JP3930739B2 - Activated carbon for electric double layer capacitor and manufacturing method thereof - Google Patents

Activated carbon for electric double layer capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP3930739B2
JP3930739B2 JP2002003184A JP2002003184A JP3930739B2 JP 3930739 B2 JP3930739 B2 JP 3930739B2 JP 2002003184 A JP2002003184 A JP 2002003184A JP 2002003184 A JP2002003184 A JP 2002003184A JP 3930739 B2 JP3930739 B2 JP 3930739B2
Authority
JP
Japan
Prior art keywords
activated carbon
electric double
double layer
capacitance
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002003184A
Other languages
Japanese (ja)
Other versions
JP2003203829A (en
Inventor
直 稲田
和宏 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Priority to JP2002003184A priority Critical patent/JP3930739B2/en
Publication of JP2003203829A publication Critical patent/JP2003203829A/en
Application granted granted Critical
Publication of JP3930739B2 publication Critical patent/JP3930739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電気二重層キャパシタ用活性炭及びその製造方法に関する。
【0002】
【従来の技術】
分極性電極と電解質界面に生じる電気二重層を利用して蓄電する構造である電気二重層キャパシタは、その体積に比して静電容量や充放電リサイクル性が優れているため、各種電子情報機器のメモリーバックアップ用部品、補助電源、車載バッテリー等に広く開発されている。
【0003】
一般に前出の電気二重層キャパシタの分極性電極においては、正負両極とも化学的に安定であるため活性炭を主体とする電極が使用されている。前記活性炭はヤシ殻、フェノール樹脂、ピッチ等を原料として特開平11−1316号公報、特開2001−146410号公報等に提示される炭化、賦活処理により製造されてきた。
【0004】
近年の電子機器の発達に伴い、電気二重層キャパシタの小型化、且つ静電容量の大容量化が強く要望される一方、該電気二重層キャパシタの分極性電極に利用される活性炭の性能向上については十分とは言えなかった。
【0005】
前記電気二重層キャパシタの静電容量を向上するためには、電極(活性炭)の表面積である細孔容量を上げることが有効であり、電気二重層キャパシタ用活性炭自体の比表面積(単位重量当たりの表面積)または、電極(活性炭)自身の密度(単位体積当たりの重量)を上げることが不可欠である。
【0006】
【発明が解決しようとする課題】
この発明は前記の点に鑑みなされたもので、電気二重層キャパシタ用の活性炭に関し、既存の活性炭よりも高静電容量及び高密度を実現する活性炭を提供するものである。
【0007】
【課題を解決するための手段】
すなわち、請求項1の発明は、球状レゾールフェノール樹脂の炭化物を水蒸気賦活後に粉砕した活性炭からなり、前記活性炭の比表面積が850〜1300m 2 /g、平均細孔直径が1.6〜1.7nmを満たしていることを特徴とする電気二重層キャパシタ用活性炭に係る。
【0008】
請求項2の発明は、平均粒径が20〜60μmの球状レゾールフェノール樹脂の炭化物を750〜800℃の温度下において水蒸気賦活した後に粉砕して、比表面積が850〜1300m 2 /g、平均細孔直径が1.6〜1.7nmを満たしている活性炭を得ることを特徴とする電気二重層キャパシタ用活性炭の製造方法に係る
【0009】
【発明の実施の形態】
以下添付の図面に従ってこの発明を詳細に説明する。
図1はこの発明の一実施例に係る活性炭を用いた電気二重層キャパシタの主要部断面図、図2はこの発明の活性炭の比表面積と容量静電容量との関係を示すグラフである
【0010】
この発明の活性炭は、電気二重層キャパシタに用いられるものであり、例えば図1に示す電気二重層キャパシタ10における分極性電極13として用いられる。前記電気二重層キャパシタ10について簡単に説明する。前記分極性電極13は、2枚の集電板11,11内にセパレータ12で隔てられた状態で収容され、周囲が封止体14で封止される。前記集電板11,11はステンレス鋼等の良導体からなり、電気二重層キャパシタ10のケースとしての役割も果たす。セパレータ12は、ポリプロピレンあるいは多孔質ガラス等の公知の絶縁体からなる。分極性電極13,13を構成する本発明の活性炭は、硫酸等の電解液が含浸した状態で使用される。封止体14は、公知の絶縁性樹脂が用いられ分極性電極13,13からの液漏れを防ぎ、集電板11,11同士を絶縁する。
【0011】
以下この発明の活性炭を、その製造方法とともに詳細に説明する。この発明の活性炭は、フェノール樹脂を炭化し、得られた炭化物を賦活した後に粉砕したものからな
【0012】
