JP2013049617A - Method for producing activated carbon porous body, activated carbon porous body, and electrode for electric double layer capacitor - Google Patents

Method for producing activated carbon porous body, activated carbon porous body, and electrode for electric double layer capacitor Download PDF

Info

Publication number
JP2013049617A
JP2013049617A JP2012169804A JP2012169804A JP2013049617A JP 2013049617 A JP2013049617 A JP 2013049617A JP 2012169804 A JP2012169804 A JP 2012169804A JP 2012169804 A JP2012169804 A JP 2012169804A JP 2013049617 A JP2013049617 A JP 2013049617A
Authority
JP
Japan
Prior art keywords
activated carbon
porous body
carbon porous
thermoplastic resin
carbonized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012169804A
Other languages
Japanese (ja)
Other versions
JP6220504B2 (en
Inventor
Yasuo Yoshioka
泰男 吉岡
Ryuichiro Kuboshima
隆一郎 窪島
Atsutoshi Inoue
敦俊 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOC Capacitor Co Ltd
Original Assignee
TOC Capacitor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOC Capacitor Co Ltd filed Critical TOC Capacitor Co Ltd
Priority to JP2012169804A priority Critical patent/JP6220504B2/en
Publication of JP2013049617A publication Critical patent/JP2013049617A/en
Application granted granted Critical
Publication of JP6220504B2 publication Critical patent/JP6220504B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an activated carbon porous body which has a desired pore diameter and a specific surface area suitable for the material of an electrode for an electric double layer capacitor or the like.SOLUTION: The method for producing the activated carbon porous body includes: a mixing step to mix a carbonizable material and a thermoplastic resin with a melting point of 300°C or more and to obtain a mixed material; a carbonizing step to carbonize the mixed material; and an activating step to activate the carbonized mixed material. Furthermore, the method for producing the activated carbon porous body includes: a mixing step to mix an activated carbon obtained from the carbonizable material and the thermoplastic resin with a melting point of 300°C or more and to obtain a composite material; a carbonizing step to carbonize the mixed material; and an activating step to activate the carbonized mixed material.

Description

本発明は、活性炭素多孔体の製造方法、活性炭素多孔体、および、電気二重層キャパシタ用電極に関する。更に詳しくは、活性炭素多孔体の、特に細孔構造が制御された電気二重層キャパシタ用電極に好適な活性炭素多孔体の製造方法、活性炭素多孔体、および、電気二重層キャパシタ用電極に関する。   The present invention relates to a method for producing an activated carbon porous body, an activated carbon porous body, and an electrode for an electric double layer capacitor. More specifically, the present invention relates to a method for producing an activated carbon porous body suitable for an electrode for an electric double layer capacitor having a controlled pore structure, particularly an activated carbon porous body, and an electrode for an electric double layer capacitor.

電気二重層キャパシタ(EDLC)は、電解液中にセパレータを介して、2対の電極(EDLC用電極)を対向することにより構成される。充放電はセルに電圧を印加することにより、電解液中のイオンが電極表面に電気的吸脱着をすることにより行われる。このように、EDLCは電極と電解液間で化学的な反応が伴わないため、リチウムイオン二次電池、ニッケル水素電池など他の二次電池と比較して、高い出力、高い寿命、さらには高い安全性を有することが特徴である。   An electric double layer capacitor (EDLC) is constituted by facing two pairs of electrodes (EDLC electrodes) through a separator in an electrolytic solution. Charging / discharging is performed by applying a voltage to the cell so that ions in the electrolytic solution are electrically adsorbed / desorbed on the electrode surface. Thus, since EDLC does not involve a chemical reaction between the electrode and the electrolyte, it has higher output, longer life, and higher than other secondary batteries such as lithium ion secondary batteries and nickel metal hydride batteries. It is characterized by having safety.

EDLCは、半導体メモリのバックアップ電源として実用化され、次いで、高容量化と共に太陽電池と組み合わせた道路標識、照明等に使用されるようになった。近年、注目されているEDLCの利用分野は、車載用電源と瞬時停電用電源である。特に車載用途は、自動車の電子制御化、ハイブリッド化と共に、電源への信頼性、寿命、出力特性に対する要求が高まり、これらの特性に優れるEDLCが注目されている。   EDLC has been put to practical use as a backup power source for semiconductor memories, and then has been used for road signs, lighting, etc. combined with a solar cell with an increase in capacity. In recent years, EDLCs that have been attracting attention are in-vehicle power supplies and instantaneous power outages. Especially for in-vehicle applications, demands for reliability, lifespan, and output characteristics of power supplies are increasing along with electronic control and hybridization of automobiles, and EDLCs that are excellent in these characteristics are attracting attention.

EDLCの電極材には、高い比表面積を有する活性炭が用いられている。活性炭はナノサイズの細孔から成る多孔質炭素である。この細孔内で電気二重層形成及びイオン移動などが起こるため、EDLCの特性向上を目的とし、予てより電極材としての活性炭の改良検討が盛んに行われてきた。   Activated carbon having a high specific surface area is used for the electrode material of EDLC. Activated carbon is porous carbon composed of nano-sized pores. Since electric double layer formation, ion migration, and the like occur in the pores, studies on improving activated carbon as an electrode material have been actively conducted for the purpose of improving EDLC characteristics.

従来より、活性炭はその優れた吸着能から吸着剤やEDLC用電極として広く使用されている。このような用途で効果的に機能するために、活性炭には適切な物性(例えば、比表面積、細孔径など)を有することが要求されている。   Conventionally, activated carbon has been widely used as an adsorbent or an electrode for EDLC because of its excellent adsorption ability. In order to function effectively in such applications, activated carbon is required to have appropriate physical properties (for example, specific surface area, pore diameter, etc.).

EDLC用の多孔質炭素材に活性炭が使われるのは、活性炭にはミクロ孔と呼ばれる直径が2nm以下の微細な孔が大量にあり、比表面積が大きいため、EDLCに用いた場合にEDLCの容量を高くすることができるからである。すなわち、従来の活性炭の製造方法においては、まず、炭化処理により炭素材料の孔(主にマクロ孔)の内部等により小さな細孔(主にメソ孔)を形成し、さらに賦活処理により、炭化処理で出来た細孔(主にメソ孔)の内部等に、さらに多くの微細な孔(主にミクロ孔)を形成することで、表面積を大きくし、未処理の炭素材料に比べて非常に大きな能力(吸着性能等)を持たせている。   Activated carbon is used as the porous carbon material for EDLC. The activated carbon has a large number of fine pores called micropores with a diameter of 2 nm or less, and has a large specific surface area. It is because it can be made high. That is, in the conventional method for producing activated carbon, first, small pores (mainly mesopores) are formed inside the pores (mainly macropores) of the carbon material by carbonization treatment, and further carbonization treatment is performed by activation treatment. The surface area is increased by forming more fine pores (mainly micropores) inside the pores (mainly mesopores) made of, which is much larger than untreated carbon materials. Has capacity (adsorption performance, etc.).

