JPH10172870A - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JPH10172870A
JPH10172870A JP8329408A JP32940896A JPH10172870A JP H10172870 A JPH10172870 A JP H10172870A JP 8329408 A JP8329408 A JP 8329408A JP 32940896 A JP32940896 A JP 32940896A JP H10172870 A JPH10172870 A JP H10172870A
Authority
JP
Japan
Prior art keywords
metal
electric double
double layer
layer capacitor
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8329408A
Other languages
Japanese (ja)
Inventor
Hisaji Matsui
久次 松井
Yoshio O
祥生 王
Takeo Matsui
丈雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8329408A priority Critical patent/JPH10172870A/en
Publication of JPH10172870A publication Critical patent/JPH10172870A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the resistivity of a polar electrode, charge-discharge electric capacitance and charging-discharging rate by using a carbon material contg. dispersed fine particles of a metal or metal compd. as an electrode material. SOLUTION: A polar electrode material has a structure of dispersed fine particles of a metal or metal compd. in a carbon material which may be any one of active carbon, active carbon fiber or carbon black in the macrostructure. The metal or metal compd. is at least one metal selected from elements attaching to groups IIa, IIIb, IVb, Vb, VIb, VIIb, VIII, Ib, IIb, and IIIa in the periodic table, or metal compd. such as oxide or carbide thereof. The metal or metal compd. content to carbon material is 0.1-40wt.% as a metal, N- adsorption BET specific surface area of the polar electrode material is about 500-3000m<2> /g, and mean pore diameter is about 10-40Å.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層原理を
利用した高性能の電気二重層コンデンサ及びその分極性
電極用材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance electric double-layer capacitor utilizing the electric double-layer principle and a material for a polarizable electrode thereof.

【0002】[0002]

【従来の技術】電気二重層コンデンサは、従来、半導体
のメモリのバックアップ電源やマイクロコンピュータや
ICメモリ等の電子装置予備電源やソーラ時計の電池や
モーター駆動用の電源などとして使用されており、近年
は電気自動車の電源やエネルギー変換・貯蔵システムの
補助貯電ユニットなどとしても検討されている。
2. Description of the Related Art Conventionally, electric double layer capacitors have been used as backup power supplies for semiconductor memories, backup power supplies for electronic devices such as microcomputers and IC memories, batteries for solar clocks, and power supplies for driving motors. Is also being studied as a power source for electric vehicles and as an auxiliary storage unit for energy conversion and storage systems.

【0003】従来、電気二重層コンデンサに使用する分
極性電極としては、次の2種類のものがあった。すなわ
ち、第1は、おが屑、椰子殻、ピッチなどを賦活処理し
て得られる粉末状活性炭を、適当なバインダーと一緒に
プレス成形または圧延ロールして分極性電極としたもの
である。第2は、フェノール系、レーヨン系、アクリル
系、ピッチ系などの繊維を、不融化及び炭化賦活処理し
て活性炭または活性炭素繊維とし、これをフェルト状、
繊維状、紙状または焼結体状などの分極性電極としたも
のである。
Conventionally, the following two types of polarizable electrodes have been used for electric double layer capacitors. That is, first, a powdered activated carbon obtained by activating sawdust, coconut shell, pitch, or the like is pressed or rolled with an appropriate binder to form a polarizable electrode. Second, phenol-based, rayon-based, acrylic-based, and pitch-based fibers are infusibilized and activated by carbonization to form activated carbon or activated carbon fibers.
It is a polarizable electrode such as a fibrous, paper-like or sintered body.

【0004】活性炭、活性炭素繊維、カーボンブラック
などのカーボン材を成形した分極性電極を使用した電気
二重層コンデンサの電気容量は、基本的にカーボン材の
表面特性と窒素吸着BET比表面積に依存すると言われ
ている。カーボン材の比表面積を増やすことは、単位重
量あたりの電気容量を増加するための有効な手法と考え
られるが、比表面積の増加には限界がある。また、比表
面積を増やせば増やすほど細孔径が小さくなり、特に有
機溶媒系の電解液を使用する場合、細孔径より直径が大
きい電解質イオンが細孔内に入ることができないため、
結局一部分の面積が利用されなくなる。一方、カーボン
材の表面特性と電気容量の関係はまだ明らかにされてな
く、また、表面特性を制御することは極めて困難であ
る。
The electric capacity of an electric double layer capacitor using a polarizable electrode formed of a carbon material such as activated carbon, activated carbon fiber or carbon black basically depends on the surface characteristics of the carbon material and the nitrogen adsorption BET specific surface area. It is said. Increasing the specific surface area of the carbon material is considered to be an effective method for increasing the electric capacity per unit weight, but there is a limit in increasing the specific surface area. Also, the pore diameter becomes smaller as the specific surface area is increased, especially when an organic solvent-based electrolyte is used, because electrolyte ions having a diameter larger than the pore diameter cannot enter the pores,
Eventually, a part of the area is not used. On the other hand, the relationship between the surface characteristics and the electric capacity of the carbon material has not been clarified yet, and it is extremely difficult to control the surface characteristics.