使用するフェノール樹脂は、熱可塑性のノボラック樹脂、熱硬化性のレゾール樹脂等があり、その形態も固形、粉末、液状とあるが、フェノール樹脂は硬化物であることが望ましく、本発明では熱硬化性のレゾール樹脂が用いられる。なお、ノボラック樹脂等の熱可塑性樹脂を使用する場合は、一度硬化させてから再度昇温して炭化する方が形状を保持しやすいため好適である。これらのフェノール樹脂を炭化させた後、賦活、粉砕したものが本発明における電気二重層キャパシタの電極材料として用いられる使用するフェノール樹脂として球状フェノール樹脂が用いられる。球状フェノール樹脂は、フェノール樹脂の表面が球状に成形されたものであり、芳香族の構造をしているため、炭化率を高くすることができ、さらに賦活により比表面積の大きな活性炭が得られる。さらに、球状フェノール樹脂は炭化された後も球状に形状を保持できるため、タップ密度が大きく、容量静電容量の大きい活性炭となる。従って、球状フェノール樹脂から製造される活性炭は、電気二重層キャパシタの静電容量向上のため優れたものである。この明細書における平均粒径は体積累積分布平均粒径のことをいい、粒度分布測定機等で測定される。
【0013】
前記活性炭の製造において、炭化工程は、フェノール樹脂を加熱炉等に収容し、フェノール樹脂が炭化する温度で所要時間加熱することによって行われる。その際の温度は加熱時間等によって異なるが、通常、加熱時間が1〜3時間程度とされる場合、500〜1000℃に設定される。前記の温度より低温下で加熱すると、揮発分の多くが樹脂内に残留するため、後述の賦活工程において、揮発分が一気にガス化しマクロ孔を生じさせるため良好な静電容量が得られないおそれがある。なお、硬化が完全に進んでいないフェノール樹脂からでも、電気二重層キャパシタ用活性炭の製造は可能であるが、炭化工程において昇温速度を速くすると未硬化成分が急激にガス化してマクロ孔を生成させることがある。とりわけ平均粒径の大きなフェノール樹脂では、樹脂表面と樹脂内部の温度勾配が大きくなるためマクロ孔の生成が顕著となる。前出のマクロ孔は活性炭のタップ密度を小さくする要因となるため、電気二重層キャパシタ用活性炭としては好ましくない。また、フェノール樹脂硬化物に未硬化成分が存在する場合、マクロ孔の発現を押さえるためには、フェノール樹脂が炭化する温度までの昇温速度を250℃/hr以下にするか、炭化工程の前段に100〜300℃で加熱するかのどちらかの処理を加えることが望ましい。またフェノール樹脂は平均粒径20〜500μmが好ましいが、マクロ孔生成の影響を小さくするために特に平均粒径20〜60μmとする
【0014】
賦活工程は、フェノール樹脂の炭化後、その表面を微細孔(ポーラス)状態にして、表面積を高める処理方法であり、種々の方法が知られている。例えば、賦活対象物を、水蒸気、炭酸ガス、空気等あるいはこれらの混合ガスからなる酸化性ガス雰囲気中において、数分〜数時間加熱する方法、アルカリ金属の水酸化物により処理する方法等などがある。本発明では、前記炭化工程を終了したフェノール樹脂を、窒素と水蒸気の混合ガス雰囲気下、750〜800℃の賦活温度において水蒸気賦活する。なお、前出の賦活温度より高温で製造した活性炭は、細孔径が大きくなるため、電気二重層キャパシタに用いた際に前出の賦活温度で製造した活性炭と比較して静電容量が低下する。また、前出の賦活温度より低温で賦活すると、賦活そのものが十分に進行せず、所望の比表面積を有する活性炭が得られない。
【0015】
前出の賦活温度において水蒸気賦活されるフェノール樹脂としては、とりわけ平均粒径を20〜60μmとするものであり、この範囲の平均粒径のものを用いることにより高静電容量が得やすい。勿論、前記球状フェノール樹脂は、目的とする球状活性炭の平均粒径に応じて、前記フェノール樹脂の平均粒径20〜60μmの範囲内から適宜選択される。前記範囲の平均粒径を有する公知の球状フェノール樹脂の例として、商品名マリリンHF−050W(群栄化学工業(株)製)等を挙げることができる。
【0016】
続いて粉砕工程において賦活された活性炭は、ボールミル等の公知の粉砕機を用いて平均粒径1〜30μm、より好ましくは平均粒径10〜15μm且つ最大粒径50〜75μmの範囲内になるように粉砕される。以上の工程を経て製造された活性炭には、適宜濃度の硫酸等の電解液が含浸され成形の後、分極性電極として加工され電気二重層キャパシタに利用される。本発明では活性炭1重量部に対して30重量%の硫酸を1〜2重量部含浸し、混練する例を示す。ここで前出の粒径より平均粒径が大きくなるように粉砕されていると、混練後の活性炭を分極性電極として加工する際に電極に割れが生じる等の作業性が悪くなる。また、平均粒径が10μmより小さくなると、活性炭のタップ密度小さくなり、密充填しにくく、活性炭容量(体積)当たりの静電容量が十分得られなくなるおそれがある。
【0017】
以上の工程を経て製造された活性炭は用いる電解液の種類によるが特に前出の硫酸を用いる場合に比表面積850〜1300m2/g、且つ平均細孔径1.6〜1.7nmの範囲内である(後記表1より実施例2,3の比表面積、平均細孔径、容量静電容量が参照される。)。前記比表面積が前記範囲より小さいと静電容量が不足し、大きいと見かけの密度が大きくなり、活性炭容量(体積)当たりの静電容量が十分得られないためである。
【0018】
【実施例】
本発明の電気二重層キャパシタ用活性炭について、実施例1〜3と比較例1〜3を試作し、各実施例と比較例に対して以下の方法により、比表面積、細孔容積、平均細孔径、重量静電容量、容量(体積)静電容量及び見かけの密度の指標となるタップ密度を測定した。
【0019】
比表面積は、77Kにおける窒素吸着等温線を日本ベル(株)製のBELSORP18PLUSにより測定し、その結果をBET(Brunauer Emmett Teller)法により解析して求めた。
細孔容積は、Gurvitschの法則を適用した。すなわち、活性炭の77Kでの窒素吸着等温線を日本ベル(株)製のBELSORP18PLUSにより測定し、相対圧0.951における液体窒素換算した窒素吸着量を細孔容積とした。