しかし、電解質イオンの大きさは約0.5〜1nmであり、ミクロ孔の大きさに近いため、活性炭には電解質イオンが吸脱着できないような小さなミクロ孔も存在する。このような電解質イオンが吸脱着できない孔はELDCの容量に寄与しないため、EDLCの高容量化のためには、単に比表面積が大きいだけでなく、電解質イオンが十分に浸透できるような直径が2〜50nmの細孔(メソ孔)を多く含む活性炭素多孔体が望ましい。   However, since the size of the electrolyte ions is about 0.5 to 1 nm and is close to the size of the micropores, there are also small micropores in the activated carbon where the electrolyte ions cannot adsorb and desorb. Since such pores into which electrolyte ions cannot be adsorbed / desorbed do not contribute to the capacity of ELDC, in order to increase the capacity of EDLC, not only the specific surface area is large, but also a diameter that allows sufficient penetration of electrolyte ions is 2 An activated carbon porous body containing many pores (mesopores) of ˜50 nm is desirable.

従来の活性炭の製造方法として、特許文献1(特開2011−1232号公報)には、炭素原料と融点が250℃以下の複素環式化合物や芳香族炭化水素のような有機化合物を混合して、アルカリ賦活して活性炭を製造する方法が開示されている。   As a conventional method for producing activated carbon, Patent Document 1 (Japanese Patent Application Laid-Open No. 2011-1232) includes mixing a carbon raw material and an organic compound such as a heterocyclic compound or an aromatic hydrocarbon having a melting point of 250 ° C. or less. A method for producing activated carbon by alkali activation is disclosed.

また、特許文献2(特開2010−280515号公報)には、炭化性材料である球状フェノール樹脂に所定量のポリビニルアルコールを添加して、混合し、脱液した後、得られた球状フェノール樹脂を平均粒径0.1mm以上に粗解砕し、炭化し、賦活した後、得られた賦活物を平均粒径が0.1nm以上、1nm未満になるように微解砕して活性炭を製造する方法が開示されている。   Patent Document 2 (Japanese Patent Application Laid-Open No. 2010-280515) discloses a spherical phenol resin obtained by adding a predetermined amount of polyvinyl alcohol to a spherical phenol resin which is a carbonized material, mixing and draining, then. After coarsely pulverizing, carbonizing and activating the activated particles, the activated product obtained is finely crushed so that the average particle size is 0.1 nm or more and less than 1 nm to produce activated carbon A method is disclosed.

また、特許文献3(特表2010−538458号公報)には、炭素を含む導電性多孔質母材に炭化性材料を含浸させ、硬化、炭化および賦活工程を経て導電性多孔質母材の孔に含浸された炭化性材料を炭化させることにより複合炭素電極を製造する方法が開示されている。   Further, Patent Document 3 (Japanese Patent Publication No. 2010-538458) discloses that a conductive porous base material containing carbon is impregnated with a carbonaceous material, and the pores of the conductive porous base material are subjected to curing, carbonization and activation processes. Discloses a method for producing a composite carbon electrode by carbonizing a carbonized material impregnated in a carbon dioxide.

しかしながら、上記のような方法によりフェノール樹脂等の炭化性材料を炭化・賦活するだけでは、ミクロ孔を多く含むことにより比表面積が大きな活性炭素多孔体を得ることができたとしても、活性炭表面の細孔としてメソ孔を多く含み、かつ、比表面積が大きな活性炭を得ることは困難であった。なお、かかる従来の方法で得られる活性炭における多孔部分の総体積に対するメソ孔の比率は20〜30体積%程度であった。   However, even if carbonized material such as phenol resin is carbonized and activated by the above-described method, even if an activated carbon porous body having a large specific surface area can be obtained by including many micropores, It was difficult to obtain activated carbon containing many mesopores as pores and having a large specific surface area. In addition, the ratio of the mesopore with respect to the total volume of the porous part in the activated carbon obtained by this conventional method was about 20 to 30% by volume.

特開2011−1232号公報JP 2011-1232 A 特開2010−280515号公報JP 2010-280515 A 特表2010−538458号公報Special table 2010-538458 gazette

本発明の目的は、EDLC用電極の材料などに適した所望の孔径および比表面積を有する活性炭素多孔体を製造する方法を提供することである。   An object of the present invention is to provide a method for producing an activated carbon porous body having a desired pore size and specific surface area suitable for an EDLC electrode material or the like.

本発明は、炭化性材料、および、融点が300℃以上の熱可塑性樹脂を混合して混合材料を得る混合工程と、
上記混合材料を炭化する炭化工程と、
炭化した上記混合材料を賦活する賦活工程とを備えることを特徴とする、活性炭素多孔体の製造方法である。
The present invention includes a mixing step of obtaining a mixed material by mixing a carbonized material and a thermoplastic resin having a melting point of 300 ° C. or higher;
A carbonization step for carbonizing the mixed material;
An activated carbon porous body manufacturing method comprising an activation step of activating the carbonized mixed material.

また、本発明は、炭化性材料から得られた活性炭、および、融点が300℃以上の熱可塑性樹脂を混合して複合材料を得る混合工程と、
上記混合材料を炭化する炭化工程と、
炭化した上記混合材料を賦活する賦活工程とを備えることを特徴とする、活性炭素多孔体の製造方法である。
Further, the present invention includes a mixing step of obtaining a composite material by mixing activated carbon obtained from a carbonized material and a thermoplastic resin having a melting point of 300 ° C. or higher,
A carbonization step for carbonizing the mixed material;
An activated carbon porous body manufacturing method comprising an activation step of activating the carbonized mixed material.

上記熱可塑性樹脂は、ポリエーテルエーテルケトン樹脂またはポリエーテルケトンエーテルケトンケトン樹脂であることが好ましい。   The thermoplastic resin is preferably a polyether ether ketone resin or a polyether ketone ether ketone ketone resin.

上記複合材料を得る混合工程において、上記活性炭と混合する上記熱可塑性樹脂が粒子状であり、その平均粒径が1〜100nmであることが好ましい。   In the mixing step of obtaining the composite material, it is preferable that the thermoplastic resin mixed with the activated carbon is in the form of particles and the average particle diameter is 1 to 100 nm.