【0005】電気二重層コンデンサのもう一つの重要な
特性は内部抵抗である。一般的に、カーボン材は固有抵
抗および細孔内のイオン拡散インピーダンスが大きいた
め、カーボン材を分極性電極とするコンデンサの内部抵
抗は、他の金属を使用したキャパシタより劣るという問
題点がある。カーボン系電気二重層コンデンサの内部抵
抗を低減するための検討例が特開平3−104206号
公報、特開平2−277206号公報に記載されてい
る。
[0005] Another important characteristic of electric double layer capacitors is the internal resistance. Generally, since a carbon material has a large specific resistance and a large ion diffusion impedance in a pore, there is a problem that the internal resistance of a capacitor using a carbon material as a polarizable electrode is inferior to a capacitor using another metal. Examination examples for reducing the internal resistance of a carbon-based electric double layer capacitor are described in JP-A-3-104206 and JP-A-2-277206.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来の活性
炭や活性炭素繊維などのカーボン材を分極性電極用材料
とする電気二重層コンデンサにおいて、電極の電気容
量、内部抵抗、充放電速度などの性能を改善し、より高
い電気容量、低い内部抵抗、高速充放電特性を有する新
規分極性電極を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a conventional electric double layer capacitor using a carbon material such as activated carbon or activated carbon fiber as a material for a polarizable electrode. It is an object of the present invention to provide a novel polarizable electrode having improved electric capacity, higher electric capacity, lower internal resistance, and high-speed charge / discharge characteristics.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記の目
的に鑑み鋭意検討の結果、電気二重層コンデンサの分極
性電極用材料として、活性炭や活性炭素繊維などのカー
ボン材に金属または金属化合物の微粒子を分散させたも
のを使用することにより、従来の単なるカーボン材を分
極性電極用材料とするコンデンサに比べて、充放電電気
容量、内部抵抗、充放電速度、電気効率がともに優れた
電気二重層コンデンサが得られることを見出した。この
ような金属または金属化合物の微粒子を分散させた電気
二重層コンデンサは、従来の半導体のメモリのバックア
ップ用の電源やマイクロコンピュータやICメモリなど
の電子装置の電源だけでなく、最近急速に発展してきた
電気自動車や天然ガス自動車や電気エネルギー貯蔵シス
テムの補助ユニットとしてもそのメリットを発揮するこ
とができる。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in view of the above-mentioned object, and as a result, as a material for a polarizable electrode of an electric double layer capacitor, a metal such as activated carbon or activated carbon fiber has been used. By using a compound in which compound fine particles are dispersed, the charge / discharge electric capacity, internal resistance, charge / discharge speed, and electric efficiency are all superior to a conventional capacitor that uses a simple carbon material as a polarizable electrode material. It has been found that an electric double layer capacitor can be obtained. Such electric double-layer capacitors in which fine particles of a metal or a metal compound are dispersed have been rapidly developed in recent years as well as conventional power supplies for backing up semiconductor memories and power supplies for electronic devices such as microcomputers and IC memories. It can also exert its advantages as an auxiliary unit for electric vehicles, natural gas vehicles and electric energy storage systems.

【0008】本発明は、カーボン材(例えば、活性炭、
活性炭素繊維、カーボンブラック)中に金属または金属
化合物(元素周期表のIIa、IIIb、IVb、V
b、VIb、VIIb、VIII、Ib、IIb及びI
IIa族の元素から選ばれる1種類または2種類以上の
金属またはその酸化物若しくは炭化物)の微粒子が分散
した組織を有する電気二重層コンデンサの分極性電極用
材料に係る。
The present invention relates to a carbon material (for example, activated carbon,
Metal or metal compound (IIa, IIIb, IVb, V in the periodic table of elements) in activated carbon fiber or carbon black
b, VIb, VIIb, VIII, Ib, IIb and I
The present invention relates to a material for a polarizable electrode of an electric double layer capacitor having a structure in which fine particles of one or more metals selected from Group IIa elements or oxides or carbides thereof are dispersed.

【0009】本発明は、電極用材料からなる分極性電
極、多孔性セパレータ及び電解液を構成材料とする電気
二重層コンデンサに係る。
The present invention relates to a polarizable electrode comprising a material for an electrode, a porous separator, and an electric double layer capacitor comprising an electrolytic solution as a constituent material.

【0010】[0010]

【発明の実施の形態】分極性電極用材料 分極性電極用材料に使用するカーボン材のマクロ形態は
活性炭、活性炭素繊維、カーボンブラックのいずれのも
のであってもよい。金属または金属化合物としては、元
素周期表のIIa族のBe、Mg、Ca、Sr、Ba;
IIIb族のSc、Y;IV族のTi、Zr、Hf;V
b族のV、Nb、Ta;VIb族のCr、Mo、W;V
IIb族のMn、Tc、Re;VIII族のFe、C
o、Ni、Ru、Rh、Pd、Os、Ir、Pt;Ib
族のCu、Ag、Au;IIb族のZn、Cd、Hg;
IIIa族のB、Al、Ga、In、Tl等から選ばれ
る1種類または2種類以上の金属(0価)またはその金
属の酸化物、炭化物などの金属化合物を使用することが
できる。
BEST MODE FOR CARRYING OUT THE INVENTION Material for Polarizable Electrode The macro form of the carbon material used for the material for the polarizable electrode may be any one of activated carbon, activated carbon fiber and carbon black. Examples of the metal or metal compound include Be, Mg, Ca, Sr, and Ba in Group IIa of the periodic table.
Group IIIb Sc, Y; Group IV Ti, Zr, Hf; V
V, Nb, Ta of group b; Cr, Mo, W; V of group VIb
Group IIb Mn, Tc, Re; Group VIII Fe, C
o, Ni, Ru, Rh, Pd, Os, Ir, Pt; Ib
Group Cu, Ag, Au; Group IIb Zn, Cd, Hg;
One or more metals (zero valence) selected from group IIIa B, Al, Ga, In, Tl and the like, or metal compounds such as oxides and carbides of the metals can be used.