平均細孔径は、下記の式より算出した。
平均細孔径(nm)=[4×細孔容積(ml/g)/比表面積(m2/g)]×1000
【0020】
電気二重層キャパシタは、実施例1〜3及び比較例1〜3の活性炭1重量部に対して30重量%の硫酸を1〜2重量部含浸、混練しペースト状とした。前記ペースト約0.9gを2枚の白金電極(直径30mm)のそれぞれに塗布し、ポリプロピレン製のセパレータを介して両電極を加圧、密着して製造した。
【0021】
静電容量は、前記製造による電気二重層キャパシタを0.9Vで1時間充電した後、放電電流10mAとする放電を行い、前記電気二重層キャパシタの電圧が0.54〜0.45Vまで低下するのに要した時間を測定し、単位重量当たりの静電容量である重量静電容量と単位体積当たりの容量静電容量とを求めた。
【0022】
タップ密度は、活性炭10gを100mlメスシリンダー内に入れ、該メスシリンダーをタッピング機((株)蔵持科学機械製作所製 KRS−406)により、30回/分の頻度で1時間タップし、下記の式より算出した。
タップ密度(g/ml)=活性炭重量(g)/活性炭容積(ml)
【0023】
(実施例1)
平均粒径40μmの球状レゾールフェノール樹脂(マリリンHF−050W,群栄化学工業(株)製)を600℃で4時間炭化した後、水蒸気流量5ml/分、窒素流量2L/分の流速で流通されるロータリーキルン炉(内容積4L)の混合ガス雰囲気下、850℃で1〜3時間賦活した後、ボールミルにより粉砕し実施例1の活性炭とした。
【0024】
(実施例2)
実施例1と同一の球状レゾールフェノール樹脂を用い、賦活時の温度を800℃、時間を3〜5時間とする以外は、実施例1と同様の条件により処理し、実施例2の活性炭とした。
【0025】
(実施例3)
実施例1と同一の球状レゾールフェノール樹脂を用い、賦活時の温度を750℃、時間を6〜8時間とする以外は、実施例1と同様の条件により処理し、実施例3の活性炭とした。
【0026】
(比較例1)
実施例の球状レゾールフェノール樹脂を平均粒径147μmの球状レゾールフェノール樹脂(レジトップKB−100,群栄化学工業(株)製)に変更し、賦活時間を1〜3時間とする以外は、実施例1と同様の条件により処理して比較例1の活性炭とした。
【0027】
(比較例2)
粉末状ノボラックフェノール樹脂(PR−217,住友ベークライト(株)製)を平均粒径173μmの球状に造粒して、賦活時間を3〜4時間とする以外は、実施例1と同様の条件により処理して比較例2の活性炭とした。
【0028】
(比較例3)
比較例2と同一の粉末状ノボラックフェノール樹脂を平均粒径500μmの球状に造粒して、賦活時間を4〜5時間とする以外は、実施例1と同様の条件により処理して比較例3の活性炭とした。
以上、実施例1〜3及び比較例1〜3の結果を表1に示した。
【0029】
【表1】

Figure 0003930739
【0030】
表1において、原料樹脂平均粒径と重量静電容量との関係は、実施例1と比較例1との比較から、原料樹脂平均粒径の小さい方(40μm:実施例1)が高い重量静電容量を得ることができる。賦活温度と重量静電容量との関係は、実施例1,2,3内における比較から、賦活温度の低い方(750℃:実施例3)が高い重量静電容量を得ることができる。さらにフェノール樹脂硬化物を原料とする場合と、硬化が十分に進んでいないフェノール樹脂を原料に使用する場合との関係では、実施例1,2,3と比較例2,3との比較より、フェノール樹脂硬化物(レゾール樹脂からなる実施例1,2,3)を使用した方が高い重量静電容量を得ることができる。
【0031】
また、原料樹脂平均粒径と平均細孔径との関係において、実施例1,2,3及び比較例1を検討すると、原料樹脂平均粒径が小さく賦活温度の低い方(実施例2,3)が、平均細孔径は小さくなり高い重量静電容量を得ることができる。原料樹脂平均粒径と容量静電容量との関係において、実施例1,2,3及び比較例1,2,3を検討すると、原料樹脂平均粒径が小さく賦活温度の低い方(実施例2,3)が、高い容量静電容量を得ることができる。加えて、図2に示すように比表面積と容量静電容量との関係において、容量静電容量が30F/mlを越えるのは、比表面積850〜1300m2/gの範囲(原料樹脂平均粒径40μm、賦活温度800℃実施例2の一部、賦活温度750℃の実施例3参照)と読みとれる。なお、比較例2及び3において原料樹脂平均粒径がより小さい方(比較例2:173μm)が高い容量静電容量を得ることができる。
【0032】
【発明の効果】
以上図示し説明したように、この発明の電気二重層キャパシタ用活性炭及びその製造方法によると、小型且つ高静電容量の電気二重層キャパシタ用活性炭として好適比表面積と平均細孔径を満たした高密度な活性炭を得ることができる。
【図面の簡単な説明】
【図1】 この発明の一実施例に係る電気二重層キャパシタの主要部断面図である。
【図2】 この発明の活性炭の比表面積と容量静電容量との関係を示すグラフである。
【符号の説明】
10 電気二重層キャパシタ
11 集電板
12 セパレータ
13 分極性電極
14 封止体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to activated carbon for electric double layer capacitors and a method for producing the same.
[0002]
[Prior art]
Electric double-layer capacitors, which store electricity using an electric double layer generated at the polarizable electrode and electrolyte interface, are superior in capacitance and charge / discharge recyclability compared to their volume. It is widely developed for memory backup parts, auxiliary power supplies, in-vehicle batteries, etc.