上記混合材料を得る混合工程において、上記熱可塑性樹脂の混合割合が、上記炭化性材料と上記熱可塑性樹脂との合計重量に対して0.01〜30重量%であることが好ましい。   In the mixing step of obtaining the mixed material, the mixing ratio of the thermoplastic resin is preferably 0.01 to 30% by weight with respect to the total weight of the carbonized material and the thermoplastic resin.

上記炭化工程の温度は300〜1000℃であることが好ましい。
また、本発明は、上記活性炭素多孔体の製造方法を用いて製造された活性炭素多孔体にも関する。さらに、本発明は、当該活性炭素多孔体を備えた電気二重層キャパシタにも関する。
The temperature of the carbonization step is preferably 300 to 1000 ° C.
Moreover, this invention relates also to the activated carbon porous body manufactured using the manufacturing method of the said activated carbon porous body. Furthermore, this invention relates also to the electric double layer capacitor provided with the said activated carbon porous body.

また、本発明は、直径が1〜100nmの孔の割合が細孔容量の総体積に対して50体積%以上である活性炭素多孔体にも関する。   The present invention also relates to an activated carbon porous body in which the proportion of pores having a diameter of 1 to 100 nm is 50% by volume or more with respect to the total volume of the pore volume.

本発明の製造方法においては、炭化性材料と熱可塑性樹脂とを混合した混合材料、または、活性炭と熱可塑性樹脂とを混合した複合材料を所定の温度で炭化させることにより、炭化中、混合材料または複合材料中に含有されている熱可塑性樹脂は、固体から液体に変化し、炭化、分解または蒸発することなく混合材料または複合材料中から液体状態で流出する。これにより、電気二重層キャパシタ用の電極材料などとして好適な孔径および比表面積を有する活性炭素多孔体を、歩留まりよく得ることができる。   In the production method of the present invention, a mixed material obtained by mixing a carbonized material and a thermoplastic resin, or a composite material obtained by mixing activated carbon and a thermoplastic resin at a predetermined temperature, is carbonized during carbonization. Alternatively, the thermoplastic resin contained in the composite material changes from solid to liquid and flows out from the mixed material or composite material in a liquid state without being carbonized, decomposed or evaporated. Thereby, an activated carbon porous body having a pore size and a specific surface area suitable as an electrode material for an electric double layer capacitor can be obtained with high yield.

[活性炭素多孔体の製造]
活性炭とは、「細孔を有する多孔質の炭素質物質」であり、大きな比表面積と吸着能力を持つ物質であり、活性炭素多孔体は、かかる活性炭の性状を有する多孔質の炭素質形状である。主に、「炭化工程」および「賦活工程」の2工程で製造される。活性炭素多孔体の形状は特に限定されないが、例えば、破砕物状、造粒物状、顆粒状、繊維状、フェルト状、織物状、シート状、棒状等の各種の形状が挙げられる。
[Production of activated carbon porous material]
Activated carbon is a “porous carbonaceous material having pores”, a material having a large specific surface area and adsorption capacity, and an activated carbon porous material has a porous carbonaceous shape having the properties of such activated carbon. is there. It is mainly manufactured in two steps, a “carbonization step” and an “activation step”. The shape of the activated carbon porous material is not particularly limited, and examples thereof include various shapes such as a crushed material shape, a granulated material shape, a granular shape, a fiber shape, a felt shape, a fabric shape, a sheet shape, and a rod shape.

本発明の活性炭素多孔体の製造方法は、
炭化性材料、および、融点が300℃以上の熱可塑性樹脂を混合して混合材料を得る混合工程と、
上記混合材料を炭化する炭化工程と、
炭化した上記混合材料を賦活する賦活工程とを備えることを特徴とする。
The method for producing the activated carbon porous body of the present invention includes:
A mixing step of mixing a carbonized material and a thermoplastic resin having a melting point of 300 ° C. or higher to obtain a mixed material;
A carbonization step for carbonizing the mixed material;
An activation step of activating the carbonized mixed material.

また、本発明の活性炭素多孔体の製造方法は、
上記炭化性材料から得られた活性炭および、融点が300℃以上の熱可塑性樹脂を混合して複合材料を得る混合工程と、
上記混合材料を炭化する炭化工程と、
炭化した上記混合材料を賦活する賦活工程とを備えることを特徴とする。
Moreover, the method for producing the activated carbon porous body of the present invention includes:
A mixing step of obtaining a composite material by mixing activated carbon obtained from the carbonized material and a thermoplastic resin having a melting point of 300 ° C. or higher;
A carbonization step for carbonizing the mixed material;
An activation step of activating the carbonized mixed material.

<混合工程>
(炭化性材料)
炭化性材料は、好ましくは、フェノール樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、石油ピッチ、石炭、石油コークス、石炭コークス、石炭ピッチ、木炭、おが屑、ヤシガラ、セルロース系繊維合成ピッチ、フォトレジスト、フェノールホルムアルデヒドレゾール、フェノールホルムアルデヒドノボラックからなる群から選ばれる少なくとも1種である。上記フェノール樹脂としては、特に限定はなく、種々公知のフェノール樹脂を用いることができ、例えば、レゾール樹脂、ノボラック樹脂、その他の特殊フェノール樹脂等を用いることができる。
<Mixing process>
(Carbonizable material)
The carbonized material is preferably phenol resin, epoxy resin, polyamide resin, polyimide resin, petroleum pitch, coal, petroleum coke, coal coke, coal pitch, charcoal, sawdust, coconut shell, cellulosic fiber synthetic pitch, photoresist, phenol It is at least one selected from the group consisting of formaldehyde resol and phenol formaldehyde novolak. There is no limitation in particular as said phenol resin, A various well-known phenol resin can be used, For example, a resole resin, a novolak resin, another special phenol resin, etc. can be used.

なお、上記炭化性材料には導電材を添加することもできる。導電材としては、炭素質材料に導電性を付与できるものであれば特に制限されず、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウイスカー、炭素繊維、天然黒鉛、人造黒鉛、酸化チタン、酸化ルテニウム、アルミニウム、ニッケル等の金属ファイバなどが挙げられ、これらの1種を単独でまたは2種以上を組み合せて用いることができる。   A conductive material can be added to the carbonized material. The conductive material is not particularly limited as long as it can impart conductivity to the carbonaceous material. For example, carbon black, ketjen black, acetylene black, carbon whisker, carbon fiber, natural graphite, artificial graphite, titanium oxide, Examples thereof include metal fibers such as ruthenium oxide, aluminum, and nickel, and these can be used alone or in combination of two or more.