【0011】好ましい実施の形態では、カーボン材に対
する金属または金属化合物の含有量を金属として0.1
〜40wt%、好ましくは0.5〜10wt%の範囲内
とし、分極性電極用材料の窒素吸着BET比表面積は5
00〜3000m2/g程度、通常は700〜1600
2/gであり、平均細孔径は10〜40オングストロ
ーム程度である。
In a preferred embodiment, the content of the metal or metal compound relative to the carbon material is 0.1% as the metal.
And the nitrogen-adsorbed BET specific surface area of the polarizable electrode material is 5 to 40 wt%, preferably 0.5 to 10 wt%.
About 00-3000 m 2 / g, usually 700-1600
m 2 / g, and the average pore diameter is about 10 to 40 Å.

【0012】分極性電極材料の製造 電気二重層コンデンサの分極性電極は、例えば、以下の
二つの方法により、製造することができる。
Production of Polarizable Electrode Material The polarizable electrode of the electric double layer capacitor can be produced, for example, by the following two methods.

【0013】第1の方法は、カーボン材の前躯体である
ピッチ系、フェノール系、レーヨン系、アクリル系、合
成ナフタレンピッチ系などの有機材料に、金属または金
属化合物の微粒子の前躯体である有機金属錯体や無機金
属化合物などの金属化合物を前もって適当な方法により
分散させて、さらに紡糸、不融化、炭化、賦活などの通
常の炭素繊維または活性炭などのカーボン材の製造プロ
セスを経て、最終的に金属または金属化合物の微粒子を
含有するカーボン材を得る方法である。
The first method is to use an organic material such as a pitch-based, phenol-based, rayon-based, acrylic-based, synthetic naphthalene-pitch-based organic material which is a precursor of fine particles of a metal or a metal compound. A metal compound such as a metal complex or an inorganic metal compound is dispersed in advance by an appropriate method, and further subjected to a normal carbon fiber production process such as spinning, infusibilization, carbonization, and activation, or a carbon material production process such as activated carbon. This is a method for obtaining a carbon material containing fine particles of a metal or a metal compound.

【0014】例えば、キノリンと酢酸の混合溶媒に酢酸
銀を溶解させた溶液に等方性コールタールピッチを溶か
し、均一に混ぜた後、溶媒を減圧蒸留により除去し、さ
らに紡糸し、空気中250〜400℃で不融化し、水蒸
気中700〜900℃で熱処理することによって、金属
銀と酸化銀の微粒子が分散した等方性活性炭素繊維を製
造することができる。
For example, isotropic coal tar pitch is dissolved in a solution obtained by dissolving silver acetate in a mixed solvent of quinoline and acetic acid, mixed uniformly, and then the solvent is removed by distillation under reduced pressure. By infusing at -400 ° C and heat-treating in steam at 700-900 ° C, an isotropic activated carbon fiber in which fine particles of metallic silver and silver oxide are dispersed can be produced.

【0015】第2の方法は、活性炭、活性炭素繊維、カ
ーボンブラックなどのカーボン材の前躯体であるピッチ
系、フェノール系、レーヨン系、アクリル系、合成ナフ
タレンピッチ系などの有機材料を金属パウダーと混合
し、加圧して各粉末粒子を微細化しつつ複合させること
により、金属微粒子が分散したカーボン材の前躯体が得
られる。得られた金属微粒子が分散したカーボン材の前
躯体を、さらに紡糸、不融化、炭化、賦活などの通常の
炭素繊維または活性炭などのカーボン材の製造プロセス
を経て、最終的に金属または金属化合物の微粒子を含有
するカーボン材を得る方法である。
In the second method, an organic material such as a pitch-based, phenol-based, rayon-based, acrylic-based, or synthetic naphthalene pitch-based material, which is a precursor of a carbon material such as activated carbon, activated carbon fiber, and carbon black, is mixed with a metal powder. By mixing and pressurizing the powder particles to form a composite while miniaturizing the powder particles, a precursor of a carbon material in which metal fine particles are dispersed can be obtained. The precursor of the carbon material in which the obtained metal fine particles are dispersed is further spun, infusibilized, carbonized, passed through a normal carbon fiber or activated carbon manufacturing process such as activation, and finally a metal or metal compound. This is a method for obtaining a carbon material containing fine particles.

【0016】例えば、等方性コールタールピッチと銀の
パウダーとから機械的合金化処理により、銀微粒子を含
有するコールタールピッチを得、これをさらに紡糸し、
空気中250〜400℃で不融化し、水蒸気中700〜
900℃で熱処理することによって、金属銀と酸化銀が
分散した等方性活性炭素繊維を製造することができる。
機械的合金化処理においては、一定量の試料を振動ボー
ルが入っている金属容器に仕込み、真空中又はアルゴン
ガス等の不活性ガス雰囲気中において低温下で高エネル
ギーボールミルを振動することにより、各粒子が加工さ
れ、新生面を露出し、この新生面同士が鍛接され、合体
するようになって、このことが繰り返され、衝突・圧縮
衝撃力により微細化と均質化が一層進行する。
For example, a coal tar pitch containing fine silver particles is obtained by mechanical alloying from an isotropic coal tar pitch and silver powder, and this is further spun.
Infusible at 250-400 ° C in air, 700-400 in steam
By performing the heat treatment at 900 ° C., an isotropic activated carbon fiber in which silver metal and silver oxide are dispersed can be produced.
In the mechanical alloying process, a fixed amount of a sample is charged into a metal container containing a vibrating ball, and a high-energy ball mill is vibrated at a low temperature in a vacuum or in an inert gas atmosphere such as an argon gas, thereby obtaining a sample. particles are processed to expose the fresh surface, the newly formed surfaces are forge welding, so as to coalesce, this is repeated, collision and compression
Fineness and homogenization are further promoted by the impact force.

【0017】分極性電極 本発明の電極用材料を、適当なバインダーと一緒にプレ
ス成形または圧延ロールすることにより電気二重層コン
デンサの分極性電極を製造することができる。バインダ
ーとしては、ポリテトラフルオロエチレン等を使用する
ことができる。
Polarizable Electrode The polarizable electrode of the electric double layer capacitor can be manufactured by pressing or rolling the electrode material of the present invention together with a suitable binder. As the binder, polytetrafluoroethylene or the like can be used.

【0018】電気二重層コンデンサ 本発明の電極用材料を使用して製造した分極性電極を構
成材料として、多孔性セパレータ及び電解液と組み合わ
せることにより、電気二重層コンデンサを製造すること
ができる。電解液及び多孔性セパレータとしては、一般
に電気二重層コンデンサにおいて使用されているものを
使用することができる。
Electric Double Layer Capacitor An electric double layer capacitor can be produced by combining a polarizable electrode produced using the electrode material of the present invention with a porous separator and an electrolytic solution. As the electrolyte and the porous separator, those generally used in electric double layer capacitors can be used.

【0019】[0019]

【実施例】以下に本発明の実施例と比較例を示し、本発
明の特徴とするところをより一層明確にする。
EXAMPLES Examples of the present invention and comparative examples are shown below to further clarify the features of the present invention.

【0020】〔分極性電極用材料の調製〕実施例1 軟化点280℃のコールタールピッチ(100重量部)
を、キノリンと酢酸の混合溶媒(重量比1:1)に酢酸
銀(1.55重量部)を溶解させた溶液(301.55
重量部)に溶かし、室温で3時間撹拌した。その後、減
圧蒸留によりキノリンと酢酸を除去し、酢酸銀が分散し
たコールタールピッチを得た。得られた酢酸銀が分散し
たコールタールピッチを、軟化点以上の温度で紡糸し、
300℃で3時間空気を吹きながら不融化処理し、80
0℃で6時間水蒸気処理を行って、銀と酸化銀の微粒子
が分散した等方性活性炭素繊維を得た。
[Preparation of Polarizable Electrode Material] Example 1 Coal tar pitch having a softening point of 280 ° C. (100 parts by weight)
Was prepared by dissolving silver acetate (1.55 parts by weight) in a mixed solvent of quinoline and acetic acid (weight ratio: 1: 1) (301.55).
Parts by weight) and stirred at room temperature for 3 hours. Thereafter, quinoline and acetic acid were removed by distillation under reduced pressure to obtain a coal tar pitch in which silver acetate was dispersed. Coal tar pitch in which the obtained silver acetate is dispersed, is spun at a temperature equal to or higher than the softening point,
Infusibilize while blowing air at 300 ° C for 3 hours.
Steam treatment was performed at 0 ° C. for 6 hours to obtain isotropic activated carbon fibers in which fine particles of silver and silver oxide were dispersed.

【0021】得られた銀と酸化銀の微粒子が分散した等
方性活性炭素繊維の金属含有量、比表面積(m2/g)
および平均細孔径(オングストローム)の分析結果を表
1に示す。島津製作所製ASAP−2000を用いて窒
素吸着実験を行ない、比表面積及び細孔分布を求めた。
比表面積はBET式で求めた。
The metal content and specific surface area (m 2 / g) of the obtained isotropic activated carbon fibers in which fine particles of silver and silver oxide are dispersed.
Table 1 shows the analysis results of the average pore size (angstrom). A nitrogen adsorption experiment was performed using ASAP-2000 manufactured by Shimadzu Corporation to determine the specific surface area and pore distribution.
The specific surface area was determined by the BET equation.

【0022】実施例2 軟化点280℃のコールタールピッチ(100重量部)
を、キノリンと酢酸の混合溶媒に酢酸マンガン四水和物
(4.46重量部)を溶解させた溶液(304.46重
量部)に溶かし、室温で3時間撹拌した。その後、減圧
蒸留によりキノリンと酢酸を除去し、酢酸マンガンが分
散したコールタールピッチを得た。得られた酢酸マンガ
ンが分散したコールタールピッチに、実施例1と同様に
紡糸、不融化及び水蒸気処理を施し、マンガンと酸化マ
ンガンの微粒子が分散した等方性活性炭素繊維を得た。
得られたマンガンと酸化マンガンの微粒子が分散した等
方性活性炭素繊維の金属含有量、比表面積(m2/g)
および平均細孔径(オングストローム)の分析結果を表
1に示す。
Example 2 Coal tar pitch having a softening point of 280 ° C. (100 parts by weight)
Was dissolved in a solution (304.46 parts by weight) of manganese acetate tetrahydrate (4.46 parts by weight) dissolved in a mixed solvent of quinoline and acetic acid, and the mixture was stirred at room temperature for 3 hours. Thereafter, quinoline and acetic acid were removed by distillation under reduced pressure to obtain a coal tar pitch in which manganese acetate was dispersed. The obtained coal tar pitch in which manganese acetate was dispersed was subjected to spinning, infusibilization and steam treatment in the same manner as in Example 1 to obtain an isotropic activated carbon fiber in which fine particles of manganese and manganese oxide were dispersed.
Metal content and specific surface area (m 2 / g) of the obtained isotropic activated carbon fiber in which fine particles of manganese and manganese oxide are dispersed.
Table 1 shows the analysis results of the average pore size (angstrom).