[0003]
In general, the polarizable electrode of the electric double layer capacitor described above uses an electrode mainly composed of activated carbon because both the positive and negative electrodes are chemically stable. The activated carbon has been produced by carbonization and activation treatment as disclosed in JP-A Nos. 11-1316 and 2001-146410 using coconut shell, phenol resin, pitch and the like as raw materials.
[0004]
With the recent development of electronic devices, there is a strong demand for miniaturization of electric double layer capacitors and an increase in capacitance, while improving the performance of activated carbon used for polarizable electrodes of electric double layer capacitors. Was not enough.
[0005]
In order to improve the capacitance of the electric double layer capacitor, it is effective to increase the pore capacity, which is the surface area of the electrode (activated carbon), and the specific surface area (per unit weight) of the activated carbon for the electric double layer capacitor itself. It is essential to increase the surface area) or the density of the electrode (activated carbon) itself (weight per unit volume).
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and relates to activated carbon for electric double layer capacitors, and provides activated carbon that achieves higher capacitance and higher density than existing activated carbon.
[0007]
[Means for Solving the Problems]
That is, the invention of claim 1 is made of activated carbon obtained by pulverizing a carbide of spherical resol phenol resin after steam activation, and the activated carbon has a specific surface area of 850 to 1300 m 2 / g and an average pore diameter of 1.6 to 1.7 nm. The activated carbon for electric double layer capacitors is characterized by satisfying the above .
[0008]
According to the second aspect of the present invention, a spherical resole phenol resin carbide having an average particle size of 20 to 60 μm is activated by steam at a temperature of 750 to 800 ° C. and then pulverized to obtain a specific surface area of 850 to 1300 m 2 / g, an average fine particle size. The present invention relates to a method for producing an activated carbon for an electric double layer capacitor, wherein activated carbon having a pore diameter satisfying 1.6 to 1.7 nm is obtained .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail with reference to the accompanying drawings.