(熱可塑性樹脂)
炭化性材料と混合される融点が300℃以上の熱可塑性樹脂は、好ましくは耐熱性芳香族熱可塑性樹脂である。耐熱性芳香族熱可塑性樹脂は、好ましくはベンゼン環がエーテルとケトンにより結合した直鎖状ポリマー構造を持ち、結晶性の熱可塑性樹脂に属するポリマーである芳香族ポリエーテルケトンである。芳香族ポリエーテルケトンとしては、例えば、融点が334℃のポリエーテルエーテルケトン樹脂(PEEK)、融点が383℃のポリエーテルケトンエーテルケトンケトン樹脂(PEKEKK)、融点が373℃のポリエーテルケトン(PEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルエーテルケトンケトン(PEEKK)が挙げられ、好ましくは、PEEKまたはPEKEKKである。
(Thermoplastic resin)
The thermoplastic resin having a melting point of 300 ° C. or higher mixed with the carbonized material is preferably a heat resistant aromatic thermoplastic resin. The heat-resistant aromatic thermoplastic resin is preferably an aromatic polyether ketone which has a linear polymer structure in which a benzene ring is bonded by ether and ketone and is a polymer belonging to a crystalline thermoplastic resin. Examples of the aromatic polyether ketone include polyether ether ketone resin (PEEK) having a melting point of 334 ° C., polyether ketone ether ketone ketone resin (PEKEKK) having a melting point of 383 ° C., and polyether ketone (PEK) having a melting point of 373 ° C. ), Polyetherketoneketone (PEKK), and polyetheretherketoneketone (PEEKK), preferably PEEK or PEKEKK.

(複合材料)
複合材料は、上記炭化性材料から硬化または/および炭化、賦活工程の通常の工程を経て製造された活性炭に、融点が300℃以上の熱可塑性樹脂を混合して得られる。活性炭と熱可塑性樹脂を混合する際において、活性炭の形状は特定されないが、熱可塑性樹脂は粒子状であることが好ましい。粒子状の熱可塑性樹脂の平均粒径は、好ましくは1〜100nmであり、より好ましくは2〜20nmである。これにより、電解質イオンが十分に浸透できるようなメソ孔(直径2〜50nm)を多く含み、かつ比表面積が大きなEDLC用電極に適した活性炭素多孔体を製造することが可能となる。
(Composite material)
The composite material is obtained by mixing a thermoplastic resin having a melting point of 300 ° C. or higher with activated carbon produced from the carbonized material through normal steps of curing and / or carbonization and activation. When the activated carbon and the thermoplastic resin are mixed, the shape of the activated carbon is not specified, but the thermoplastic resin is preferably particulate. The average particle size of the particulate thermoplastic resin is preferably 1 to 100 nm, more preferably 2 to 20 nm. This makes it possible to produce an activated carbon porous body suitable for an EDLC electrode that includes a large number of mesopores (diameter: 2 to 50 nm) through which electrolyte ions can permeate sufficiently and has a large specific surface area.

(混合材料)
上記混合材料を得る混合工程において、熱可塑性樹脂の混合割合は、活性炭と熱可塑性樹脂との合計重量に対して、好ましくは0.01〜30重量%であり、より好ましくは0.1〜10重量%である。このような範囲に調整することで、所望の孔径および比表面積を有する活性炭素多孔体を得ることができる。
(Mixed material)
In the mixing step for obtaining the mixed material, the mixing ratio of the thermoplastic resin is preferably 0.01 to 30% by weight, more preferably 0.1 to 10%, based on the total weight of the activated carbon and the thermoplastic resin. % By weight. By adjusting to such a range, an activated carbon porous body having a desired pore size and specific surface area can be obtained.

混合工程の温度は、炭化性材料が硬化しないような温度(炭化性材料がフェノール樹脂等の熱硬化性樹脂である場合は、硬化温度より低い温度)であることが好ましく、また、熱可塑性樹脂の融点より低い温度であることが好ましい。このような温度において、混合工程を実施することにより、熱可塑性樹脂の混合前の形状を維持したまま、熱可塑性樹脂を炭化性材料中に分散させることができる。   The temperature of the mixing step is preferably a temperature at which the carbonized material does not cure (when the carbonized material is a thermosetting resin such as a phenol resin, a temperature lower than the curing temperature), and the thermoplastic resin The temperature is preferably lower than the melting point. By performing the mixing step at such a temperature, the thermoplastic resin can be dispersed in the carbonized material while maintaining the shape before mixing of the thermoplastic resin.

<硬化工程>
本発明の活性炭素多孔体の製造方法は、炭化工程の前に、硬化工程を含んでいてもよい。この硬化工程により、最終的に得られる活性炭素多孔体の形状を調整することができる。
<Curing process>
The manufacturing method of the activated carbon porous body of this invention may include the hardening process before the carbonization process. By this curing step, the shape of the finally obtained activated carbon porous body can be adjusted.

炭化性材料と熱可塑性樹脂との混合材料の硬化は、100〜300℃の温度で0.2〜10時間かけて行なうことが好ましい。   Curing of the mixed material of the carbonized material and the thermoplastic resin is preferably performed at a temperature of 100 to 300 ° C. for 0.2 to 10 hours.

例えば、炭化性材料としてノボラック型フェノール樹脂を用いる場合、硬化剤によって硬化処理を施すことが好ましい。ノボラック型フェノール樹脂を炭化して得られた炭素を用いて作製された電極材は、充電時に起こる構造変化が抑制され、出力特性の悪化が抑制されるので好ましい。ノボラック型フェノール樹脂の硬化剤としては特に制限はないが、具体的にはヘキサメチレンテトラミン、パラホルムアルデヒド等のホルムアルデヒド供給源が挙げられる。また、硬化の手法としてはノボラック型フェノール樹脂を溶融させ硬化剤と混合する溶融硬化が一般的であるが、ノボラック型フェノール樹脂を水溶液中に縣濁させた後硬化剤を添加し、水溶液中で熱処理する縣濁硬化法、また、乾燥機等の加熱処理装置を用いた加熱硬化等が挙げられる。   For example, when a novolac type phenol resin is used as the carbonized material, it is preferable to perform a curing treatment with a curing agent. An electrode material produced using carbon obtained by carbonizing a novolak-type phenol resin is preferable because structural changes that occur during charging are suppressed, and deterioration of output characteristics is suppressed. Although there is no restriction | limiting in particular as a hardening | curing agent of a novolak type phenol resin, Specifically, formaldehyde supply sources, such as hexamethylenetetramine and paraformaldehyde, are mentioned. Also, as a curing method, melt curing in which a novolak type phenol resin is melted and mixed with a curing agent is generally used. Examples thereof include a suspension curing method in which heat treatment is performed, and heat curing using a heat treatment apparatus such as a dryer.

