JP2008010613A - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP2008010613A
JP2008010613A JP2006179083A JP2006179083A JP2008010613A JP 2008010613 A JP2008010613 A JP 2008010613A JP 2006179083 A JP2006179083 A JP 2006179083A JP 2006179083 A JP2006179083 A JP 2006179083A JP 2008010613 A JP2008010613 A JP 2008010613A
Authority
JP
Japan
Prior art keywords
double layer
electric double
layer capacitor
cation
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006179083A
Other languages
Japanese (ja)
Inventor
Gen Masuda
現 増田
Kentaro Takagi
賢太郎 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical Nisshinbo Industries Inc
Priority to JP2006179083A priority Critical patent/JP2008010613A/en
Publication of JP2008010613A publication Critical patent/JP2008010613A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric double layer capacitor that uses an electrolyte formed of ionic liquid, which is found out as a suitable electrolyte that enables the electric double layer capacitor to display a practical lifetime performance from an ionic fluid group where N, N-dialkyl pyrrolidinium serves as a cation. <P>SOLUTION: The electric double layer capacitor uses a non-aqueous electrolyte that is formed of only an ionic fluid where N-methyl-N-propyl pyrrolidinium serves as a cation and bis(trifluoromethane sulfonyl)imido serves as an anion. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は非水電解液を用いた電気二重層キャパシタに関する。 The present invention relates to an electric double layer capacitor using a non-aqueous electrolyte.

近年、蓄電デバイスの非水電解液として、種々のイオン液体が検討されている。これらイオン液体の中でもN−メチル-N-プロピルピロリジニウムをカチオンとするイオン液体は、優れた還元安定性を有することから、リチウムイオン電池などの二次電池の電解液用溶媒として用いることができることが知られている(例えば特許文献1を参照)。   In recent years, various ionic liquids have been studied as non-aqueous electrolytes for electricity storage devices. Among these ionic liquids, an ionic liquid having N-methyl-N-propylpyrrolidinium as a cation has excellent reduction stability, so that it can be used as a solvent for an electrolytic solution of a secondary battery such as a lithium ion battery. It is known that it can be performed (see, for example, Patent Document 1).

さらに、このN−メチル-N-プロピルピロリジニウムを含む、N、N-ジアルキルピロリジニウムをカチオンとするイオン液体群は、それらが高いイオン導電性や広い電位窓を示すことが知られている(例えば特許文献2を参照)。   Furthermore, the ionic liquid group containing N-methyl-N-propylpyrrolidinium and having N, N-dialkylpyrrolidinium as a cation is known to exhibit high ionic conductivity and a wide potential window. (For example, refer to Patent Document 2).

しかしながら、イオン液体を蓄電デバイスの電解液として用いる場合、そのイオン液体からなる電解液が高いイオン導電性を持っていたとしても、さらにはその電解液を用いたキャパシタの初期性能がよかったとしても、それだけでは実用的な寿命性能を持つキャパシタであるかどうかは分からない。電解液を構成するイオン液体のカチオン種とアニオン種の組み合わせ、イオン濃度、粘度、さらには溶媒の有無等、電解液の組成によっては、実用的な蓄電デバイスにはなり得ないこともある。   However, when an ionic liquid is used as an electrolytic solution of an electricity storage device, even if the electrolytic solution made of the ionic liquid has high ionic conductivity, even if the initial performance of the capacitor using the electrolytic solution is good, It is not clear if it is a capacitor with practical life performance alone. Depending on the composition of the electrolytic solution, such as the combination of the cation and anionic species of the ionic liquid constituting the electrolytic solution, the ion concentration, the viscosity, and the presence or absence of a solvent, it may not be a practical electricity storage device.

特開2003−331918号公報JP 2003-331918 A 特開2005−139100号公報JP 2005-139100 A

本発明は、このような事情に鑑みてなされたものであり、N、N-ジアルキルピロリジニウムをカチオンとするイオン液体群の中から、電気二重層キャパシタが実用的な寿命性能を発現できる電解液として適切なイオン液体を見出し、そのイオン液体からなる電解液を用いた電気二重層キャパシタを提供することを目的とする。   The present invention has been made in view of such circumstances, and an electrolytic solution in which an electric double layer capacitor can exhibit practical life performance is selected from an ionic liquid group having N, N-dialkylpyrrolidinium as a cation. An object of the present invention is to find an appropriate ionic liquid as a liquid and to provide an electric double layer capacitor using an electrolytic solution composed of the ionic liquid.