Figure 1 is the main part sectional view of an electric double layer capacitor using activated carbon in accordance with one embodiment of the invention, FIG 2 is a graph showing the relationship between specific surface area and the volume electrostatic capacitance of the activated carbon of the present invention.
[0010]
The activated carbon of the present invention is used for an electric double layer capacitor, and is used, for example, as the polarizable electrode 13 in the electric double layer capacitor 10 shown in FIG. The electric double layer capacitor 10 will be briefly described. The polarizable electrode 13 is accommodated in two current collecting plates 11 and 11 separated by a separator 12, and the periphery is sealed with a sealing body 14. The current collecting plates 11 and 11 are made of a good conductor such as stainless steel, and also serve as a case for the electric double layer capacitor 10. The separator 12 is made of a known insulator such as polypropylene or porous glass. The activated carbon of the present invention that constitutes the polarizable electrodes 13 and 13 is used in a state impregnated with an electrolytic solution such as sulfuric acid. The sealing body 14 uses a known insulating resin to prevent liquid leakage from the polarizable electrodes 13 and 13 and insulate the current collecting plates 11 and 11 from each other.
[0011]
Hereinafter, the activated carbon of the present invention will be described in detail together with its production method. The activated carbon of the invention, carbonized phenolic resin, ing from the resulting carbides that pulverized after activation.
[0012]
Phenolic resin used, there thermoplastic novolac resin, a thermosetting resole resin or the like, the form also solid, powder, there are a liquid, rather then desirable phenolic resin is cured, in the present invention A thermosetting resol resin is used . In the case of using a thermoplastic resin such as a novolak resin, it is preferable that the resin is cured once and then heated again to be carbonized because the shape is easily maintained. After carbonizing these phenolic resins, activated and pulverized ones are used as electrode materials for the electric double layer capacitor in the present invention . The phenol resin used, spherical phenol resin is used. The spherical phenol resin is obtained by forming the surface of the phenol resin into a spherical shape and has an aromatic structure. Therefore, the carbonization rate can be increased, and activated carbon having a large specific surface area can be obtained by activation. Furthermore, since the spherical phenol resin can maintain a spherical shape even after being carbonized, it becomes activated carbon having a large tap density and a large capacitance capacitance. Therefore, the activated carbon produced from the spherical phenol resin is excellent for improving the capacitance of the electric double layer capacitor. The average particle diameter in this specification means a volume cumulative distribution average particle diameter, and is measured by a particle size distribution measuring machine or the like.
[0013]
In the production of the activated carbon, the carbonization step is performed by storing the phenol resin in a heating furnace or the like and heating it for a required time at a temperature at which the phenol resin is carbonized. Although the temperature in that case changes with heating time etc., when heating time shall be about 1-3 hours normally, it is set to 500-1000 degreeC. When heated at a temperature lower than the above temperature, most of the volatile matter remains in the resin. Therefore, in the activation process described later, the volatile matter is gasified at a stretch to generate macropores, so that a good electrostatic capacity may not be obtained. There is. Although it is possible to produce activated carbon for electric double layer capacitors even from phenolic resins that have not been fully cured, uncured components are rapidly gasified to form macropores when the heating rate is increased in the carbonization process. There are things to do. In particular, in a phenol resin having a large average particle diameter, the temperature gradient between the resin surface and the inside of the resin becomes large, so that the formation of macropores becomes remarkable. The above-mentioned macropores are not preferable as the activated carbon for electric double layer capacitors because they make the tap density of the activated carbon small. In addition, when an uncured component is present in the cured phenol resin, in order to suppress the expression of macropores, the rate of temperature increase up to the temperature at which the phenol resin is carbonized is set to 250 ° C./hr or less, or before the carbonization step. It is desirable to add either treatment of heating at 100 to 300 ° C. Also, the phenolic resin is preferably an average particle diameter of 20 to 500 [mu] m, and especially the average particle size 20~60μm in order to reduce the influence of the macropores generated.
[0014]
The activation step is a treatment method for increasing the surface area by making the surface of the phenol resin fine after carbonization of the phenol resin, and various methods are known. For example, there are a method of heating an activation target in an oxidizing gas atmosphere consisting of water vapor, carbon dioxide, air, etc. or a mixed gas thereof for several minutes to several hours, a method of treating with an alkali metal hydroxide, etc. is there. In the present invention, the phenol resin after the carbonization step is steam-activated at an activation temperature of 750 to 800 ° C. in a mixed gas atmosphere of nitrogen and steam. In addition, since the activated carbon manufactured at a temperature higher than the activation temperature described above has a larger pore size, the capacitance decreases when compared with the activated carbon manufactured at the activation temperature described above when used in an electric double layer capacitor. . In addition, if the activation is performed at a temperature lower than the above activation temperature, the activation itself does not proceed sufficiently, and activated carbon having a desired specific surface area cannot be obtained.