硬化した樹脂は粉砕した後に、次の炭化工程を行ってもよい。粉砕には通常の粉砕機を用いることができ、粉砕機としては、例えば、カッターミル、ピンミル、ジェットミルが挙げられる。   After the cured resin is pulverized, the next carbonization step may be performed. A normal pulverizer can be used for the pulverization, and examples of the pulverizer include a cutter mill, a pin mill, and a jet mill.

<炭化工程>
炭化方法としては、所定の時間、複合材料を加熱して炭化する方法が好ましい。加熱温度は、使用する熱可塑性樹脂の融点以上の温度であり、熱可塑性樹脂が炭化、分解または蒸発する温度以下の温度であることが好ましく、具体的には、300〜1000℃であることが好ましい。加熱は非酸化性雰囲気下で行われることが好ましい。非酸化性雰囲気下としては、例えば、窒素、アルゴン、ヘリウム、キセノン、ネオンなどの不活性ガス、または、これらの2種以上の混合ガスの雰囲気下が挙げられる。加熱時間は、好ましくは0.1〜10時間である。この炭化工程により、混合材料中の炭化性材料が炭化するのとほぼ同時に、熱可塑性樹脂は固体から液体に変化し、混合材料から流出することで、炭化した炭化性材料中に熱可塑性樹脂の形状に応じた無数の微細孔が形成される。また、複合材料中の熱可塑性樹脂も炭化工程において、固体から液体に変化し、複合材料から流出することで、活性炭中に熱可塑性樹脂の形状に応じた無数の微細孔が形成される。
<Carbonization process>
As the carbonization method, a method of heating and carbonizing the composite material for a predetermined time is preferable. The heating temperature is a temperature equal to or higher than the melting point of the thermoplastic resin to be used, and is preferably a temperature equal to or lower than a temperature at which the thermoplastic resin is carbonized, decomposed or evaporated, and specifically, 300 to 1000 ° C. preferable. Heating is preferably performed in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include an atmosphere of an inert gas such as nitrogen, argon, helium, xenon, or neon, or a mixed gas of two or more of these. The heating time is preferably 0.1 to 10 hours. By this carbonization process, almost simultaneously with the carbonization of the carbonized material in the mixed material, the thermoplastic resin changes from a solid to a liquid and flows out of the mixed material. Innumerable fine holes are formed according to the shape. In addition, the thermoplastic resin in the composite material also changes from a solid to a liquid in the carbonization step and flows out of the composite material, so that innumerable micropores corresponding to the shape of the thermoplastic resin are formed in the activated carbon.

<賦活工程>
「賦活」とは、一般的に炭素材料の細孔構造を発達させ、細孔を付加することである。賦活工程に用いる賦活方法としては、特に限定されず、種々公知の賦活方法を用いることができる。
<Activation process>
“Activation” generally refers to developing a pore structure of a carbon material and adding pores. It does not specifically limit as an activation method used for an activation process, A various well-known activation method can be used.

上記炭化工程後も、混合材料中には一部の熱可塑性樹脂が残留している場合があるが、この場合でも、混合材料または複合材料中に残留していた熱可塑性樹脂は賦活工程により完全に流出する。   Even after the carbonization step, some of the thermoplastic resin may remain in the mixed material. Even in this case, the thermoplastic resin remaining in the mixed material or composite material is completely removed by the activation step. To leak.

[活性炭素多孔体]
本発明において得られる活性炭素多孔体は、直径が1〜100nmの孔の割合が細孔容量の総体積に対して50体積%以上であることが好ましい。後述の電気二重層キャパシタ用電極に用いる場合、電気二重層キャパシタを大電流で充放電可能なものとすることができるためである。なお、直径が1〜100nmの孔の割合は、BET法によって測定することができる。
[Active carbon porous material]
In the activated carbon porous body obtained in the present invention, the proportion of pores having a diameter of 1 to 100 nm is preferably 50% by volume or more based on the total volume of the pore volume. This is because when used for an electrode for an electric double layer capacitor described later, the electric double layer capacitor can be charged and discharged with a large current. The proportion of holes having a diameter of 1 to 100 nm can be measured by the BET method.

このような好ましい多孔構造を有する活性炭素多孔体は、上述の本発明の製造方法において、各条件を調整することにより得ることができる。特に、上記熱可塑性樹脂の粒径や混合割合を調整することで、所望の多孔構造を有する活性炭素多孔体を製造することが可能である。   The activated carbon porous body having such a preferable porous structure can be obtained by adjusting each condition in the production method of the present invention described above. In particular, it is possible to produce an activated carbon porous body having a desired porous structure by adjusting the particle size and mixing ratio of the thermoplastic resin.

このため、本発明の製造方法は、上述の電気二重層キャパシタ用電極に用いるのに適した活性炭素多孔体の製造だけでなく、各種の吸着剤に適した他の所望の多孔構造を有する活性炭素多孔体の製造に用いた場合においても、高い歩留りで所望の活性炭素多孔体を製造することができる。   Therefore, the production method of the present invention not only produces an activated carbon porous body suitable for use in the above-mentioned electrode for an electric double layer capacitor, but also has an active structure having other desired porous structure suitable for various adsorbents. Even when used for the production of a carbon porous body, a desired activated carbon porous body can be produced with a high yield.

また、活性炭素多孔体のBET比表面積は、好ましくは500〜3000m2/gであり、より好ましくは1200〜2500m2/gである。BET比表面積が500m2/g未満であると、十分な静電容量が得られない場合があり、3000m2/gを超えるとかさ密度が低くなり、電気二重層キャパシタの体積容量が低下するため好ましくない。なお、BET比表面積は窒素ガス吸着測定などにより測定することが可能である。 Further, BET specific surface area of activated carbon porous body is preferably a 500~3000m 2 / g, more preferably 1200~2500m 2 / g. If the BET specific surface area is less than 500 m 2 / g, sufficient electrostatic capacity may not be obtained, and if it exceeds 3000 m 2 / g, the bulk density decreases and the volume capacity of the electric double layer capacitor decreases. It is not preferable. The BET specific surface area can be measured by nitrogen gas adsorption measurement or the like.

[電気二重層キャパシタ用電極]
電気二重層キャパシタは、通常、一対の電極(電気二重層キャパシタ用電極)と、これら分極性電極間に介在させたセパレータと、電解液とを含んでいる。本発明に係る電気二重層キャパシタ(EDLC)用電極は、上述のようにして製造された活性炭素多孔体を用いるものである。
[Electric double layer capacitor electrode]
An electric double layer capacitor usually includes a pair of electrodes (electric double layer capacitor electrodes), a separator interposed between these polarizable electrodes, and an electrolytic solution. The electrode for an electric double layer capacitor (EDLC) according to the present invention uses the activated carbon porous body manufactured as described above.

