JPH1197309A - Manufacture of double layer capacitor and electrode - Google Patents

Manufacture of double layer capacitor and electrode

Info

Publication number
JPH1197309A
JPH1197309A JP9256975A JP25697597A JPH1197309A JP H1197309 A JPH1197309 A JP H1197309A JP 9256975 A JP9256975 A JP 9256975A JP 25697597 A JP25697597 A JP 25697597A JP H1197309 A JPH1197309 A JP H1197309A
Authority
JP
Japan
Prior art keywords
electrode
layer capacitor
double layer
electric double
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9256975A
Other languages
Japanese (ja)
Inventor
Hideki Shibuya
秀樹 渋谷
Toshikazu Takeda
敏和 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Advanced Engineering Center Ltd
Original Assignee
Isuzu Advanced Engineering Center Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Advanced Engineering Center Ltd filed Critical Isuzu Advanced Engineering Center Ltd
Priority to JP9256975A priority Critical patent/JPH1197309A/en
Publication of JPH1197309A publication Critical patent/JPH1197309A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an electric double layer capacitor and an electrode wherein an electrode volume capacity is increased and leak current is reduced with high reliability. SOLUTION: Relating to the manufacturing method, a PVDC(polyvinylidene chloride) resin carbide is sintered at 600-950 deg.C, an obtained sintered body is heated at 150-300 deg.C, then oxidized/reduced in electro chemical manner in an electrolytic solution, thus an electric double layer capacitor electrode 2 is obtained. The electrode 2 may be incorporated in an electric double layer capacitor for process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層コンデ
ンサと電極の製造方法に関する。
The present invention relates to an electric double layer capacitor and a method for manufacturing an electrode.

【0002】[0002]

【従来の技術】電気二重層コンデンサは、活性炭の粉末
に電解液をしみこませ、活性炭と電解液の界面にできる
電気二重層の静電容量を利用したコンデンサである。耐
電圧、最高使用温度は、電解液の分解電圧・温度に依存
しており、定格電圧は数Vと低いが、ファラッドオーダ
の静電容量が容易に得られることから、電池の代わりに
半導体メモリ(D−RAM)のバックアップ用等の低電
流密度の用途に多く用いられるようになっており、最近
では、もっと電流密度の高い用途、例えば車載鉛蓄電池
の代わり、にも使用することが研究されている。
2. Description of the Related Art An electric double layer capacitor is a capacitor utilizing an electrostatic solution of an activated carbon powder and an electrolytic solution impregnated in an activated carbon powder. The withstand voltage and the maximum operating temperature depend on the decomposition voltage and temperature of the electrolytic solution, and the rated voltage is as low as several volts. However, since the Farad order capacitance can be easily obtained, the semiconductor memory is used instead of the battery. It has been widely used for low current density applications such as backup of (D-RAM), and has recently been studied for use in applications having higher current densities, for example, in place of in-vehicle lead-acid batteries. ing.

【0003】従来、電気二重層コンデンサ用電極とし
て、活性炭にバインダを混入させ焼結したものや焼結後
に腑活処理(酸化による不純物除去処理)したものを用
いていた。しかし、これらの電極を使用すると、次のよ
うな問題点が生じていた。 a)活性炭はマクロポアが多く細孔体積比率が高いた
め、密度が低い。 b)比表面積は大きいが細孔径の分布が広いため、電気
二重層コンデンサ用電極として働く実効的な細孔は少な
い。 c)焼結を促進する目的で比較的高温で焼結するため、
電気二重層コンデンサ用電極として働く実効的な細孔は
少ない。 d)低温(850℃以下)で焼結すると、グラファイト
化が進まないため、粒子間焼結強度がなく、そして、抵
抗値が高い。
Heretofore, as an electrode for an electric double layer capacitor, a material obtained by mixing a binder with activated carbon and sintering or a material subjected to an activation treatment (impurity removal treatment by oxidation) after sintering has been used. However, the use of these electrodes has caused the following problems. a) Activated carbon has a low density because it has many macropores and a high pore volume ratio. b) Although the specific surface area is large, the distribution of the pore diameter is wide, so that there are few effective pores acting as electrodes for electric double layer capacitors. c) sintering at a relatively high temperature to promote sintering,
There are few effective pores acting as electrodes for electric double layer capacitors. d) When sintering at a low temperature (850 ° C. or lower), graphitization does not proceed, so there is no intergranular sintering strength and the resistance value is high.