【0023】実施例3 軟化点280℃のコールタールピッチ(100重量部)
と一定量(1.1重量部)の鉄粉(粒子径10〜20m
esh)を混在させた後、振動ボールミルによって、ア
ルゴンガス雰囲気中、液体窒素温度で12時間、いわゆ
る機械的合金化処理を行った。得られた鉄微粒子を含有
するコールタールピッチに実施例1と同様に、紡糸、不
融化及び水蒸気処理を施し、鉄と酸化鉄及び炭化鉄の微
粒子が分散した等方性活性炭素繊維を得た。得られた鉄
と酸化鉄及び炭化鉄の微粒子が分散した等方性活性炭素
繊維の金属含有量、比表面積(m2/g)および平均細
孔径(オングストローム)の分析結果を表1に示す。
Example 3 Coal tar pitch having a softening point of 280 ° C. (100 parts by weight)
And a certain amount (1.1 parts by weight) of iron powder (particle diameter 10 to 20 m)
After mixing (sh), a so-called mechanical alloying treatment was performed in an argon gas atmosphere at a liquid nitrogen temperature for 12 hours by a vibration ball mill. The obtained coal tar pitch containing iron fine particles was subjected to spinning, infusibilization, and steam treatment in the same manner as in Example 1 to obtain an isotropic activated carbon fiber in which fine particles of iron, iron oxide, and iron carbide were dispersed. . Table 1 shows the results of analysis of the metal content, specific surface area (m 2 / g), and average pore size (angstrom) of the obtained isotropic activated carbon fiber in which the fine particles of iron, iron oxide, and iron carbide are dispersed.

【0024】実施例4 軟化点280℃のコールタールピッチ(100重量部)
を、キノリンと酢酸の混合溶媒(重量比1:1)に酢酸
銀(1.55重量部)を溶解させた溶液(301.55
重量部)に溶かし、室温で3時間撹拌した。その後、減
圧蒸留によりキノリンと酢酸を除去し、酢酸銀が分散し
たコールタールピッチを得た。得られた酢酸銀が分散し
たコールタールピッチを平均粒子径60meshの粉末
に粉砕し、300℃で3時間空気を吹きながら不融化処
理を行った後、800℃で6時間水蒸気処理を行って、
銀と酸化銀の微粒子が分散した活性炭を得た。得られた
銀と酸化銀の微粒子が分散した等方性活性炭素繊維の金
属含有量、比表面積(m2/g)および平均細孔径(オ
ングストローム)の分析結果を表1に示す。
Example 4 Coal tar pitch having a softening point of 280 ° C. (100 parts by weight)
Was prepared by dissolving silver acetate (1.55 parts by weight) in a mixed solvent of quinoline and acetic acid (weight ratio: 1: 1) (301.55).
Parts by weight) and stirred at room temperature for 3 hours. Thereafter, quinoline and acetic acid were removed by distillation under reduced pressure to obtain a coal tar pitch in which silver acetate was dispersed. The obtained coal acetate pitch in which silver acetate is dispersed is pulverized into a powder having an average particle size of 60 mesh, subjected to infusibilization while blowing air at 300 ° C. for 3 hours, and then subjected to steam treatment at 800 ° C. for 6 hours.
Activated carbon in which silver and silver oxide fine particles were dispersed was obtained. Table 1 shows the results of analysis of the metal content, specific surface area (m 2 / g), and average pore diameter (angstrom) of the obtained isotropic activated carbon fibers in which the fine particles of silver and silver oxide are dispersed.

【0025】比較例1 軟化点280℃のコールタールピッチをそのまま軟化点
以上の温度で紡糸し、300℃で3時間空気を吹きなが
ら不融化処理を行った後、800℃で6時間水蒸気処理
を行って、等方性活性炭素繊維を得た。得られた等方性
活性炭素繊維の比表面積(m2/g)および平均細孔径
(オングストローム)の分析結果を表1に示す。
Comparative Example 1 A coal tar pitch having a softening point of 280 ° C. was spun as it was at a temperature equal to or higher than the softening point, subjected to an infusibilization treatment while blowing air at 300 ° C. for 3 hours, and then subjected to a steam treatment at 800 ° C. for 6 hours. As a result, an isotropic activated carbon fiber was obtained. Table 1 shows the analysis results of the specific surface area (m 2 / g) and the average pore diameter (angstrom) of the obtained isotropic activated carbon fiber.

【0026】比較例2 軟化点280℃のコールタールピッチを平均粒子径60
meshの粉末に粉砕し、300℃で3時間空気を吹き
ながら不融化処理を行った後、800℃で6時間水蒸気
処理を行って、活性炭を得た。得られた活性炭の比表面
積(m2/g)および平均細孔径(オングストローム)
の分析結果を表1に示す。
Comparative Example 2 A coal tar pitch having a softening point of 280 ° C. was treated with an average particle diameter of 60.
The powder was pulverized into a mesh powder, subjected to infusibility treatment while blowing air at 300 ° C. for 3 hours, and then subjected to steam treatment at 800 ° C. for 6 hours to obtain activated carbon. Specific surface area (m 2 / g) and average pore size (angstrom) of the obtained activated carbon
Table 1 shows the analysis results.

【0027】[0027]

【表1】 [Table 1]

【0028】〔抵抗率の測定〕実施例及び比較例で調製
したカーボン材(電極用材料)を使用した分極性電極の
抵抗率を以下の手順により測定した。結果を表2に示
す。
[Measurement of Resistivity] The resistivity of a polarizable electrode using the carbon material (electrode material) prepared in Examples and Comparative Examples was measured by the following procedure. Table 2 shows the results.