ELDC用電極としては、例えば、上記活性炭素多孔体とバインダーポリマーとを含んでなる電極組成物を、集電体上に塗布してなるものを用いることができる。また、電極組成物を溶融混練した後、押出し、フィルム成形することにより形成することもできる。さらに、活性炭素多孔体をシート状に成形した場合、かかるシート状の活性炭素多孔体を表面処理されたアルミシートなどの集電体上に貼り付けることにより、ELDC用電極を形成することもできる。この場合、塗布及び乾燥工程が省略できるので、大幅に電極の製造コストを低減できる。両者の貼り付けには、例えば、種々公知の導電性接着剤等を用いることができる。   As the electrode for ELDC, for example, an electrode composition comprising an active carbon porous body and a binder polymer coated on a current collector can be used. Moreover, after melt-kneading an electrode composition, it can also form by extruding and film-forming. Furthermore, when the activated carbon porous body is formed into a sheet shape, an ELDC electrode can be formed by pasting the sheet-like activated carbon porous body on a current collector such as a surface-treated aluminum sheet. . In this case, since the coating and drying steps can be omitted, the manufacturing cost of the electrode can be greatly reduced. For the pasting of both, for example, various known conductive adhesives can be used.

集電体を構成する正・負極としては、通常、ELDCに用いられるものを任意に選択して使用できるが、集電体としてアルミニウム箔を用いることが好ましい。   As the positive and negative electrodes constituting the current collector, those usually used for ELDC can be arbitrarily selected and used, but it is preferable to use an aluminum foil as the current collector.

上記各集電体を構成する箔の形状としては、薄い箔状、平面に広がったシート状、孔が形成されたスタンパブルシート状等を採用できる。また、箔の厚さは特に限定されないが、通常は1〜200μm程度である。   As the shape of the foil constituting each of the current collectors, a thin foil shape, a sheet shape spread on a plane, a stampable sheet shape with holes formed, or the like can be adopted. Moreover, although the thickness of foil is not specifically limited, Usually, it is about 1-200 micrometers.

なお、上記セパレータとしては、通常電気二重層キャパシタ用のセパレータ基材として用いられているものを使用することができる。例えば、ポリオレフィン不織布、PTFE多孔体フィルム、クラフト紙、レーヨン繊維・サイザル麻繊維混抄シート、マニラ麻シート、ガラス繊維シート、セルロース系電解紙、レーヨン繊維からなる抄紙、セルロースとガラス繊維の混抄紙、またはこれらを組み合せて複数層に構成したものなどを使用することができる。   In addition, as said separator, what is normally used as a separator base material for electric double layer capacitors can be used. For example, polyolefin nonwoven fabric, PTFE porous film, kraft paper, rayon fiber / sisal fiber mixed paper, manila hemp sheet, glass fiber sheet, cellulosic electrolytic paper, paper made of rayon fiber, mixed paper of cellulose and glass fiber, or these It is possible to use a combination of two or more layers.

電気二重層キャパシタは、上記のようにして得られる一対の電極間にセパレータを介在させてなる電気二重層キャパシタ構造体を積層、折畳、または捲回させて、さらにコイン型に形成し、これを電池缶またはラミネートパック等の電池容器に収容した後、電解液を充填し、電池缶であれば封缶することにより、一方、ラミネートパックであればヒートシールすることにより、組み立てることができる。   An electric double layer capacitor is formed by laminating, folding, or winding an electric double layer capacitor structure in which a separator is interposed between a pair of electrodes obtained as described above, and further forming a coin shape. Can be assembled by filling an electrolyte solution and then sealing the battery can, and heat-sealing the laminate pack.

本発明の電気二重層キャパシタ用電極を用いた電気二重層キャパシタは、大電流で充放電可能なものであり、電気自動車、電動工具等の大電流を必要とする大電流蓄電デバイスとして好適に使用することができる。また、本発明は電気二重層キャパシタだけでなく、一方の電極に電気二重層を使用し、他方の電極が酸化還元反応を使用したハイブリッドキャパシタ(リチウムイオンキャパシタ)に応用することで電気二重層キャパシタ同様の効果が得られる。   The electric double layer capacitor using the electric double layer capacitor electrode of the present invention can be charged and discharged with a large current, and is suitably used as a large current storage device that requires a large current such as an electric vehicle or an electric tool. can do. The present invention is applied not only to an electric double layer capacitor but also to a hybrid capacitor (lithium ion capacitor) in which one electrode uses an electric double layer and the other electrode uses an oxidation-reduction reaction. Similar effects can be obtained.

以下、実施例にて本発明を詳細に説明する。
(実施例1)
平均粒径8μmのフェノール樹脂(マリリン樹脂HF−008、群栄化学工業社製)に、ポリエーテルエーテルケトン(PEEK)樹脂(KT−820P、ソルベイスペシャリティポリマーズ社製)を破砕して得た平均粒径78nmのPEEK樹脂を、フェノール樹脂/PEEK樹脂の重量比5/1で混練した。その混練した混合物をジメチルフォルムアルデヒドに溶解して20重量%溶液を得た。得られた溶液を、厚さ100μmのポリエチレンテレフタレートフイルム表面に厚さ20μmで塗布した。
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
Average particle size obtained by crushing polyether ether ketone (PEEK) resin (KT-820P, Solvay Specialty Polymers) to phenol resin (Marilyn resin HF-008, Gunei Chemical Industry Co., Ltd.) having an average particle size of 8 μm A PEEK resin having a diameter of 78 nm was kneaded at a phenol resin / PEEK resin weight ratio of 5/1. The kneaded mixture was dissolved in dimethylformaldehyde to obtain a 20 wt% solution. The resulting solution was applied to the surface of a polyethylene terephthalate film having a thickness of 100 μm with a thickness of 20 μm.

そのシート(20cm×30cm)を試料として、窒素気流下、250℃の温度で50分加熱した後冷却した。次いで、該シートを窒素気流下200℃、5時間低温焼成した後、該シートを窒素気流下900℃で180分焼成し炭化させた。更に、KOHを混合した窒素気流下で、炭化材料(炭化したシート)を900℃、50分間保持しアルカリ賦活させた。このアルカリ賦活物を塩酸洗浄し、温水洗浄して活性炭素多孔体を得た。   The sheet (20 cm × 30 cm) was used as a sample, heated at a temperature of 250 ° C. for 50 minutes under a nitrogen stream, and then cooled. Next, the sheet was fired at 200 ° C. for 5 hours under a nitrogen stream at low temperature, and then the sheet was fired and carbonized at 900 ° C. for 180 minutes under a nitrogen stream. Furthermore, the carbonized material (carbonized sheet) was kept at 900 ° C. for 50 minutes to activate the alkali under a nitrogen stream mixed with KOH. This alkali activated material was washed with hydrochloric acid and washed with warm water to obtain an activated carbon porous body.