【0004】これらの問題点を解決するため、PVDC
(ポリ塩化ビニリデン)樹脂炭化物を使用することが提
案されている(特開平7−249551号公報参照)。
PVDC樹脂(あるいは塩化ビニリデン系共重合体)炭
化物を使用すると、他の活性炭と比較して長所を有して
おり、その理由として、次のことによるといわれてい
る。PVDC樹脂は、2つの脱塩酸反応温度を有してい
る。第一点は180℃から250℃で自己分子鎖内での
脱塩酸反応であり、第二点は450℃から550℃での
分子鎖間の脱塩酸反応で、その際分子間結合が生じてい
る。第一点の温度範囲で加熱すると脱塩酸反応により細
孔が形成され、その細孔は、36Å以下のマイクロポア
とよばれるものであって、これが電気二重層コンデンサ
用電極として使用されると電解液との界面として有効に
働く。このため、電極としての腑活処理は不必要であ
る。また、第二点の温度範囲以上で加熱すると、脱塩酸
反応により有効マイクロポアを保持しつつ比較的低温で
も焼結を進行させることができる。このため、電気二重
層コンデンサ用電極には不要である大きな径のメソポア
やマクロポアの発生を抑えることができる。このため、
PVDC樹脂炭化物は、比表面積は活性炭に比べて少な
いが、焼結密度が活性炭に比べて高くなり、体積あたり
の容量は大きくなる。
[0004] To solve these problems, PVDC
It has been proposed to use (polyvinylidene chloride) resin carbide (see JP-A-7-249551).
The use of PVDC resin (or vinylidene chloride-based copolymer) carbide has advantages over other activated carbons because of the following. PVDC resins have two dehydrochlorination reaction temperatures. The first point is the dehydrochlorination reaction in the self-molecular chain at 180 ° C to 250 ° C, and the second point is the dehydrochlorination reaction between the molecular chains at 450 ° C to 550 ° C. I have. When heated in the temperature range of the first point, pores are formed by the dehydrochlorination reaction, and the pores are called micropores having a diameter of 36 ° or less. It works effectively as an interface with the liquid. For this reason, activation treatment as an electrode is unnecessary. Further, when the heating is performed at a temperature not lower than the temperature range of the second point, sintering can be advanced even at a relatively low temperature while maintaining effective micropores by the dehydrochlorination reaction. For this reason, generation of mesopores or macropores having a large diameter, which is unnecessary for the electrode for an electric double layer capacitor, can be suppressed. For this reason,
The PVDC resin carbide has a smaller specific surface area than activated carbon, but has a higher sintering density than activated carbon and a larger capacity per volume.

【0005】しかし、PVDC樹脂炭化物は、次のよう
な問題点を有している。 a)バインダレスであるため、成形しにくい。 b)低温(850℃以下)での焼結ではグラファイトが
進まないため、オーミックな抵抗が高い。そのため高電
流密度においてはIRドロップが大きく容量が取り出せ
ない。 c)PVDC樹脂炭化物は高密度に焼結できるが、粒子
間の空隙やマクロポアが少ないため拡散抵抗が高い。
However, the PVDC resin carbide has the following problems. a) It is difficult to mold because it is binderless. b) Ohmic resistance is high because graphite does not advance during sintering at low temperature (850 ° C. or lower). Therefore, at a high current density, the IR drop is large and the capacity cannot be taken out. c) The PVDC resin carbide can be sintered at a high density, but has a high diffusion resistance due to few voids and macropores between particles.

【0006】活性炭電極においては硝酸や酸化性の物質
により表面を酸化する試みがあるが、酸化剤の残さや電
気二重層コンデンサには不必要な表面官能基が導入され
てしまい、これは、クーロン効率が悪化したり信頼性を
損なう元になる。
Attempts have been made to oxidize the surface of an activated carbon electrode with nitric acid or an oxidizing substance. However, the residue of the oxidizing agent or unnecessary surface functional groups introduced into the electric double layer capacitor are introduced. Efficiency is reduced and reliability is impaired.

【0007】また、電気化学的に表面を酸化還元処理す
る方法も知られているが、電気二重層コンデンサとして
用いる場合はアノードとカソードを別途処理する必要が
あり、思ったほどの効果は得られていない。
A method of electrochemically redox-treating the surface is also known, but when used as an electric double layer capacitor, the anode and the cathode need to be treated separately, and the expected effect can be obtained. Not.

【0008】[0008]

【発明が解決しようとする課題】本発明は、容量を増大
し、漏れ電流を低減して、高い信頼性を得た電気二重層
コンデンサと電極の製造方法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing an electric double layer capacitor and an electrode having a high reliability by increasing a capacity and reducing a leakage current.

【0009】[0009]

【課題を解決するための手段】本発明は、PVDC樹脂
炭化物を600〜950℃で焼結させ、得られた焼結体
を150〜300℃の温度で加熱処理し、そして、電解
質溶液中で電気化学的に酸化還元処理する電気二重層コ
ンデンサ用電極の製造方法である。
According to the present invention, a PVDC resin carbide is sintered at a temperature of 600 to 950 ° C., and the obtained sintered body is heat-treated at a temperature of 150 to 300 ° C. This is a method for producing an electrode for an electric double layer capacitor which is electrochemically oxidized and reduced.

【0010】また、本発明は、PVDC樹脂炭化物から
なる電極を具備する電気二重層コンデンサの製造方法に
おいて、150〜300℃の温度で加熱処理された電極
を電気二重層コンデンサとして組み込んで充電を行い、
次に電極の極性を変えて充電することを繰り返して、電
気化学的に酸化還元処理する電気二重層コンデンサの製
造方法である。
The present invention also relates to a method for manufacturing an electric double layer capacitor having an electrode made of a PVDC resin carbide, wherein charging is performed by incorporating the electrode heated at a temperature of 150 to 300 ° C. as an electric double layer capacitor. ,
Next, a method of manufacturing an electric double layer capacitor in which the charging and the reversing by changing the polarity of the electrodes is repeated to electrochemically perform a redox treatment.

【0011】[0011]

【発明の実施の形態】本発明の発明の実施の形態を説明
する。本発明の電気二重層コンデンサと電極の製造方法
について、実施例を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described. The manufacturing method of the electric double layer capacitor and the electrode of the present invention will be described with reference to examples.

【0012】電気二重層コンデンサ用電極の製造方法の
実施例1を説明する。まず、焼結体を作製する。PVD
C樹脂を300℃で炭化したものを振動ミリング機で粉
砕し、25mm□のカーボン製型につめて、20〜40
0kg/cm2の圧力で成形しながら温度が850℃に
なるまで通電焼結し、1mm厚に研磨して焼結体を作製
した。次に、焼結体を35wt%硫酸に浸漬し、10分
間煮沸した後、大気中で200℃で90分間の加熱を行
った。次に、電極を35wt%硫酸に浸漬し、減圧含浸
を24時間行い、200μm厚のガラス不織繊維のセパ
レータ1を挾んで電極2を対向させ、その外側にPt板
を配して集電板3とし、更にその外側からテフロンから
なる固定板4で挾み込んで固定してセルを作製した(図
1参照)。電解質溶液中で電気化学的に酸化還元処理す
るために、このセルを35wt%硫酸に浸漬し、1.2
Vまで充電して1時間保持し、次に電極の極性を変えて
1.2Vまで充電し、1時間保持した後、電極投影面積
に対する電流密度20mA/cm2で0.8Vまでの充
放電を繰り返して、電極体積あたりの容量を測定した
Embodiment 1 of a method for manufacturing an electrode for an electric double layer capacitor will be described. First, a sintered body is prepared. PVD
C resin was carbonized at 300 ° C., crushed by a vibration milling machine, packed in a 25 mm square carbon mold,
While being molded at a pressure of 0 kg / cm 2 , current sintering was performed until the temperature reached 850 ° C., and polishing was performed to a thickness of 1 mm to produce a sintered body. Next, the sintered body was immersed in 35 wt% sulfuric acid, boiled for 10 minutes, and then heated at 200 ° C. for 90 minutes in the air. Next, the electrode was immersed in 35% by weight sulfuric acid, and impregnated under reduced pressure for 24 hours. The electrode 2 was opposed to the electrode 2 with a 200-μm thick glass nonwoven fiber separator 1 interposed therebetween. 3, and the cell was fabricated by sandwiching and fixing a Teflon fixing plate 4 from the outside (see FIG. 1). This cell was immersed in 35 wt% sulfuric acid for electrochemical redox treatment in an electrolyte solution.
Charged to V and maintained for 1 hour, then changed the polarity of the electrode to 1.2 V, and maintained for 1 hour, then charged and discharged to 0.8 V at a current density of 20 mA / cm 2 with respect to the projected area of the electrode. The capacity per electrode volume was measured repeatedly

【0013】比較例1を説明する。電極を35wt%硫
酸に浸漬し、減圧含浸を24時間行い、200μm厚の
ガラス不織繊維のセパレータ1を挾んで電極2を対向さ
せ、その外側にPt板を配して集電板3とし、更にその
外側からテフロンからなる固定板4で挾み込んで固定し
てセルを作製した(図1参照)。このセルを35wt%
硫酸に浸漬して、電流密度20mA/cm2で0.8V
までの充放電を繰り返して、電極体積あたりの容量を測
定した
Comparative Example 1 will be described. The electrodes were immersed in 35 wt% sulfuric acid, and impregnated under reduced pressure for 24 hours. The electrodes 2 were opposed to each other with a 200 μm-thick glass non-woven fiber separator 1 interposed therebetween. Further, a cell was produced by sandwiching and fixing the outer side of the cell with a fixing plate 4 made of Teflon (see FIG. 1). 35% by weight of this cell
0.8 V at a current density of 20 mA / cm 2 immersed in sulfuric acid
Charge / discharge was repeated until the capacity per electrode volume was measured

【0014】比較例2を説明する。電極を35wt%硫
酸に浸漬し、減圧含浸を24時間行い、200μm厚の
ガラス不織繊維のセパレータ1を挾んで電極2を対向さ
せ、その外側にPt板を配して集電板3とし、更にその
外側からテフロンからなる固定板4で挾み込んで固定し
てセルを作製した(図1参照)。このセルを35wt%
硫酸に浸漬して、電極投影面積に対する電流密度20m
A/cm2で0.8Vまでの充放電を繰り返して、電極
体積あたりの容量を測定した。
A comparative example 2 will be described. The electrodes were immersed in 35 wt% sulfuric acid, and impregnated under reduced pressure for 24 hours. The electrodes 2 were opposed to each other with a 200 μm-thick glass non-woven fiber separator 1 interposed therebetween. Further, a cell was produced by sandwiching and fixing the outer side of the cell with a fixing plate 4 made of Teflon (see FIG. 1). 35% by weight of this cell
Immersion in sulfuric acid, current density 20m to the projected area of the electrode
The charge / discharge to 0.8 V at A / cm 2 was repeated, and the capacity per electrode volume was measured.

【0015】比較例3として、電極を35wt%硫酸に
浸漬し、減圧含浸を24時間行い、200μm厚のガラ
ス不織繊維のセパレータ1を挾んで電極2を対向させ、
その外側にPt板を配して集電板3とし、更にその外側
からテフロンからなる固定板4で挾み込んで固定してセ
ルを作製した(図1参照)。このセルを35wt%硫酸
に浸漬して、1.2Vまで充電を行い、その電圧を1時
間保持する。次に、電極の極性を変えて1.2Vまで充
電し、1時間保持した後、電極投影面積に対する電流密
度20mA/cm2で0.8Vまでの充放電を繰り返し
て、電極体積あたりの容量を測定した。
In Comparative Example 3, the electrodes were immersed in 35 wt% sulfuric acid, impregnated under reduced pressure for 24 hours, and the electrodes 2 were opposed to each other with a 200 μm-thick glass nonwoven fiber separator 1 interposed therebetween.
A Pt plate was disposed outside the collector plate 3 to form a current collector plate 3. From the outside, a cell was produced by sandwiching and fixing with a fixing plate 4 made of Teflon (see FIG. 1). This cell is immersed in 35 wt% sulfuric acid, charged to 1.2 V, and the voltage is maintained for one hour. Next, after changing the polarity of the electrode and charging it to 1.2 V and holding it for 1 hour, charging and discharging up to 0.8 V at a current density of 20 mA / cm 2 with respect to the projected area of the electrode was repeated to reduce the capacity per electrode volume. It was measured.