【0029】(1)電極の製造 各実施例および比較例で調製した試料(電極用材料)に
5wt%のポリテトラフルオロエチレン(PTFE)パ
ウダーを添加し、乳鉢中で十分に混合した。これら混合
粉末を錠剤成形器を用いて、成形圧7500kg/cm
2の条件下で厚み0.3〜0.5mm程度の試験片に成
形した。成形された試験片(13mmφ×0.3〜0.
5mm)を短冊状(約1mm巾×12mm長)に加工し
た。試験片支持台上に加工した試験片を固定し、金線
(0.08mmφ)を銀ペーストで端子付けした。端子
は、直線4端子法に従って接続した。このとき、電圧測
定端子間距離を10μm単位まで精密に測定した。端子
付けされた金線を試験片支持台の4端子に銀ペーストで
接続した。
(1) Production of Electrode To each sample (electrode material) prepared in each of the examples and comparative examples, 5 wt% of polytetrafluoroethylene (PTFE) powder was added and mixed well in a mortar. These mixed powders were molded using a tablet molding machine at a molding pressure of 7500 kg / cm.
Under the conditions of 2 , a test piece having a thickness of about 0.3 to 0.5 mm was formed. Molded test piece (13 mmφ × 0.3-0.
5 mm) was processed into a strip shape (approximately 1 mm width × 12 mm length). The processed test piece was fixed on the test piece support, and a gold wire (0.08 mmφ) was attached to the terminal with a silver paste. The terminals were connected according to a straight-line four-terminal method. At this time, the distance between the voltage measurement terminals was precisely measured to the order of 10 μm. The gold wires with the terminals were connected to the four terminals of the test piece support with silver paste.

【0030】(2)電気抵抗の測定 電気抵抗の測定にはHEWLETT PACKARD社製デジタルマル
チメーター3478Aを用いた。電気抵抗率の測定方法
には接触抵抗の影響のでない直線4端子法を用いた。電
気抵抗率の算出は次式に従った。
(2) Measurement of Electric Resistance The electric resistance was measured using a digital multimeter 3478A manufactured by HEWLETT PACKARD. A linear four-terminal method not affected by contact resistance was used for measuring the electrical resistivity. The calculation of the electrical resistivity was in accordance with the following equation.

【0031】ρ=R・(W・T/L) ρは電気抵抗率(Ωcm)を、Rは抵抗(Ω)を、Wは
試験片幅(cm)を、Tは試験片厚(cm)を及びLは
電圧測定端子間距離(cm)を表わす。
Ρ = R · (W · T / L) where ρ is the electrical resistivity (Ωcm), R is the resistance (Ω), W is the specimen width (cm), and T is the specimen thickness (cm). And L represent the distance (cm) between the voltage measurement terminals.

【0032】[0032]

【表2】 [Table 2]

【0033】〔コンデンサ特性の評価〕実施例および比
較例で調製したカーボン材(電極用材料)を使用した分
極性電極によるコンデンサの特性(充放電特性、電気容
量など)を以下に示す方法で評価した。結果を表3に示
す。また、実施例1〜3及び比較例1で調製した電極用
材料についての低電圧下での充放電サイクル試験におけ
る放電曲線を図1に示す。
[Evaluation of Capacitor Characteristics] The characteristics of capacitors (charge / discharge characteristics, electric capacity, etc.) of polarizable electrodes using the carbon materials (electrode materials) prepared in Examples and Comparative Examples were evaluated by the following methods. did. Table 3 shows the results. FIG. 1 shows the discharge curves of the electrode materials prepared in Examples 1 to 3 and Comparative Example 1 in a charge / discharge cycle test under a low voltage.

【0034】(1)コンデンサ(電気化学セル)の組立 充放電測定用の電気化学セルは、パイレックスガラス製
のバイトンOリングでシールされたセパラブルフラスコ
を使用して組み立てた。セパラブルフラスコの蓋には試
料極用に2個、予備電解Pt電極用に2個、参照電極用
に1個、バブリングガス導入用に1個、バブリング排出
用に1個の計7個の口が設けられている。
(1) Assembly of Capacitor (Electrochemical Cell) An electrochemical cell for charge / discharge measurement was assembled using a separable flask sealed with a Viton O-ring made of Pyrex glass. The lid of the separable flask has a total of seven ports, two for the sample electrode, two for the pre-electrolysis Pt electrode, one for the reference electrode, one for the introduction of bubbling gas, and one for the bubbling discharge. Is provided.

【0035】電解液には、0.5mol/Lのテトラフ
ルオルホウ酸テトラ−n−ブチルアンモニウム(Bu4
NBF4)とプロピレンカーボネート(C463)溶媒
の溶液を使用した。
The electrolytic solution contained 0.5 mol / L of tetra-n-butylammonium tetrafluoroborate (Bu 4
A solution of NBF 4 ) and propylene carbonate (C 4 H 6 O 3 ) solvent was used.

【0036】評価用の電極は、実施例または比較例で調
製したカーボン材(電極用材料)をプロピレンカーボネ
ートで洗浄して、乾燥したものを抵抗率測定の場合と同
様の手順で成形することによって製造した。電極は、使
用直前にさらに100℃で24h減圧乾燥した。この電
極を精秤した後、アルゴンガスで置換したグロープバッ
グ中で、電解液の調製(0.5mol/L−Bu4NB
4/PC)およびセルの組み立てを行なった。
The electrode for evaluation was prepared by washing the carbon material (electrode material) prepared in the examples or comparative examples with propylene carbonate, and drying and molding the same in the same procedure as in the measurement of resistivity. Manufactured. The electrode was further dried under reduced pressure at 100 ° C. for 24 hours immediately before use. After precisely weighing this electrode, an electrolyte solution was prepared (0.5 mol / L-Bu 4 NB) in a glove bag replaced with argon gas.
F 4 / PC) and the cell were assembled.