得られた活性炭素多孔体は、20nmの平均細孔径と1250m/gの比表面積を有するものであった。また、全細孔容積に対する細孔径1〜100nmの細孔の割合は60体積%であった。比表面積はBET法により求め、細孔径と細孔容積は、ミクロ領域(0.1〜1.0nm)、ミクロ領域(1.0〜2.0nm)およびメソポア領域(1〜100nm)の細孔径分布から算出した。 The obtained activated carbon porous body had an average pore diameter of 20 nm and a specific surface area of 1250 m 2 / g. The ratio of pores having a pore diameter of 1 to 100 nm with respect to the total pore volume was 60% by volume. The specific surface area is determined by the BET method, and the pore diameter and pore volume are the pore diameters of the micro region (0.1 to 1.0 nm), micro region (1.0 to 2.0 nm) and mesopore region (1 to 100 nm). Calculated from the distribution.

(実施例2)
平均粒径0.60μmの微粒球状フェノール樹脂の水分散液(固形分90質量%)に対して、粒子径78nmのPEEK樹脂を36重量%混合し、脱水し、粗解砕し、平均粒径8μmの破砕状とした。粗解砕品を窒素気流下200℃、5時間低温焼成した後、700℃、3時間加熱して炭化を行った。さらにロータリーキルンを用いて700℃、10時間KOHでアルカリ賦活させた。更に、このアルカリ賦活物を塩酸洗浄し、温水洗浄して平均粒径6μmの球状活性炭(活性炭素多孔体)を得た。
(Example 2)
36% by weight of PEEK resin having a particle diameter of 78 nm is mixed with an aqueous dispersion of fine spherical phenol resin having an average particle diameter of 0.60 μm (solid content: 90% by mass), dehydrated, coarsely crushed, and average particle diameter The crushed shape was 8 μm. The coarsely crushed product was calcined by heating at 700 ° C. for 3 hours at a low temperature of 200 ° C. for 5 hours in a nitrogen stream. Further, alkali activation was performed with KOH at 700 ° C. for 10 hours using a rotary kiln. Furthermore, this alkali activated material was washed with hydrochloric acid and washed with warm water to obtain spherical activated carbon (activated carbon porous material) having an average particle diameter of 6 μm.

得られた活性炭は、1300m/gの比表面積を有しており、全細孔容積に対する細孔径1〜100nmの細孔の割合は58体積%であった。 The obtained activated carbon had a specific surface area of 1300 m 2 / g, and the ratio of pores having a pore diameter of 1 to 100 nm with respect to the total pore volume was 58% by volume.

前記実施例1および2で得られた活性炭素多孔体は、電気二重層キャパシタ用電極に適した性能を有するものであった。   The activated carbon porous body obtained in Examples 1 and 2 had performance suitable for an electrode for an electric double layer capacitor.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明で得られる活性炭素多孔体は、電気二重層コンデンサ用電極およびハイブリッドキャパシタ(リチウムイオンキャパシタ)や各種吸着材の炭素材料として好適に利用できる。   The activated carbon porous body obtained by the present invention can be suitably used as an electric double layer capacitor electrode, a hybrid capacitor (lithium ion capacitor), and a carbon material for various adsorbents.

Claims (9)

炭化性材料、および、融点が300℃以上の熱可塑性樹脂を混合して混合材料を得る混合工程と、
前記混合材料を炭化する炭化工程と、
炭化した前記混合材料を賦活する賦活工程とを備えることを特徴とする、活性炭素多孔体の製造方法。
A mixing step of mixing a carbonized material and a thermoplastic resin having a melting point of 300 ° C. or higher to obtain a mixed material;
A carbonization step of carbonizing the mixed material;
An activated carbon porous body production method comprising: an activation step of activating the carbonized mixed material.
炭化性材料から得られた活性炭、および、融点が300℃以上の熱可塑性樹脂を混合して複合材料を得る混合工程と、
前記複合材料を炭化する炭化工程と、
炭化した前記複合材料を賦活する賦活工程とを備えることを特徴とする、活性炭素多孔体の製造方法。
A mixing step of obtaining a composite material by mixing activated carbon obtained from a carbonized material and a thermoplastic resin having a melting point of 300 ° C. or higher;
A carbonization step of carbonizing the composite material;
An activated carbon porous body production method comprising: an activation step of activating the carbonized composite material.
前記熱可塑性樹脂は、ポリエーテルエーテルケトン樹脂またはポリエーテルケトンエーテルケトンケトン樹脂である、請求項1または2に記載の活性炭素多孔体の製造方法。   The said thermoplastic resin is a manufacturing method of the activated carbon porous body of Claim 1 or 2 which is polyether ether ketone resin or polyether ketone ether ketone ketone resin. 前記複合材料を得る混合工程において、前記活性炭と混合する前記熱可塑性樹脂が粒子状であり、その平均粒径が1〜100nmである、請求項2または3に記載の活性炭素多孔体の製造方法。   The method for producing an activated carbon porous body according to claim 2 or 3, wherein in the mixing step of obtaining the composite material, the thermoplastic resin mixed with the activated carbon is in the form of particles, and the average particle diameter is 1 to 100 nm. . 前記混合材料を得る混合工程において、前記熱可塑性樹脂の混合割合が、前記炭化性材料と前記熱可塑性樹脂との合計重量に対して0.01〜30重量%である、請求項1または3に記載の活性炭素多孔体の製造方法。   In the mixing step of obtaining the mixed material, the mixing ratio of the thermoplastic resin is 0.01 to 30% by weight with respect to the total weight of the carbonized material and the thermoplastic resin. The manufacturing method of the activated carbon porous body of description. 前記炭化工程の温度は300〜1000℃である、請求項1〜5のいずれかに記載の活性炭素多孔体の製造方法。   The temperature of the said carbonization process is a manufacturing method of the activated carbon porous body in any one of Claims 1-5 which is 300-1000 degreeC. 請求項1〜6のいずれかに記載の活性炭素多孔体の製造方法を用いて製造された活性炭素多孔体。   The activated carbon porous body manufactured using the manufacturing method of the activated carbon porous body in any one of Claims 1-6. 請求項7に記載の活性炭素多孔体を備えた電気二重層キャパシタ用電極。   The electrode for electric double layer capacitors provided with the activated carbon porous body of Claim 7. 直径が1〜100nmの孔の割合が細孔容量の総体積に対して50体積%以上である活性炭素多孔体。   An activated carbon porous body in which the ratio of pores having a diameter of 1 to 100 nm is 50% by volume or more based on the total volume of the pore volume.
JP2012169804A 2011-08-02 2012-07-31 Method for producing activated carbon porous body Expired - Fee Related JP6220504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169804A JP6220504B2 (en) 2011-08-02 2012-07-31 Method for producing activated carbon porous body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011169233 2011-08-02
JP2011169233 2011-08-02
JP2012169804A JP6220504B2 (en) 2011-08-02 2012-07-31 Method for producing activated carbon porous body