[0015]
The phenol resin to be steam activation at activation temperatures supra, especially are those having an average diameter of 20 to 60 [mu] m, high capacitance is easily obtained by using an average particle size in this range. Of course, the spherical phenol resin is appropriately selected from the range of the average particle diameter of the phenol resin of 20 to 60 μm according to the average particle diameter of the target spherical activated carbon. As an example of a known spherical phenol resin having an average particle size in the above range, trade name Marilyn HF-050W (manufactured by Gunei Chemical Industry Co., Ltd.) and the like can be mentioned.
[0016]
Subsequently, the activated carbon activated in the pulverization step is in a range of an average particle size of 1 to 30 μm, more preferably an average particle size of 10 to 15 μm and a maximum particle size of 50 to 75 μm using a known pulverizer such as a ball mill. To be crushed. Activated carbon produced through the above steps is impregnated with an appropriate concentration of an electrolyte such as sulfuric acid, and after molding, is processed as a polarizable electrode and used in an electric double layer capacitor. In the present invention, an example in which 1 to 2 parts by weight of sulfuric acid of 30% by weight is impregnated with 1 part by weight of activated carbon and kneaded is shown. Here, when the pulverization is performed so that the average particle size is larger than the above-described particle size, workability such as cracking of the electrode is deteriorated when the activated carbon after kneading is processed as a polarizable electrode. If the average particle diameter is less than 10 [mu] m, the tap density of the activated carbon becomes small, difficult to densely packed, there is a risk that capacitance per activated carbon capacity (volume) can not be sufficiently obtained.
[0017]
Above steps activated carbon manufactured through a range where the specific surface area 850 ~1300m 2 / g, and an average pore diameter 1.6~1.7nm using sulfuric acid supra especially by the type of electrolyte used (See Table 1 below for specific surface area, average pore diameter, and capacitance capacitance of Examples 2 and 3.) This is because if the specific surface area is smaller than the above range, the electrostatic capacity is insufficient, while if the specific surface area is large, the apparent density increases, and the electrostatic capacity per activated carbon capacity (volume) cannot be sufficiently obtained.
[0018]
【Example】
About activated carbon for electric double layer capacitors of the present invention, Examples 1 to 3 and Comparative Examples 1 to 3 were made as prototypes, and specific surface area, pore volume, average pore diameter by the following methods for each Example and Comparative Example. The tap density, which is an index of weight capacitance, capacitance (volume) capacitance, and apparent density, was measured.
[0019]
The specific surface area was determined by measuring the nitrogen adsorption isotherm at 77K with BELSORP18PLUS made by Nippon Bell Co., Ltd., and analyzing the result by the BET (Brunauer Emmet Teller) method.
Gurvitsch's law was applied to the pore volume. That is, the nitrogen adsorption isotherm of activated carbon at 77K was measured by BELSORP18PLUS manufactured by Nippon Bell Co., Ltd., and the nitrogen adsorption amount converted to liquid nitrogen at a relative pressure of 0.951 was defined as the pore volume.
The average pore diameter was calculated from the following formula.
Average pore diameter (nm) = [4 × pore volume (ml / g) / specific surface area (m 2 / g)] × 1000
[0020]
The electric double layer capacitor was impregnated with 1 to 2 parts by weight of sulfuric acid with respect to 1 part by weight of the activated carbon of Examples 1 to 3 and Comparative Examples 1 to 3, and kneaded into a paste. About 0.9 g of the paste was applied to each of two platinum electrodes (diameter 30 mm), and both electrodes were pressed and adhered through a polypropylene separator.
[0021]
Capacitance is obtained by charging the electric double layer capacitor manufactured as described above at 0.9 V for 1 hour, and then discharging to a discharge current of 10 mA, and the voltage of the electric double layer capacitor is reduced to 0.54 to 0.45 V. The time required for the measurement was measured, and the capacitance of capacitance per unit weight and the capacitance of capacitance per unit volume were determined.