【0037】(2)充電電気量の測定 密封したセルをグローブバッグより取り出し、真空ポン
プで内部を減圧して、気泡の発生がなくなるまで電極の
脱気を行なった。その後、内部をアルゴンガスで満た
し、少量のアルゴンガスでバブリングしながら、1対の
Pt電極の間に2.5〜3Vの電圧を印加して予備電解
した。予備電解により液中の不純物が完全に除かれた段
階で、充放電測定を実施した。充放電測定は、3.0V
の定電圧で行った。充放電曲線から以下の計算式に従っ
てパソコンに取り込んでいるソフトによって自動的に単
位重量電極用材料当たりの充電電気量、放電電気量、電
気量効率などを算出した。
(2) Measurement of Charged Electricity The sealed cell was taken out of the glove bag, the inside of the cell was depressurized by a vacuum pump, and the electrode was degassed until no bubbles were generated. Thereafter, a voltage of 2.5 to 3 V was applied between a pair of Pt electrodes to perform preliminary electrolysis while filling the inside with argon gas and bubbling with a small amount of argon gas. At the stage where impurities in the liquid were completely removed by the preliminary electrolysis, charge / discharge measurement was performed. Charge / discharge measurement is 3.0V
At a constant voltage. From the charge / discharge curve, the amount of charge electricity, the amount of discharge electricity, the efficiency of electricity, etc. per unit weight electrode material were automatically calculated by the software loaded in the personal computer according to the following formula.

【0038】電気量〔Ah/g〕=Σ(経過時間〔h〕
×測定電流〔A〕)/サンプル重量〔g〕 電気量効率〔%〕=(放電電気量の総和/充電電気量の
総和)×100 放電電気容量などは、北斗電工(株)製のHJ−101
SM6充放電装置及びHJ−SM6ソフトウェアー(V
ersion4.00)を使用して定電圧法により評価
した。
Electricity [Ah / g] = Σ (Elapsed time [h]
× measured current [A]) / sample weight [g] Electricity efficiency [%] = (total of electric discharge amount / total of electric charge amount) × 100 The discharge electric capacity and the like are HJ- manufactured by Hokuto Denko Co., Ltd. 101
SM6 charge / discharge device and HJ-SM6 software (V
evaluation 4.00) using the constant voltage method.

【0039】[0039]

【表3】 [Table 3]

【0040】a)比較例1に対する増加率 b)比較例2に対する増加率A) Increase rate with respect to Comparative Example 1 b) Increase rate with respect to Comparative Example 2

【0041】[0041]

【発明の効果】本発明によれば、電極用材料として従来
の活性炭、活性炭素繊維などの代替材料として、金属ま
たは金属化合物の微粒子が分散したカーボン材を使用す
ることによって、分極性電極の固有抵抗、充放電電気容
量及び充放電速度をともに大幅に改善することができる
ので、高性能の電気二重層コンデンサを提供することが
できる。
According to the present invention, the use of a carbon material in which fine particles of a metal or a metal compound are dispersed as an alternative material for a conventional activated carbon or activated carbon fiber as a material for an electrode makes it possible to provide a unique polarizable electrode. Since the resistance, the charge / discharge electric capacity, and the charge / discharge speed can all be greatly improved, a high-performance electric double layer capacitor can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、実施例1〜3と比較例1のカーボン材
(電極用材料)を用いた試料(電極)の充放電サイクル
試験における典型的な放電曲線を示すグラフである。
FIG. 1 is a graph showing a typical discharge curve in a charge / discharge cycle test of a sample (electrode) using the carbon material (electrode material) of Examples 1 to 3 and Comparative Example 1.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 カーボン材中に金属または金属化合物の
微粒子が分散した組織を有する電気二重層コンデンサの
分極性電極用材料。
1. A material for a polarizable electrode of an electric double layer capacitor having a structure in which fine particles of a metal or a metal compound are dispersed in a carbon material.
【請求項2】 カーボン材に対する金属の含有量が0.
1〜40wt%の範囲内にある請求項1に記載の電気二
重層コンデンサの分極性電極材料。
2. The metal content of the carbon material is 0.1.
The polarizable electrode material for an electric double layer capacitor according to claim 1, wherein the content is in the range of 1 to 40 wt%.
【請求項3】 カーボン材が 活性炭、活性炭素繊維ま
たはカーボンブラックである請求項1または2に記載の
電気二重層コンデンサの分極性電極用材料。
3. The polarizable electrode material for an electric double layer capacitor according to claim 1, wherein the carbon material is activated carbon, activated carbon fiber or carbon black.
【請求項4】 金属または金属化合物が、元素周期表の
IIa、IIIb、IVb、Vb、VIb、VIIb、
VIII、Ib、IIb及びIIIa族の元素から選ば
れる1種類または2種類以上の金属またはその酸化物若
しくは炭化物である請求項1〜3のいずれかに記載の電
気二重層コンデンサの分極性電極用材料。
4. The method according to claim 1, wherein the metal or metal compound is represented by IIa, IIIb, IVb, Vb, VIb, VIIb,
The material for a polarizable electrode of an electric double layer capacitor according to any one of claims 1 to 3, wherein the material is one or two or more metals selected from the group VIII, Ib, IIb, and IIIa elements, or an oxide or carbide thereof. .
【請求項5】 請求項1〜4のいずれかに記載の電極用
材料からなる分極性電極、多孔性セパレータ及び電解液
を構成材料とする電気二重層コンデンサ。
5. An electric double layer capacitor comprising a polarizable electrode, a porous separator and an electrolytic solution comprising the electrode material according to claim 1.
JP8329408A 1996-12-10 1996-12-10 Electric double layer capacitor Pending JPH10172870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8329408A JPH10172870A (en) 1996-12-10 1996-12-10 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8329408A JPH10172870A (en) 1996-12-10 1996-12-10 Electric double layer capacitor