Publications (2)

Publication Number Publication Date
JP2013049617A true JP2013049617A (en) 2013-03-14
JP6220504B2 JP6220504B2 (en) 2017-10-25

Family

ID=48011995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169804A Expired - Fee Related JP6220504B2 (en) 2011-08-02 2012-07-31 Method for producing activated carbon porous body

Country Status (1)

Country Link
JP (1) JP6220504B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056502A (en) * 2013-09-11 2015-03-23 株式会社キャタラー Active carbon for hybrid capacitor and method for manufacturing the same
JP2016058207A (en) * 2014-09-09 2016-04-21 株式会社リコー Nonaqueous electrolyte power storage device
JP2017222547A (en) * 2016-06-16 2017-12-21 進和テック株式会社 Method for producing activated carbon, and activated carbon production system
WO2023286809A1 (en) * 2021-07-13 2023-01-19 旭化成株式会社 Porous polyimide having highly uniform nano structure
KR102636378B1 (en) * 2022-11-30 2024-02-14 (주)스마트코리아 Carbon support for manufacturing high-performance silicon anode material for lithium secondary battery and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301784A (en) * 1992-03-27 1993-11-16 Pentel Kk Production of hollow active carbon compact
JPH1050566A (en) * 1996-08-01 1998-02-20 Kyocera Corp Solid state active carbon, manufacture thereof and electric double layer capacitor using the same
JPH11307405A (en) * 1998-04-27 1999-11-05 Isuzu Advanced Engineering Center Ltd Electric double layer capacitor and electrode and activated carbon and its manufacture
JP2002521296A (en) * 1998-07-20 2002-07-16 コーニング インコーポレイテッド Method for producing mesoporous carbon using pore former
JP2006264993A (en) * 2005-03-22 2006-10-05 Sumitomo Bakelite Co Ltd Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301784A (en) * 1992-03-27 1993-11-16 Pentel Kk Production of hollow active carbon compact
JPH1050566A (en) * 1996-08-01 1998-02-20 Kyocera Corp Solid state active carbon, manufacture thereof and electric double layer capacitor using the same
JPH11307405A (en) * 1998-04-27 1999-11-05 Isuzu Advanced Engineering Center Ltd Electric double layer capacitor and electrode and activated carbon and its manufacture
JP2002521296A (en) * 1998-07-20 2002-07-16 コーニング インコーポレイテッド Method for producing mesoporous carbon using pore former
JP2006264993A (en) * 2005-03-22 2006-10-05 Sumitomo Bakelite Co Ltd Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056502A (en) * 2013-09-11 2015-03-23 株式会社キャタラー Active carbon for hybrid capacitor and method for manufacturing the same
JP2016058207A (en) * 2014-09-09 2016-04-21 株式会社リコー Nonaqueous electrolyte power storage device
JP2017222547A (en) * 2016-06-16 2017-12-21 進和テック株式会社 Method for producing activated carbon, and activated carbon production system
WO2023286809A1 (en) * 2021-07-13 2023-01-19 旭化成株式会社 Porous polyimide having highly uniform nano structure
KR102636378B1 (en) * 2022-11-30 2024-02-14 (주)스마트코리아 Carbon support for manufacturing high-performance silicon anode material for lithium secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP6220504B2 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
Yan et al. Interconnected frameworks with a sandwiched porous carbon layer/graphene hybrids for supercapacitors with high gravimetric and volumetric performances
Rajesh et al. Pinecone biomass‐derived activated carbon: the potential electrode material for the development of symmetric and asymmetric supercapacitors
Barzegar et al. Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability
Thubsuang et al. Tuning pore characteristics of porous carbon monoliths prepared from rubber wood waste treated with H 3 PO 4 or NaOH and their potential as supercapacitor electrode materials
Zhong et al. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes
Hao et al. Sandwich‐type microporous carbon nanosheets for enhanced supercapacitor performance
JP4662730B2 (en) Macroreticular carbonaceous materials useful in energy storage devices
KR101909304B1 (en) Porous Carbon for Electrochemical Double Layer Capacitors
Peng et al. Electrospun porous carbon nanofibers as lithium ion battery anodes
Tang et al. Combining Nature‐Inspired, Graphene‐Wrapped Flexible Electrodes with Nanocomposite Polymer Electrolyte for Asymmetric Capacitive Energy Storage
US20150062779A1 (en) Edlc electrode and manufacturing process thereof
Dong et al. Nitrogen‐Doped Foam‐like Carbon Plate Consisting of Carbon Tubes as High‐Performance Electrode Materials for Supercapacitors
Mitravinda et al. Design and development of honeycomb structured nitrogen-rich cork derived nanoporous activated carbon for high-performance supercapacitors
JP2012133959A (en) Composite capacitor negative electrode plate for lead storage battery, and lead storage battery
JP6220504B2 (en) Method for producing activated carbon porous body
US10276312B2 (en) High surface area carbon materials and methods for making same
Huyan et al. Magnetic tubular carbon nanofibers as anode electrodes for high‐performance lithium‐ion batteries
Ma et al. Dehalogenation produces graphene wrapped carbon cages as fast-kinetics and large-capacity anode for lithium-ion capacitors
Ranjith et al. Lignin‐derived carbon nanofibers‐laminated redox‐active‐mixed metal sulfides for high‐energy rechargeable hybrid supercapacitors
KR102177976B1 (en) Method for manufacturing graphene composite, eletrode active material and secondary battery including the same
JP2014105119A (en) Sulfur-doped active carbon for storage device and method for producing the same
Shang et al. Waste particleboard-derived nitrogen-containing activated carbon through KOH activation for supercapacitors
JP2006282444A (en) Method for manufacturing spherical alga-like carbon having large specific surface area and electric double layer capacitor using the same
JP5164418B2 (en) Carbon material for electricity storage device electrode and method for producing the same
JP2008181949A (en) Electrode material for electric double-layer capacitor and the electric double-layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171002

R150 Certificate of patent or registration of utility model

Ref document number: 6220504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees