JP2006264993A - Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell - Google Patents

Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell Download PDF

Info

Publication number
JP2006264993A
JP2006264993A JP2005081092A JP2005081092A JP2006264993A JP 2006264993 A JP2006264993 A JP 2006264993A JP 2005081092 A JP2005081092 A JP 2005081092A JP 2005081092 A JP2005081092 A JP 2005081092A JP 2006264993 A JP2006264993 A JP 2006264993A
Authority
JP
Japan
Prior art keywords
carbon material
alkali metal
precursor
resin composition
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005081092A
Other languages
Japanese (ja)
Inventor
Toru Kamata
徹 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2005081092A priority Critical patent/JP2006264993A/en
Publication of JP2006264993A publication Critical patent/JP2006264993A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a carbon material capable of manufacturing a negative electrode material for a non-aqueous electrolyte secondary cell having excellent charge discharge characteristics, the carbon material obtained by the manufacturing method, the negative electrode material for the secondary cell using the carbon material and a non-aqueous electrolyte secondary cell. <P>SOLUTION: The method of manufacturing the carbon material has (a) a step for preparing a carbon material precursor which is one of a resin composition, a hardened material of the resin composition or a pre-carbonized material of them, (b) a step for supporting an alkali metal-containing compound on the surface of the carbon material precursor to make an alkali metal supported precursor, (c) a step for carbonizing the alkali metal supported precursor and (d) a step for washing the treated material after the carbonization to substantially remove the alkali metal component existing at least on the surface part of the treated material. The carbon material is manufactured by this method. The secondary negative electrode material contains the carbon material. The non-aqueous electrolyte secondary cell uses the negative electrode material for secondary cell. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭素材の製造方法、炭素材、二次電池用負極材、及び、非水電解質二次電池に関するものである。   The present invention relates to a carbon material production method, a carbon material, a negative electrode material for a secondary battery, and a non-aqueous electrolyte secondary battery.

炭素材は、リチウムイオン二次電池用負極、コンデンサー用電極、電解用電極、活性炭など多様な範囲の用途に用いられており、今後更なる開発が期待されている分野である。
これらの炭素材は、従来、椰子殻、石炭コークス、石炭又は石油ピッチ、フラン樹脂、フェノール樹脂などを原料としている(例えば、特許文献1参照。)。しかし、これらの原料から得られた従来の炭素材は、表面に形成される細孔径のバラツキが大きく、また各々の細孔容積が大きいため、特に非水電解質二次電池用の負極材として用いた場合に、充放電容量やサイクル性などにおいてその特性が充分ではない場合があった。
Carbon materials are used in a wide range of applications such as negative electrodes for lithium ion secondary batteries, capacitor electrodes, electrodes for electrolysis, and activated carbon, and are areas where further development is expected in the future.
These carbon materials are conventionally made from coconut shell, coal coke, coal or petroleum pitch, furan resin, phenol resin, and the like (for example, see Patent Document 1). However, the conventional carbon materials obtained from these raw materials have a large variation in pore diameter formed on the surface, and each pore volume is large, so that they are particularly used as negative electrode materials for non-aqueous electrolyte secondary batteries. In some cases, the characteristics are not sufficient in terms of charge / discharge capacity and cycleability.

特開平05−043345号公報JP 05-043345 A

本発明は、充放電特性に優れた非水電解質二次電池用の負極材を製造することができる炭素材の製造方法と、この製造方法により得られた炭素材、この炭素材を用いた二次電池用負極材、及び、非水電解質二次電池を提供するものである。   The present invention provides a method for producing a carbon material capable of producing a negative electrode material for a non-aqueous electrolyte secondary battery having excellent charge / discharge characteristics, a carbon material obtained by this production method, and a carbon material obtained by using this carbon material. A negative electrode material for a secondary battery and a nonaqueous electrolyte secondary battery are provided.