すなわち、本発明は、非水電解液を用いた電気二重層キャパシタにおいて、非水電解液がN−メチル-N-プロピルピロリジニウムをカチオンとし、ビス(トリフルオロメタンスルホニル)イミドをアニオンとするイオン液体のみからなることを特徴とする電気二重層キャパシタである。   That is, according to the present invention, in an electric double layer capacitor using a non-aqueous electrolyte, the non-aqueous electrolyte is an ion having N-methyl-N-propylpyrrolidinium as a cation and bis (trifluoromethanesulfonyl) imide as an anion. An electric double layer capacitor comprising only a liquid.

本発明の電気二重層キャパシタは、N−メチル-N-プロピルピロリジニウムをカチオンとし、ビス(トリフルオロメタンスルホニル)イミドをアニオンとするイオン液体のみからなる電解液を用いているので、電気二重層キャパシタとしての寿命性能に優れ、非常に有用なものである。   The electric double layer capacitor of the present invention uses an electrolytic solution consisting only of an ionic liquid having N-methyl-N-propylpyrrolidinium as a cation and bis (trifluoromethanesulfonyl) imide as an anion. It has excellent lifetime performance as a capacitor and is very useful.

以下、本発明についてさらに詳しく説明する。
本発明に係わる電気二重層キャパシタは、非水電解液を用いた電気二重層キャパシタにおいて、非水電解液がN−メチル-N-プロピルピロリジニウムをカチオンとし、ビス(トリフルオロメタンスルホニル)イミドをアニオンとするイオン液体のみからなるものである。
Hereinafter, the present invention will be described in more detail.
The electric double layer capacitor according to the present invention is an electric double layer capacitor using a non-aqueous electrolyte, wherein the non-aqueous electrolyte uses N-methyl-N-propylpyrrolidinium as a cation and bis (trifluoromethanesulfonyl) imide. It consists only of an ionic liquid as an anion.

一般的に、キャパシタの性能に影響する要素の一つとして電解液の粘度が考えられる場合、室温で液体の有機溶媒を混合することにより低粘度化させた電解液を用いる。しかしながら、本発明の電気二重層キャパシタにおいては、この有機溶媒の混合はキャパシタの寿命性能を低下させてしまう。
したがって、本発明の電気二重層キャパシタにおける非水電解液組成としては、N−メチル-N-プロピルピロリジニウム・ビス(トリフルオロメタンスルホニル)イミドを主成分とし、少なくとも室温で液体の有機溶媒は含まない。
In general, when the viscosity of the electrolytic solution is considered as one of the factors affecting the performance of the capacitor, an electrolytic solution whose viscosity is reduced by mixing a liquid organic solvent at room temperature is used. However, in the electric double layer capacitor of the present invention, the mixing of the organic solvent reduces the life performance of the capacitor.
Therefore, the non-aqueous electrolyte composition in the electric double layer capacitor of the present invention includes N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide as a main component and an organic solvent that is liquid at least at room temperature. Absent.

本発明の係わる電気二重層キャパシタの構成は、上述の非水電解液を用い、一対の分極性電極とこれら分極性電極間に介在させたセパレータを備えたものである。   The configuration of the electric double layer capacitor according to the present invention comprises a pair of polarizable electrodes and a separator interposed between the polarizable electrodes, using the non-aqueous electrolyte described above.

