形成した。その後
単位電池素子に電流を取り出すタブを接続し、アルミニ
ウム膜と高分子フィルムからなるラミネートフィルムを
対向成形した袋状ケースに真空シールして収納すること
によって平板状電池とした。
An electrolyte coating is applied to the positive electrode and the negative electrodes manufactured in Examples 1 to 4 and Comparative Example 1, and a polymer porous film having a slightly larger area than the electrode immersed in the electrolyte coating is interposed therebetween and laminated. A flat unit battery element having a positive electrode, a negative electrode, and a non-fluidized electrolyte component by non-fluidizing the electrolyte by heating at 90 ° C. for 10 minutes with the electrolyte paint added and sandwiched. Was formed. Thereafter, a tab for taking out a current was connected to the unit battery element, and a laminated film composed of an aluminum film and a polymer film was vacuum-sealed and stored in a bag-shaped case formed oppositely to obtain a flat battery.

【0037】電池性能試験 得られた平板状電池を0.5mA/cm2で4.2Vま
で充電し、目視にてガス発生の有無を確認した。ガス発
生がある場合は、ケースに膨らみが生じる。その結果を
下記表に示す。
Battery Performance Test The obtained flat battery was charged to 4.2 V at 0.5 mA / cm 2 , and the presence or absence of gas generation was visually confirmed. If there is gas generation, the case will bulge. The results are shown in the table below.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【発明の効果】本発明によれば、高容量の電池、特に二
次電池用の炭素質負極として有用な非晶質炭素被覆黒鉛
系炭素質物を活物質とする負極を、黒鉛性炭素質物と熱
可塑性樹脂の混合物の焼成後に粉砕工程を経ることな
く、より簡便な工程で製造することが出来る。
According to the present invention, a negative electrode using an amorphous carbon-coated graphite-based carbonaceous material useful as a carbonaceous negative electrode for a high-capacity battery, particularly a secondary battery, is used as a graphitic carbonaceous material. After baking the mixture of the thermoplastic resins, the mixture can be manufactured by a simpler process without going through a pulverizing process.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/40 H01M 10/40 Z (72)発明者 田中 宇大 香川県三豊郡大野原町大字中姫2181−2 東洋炭素株式会社技術開発センター内 (72)発明者 東城 哲朗 香川県三豊郡大野原町大字中姫2181−2 東洋炭素株式会社技術開発センター内 (72)発明者 鳴戸 俊也 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 Fターム(参考) 4G046 EA03 EA05 EB02 EB06 EC06 5H029 AJ03 AJ14 AK03 AL06 AL07 AM03 AM04 AM05 AM07 CJ02 CJ22 CJ28 DJ08 DJ16 DJ18 EJ12 HJ01 HJ14 5H050 AA08 AA19 BA17 CA08 CB08 DA11 DA18 EA23 EA24 FA17 FA18 FA20 GA02 GA22 HA01 HA14 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 10/40 H01M 10/40 Z (72) Inventor Unaka Tanaka 2181 Nakahime, Onohara-cho, Mitoyo-gun, Kagawa Prefecture -2 Toyo Carbon Co., Ltd. Technology Development Center (72) Inventor Tetsuro Tojo Tono Carbon Co., Ltd. 21-21-2 Nakahime, Onohara-cho, Mitoyo-gun, Kagawa Prefecture (72) Inventor Toshiya Naruto Aoba-ku, Yokohama, Kanagawa 1000 Kamoshita-cho Mitsubishi Chemical Corporation Yokohama Research Laboratory F-term (reference) 4G046 EA03 EA05 EB02 EB06 EC06 5H029 AJ03 AJ14 AK03 AL06 AL07 AM03 AM04 AM05 AM07 CJ02 CJ22 CJ28 DJ08 DJ16 DJ18 EJ12 HJ01 HJ14 5H050 AA08 DAB EA23 EA24 FA17 FA18 FA20 GA02 GA22 HA01 HA14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛性炭素質物100重量部に対し、熱
可塑性樹脂10〜150重量部が配合された混合物を7
00℃以上で焼成して得られる非晶質炭素被覆黒鉛系炭
素質物及びバインダーを、該バインダーを溶解しうる溶
剤を用いて分散塗料となし、その塗料を集電体上に塗
布、乾燥することを特徴とする負極の製造方法。
1. A mixture of 10 to 150 parts by weight of a thermoplastic resin with respect to 100 parts by weight of a graphitic carbonaceous material,
The amorphous carbon-coated graphite-based carbonaceous material and the binder obtained by firing at 00 ° C. or more are made into a dispersion paint using a solvent capable of dissolving the binder, and the paint is applied on a current collector and dried. A method for producing a negative electrode, comprising:
【請求項2】 黒鉛性炭素質物と熱可塑性樹脂との混合
物を加熱処理し、該熱可塑性樹脂を溶融することを特徴
とする請求項1記載の負極の製造方法。
2. The method for producing a negative electrode according to claim 1, wherein a mixture of the graphitic carbonaceous material and the thermoplastic resin is subjected to a heat treatment to melt the thermoplastic resin.
【請求項3】 熱可塑性樹脂が、ポリ塩化ビニル、ポリ
ビニルアルコールまたはポリビニルピロリドンであるこ
とを特徴とする請求項1又は2に記載の負極の製造方
法。
3. The method for producing a negative electrode according to claim 1, wherein the thermoplastic resin is polyvinyl chloride, polyvinyl alcohol, or polyvinylpyrrolidone.
JP2000034049A 2000-02-10 2000-02-10 Manufacturing method of negative electrode Expired - Lifetime JP3878383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000034049A JP3878383B2 (en) 2000-02-10 2000-02-10 Manufacturing method of negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000034049A JP3878383B2 (en) 2000-02-10 2000-02-10 Manufacturing method of negative electrode