このような目的は、以下の本発明(1)〜(7)によって達成される。
(1) 炭素材前駆体を炭化処理してなる炭素材の製造方法であって、
(a)樹脂組成物、該樹脂組成物の硬化物、あるいは、これらを予備炭化処理してなるもののいずれかである炭素材前駆体を調製する工程、
(b)前記炭素材前駆体表面にアルカリ金属含有化合物を担持させ、アルカリ金属担持前駆体とする工程、
(c)前記アルカリ金属担持前駆体を、炭化処理する工程、及び、
(d)前記炭化処理後の処理物を水洗して、該処理物中のアルカリ金属成分を実質的に除去する工程、
を有することを特徴とする、炭素材の製造方法。
(2) 前記樹脂組成物は、ノボラック型フェノール樹脂、メラミン樹脂、フラン樹脂、及び、アニリン樹脂から選ばれる1種以上を有するものである(1)に記載の炭素材の製造方法。
(3) 前記アルカリ金属含有化合物の担持量は、前記炭素材前駆体に対して、アルカリ金属成分換算で0.1〜5重量%である(1)又は(2)に記載の炭素材の製造方法。
(4) (1)ないし(3)のいずれかに記載の製造方法により得られたものであることを特徴とする炭素材。
(5) 前記炭素材は、その表面に形成された0.33nmを超える細孔径を有する細孔容積が、1〜100ml/kgである(4)に記載の炭素材。
(6) (4)又は(5)に記載の炭素材を含有することを特徴とする二次電池用負極材。
(7) (6)に記載の二次電池用負極材を用いることを特徴とする非水電解質二次電池。
Such an object is achieved by the following present inventions (1) to (7).
(1) A method for producing a carbon material obtained by carbonizing a carbon material precursor,
(A) a step of preparing a carbon material precursor that is either a resin composition, a cured product of the resin composition, or a material obtained by pre-carbonizing the resin composition,
(B) a step of supporting an alkali metal-containing compound on the surface of the carbon material precursor to obtain an alkali metal-supported precursor;
(C) a step of carbonizing the alkali metal-supported precursor; and
(D) a step of washing the treated product after the carbonization treatment with water to substantially remove an alkali metal component in the treated product;
A method for producing a carbon material, comprising:
(2) The said resin composition is a manufacturing method of the carbon material as described in (1) which has 1 or more types chosen from a novolak-type phenol resin, a melamine resin, a furan resin, and an aniline resin.
(3) The production amount of the carbon material according to (1) or (2), wherein the supported amount of the alkali metal-containing compound is 0.1 to 5% by weight in terms of an alkali metal component with respect to the carbon material precursor. Method.
(4) A carbon material obtained by the production method according to any one of (1) to (3).
(5) The carbon material according to (4), wherein the carbon material has a pore volume of 1 to 100 ml / kg having a pore diameter exceeding 0.33 nm formed on a surface thereof.
(6) A negative electrode material for a secondary battery comprising the carbon material according to (4) or (5).
(7) A nonaqueous electrolyte secondary battery using the secondary battery negative electrode material according to (6).

本発明は、樹脂組成物、該樹脂組成物の硬化物、あるいは、これらを予備炭化処理してなるもののいずれかである炭素材前駆体を調製し、この表面にアルカリ金属含有化合物を担持させ、炭化処理した後、炭化処理後の処理物を水洗して、該処理物中のアルカリ金属成分を実質的に除去する工程を有することを特徴とする炭素材の製造方法であり、この製造方法により得られた炭素材を用いることにより、充放電特性に優れた非水電解質二次電池用負極材を得ることができる。   The present invention prepares a carbon material precursor that is either a resin composition, a cured product of the resin composition, or a pre-carbonized product thereof, and supports an alkali metal-containing compound on the surface, After the carbonization treatment, the carbonized product is washed with water, and has a step of substantially removing the alkali metal component in the treated product. By using the obtained carbon material, a negative electrode material for a non-aqueous electrolyte secondary battery excellent in charge / discharge characteristics can be obtained.

以下に、本発明の炭素材の製造方法(以下、単に「製造方法」ということがある)と、この製造方法により得られた炭素材と、これを用いた二次電池用負極材、及び、非水電解質二次電池について詳細に説明する。
本発明の製造方法は、炭素材前駆体を炭化処理してなる炭素材の製造方法であって、
(a)樹脂組成物、該樹脂組成物の硬化物、あるいは、これらを予備炭化処理してなるもののいずれかである炭素材前駆体を調製する工程、
(b)上記炭素材前駆体表面にアルカリ金属含有化合物を担持させ、アルカリ金属担持前駆体とする工程、
(c)上記アルカリ金属担持前駆体を、炭化処理する工程、及び、
(d)上記炭化処理後の処理物を水洗して、該処理物中のアルカリ金属成分を実質的に除去する工程、
を有することを特徴とする。
また、本発明の炭素材は、上記本発明の製造方法により得られたものであることを特徴とする。
また、本発明の二次電池用負極材は、上記本発明の炭素材を含有することを特徴とする。
そして、本発明の非水電解質二次電池は、上記本発明の二次電池用負極材を用いることを特徴とする。
まず、本発明の製造方法、及び、この製造方法により得られる炭素材について詳細に説明する。
Below, the carbon material production method of the present invention (hereinafter sometimes simply referred to as “production method”), the carbon material obtained by this production method, a negative electrode material for a secondary battery using the same, and The nonaqueous electrolyte secondary battery will be described in detail.
The production method of the present invention is a method for producing a carbon material obtained by carbonizing a carbon material precursor,
(A) a step of preparing a carbon material precursor that is either a resin composition, a cured product of the resin composition, or a material obtained by pre-carbonizing the resin composition,
(B) a step of supporting an alkali metal-containing compound on the surface of the carbon material precursor to obtain an alkali metal-supported precursor;
(C) a step of carbonizing the alkali metal-supported precursor, and
(D) a step of washing the treated product after the carbonization treatment with water to substantially remove an alkali metal component in the treated product;
It is characterized by having.
Moreover, the carbon material of the present invention is obtained by the production method of the present invention.
Moreover, the negative electrode material for secondary batteries of this invention contains the carbon material of the said this invention, It is characterized by the above-mentioned.
And the nonaqueous electrolyte secondary battery of this invention uses the said negative electrode material for secondary batteries of this invention, It is characterized by the above-mentioned.
First, the manufacturing method of this invention and the carbon material obtained by this manufacturing method are demonstrated in detail.

本発明の製造方法は、まず、
(a)樹脂組成物、該樹脂組成物の硬化物、あるいは、これらを予備炭化処理してなるもののいずれかである炭素材前駆体を調製する。
First, the production method of the present invention includes:
(A) A carbon material precursor that is either a resin composition, a cured product of the resin composition, or a material obtained by pre-carbonizing the resin composition is prepared.

まず、本発明の製造方法において用いられる樹脂組成物について説明する。
上記樹脂組成物としては特に限定されないが、例えば、熱硬化性樹脂、熱可塑性樹脂、あるいは、その他の高分子材料から選ばれるもの(以下、これらを単に「主成分樹脂類」ということがある)を含有することができる。上記主成分樹脂類は、単独あるいは二種類以上を併用することができる。
また、上記主成分樹脂類とともに、硬化剤、添加剤などを併せて含有することができる。
First, the resin composition used in the production method of the present invention will be described.
Although it does not specifically limit as said resin composition, For example, what is chosen from a thermosetting resin, a thermoplastic resin, or another polymeric material (Hereafter, these may be only called "main component resin.") Can be contained. The main component resins can be used alone or in combination of two or more.
Moreover, a hardening | curing agent, an additive, etc. can be contained together with the said main component resin.

なお、本発明において上記の樹脂組成物は、主成分樹脂類として一種類の樹脂のみを含有する場合もあるが、便宜上、これも樹脂組成物と呼称することとする。   In the present invention, the above resin composition may contain only one kind of resin as the main component resin, but for convenience, it is also referred to as a resin composition.

ここで熱硬化性樹脂としては特に限定されないが、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂などのエポキシ樹脂、メラミン樹脂、尿素樹脂、アニリン樹脂、シアネート樹脂、フラン樹脂、ケトン樹脂、不飽和ポリエステル樹脂、ウレタン樹脂などが挙げられる。また、これらが種々の成分で変性された変性樹脂を用いることもできる。   Here, the thermosetting resin is not particularly limited. For example, a phenol resin such as a novolac type phenol resin or a resol type phenol resin, an epoxy resin such as a bisphenol type epoxy resin or a novolac type epoxy resin, a melamine resin, a urea resin, or aniline. Examples thereof include resins, cyanate resins, furan resins, ketone resins, unsaturated polyester resins, and urethane resins. In addition, modified resins in which these are modified with various components can also be used.

また、熱可塑性樹脂としては特に限定されないが、例えば、ポリエチレン、ポリスチレン、ポリアクリロニトリル、アクリロニトリル−スチレン(AS)樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、ポリプロピレン、塩化ビニル、メタクリル樹脂、ポリエチレンテレフタレート、ポリアミド、ポリカーボネート、ポリアセタール、ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリフタルアミド、などが挙げられる。   The thermoplastic resin is not particularly limited. For example, polyethylene, polystyrene, polyacrylonitrile, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, polypropylene, vinyl chloride, methacrylic resin, polyethylene terephthalate, Polyamide, polycarbonate, polyacetal, polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyamideimide, polyimide, polyphthalamide, and the like can be given.