【0016】各電極の漏れ電流の測定は、0.8Vまで
125mAで定電流充電を行い、30分後の漏れ電流を
測定した。測定結果を表1に示す。
For the measurement of the leakage current of each electrode, constant current charging was performed at 125 mA up to 0.8 V, and the leakage current was measured after 30 minutes. Table 1 shows the measurement results.

【表1】 [Table 1]

【0017】表1に示すように、実施例1の加熱処理し
た後に電気化学的に酸化還元処理した電極では、電極体
積容量が向上し、漏れ電流は小さくなっている。これ
は、加熱処理で生成された、電気二重層コンデンサに不
必要な表面官能基が、電気化学的に酸化還元処理をする
ことにより、不活性な還元又は可逆的反応性基に変化さ
れるため、安定した性能が得られるのである。
As shown in Table 1, in the electrode subjected to the electrochemical oxidation-reduction treatment after the heat treatment in Example 1, the electrode volume capacity was improved and the leakage current was small. This is because the unnecessary surface functional groups of the electric double layer capacitor generated by the heat treatment are changed into inactive reducing or reversible reactive groups by performing the oxidation-reduction treatment electrochemically. , And stable performance can be obtained.

【0018】比較例2のように加熱処理だけでは、電極
体積容量は増大するが、漏れ電流は大きい。比較例3の
ように電気化学的に酸化還元処理だけでは、漏れ電流は
小さくなっているが、電極体積容量の顕著な増加は認め
られなかった。
When only the heat treatment is performed as in Comparative Example 2, the electrode volume capacity increases, but the leakage current is large. As in Comparative Example 3, when only the oxidation-reduction treatment was performed electrochemically, the leakage current was small, but no remarkable increase in the electrode volume capacity was not recognized.

【0019】なお、電極の製造方法として説明したが、
化学的酸化処理した電極を電気二重層コンデンサに組み
込んで、電気化学的に酸化還元処理を行うことも可能で
あり、同様な作用効果を奏することができる。
Although the method of manufacturing the electrode has been described,
It is also possible to electrochemically perform the oxidation-reduction treatment by incorporating the electrode that has been subjected to the chemical oxidation treatment into the electric double layer capacitor, and to achieve the same effect.

【0020】[0020]

【発明の効果】本発明によれば、電極体積容量は増大
し、漏れ電流を低減して、高い信頼性を得た電気二重層
コンデンサと電極の製造方法を提供することができる。
According to the present invention, it is possible to provide a method of manufacturing an electric double layer capacitor and an electrode which has increased electrode volume capacity, reduced leakage current, and obtained high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例の製造方法で作製した電極の特性の測
定方法の説明図。
FIG. 1 is an explanatory diagram of a method for measuring characteristics of an electrode manufactured by a manufacturing method according to an embodiment.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 電極 3 集電板 4 固定板 DESCRIPTION OF SYMBOLS 1 Separator 2 Electrode 3 Current collector 4 Fixing plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 PVDC樹脂炭化物を600〜950℃
で焼結させ、得られた焼結体を150〜300℃の温度
で加熱処理し、そして、電解質溶液中で電気化学的に酸
化還元処理することを特徴とする電気二重層コンデンサ
用電極の製造方法。
1. A PVDC resin carbide at 600 to 950 ° C.
Producing an electrode for an electric double layer capacitor, characterized by subjecting the obtained sintered body to a heat treatment at a temperature of 150 to 300 ° C. and an electrochemical redox treatment in an electrolyte solution. Method.
【請求項2】 PVDC樹脂炭化物からなる電極を具備
する電気二重層コンデンサの製造方法において、 150〜300℃の温度で加熱処理された電極を電気二
重層コンデンサとして組み込んで充電を行い、次に電極
の極性を変えて充電することを繰り返して、電気化学的
に酸化還元処理することを特徴とする電気二重層コンデ
ンサの製造方法。
2. A method for manufacturing an electric double layer capacitor having an electrode made of a PVDC resin carbide, comprising: charging an electrode heated at a temperature of 150 to 300 ° C. as an electric double layer capacitor; A method for manufacturing an electric double-layer capacitor, comprising repeating the charging while changing the polarity of the same to electrochemically perform an oxidation-reduction treatment.
JP9256975A 1997-09-22 1997-09-22 Manufacture of double layer capacitor and electrode Pending JPH1197309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9256975A JPH1197309A (en) 1997-09-22 1997-09-22 Manufacture of double layer capacitor and electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9256975A JPH1197309A (en) 1997-09-22 1997-09-22 Manufacture of double layer capacitor and electrode

Publications (1)

Publication Number Publication Date
JPH1197309A true JPH1197309A (en) 1999-04-09

Family

ID=17299984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9256975A Pending JPH1197309A (en) 1997-09-22 1997-09-22 Manufacture of double layer capacitor and electrode

Country Status (1)

Country Link
JP (1) JPH1197309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511302A (en) * 2006-11-30 2010-04-08 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Electrochemical capacitor having two carbon electrodes with different characteristics in an aqueous medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511302A (en) * 2006-11-30 2010-04-08 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Electrochemical capacitor having two carbon electrodes with different characteristics in an aqueous medium

Similar Documents

Publication Publication Date Title
KR100836524B1 (en) Active Material Having High Capacitance For An Electrode, Manufacturing Method thereof, Electrode And Energy Storage Apparatus Comprising The Same
JP2014530502A (en) High voltage electrochemical double layer capacitor
JP5246538B2 (en) All-solid battery, method for producing all-solid battery, and method for imparting electronic conductivity
KR100792853B1 (en) Carbonoxide composites having high capacity, manufacturing method thereof, electrode and energy storage apparatus comprising the same
JP4053955B2 (en) Manufacturing method of electric double layer capacitor
JPH1197309A (en) Manufacture of double layer capacitor and electrode
JP4039862B2 (en) Method for producing electrode material
JPH1197307A (en) Manufacture of electric double layer capacitor and electrode
JPWO2011046173A1 (en) Electrode active material and use thereof, and method for producing electrode active material
JPH1197310A (en) Manufacture of electrode of electric double layer capacitor
KR101936044B1 (en) Supercapacitor electrode for high temperature, manufactureing method of the electrode, and Supercapacitor for high temperature using the electrode
CN112825288A (en) Electrode of super capacitor, preparation method of electrode and super capacitor
KR101689479B1 (en) Active carbon for electrical-double-layer capacitor electrode and method for manufacturing the same
JPH1197311A (en) Double electric layer capacitor and electrode and manufacture therefor
JPH1187191A (en) Electric double layer capacitor
JPH1197314A (en) Double electric layer capacitor and electrode and manufacture therefor
JP2004311417A (en) Electrode and electrochemical cell using it
JPH1197316A (en) Double electric layer capacitor and electrode and manufacture therefor
KR102116279B1 (en) Manufacturing method of electrode active material for ultracapacitor, manufacturing method of ultracapacitor electrode and manufacturing method of ultracapacitor
JPH1197317A (en) Electric double layer capacitor, electrode and manufacturing method thereof
JPH10149957A (en) Manufacturing method of activated carbon for electrode of organic solvent-based electrical double layered capacitor
JPH11121288A (en) Electric double-layer capacitor
JPH1197295A (en) Electric double layer capacitor, its manufacture, electrode, and separator
JP2006100798A (en) Electrical double layer capacitor
JP2002075333A (en) Polymer secondary battery and method of manufacturing electrode for battery