ここで、分極性電極としては、炭素質材料とバインダーポリマーとを含んでなる分極性電極組成物を集電体上に塗布してなるものを用いることができる。
上記炭素質材料としては、特に限定されるものではなく、植物系の木材、のこくず、ヤシ殻、パルプ廃液、化石燃料系の石炭、石油重質油、もしくはこれらを熱分解した石炭、または石油系ピッチ、タールピッチを紡糸した繊維、合成高分子、フェノール樹脂、フラン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカルボジイミド樹脂、液晶高分子、プラスチック廃棄物、廃タイヤ等を原料とし、これらを炭化したもの、これらをさらに賦活化して製造した活性炭等が挙げられる。
Here, as the polarizable electrode, an electrode obtained by applying a polarizable electrode composition containing a carbonaceous material and a binder polymer on a current collector can be used.
The carbonaceous material is not particularly limited, and plant-based wood, sawdust, coconut husk, pulp waste liquid, fossil fuel-based coal, heavy petroleum oil, coal obtained by pyrolyzing these, or Petroleum pitch, tar pitch fiber, synthetic polymer, phenol resin, furan resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyimide resin, polyamide resin, polycarbodiimide resin, liquid crystal polymer, plastic waste, waste Examples thereof include tires and other raw materials that are carbonized, and activated carbon produced by further activating them.

なお、上記賦活処理の方法としては特に限定はなく、薬品賦活、水蒸気賦活法等の種々の方法を用いることができるが、KOHを用いた薬品賦活で得られる活性炭は、水蒸気賦活品と比べて容量が大きい傾向にあることから好ましい。また、炭素質材料の形状としては、破砕、造粒、顆粒、繊維、フェルト、織物、シート状等各種の形状があるが、いずれも本発明に使用することができる。 In addition, there is no limitation in particular as the method of the said activation process, Although various methods, such as chemical activation and a steam activation method, can be used, The activated carbon obtained by the chemical activation using KOH is compared with a steam activation product. It is preferable because the capacity tends to be large. In addition, the carbonaceous material has various shapes such as crushing, granulation, granule, fiber, felt, woven fabric, and sheet shape, any of which can be used in the present invention.

さらに、上記炭素質材料には導電材を添加することもできる。導電材としては、炭素質材料に導電性を付与できるものであれば特に制限されず、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウイスカー、炭素繊維、天然黒鉛、人造黒鉛、酸化チタン,酸化ルテニウム,アルミニウム,ニッケル等の金属ファイバなどが挙げられ、これらの1種を単独でまたは2種以上を組み合わせて用いることができる。これらの中でも、カーボンブラックの一種であるケッチェンブラック、アセチレンブラックが好ましい。   Furthermore, a conductive material can be added to the carbonaceous material. The conductive material is not particularly limited as long as it can impart conductivity to the carbonaceous material. For example, carbon black, ketjen black, acetylene black, carbon whisker, carbon fiber, natural graphite, artificial graphite, titanium oxide, Examples thereof include metal fibers such as ruthenium oxide, aluminum, and nickel, and these can be used alone or in combination of two or more. Among these, ketjen black and acetylene black which are a kind of carbon black are preferable.

ここで、導電材の平均粒径は、特に限定されるものではないが、10nm〜10μm、好ましくは10〜100nm、より好ましくは20〜40nmであり、特に、炭素質材料の平均粒径の1/5000〜1/2、特に1/1000〜1/10であることが好ましい。
また、その添加量も、特に限定されるものではないが、静電容量および導電性付与効果等を考慮すると、炭素質材料100重量部に対して0.1〜20重量部、好ましくは0.5〜10重量部である。
Here, the average particle diameter of the conductive material is not particularly limited, but is 10 nm to 10 μm, preferably 10 to 100 nm, more preferably 20 to 40 nm, and in particular, 1 of the average particle diameter of the carbonaceous material. / 5000 to 1/2, and particularly preferably 1/1000 to 1/10.
Also, the amount of addition is not particularly limited, but in consideration of the capacitance, the effect of imparting conductivity, etc., 0.1 to 20 parts by weight, preferably 0. 5 to 10 parts by weight.

バインダとしては、公知の種々のバインダを使用することができ、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリアミドイミド、カルボキシメチルセルロース、フルオロオレフィン共重合体架橋ポリマー、ポリビニルアルコール、ポリアクリル酸、ポリイミド等が挙げられ、これらの1種を単独でまたは2種以上を組み合わせて用いることができる。これらの中でも、分極性電極の塗工性、集電体への結着力、耐久末期の電極抵抗から、ポリフッ化ビニリデン、ポリアミドイミドが特に好ましい。
これらのバインダの添加量は、炭素質材料100質量部に対して、0.5〜20質量部、特に、1〜10質量部であることが好ましい。
As the binder, various known binders can be used. For example, polytetrafluoroethylene, polyvinylidene fluoride, polyamideimide, carboxymethylcellulose, fluoroolefin copolymer crosslinked polymer, polyvinyl alcohol, polyacrylic acid, polyimide, and the like. These can be used alone or in combination of two or more. Among these, polyvinylidene fluoride and polyamideimide are particularly preferable from the viewpoints of the applicability of the polarizable electrode, the binding force to the current collector, and the electrode resistance at the end of durability.
The addition amount of these binders is preferably 0.5 to 20 parts by mass, particularly 1 to 10 parts by mass with respect to 100 parts by mass of the carbonaceous material.

集電体としては、通常、電気二重層キャパシタに用いられるものを任意に選択して使用できるが、アルミニウム箔、特に表面をエッチング処理したアルミニウム箔を用いることが好ましい。また、負の集電体に関しては、上記に加えて、銅箔、ニッケル箔または表面が銅めっき膜もしくはニッケルめっき膜にて形成された金属箔を用いても構わない。
上記集電体を構成する箔の形状としては、一般的な箔状、孔が形成されたメッシュ状、立体的な網目状等の各種形状を適宜採用できる。また、集電体の厚みは、通常、10〜200μm程度であるが、集電体の導電性および強度等を考慮すると、15〜100μmが好ましく、20〜70μmがより好ましい。
As the current collector, those usually used for electric double layer capacitors can be arbitrarily selected and used, but it is preferable to use an aluminum foil, particularly an aluminum foil whose surface is subjected to etching treatment. Further, regarding the negative current collector, in addition to the above, a copper foil, a nickel foil, or a metal foil whose surface is formed of a copper plating film or a nickel plating film may be used.
As the shape of the foil constituting the current collector, various shapes such as a general foil shape, a mesh shape in which holes are formed, and a three-dimensional mesh shape can be appropriately employed. The thickness of the current collector is usually about 10 to 200 μm, but considering the conductivity and strength of the current collector, it is preferably 15 to 100 μm and more preferably 20 to 70 μm.

分極性電極は、上述の分極性電極組成物に溶剤を加えたスラリーを、集電体の両面または片面に塗布などにより塗膜を形成した後、加熱乾燥などにより溶剤を除去して形成される。集電体上に形成された片面の分極性電極の厚みは、20〜200μmが好ましく、より好ましくは30〜150μm、さらに好ましくは40〜120μmである。   A polarizable electrode is formed by forming a coating film by applying a slurry obtained by adding a solvent to the polarizable electrode composition described above on both or one side of a current collector, and then removing the solvent by heating and drying. . The thickness of the single-sided polarizable electrode formed on the current collector is preferably 20 to 200 μm, more preferably 30 to 150 μm, still more preferably 40 to 120 μm.

本発明の電気二重層キャパシタのセパレータとしては、電気二重層キャパシタ用のセパレータとして一般に用いられているものが挙げられ、例えば、ガラス繊維、ポリオレフィン、ポリアミドイミド、ポリエステル、フッ素樹脂、セルロースなどから構成されるものが挙げられる。具体的には、ポリエチレン,ポリプロピレン等のポリオレフィン、ポリアミドイミド、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等からなる多孔体フィルム;ポリオレフィン,ポリエステルの不織布;ガラス繊維シート、セルロース;セルロース紙等を使用することができる。絶縁性の無機微粒子や無機フィラーを含むものを用いてもよい。   Examples of the separator for the electric double layer capacitor of the present invention include those generally used as a separator for an electric double layer capacitor. Examples of the separator include glass fiber, polyolefin, polyamideimide, polyester, fluororesin, and cellulose. Can be mentioned. Specifically, a porous film made of polyolefin such as polyethylene and polypropylene, polyamideimide, polyvinylidene fluoride, polytetrafluoroethylene, etc .; polyolefin, polyester nonwoven fabric; glass fiber sheet, cellulose; cellulose paper, etc. may be used. it can. You may use the thing containing an insulating inorganic fine particle and an inorganic filler.

セパレータの厚みは、通常、5〜200μmであるが、好ましくは10〜100μm、さらに好ましくは20〜60μmである。5μmより薄くなると漏れ電流が大きくなる場合があり、200μmより厚くなるとエネルギー密度の低下および内部抵抗の増大が生じる場合がある。   The thickness of the separator is usually 5 to 200 μm, preferably 10 to 100 μm, and more preferably 20 to 60 μm. When the thickness is less than 5 μm, the leakage current may increase, and when the thickness is more than 200 μm, the energy density may decrease and the internal resistance may increase.

本発明の電気二重層キャパシタの構造および形態は、上述した一対の集電体、正負の各分極性電極、これら電極間に介在するセパレータ、並びに少なくとも正負各分極性電極およびセパレータに介在する上述の電解液を備えて構成されるものであれば、特に限定されるものではない。たとえば積層型のキャパシタや、コイン型のキャパシタなど、公知の種々の構造を採用できる。
なお、電解液は少なくとも電極群に含浸していればよく、例えば、電解液が、電極群がこれに浸る程度に外装容器内に満たされていてもよい。
The structure and configuration of the electric double layer capacitor of the present invention includes the above-described pair of current collectors, positive and negative polarizable electrodes, a separator interposed between these electrodes, and at least the positive and negative polarizable electrodes and the separator described above. There is no particular limitation as long as it is configured to include an electrolytic solution. For example, various known structures such as a multilayer capacitor and a coin capacitor can be employed.
In addition, the electrolyte solution should just impregnate at least an electrode group, for example, electrolyte solution may be filled in the exterior container to such an extent that an electrode group is immersed in this.

本発明の電気二重層キャパシタは、携帯電話、ノート型パソコンや携帯用端末等のメモリーバックアップ電源用途、携帯電話、携帯用音響機器等の電源、パソコン等の瞬時停電対策用電源、太陽光発電、風力発電等と組み合わせることによるロードレベリング電源等の種々の小電流用蓄電デバイスに好適に使用することができる。また、大電流で充放電可能な電気二重層キャパシタは、電気自動車、電動工具等の大電流を必要とする大電流蓄電デバイスとして好適に使用することができる。   The electric double layer capacitor of the present invention is a memory backup power source for mobile phones, notebook computers and portable terminals, power sources for mobile phones and portable audio equipment, power supplies for instantaneous power failures such as personal computers, solar power generation, It can be suitably used for various low current power storage devices such as a load leveling power source by combining with wind power generation. An electric double layer capacitor that can be charged and discharged with a large current can be suitably used as a large current storage device that requires a large current, such as an electric vehicle or a power tool.

以下、実施例を挙げて、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.

[実施例1]
活性炭粉末(平均粒径7μm、比表面積1800〜2000m/g)、導電性カーボン、ポリフッ化ビニリデン樹脂(以下、PVdFという)、N-メチル−2−ピロリドン(以下、NMPという)を、活性炭粉末:導電性カーボン:PVdF:NMP=85:8:7:230の割合で混合してペースト状にし、電気二重層キャパシタ用分極性電極組成物を調製した。得られたペースト状の分極性電極組成物をアルミニウム基板に、ドクターブレードにより塗布し、80℃で4時間乾燥させた。その後、これを圧延し、さらに150℃で16時間減圧乾燥して、分極性電極原板を得た。この分極性電極原板を電極面積800mmに切り出して分極性電極に形成し、一対の分極性電極間にポリエチレン製セパレータを介在させてセルを組み立てた。このセルに、有機溶媒を用いずに、N−メチル−N−プロピルピロリジニウム・ビストリフルオロスルホニルイミド(関東化学(株)製)(以下、P13TFSIとする)をそのまま電解液として注液して、電気二重層キャパシタを得た。
[Example 1]
Activated carbon powder (average particle size 7 μm, specific surface area 1800 to 2000 m 3 / g), conductive carbon, polyvinylidene fluoride resin (hereinafter referred to as PVdF), N-methyl-2-pyrrolidone (hereinafter referred to as NMP), activated carbon powder : Conductive carbon: PVdF: NMP = 85: 8: 7: 230 The mixture was made into a paste to prepare a polarizable electrode composition for an electric double layer capacitor. The obtained paste-like polarizable electrode composition was applied to an aluminum substrate with a doctor blade and dried at 80 ° C. for 4 hours. Thereafter, this was rolled and further dried under reduced pressure at 150 ° C. for 16 hours to obtain a polarizable electrode original plate. This polarizable electrode original plate was cut into an electrode area of 800 mm 2 to form a polarizable electrode, and a cell was assembled with a polyethylene separator interposed between the pair of polarizable electrodes. Without using an organic solvent, N-methyl-N-propylpyrrolidinium bistrifluorosulfonylimide (manufactured by Kanto Chemical Co., Inc.) (hereinafter referred to as P13TFSI) was directly poured into the cell as an electrolytic solution. An electric double layer capacitor was obtained.