[0022]
The tap density is obtained by putting 10 g of activated carbon into a 100 ml graduated cylinder, tapping the graduated cylinder with a tapping machine (KRS-406, manufactured by Kuramochi Kagaku Seisakusho Co., Ltd.) for 1 hour at a frequency of 30 times / minute, Calculated from
Tap density (g / ml) = activated carbon weight (g) / activated carbon volume (ml)
[0023]
Example 1
After carbonizing spherical resole phenolic resin (Marilyn HF-050W, manufactured by Gunei Chemical Industry Co., Ltd.) having an average particle size of 40 μm for 4 hours at 600 ° C., it is circulated at a steam flow rate of 5 ml / min and a nitrogen flow rate of 2 L / min. After being activated at 850 ° C. for 1 to 3 hours in a mixed gas atmosphere of a rotary kiln furnace (internal volume 4 L), activated carbon of Example 1 was pulverized by a ball mill.
[0024]
(Example 2)
Using the same spherical resole phenolic resin as in Example 1, the temperature at the time of activation was 800 ° C., and the time was 3 to 5 hours. .
[0025]
(Example 3)
The same spherical resole phenolic resin as in Example 1 was used, and the activated carbon in Example 3 was treated under the same conditions as in Example 1 except that the temperature at activation was 750 ° C. and the time was 6 to 8 hours. .
[0026]
(Comparative Example 1)
Except for changing the spherical resole phenolic resin of the example to a spherical resole phenolic resin (Register Top KB-100, manufactured by Gunei Chemical Industry Co., Ltd.) having an average particle diameter of 147 μm, the activation time is 1 to 3 hours. The activated carbon of Comparative Example 1 was obtained by treatment under the same conditions as in Example 1.
[0027]
(Comparative Example 2)
Under the same conditions as in Example 1, except that powdered novolak phenol resin (PR-217, manufactured by Sumitomo Bakelite Co., Ltd.) was granulated into a spherical shape with an average particle size of 173 μm and the activation time was 3 to 4 hours. The activated carbon of Comparative Example 2 was processed.
[0028]
(Comparative Example 3)
Comparative Example 3 was treated under the same conditions as in Example 1 except that the same powdered novolak phenol resin as in Comparative Example 2 was granulated into spheres having an average particle size of 500 μm and the activation time was 4 to 5 hours. Activated carbon.
The results of Examples 1 to 3 and Comparative Examples 1 to 3 are shown in Table 1.
[0029]
[Table 1]
Figure 0003930739
[0030]
In Table 1, the relationship between the raw material resin average particle size and the weight electrostatic capacity is based on the comparison between Example 1 and Comparative Example 1, and the smaller raw material resin average particle size (40 μm: Example 1) has a higher static weight. Capacitance can be obtained. From the comparison in Examples 1, 2, and 3, the relationship between the activation temperature and the weight capacitance can obtain a higher weight capacitance at a lower activation temperature (750 ° C .: Example 3). Furthermore, in the case of using a phenolic resin cured product as a raw material and the case of using a phenolic resin whose curing is not sufficiently advanced as a raw material, a comparison between Examples 1, 2, and 3 and Comparative Examples 2 and 3 Higher weight capacitance can be obtained by using a cured phenol resin (Examples 1, 2 and 3 made of a resole resin).
[0031]
In addition, when Examples 1, 2, 3 and Comparative Example 1 were examined in relation to the raw material resin average particle diameter and the average pore diameter, the raw material resin average particle diameter was smaller and the activation temperature was lower (Examples 2, 3). However, the average pore diameter is reduced, and a high weight capacitance can be obtained. When Examples 1, 2, and 3 and Comparative Examples 1, 2, and 3 are examined in relation to the raw material resin average particle diameter and the capacitance capacitance, the one with the smaller raw resin average particle diameter and the lower activation temperature (Example 2). 3) can obtain a high capacitance capacitance. In addition, as shown in FIG. 2, in the relationship between the specific surface area and the capacitance capacitance, the capacitance capacitance exceeds 30 F / ml in the range of the specific surface area 850 to 1300 m 2 / g (raw resin average particle diameter 40 μm, part of Example 2 with activation temperature of 800 ° C. , see Example 3 with activation temperature of 750 ° C. ). In Comparative Examples 2 and 3, the one having a smaller average particle diameter of the raw material resin (Comparative Example 2: 173 μm) can provide a higher capacitance.