Publications (1)

Publication Number Publication Date
JPH10172870A true JPH10172870A (en) 1998-06-26

Family

ID=18221092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8329408A Pending JPH10172870A (en) 1996-12-10 1996-12-10 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPH10172870A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011688A1 (en) * 1998-08-25 2000-03-02 Kanebo, Limited Electrode material and method for producing the same
WO2001013390A1 (en) * 1999-08-10 2001-02-22 Honda Giken Kogyo Kabushiki Kaisha Method for producing activated carbon for electrode of electric double-layer capacitor
WO2001056924A1 (en) * 2000-01-31 2001-08-09 Kawasaki Steel Corporation Method for preparing porous carbon material, porous carbon material and electrical double layer capacitor using the same
WO2001093289A1 (en) * 2000-05-31 2001-12-06 Kanebo, Limited Electrode material and capacitor
JP2003224038A (en) * 2002-01-30 2003-08-08 Tokai Senko Kk Electrode material for electric double layer capacitor
JP2005138204A (en) * 2003-11-05 2005-06-02 Kaken:Kk Ultrafine particle carrying carbon material, its manufacturing method, and carrying processor
WO2005076296A1 (en) * 2004-02-05 2005-08-18 Companhia Brasileira De Metalurgia E Mineracao Electrochemical device and electrode body
US7829057B2 (en) 2004-05-04 2010-11-09 Cabot Corporation Carbon black and multi-stage process for making same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011688A1 (en) * 1998-08-25 2000-03-02 Kanebo, Limited Electrode material and method for producing the same
KR100547455B1 (en) * 1998-08-25 2006-02-01 후지 주코교 카부시키카이샤 Electrode material
WO2001013390A1 (en) * 1999-08-10 2001-02-22 Honda Giken Kogyo Kabushiki Kaisha Method for producing activated carbon for electrode of electric double-layer capacitor
US7214646B1 (en) 1999-08-10 2007-05-08 Honda Giken Kogyo Kabushiki Kaisha Method for producing activated carbon for electrode of electric double-layer capacitor
WO2001056924A1 (en) * 2000-01-31 2001-08-09 Kawasaki Steel Corporation Method for preparing porous carbon material, porous carbon material and electrical double layer capacitor using the same
WO2001093289A1 (en) * 2000-05-31 2001-12-06 Kanebo, Limited Electrode material and capacitor
US6940706B2 (en) 2000-05-31 2005-09-06 Kanebo Ltd. Electrode material and capacitor
JP4609829B2 (en) * 2000-05-31 2011-01-12 富士重工業株式会社 Electrode material and capacitor
JP2003224038A (en) * 2002-01-30 2003-08-08 Tokai Senko Kk Electrode material for electric double layer capacitor
JP2005138204A (en) * 2003-11-05 2005-06-02 Kaken:Kk Ultrafine particle carrying carbon material, its manufacturing method, and carrying processor
WO2005076296A1 (en) * 2004-02-05 2005-08-18 Companhia Brasileira De Metalurgia E Mineracao Electrochemical device and electrode body
US7829057B2 (en) 2004-05-04 2010-11-09 Cabot Corporation Carbon black and multi-stage process for making same

Similar Documents

Publication Publication Date Title
An et al. Electrochemical properties of high‐power supercapacitors using single‐walled carbon nanotube electrodes
JP4803715B2 (en) Conductive paste, its production method and use
Chen et al. Amorphous V–O–C composite nanofibers electrospun from solution precursors as binder-and conductive additive-free electrodes for supercapacitors with outstanding performance
JP6851928B2 (en) Positive electrode slurry
JP2018061039A (en) Nonaqueous lithium type power storage element
JP6786335B2 (en) Non-aqueous lithium storage element
TW201520255A (en) Conducting material composition, slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same
Pai et al. High performance aqueous asymmetric supercapacitor based on iron oxide anode and cobalt oxide cathode
An et al. Characterization of supercapacitors using singlewalled carbon nanotube electrodes
JPH10172870A (en) Electric double layer capacitor
WO2001013390A1 (en) Method for producing activated carbon for electrode of electric double-layer capacitor
JPH11214270A (en) Carbon material for electric double layer capacitor and its manufacture
JP2008247627A (en) Method for manufacturing carbon material, carbon material and electric double layer capacitor
Yesmin et al. Exploration of Cu/gC 3 N 4 Nanocomposites as a Cost-Effective High-Performance Asymmetric Supercapacitor Electrode Material
JPH10287412A (en) Solid active carbon
Ghalmi et al. Enhancement of the electrochemical properties of PbO2 by incorporation of graphene exfoliated
KR101743165B1 (en) iron-carbon composite for electrode of electrochemical capacitor and manufacturing method thereof, electrode composition for electrochemical capacitor
CN106784695A (en) Prepare method, the composite and the lithium ion battery of CNT/SiC/ nano Si composites
JP2006278364A (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor
JP5846575B2 (en) Manufacturing method of electric double layer capacitor
KR20170093971A (en) Activated carbon and electric double layer capacitor thereof
JP4096653B2 (en) Method for producing activated carbon, polarizable electrode and electric double layer capacitor
JPH02185008A (en) Electric double layer capacitor
JP2007153639A (en) Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor
CN115842131B (en) Nitrogen-doped hard carbon material, preparation method thereof and sodium ion battery cathode material