Publications (2)

Publication Number Publication Date
JP2001229917A true JP2001229917A (en) 2001-08-24
JP3878383B2 JP3878383B2 (en) 2007-02-07

Family

ID=18558441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000034049A Expired - Lifetime JP3878383B2 (en) 2000-02-10 2000-02-10 Manufacturing method of negative electrode

Country Status (1)

Country Link
JP (1) JP3878383B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229914A (en) * 2000-02-10 2001-08-24 Toyo Tanso Kk Negative pole and secondary battery
JP2002151069A (en) * 2000-11-06 2002-05-24 Kansai Coke & Chem Co Ltd Negative electrode material for lithium-ion secondary battery, its manufacturing method, and lithium-ion secondary battery
JP2003077461A (en) * 2001-09-03 2003-03-14 Nec Corp Negative electrode for secondary battery
WO2003063274A1 (en) * 2002-01-25 2003-07-31 Toyo Tanso Co., Ltd. Negative electrode material for lithium ion secondary battery
JP2004273424A (en) * 2003-02-20 2004-09-30 Mitsubishi Chemicals Corp Lithium secondary battery and negative electrode thereof
KR100453920B1 (en) * 2001-09-14 2004-10-20 주식회사 엘지화학 Methods for the preparation of rounded-morphology graphite by coating with amorphous carbons
KR100732458B1 (en) * 2001-12-22 2007-06-27 재단법인 포항산업과학연구원 A fabrication method of carbonaceous anodic materials
JP2008059903A (en) * 2006-08-31 2008-03-13 Toyo Tanso Kk Carbon material for lithium-ion secondary battery anode, carbon material for low crystallinity carbon-impregnation lithium-ion secondary battery anode, anode electrode plate, and lithium-ion secondary battery
JP2011134564A (en) * 2009-12-24 2011-07-07 Toyota Motor Corp Lithium-ion secondary battery, and vehicle and apparatus with the lithium-ion secondary battery thereon
CN102423660A (en) * 2011-08-11 2012-04-25 上海东洋炭素有限公司 Processing method for conductive particles in electric spark working fluid
WO2013031487A1 (en) * 2011-08-26 2013-03-07 三洋化成工業株式会社 Additive for negative electrode, negative electrode, method for producing polymerized coating film, lithium secondary battery, and lithium ion capacitor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229914A (en) * 2000-02-10 2001-08-24 Toyo Tanso Kk Negative pole and secondary battery
JP2002151069A (en) * 2000-11-06 2002-05-24 Kansai Coke & Chem Co Ltd Negative electrode material for lithium-ion secondary battery, its manufacturing method, and lithium-ion secondary battery
KR100511232B1 (en) * 2001-09-03 2005-08-31 닛본 덴끼 가부시끼가이샤 Anode for a secondary battery
JP2003077461A (en) * 2001-09-03 2003-03-14 Nec Corp Negative electrode for secondary battery
KR100453920B1 (en) * 2001-09-14 2004-10-20 주식회사 엘지화학 Methods for the preparation of rounded-morphology graphite by coating with amorphous carbons
KR100732458B1 (en) * 2001-12-22 2007-06-27 재단법인 포항산업과학연구원 A fabrication method of carbonaceous anodic materials
WO2003063274A1 (en) * 2002-01-25 2003-07-31 Toyo Tanso Co., Ltd. Negative electrode material for lithium ion secondary battery
US7816037B2 (en) 2002-01-25 2010-10-19 Toyo Tanso Co., Ltd. Anode material for lithium ion secondary battery
JP2004273424A (en) * 2003-02-20 2004-09-30 Mitsubishi Chemicals Corp Lithium secondary battery and negative electrode thereof
JP2008059903A (en) * 2006-08-31 2008-03-13 Toyo Tanso Kk Carbon material for lithium-ion secondary battery anode, carbon material for low crystallinity carbon-impregnation lithium-ion secondary battery anode, anode electrode plate, and lithium-ion secondary battery
JP2011134564A (en) * 2009-12-24 2011-07-07 Toyota Motor Corp Lithium-ion secondary battery, and vehicle and apparatus with the lithium-ion secondary battery thereon
CN102423660A (en) * 2011-08-11 2012-04-25 上海东洋炭素有限公司 Processing method for conductive particles in electric spark working fluid
WO2013031487A1 (en) * 2011-08-26 2013-03-07 三洋化成工業株式会社 Additive for negative electrode, negative electrode, method for producing polymerized coating film, lithium secondary battery, and lithium ion capacitor