[0032]
【The invention's effect】
Above illustrated as described, according to the electric double layer activated carbon and a method of manufacturing capacitors of the present invention, a small and high met average pore diameter with a suitable specific surface area as an electric double layer of activated carbon for the capacitor of high static capacitance A dense activated carbon can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of an electric double layer capacitor according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the specific surface area and the capacitance capacitance of the activated carbon of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Electric double layer capacitor 11 Current collector 12 Separator 13 Polarization electrode 14 Sealing body

Claims (2)

球状レゾールフェノール樹脂の炭化物を水蒸気賦活後に粉砕した活性炭からなり、前記活性炭の比表面積が850〜1300m 2 /g、平均細孔直径が1.6〜1.7nmを満たしていることを特徴とする電気二重層キャパシタ用活性炭。 It consists of activated carbon obtained by pulverizing a carbide of spherical resole phenolic resin after steam activation, and the activated carbon has a specific surface area of 850 to 1300 m 2 / g and an average pore diameter of 1.6 to 1.7 nm. Activated carbon for electric double layer capacitors. 平均粒径が20〜60μmの球状レゾールフェノール樹脂の炭化物を750〜800℃の温度下において水蒸気賦活した後に粉砕して、比表面積が850〜1300mA spherical resole phenolic resin carbide having an average particle size of 20 to 60 μm is activated with water vapor at a temperature of 750 to 800 ° C. and then pulverized to have a specific surface area of 850 to 1300 m. 22 /g、平均細孔直径が1.6〜1.7nmを満たしている活性炭を得ることを特徴とする電気二重層キャパシタ用活性炭の製造方法。/ G, an activated carbon having an average pore diameter of 1.6 to 1.7 nm is obtained.
JP2002003184A 2002-01-10 2002-01-10 Activated carbon for electric double layer capacitor and manufacturing method thereof Expired - Lifetime JP3930739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002003184A JP3930739B2 (en) 2002-01-10 2002-01-10 Activated carbon for electric double layer capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002003184A JP3930739B2 (en) 2002-01-10 2002-01-10 Activated carbon for electric double layer capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003203829A JP2003203829A (en) 2003-07-18
JP3930739B2 true JP3930739B2 (en) 2007-06-13

Family

ID=27642838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002003184A Expired - Lifetime JP3930739B2 (en) 2002-01-10 2002-01-10 Activated carbon for electric double layer capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3930739B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762517B2 (en) 2004-09-09 2011-08-31 株式会社オプトニクス精密 Method for producing toner for printer
KR101257966B1 (en) * 2005-05-27 2013-04-24 수미토모 케미칼 컴퍼니 리미티드 Electric double layer capacitor
KR101311038B1 (en) 2006-10-20 2013-09-24 에아.워타 가부시키가이샤 Non-thermofusible granular phenol resin, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
JP5604227B2 (en) * 2010-08-27 2014-10-08 日本カーボン株式会社 Method for producing activated carbon for capacitor and activated carbon
WO2012092210A1 (en) * 2010-12-28 2012-07-05 Energ2 Technologies, Inc. Carbon materials comprising enhanced electrochemical properties
JP6509643B2 (en) * 2014-06-23 2019-05-08 大阪ガスケミカル株式会社 Method of producing activated carbon

Also Published As

Publication number Publication date
JP2003203829A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
JP4618929B2 (en) Activated carbon for electric double layer capacitors
US20100142122A1 (en) Active carbon, production method thereof and polarizable electrode
JP5018213B2 (en) Phosphorus compound composite activated carbon for electric double layer capacitor and method for producing the same
JP5931326B2 (en) Activated carbon for electric double layer capacitors
JP2005136397A (en) Activated carbon, electrode material using it, and electric double layer capacitor
JP2004175660A (en) Activated carbon, method of manufacturing the same and polarizable electrode
JP3930739B2 (en) Activated carbon for electric double layer capacitor and manufacturing method thereof
JP2013049617A (en) Method for producing activated carbon porous body, activated carbon porous body, and electrode for electric double layer capacitor
KR100616552B1 (en) Polarizing electrode and its manufacturing method, and electric double-layer capacitor
KR102040379B1 (en) Method for manufacturing activated carbon for electrode material
JP2000138140A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
KR101948020B1 (en) Method for manufacturing activated carbon for electrode material
JP3846022B2 (en) Electric double layer capacitor
KR102086589B1 (en) Electrode materials, electrochemical device comprising the same and method for manufacturing the same
JP2004189587A (en) Activated carbon, polarizable electrode for electric double-layer capacitor, and electric double-layer capacitor using the same
US20230197359A1 (en) Electrochemical device
JP4503134B2 (en) Activated carbon for electric double layer capacitors
JP2016004962A (en) Electrode material for power storage device, manufacturing method for the same, electrode mixture material for power storage device and method of manufacturing electrode for power storage device
JP2000138141A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP2008270427A (en) Carbon material for power storage device electrode, and manufacturing method thereof
JP2005243933A (en) Electric double-layer capacitor
JP2005093778A (en) Electric double layer capacitor
JP2006278364A (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor
JP4350482B2 (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor using the same
KR102020126B1 (en) Method for manufacturing activated carbon for electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070125

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6