[比較例1]
実施例1において、電解液として濃度1.0mol/LのP13TFSIを電解質とするプロピレンカーボネート溶液(以下P13TFSI/PCという)を用いた以外は、実施例と同様にして電気二重層キャパシタを得た。
[Comparative Example 1]
In Example 1, an electric double layer capacitor was obtained in the same manner as in Example except that a propylene carbonate solution containing P13TFSI having a concentration of 1.0 mol / L as an electrolyte (hereinafter referred to as P13TFSI / PC) was used.

上記実施例および比較例で得られた各キャパシタについて、下記耐久性試験を行った。結果を表1に示す。
[耐久性試験]
温度70℃の高温槽中で、設定電圧3.0V、保持時間1000時間の定電圧充電を行い、その後の静電容量を初期の値と比較した。
The following durability tests were conducted on the capacitors obtained in the above examples and comparative examples. The results are shown in Table 1.
[Durability test]
In a high temperature bath at a temperature of 70 ° C., constant voltage charging was performed with a set voltage of 3.0 V and a holding time of 1000 hours, and the subsequent capacitance was compared with the initial value.

Figure 2008010613
Figure 2008010613

表1に示されるように、比較例1で得られたプロピレンカーボネート溶液の電解液を用いた電気二重層キャパシタは初期性能に問題はなかったが、耐久試験による容量維持率の低下が非常に大きく、実用的な寿命性能を有するキャパシタではない。一方、実施例1で得られたプロピレンカーボネートを含まない、P13TFSIのみからなる電解液を用いた電気二重層キャパシタは、容量維持率が82%であり、寿命性能が優れたキャパシタであることが分かる。
As shown in Table 1, the electric double layer capacitor using the electrolyte solution of the propylene carbonate solution obtained in Comparative Example 1 had no problem in the initial performance, but the decrease in the capacity maintenance rate by the durability test was very large. It is not a capacitor with practical life performance. On the other hand, it can be seen that the electric double layer capacitor using the electrolytic solution made only of P13TFSI without the propylene carbonate obtained in Example 1 has a capacity retention rate of 82% and has an excellent life performance. .

Claims (1)

非水電解液を用いた電気二重層キャパシタにおいて、非水電解液がN−メチル-N-プロピルピロリジニウムをカチオンとし、ビス(トリフルオロメタンスルホニル)イミドをアニオンとするイオン液体のみからなことを特徴とする電気二重層キャパシタ。 In an electric double layer capacitor using a non-aqueous electrolyte, the non-aqueous electrolyte consists only of an ionic liquid having N-methyl-N-propylpyrrolidinium as a cation and bis (trifluoromethanesulfonyl) imide as an anion. An electric double layer capacitor characterized.
JP2006179083A 2006-06-29 2006-06-29 Electric double layer capacitor Pending JP2008010613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006179083A JP2008010613A (en) 2006-06-29 2006-06-29 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006179083A JP2008010613A (en) 2006-06-29 2006-06-29 Electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2008010613A true JP2008010613A (en) 2008-01-17