Also Published As

Publication number Publication date
JP3878383B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
CN111433947B (en) Binder for electrochemically active material and method of forming electrochemically active material
US10541411B2 (en) Negative electrode material for power storage device, electrode structure, power storage device, and production method for each
JP5094013B2 (en) ELECTRODE STRUCTURE FOR LITHIUM SECONDARY BATTERY AND SECONDARY BATTERY HAVING THE ELECTRODE STRUCTURE
KR101520508B1 (en) 2 positive electrode-forming member material for the same method for producing the same and lithium ion secondary battery
JP5273931B2 (en) Negative electrode active material and method for producing the same
KR101628430B1 (en) Anode for use in a lithium-ion secondary battery, and lithium-ion secondary battery
EP2208247B1 (en) Core-shell type anode active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
JP4064351B2 (en) Anode material for lithium ion secondary battery
JP5430063B2 (en) Lithium secondary battery and negative electrode
JP4262475B2 (en) Negative electrode material and negative electrode for non-aqueous lithium ion secondary battery, and non-aqueous lithium ion secondary battery
JP2002175810A (en) Lithium secondary battery and anode
JP2018530873A (en) Negative electrode for secondary battery, method for producing the same, and secondary battery including the same
CN106450161B (en) Negative electrode for secondary battery and method for producing same
EP2056379B1 (en) Negative electrode for lithium rechargeable battery and lithium rechargeable battery adopting the same
CA2096386A1 (en) Lithium secondary battery
JP7128290B2 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
KR101105877B1 (en) Anode active material for lithium secondary batteries and Method of preparing for the same and Lithium secondary batteries using the same
KR102256479B1 (en) Negative electrode active material for lithium secondary battery, and preparing method therof
JP3844931B2 (en) Negative electrode and secondary battery
JP2010003679A (en) Anode mixture, anode mixture mixed liquid, anode, lithium battery and device
JP4873830B2 (en) Negative electrode material for lithium secondary battery, and negative electrode and lithium secondary battery using this negative electrode material for lithium secondary battery
JP2011519143A (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same as a negative electrode
JP2002231225A (en) Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
JP3878383B2 (en) Manufacturing method of negative electrode
KR101591712B1 (en) Binders in anode materials of lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061102

R150 Certificate of patent or registration of utility model

Ref document number: 3878383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term