Family

ID=39068565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006179083A Pending JP2008010613A (en) 2006-06-29 2006-06-29 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2008010613A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073526A1 (en) * 2011-11-14 2013-05-23 住友電気工業株式会社 Electrode for electricity storage devices, electricity storage device, and method for producing electrode for electricity storage devices
WO2015045389A1 (en) 2013-09-25 2015-04-02 国立大学法人東京大学 Electrolyte solution for electricity storage devices such as batteries and capacitors containing salt, wherein alkali metal, alkaline earth metal or aluminum serves as cations, and organic solvent having hetero element, method for producing same, and capacitor provided with said electrolyte solution
KR20180103193A (en) 2013-09-25 2018-09-18 고쿠리츠다이가쿠호징 도쿄다이가쿠 Electrolyte solution for electricity storage devices such as batteries and capacitors containing salt, wherein alkali metal, alkaline earth metal or aluminum serves as cations, and organic solvent having hetero element, method for producing same, and capacitor provided with said electrolyte solution
US10686223B2 (en) 2013-09-25 2020-06-16 Kabushiki Kaisha Toyota Jidoshokki Nonaqueous electrolyte secondary battery
US11011781B2 (en) 2013-09-25 2021-05-18 The University Of Tokyo Nonaqueous electrolyte secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196390A (en) * 2005-01-17 2006-07-27 Tosoh Corp Ionic liquid composition and electrochemical device using it

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196390A (en) * 2005-01-17 2006-07-27 Tosoh Corp Ionic liquid composition and electrochemical device using it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073526A1 (en) * 2011-11-14 2013-05-23 住友電気工業株式会社 Electrode for electricity storage devices, electricity storage device, and method for producing electrode for electricity storage devices
JPWO2013073526A1 (en) * 2011-11-14 2015-04-02 住友電気工業株式会社 Electrode for electricity storage device, electricity storage device, and method for producing electrode for electricity storage device
US9048025B2 (en) 2011-11-14 2015-06-02 Sumitomo Electric Industries, Ltd. Electrode for electric storage device, electric storage device and manufacturing method of electrode for electric storage device
WO2015045389A1 (en) 2013-09-25 2015-04-02 国立大学法人東京大学 Electrolyte solution for electricity storage devices such as batteries and capacitors containing salt, wherein alkali metal, alkaline earth metal or aluminum serves as cations, and organic solvent having hetero element, method for producing same, and capacitor provided with said electrolyte solution
KR20180103193A (en) 2013-09-25 2018-09-18 고쿠리츠다이가쿠호징 도쿄다이가쿠 Electrolyte solution for electricity storage devices such as batteries and capacitors containing salt, wherein alkali metal, alkaline earth metal or aluminum serves as cations, and organic solvent having hetero element, method for producing same, and capacitor provided with said electrolyte solution
US10686223B2 (en) 2013-09-25 2020-06-16 Kabushiki Kaisha Toyota Jidoshokki Nonaqueous electrolyte secondary battery
US11011781B2 (en) 2013-09-25 2021-05-18 The University Of Tokyo Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP4878881B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor
JP4959259B2 (en) Electric double layer capacitor
KR20130042004A (en) Electric double layer capacitor
JP2015005722A (en) Electrode, electric double layer capacitor using the same, and method for manufacturing electrode
JP2013062505A (en) Method for preparing electrode active material slurry and electrochemical capacitor comprising electrode using the same
JP2007059899A (en) Electrochemical device
KR101038869B1 (en) Electrode for capacitor and electric double layer capacitor comprising the same
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
JP2008010613A (en) Electric double layer capacitor
JP2008141184A (en) Electrode film, electrode and its manufacturing method, and electric double layer capacitor
WO2015166839A1 (en) Porous carbon material for electrode of energy storage device and method for manufacturing said material
KR20170068492A (en) Binder, use thereof and method for producing electrode
JP4989157B2 (en) Electric double layer capacitor
JP2014064030A (en) Electrochemical capacitor
Singh et al. Enhanced energy density of quasi‐solid‐state supercapacitor based on activated carbon electrode derived from honeycomb and gel polymer electrolyte with redox‐additive methylene blue
JP2009295666A (en) Electrode for electrochemical element and electrochemical element
WO2009123031A1 (en) Method for producing electrode for electrochemical device
JP7305940B2 (en) Electrodes for electric double layer capacitors and electric double layer capacitors
JP2013098575A (en) Electrode active material composition and method of manufacturing the same, and electrochemical capacitor with the same
KR102188242B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
JP2013065851A (en) Electrode active material, method for preparing the same, and electrochemical capacitor including the same
JP4718320B2 (en) Porous material and electric double layer capacitor
JP4318337B2 (en) Electrode for non-aqueous electrochemical device and method for producing the same
TWI794221B (en) Self-supporting carbon electrode
JP2012009806A (en) Electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110317