また、その他の高分子化合物としては特に限定されないが、例えば、石油ピッチ、石炭ピッチ、紡糸用ピッチ等の重合性高分子化合物などが挙げられる。   Other polymer compounds are not particularly limited, and examples thereof include polymerizable polymer compounds such as petroleum pitch, coal pitch, and spinning pitch.

上記の主成分樹脂類として熱硬化性樹脂を用いる場合には、その硬化剤を併用することができる。
ここで用いられる硬化剤としては特に限定されないが、例えば、ノボラック型フェノール樹脂の場合はヘキサメチレンテトラミン、パラホルムなどを用いることができる。また、エポキシ樹脂の場合は、脂肪族ポリアミン、芳香族ポリアミンなどのポリアミン化合物、酸無水物、イミダゾール化合物、ジシアンジアミド、ノボラック型フェノール樹脂などを用いることができる。
なお、通常は所定量の硬化剤を併用する熱硬化性樹脂であっても、本発明で用いられる樹脂組成物においては、通常よりも少ない量を用いたり、あるいは硬化剤を併用しないで用いたりすることもできる。
When a thermosetting resin is used as the main component resin, the curing agent can be used in combination.
Although it does not specifically limit as a hardening | curing agent used here, For example, in the case of a novolak-type phenol resin, a hexamethylenetetramine, paraform, etc. can be used. In the case of epoxy resins, polyamine compounds such as aliphatic polyamines and aromatic polyamines, acid anhydrides, imidazole compounds, dicyandiamide, novolac type phenol resins and the like can be used.
In addition, even if it is a thermosetting resin that normally uses a predetermined amount of a curing agent, the resin composition used in the present invention may use a smaller amount than usual or may be used without using a curing agent. You can also

上記の樹脂組成物に用いられる上記主成分樹脂類としては、熱硬化性樹脂が好ましい。これにより、炭素材の残炭率をより高めることができる。
そして、熱硬化性樹脂の中でも、ノボラック型フェノール樹脂、メラミン樹脂、フラン樹脂、及び、アニリン樹脂から選ばれるものであることが好ましい。これにより、上記効果に加えて、炭素材を低価格で製造することができる。
As said main component resin used for said resin composition, a thermosetting resin is preferable. Thereby, the remaining carbon rate of a carbon material can be raised more.
And among thermosetting resins, those selected from novolak type phenol resins, melamine resins, furan resins, and aniline resins are preferable. Thereby, in addition to the said effect, a carbon material can be manufactured at low cost.

上記の樹脂組成物においては、このほか、添加剤を配合することができる。
ここで用いられる添加剤としては特に限定されないが、例えば、200〜800℃にて炭化処理した炭素材前駆体、黒鉛及び黒鉛変性剤、含窒素化合物、含酸素化合物、芳香族化合物、及び、非鉄金属元素などを挙げることができる。
上記添加剤は、用いる主成分樹脂類の種類や性状などにより、単独あるいは二種類以上を併用することができる。
In addition to the above, an additive can be blended in the resin composition.
Although it does not specifically limit as an additive used here, For example, the carbon material precursor carbonized at 200-800 degreeC, a graphite and graphite modifier, a nitrogen-containing compound, an oxygen-containing compound, an aromatic compound, and nonferrous A metal element etc. can be mentioned.
The above additives may be used alone or in combination of two or more depending on the type and properties of the main component resins used.

上記の樹脂組成物の調製方法としては特に限定されないが、例えば、上記主成分樹脂類と、これ以外の成分とを所定の比率で配合し、これらを溶融混合する方法、これらの成分を溶媒に溶解して混合する方法、あるいは、これらの成分を粉砕して混合する方法などにより調製することができる。   The method for preparing the resin composition is not particularly limited. For example, the main component resins and other components are blended in a predetermined ratio, and these are melt-mixed. These components are used as a solvent. It can be prepared by a method of dissolving and mixing, or a method of pulverizing and mixing these components.

樹脂組成物の調製のための装置としては特に限定されないが、例えば、溶融混合を行う場合には、混練ロール、単軸あるいは二軸ニーダーなどの混練装置を用いることができる。また、溶解混合を行う場合は、例えば、ヘンシェルミキサー、ディスパーザなどの混合装置を用いることができる。そして、粉砕混合を行う場合には、例えば、ハンマーミル、ジェットミルなどの装置を用いることができる。
このようにして得られた樹脂組成物は、複数種類の成分を物理的に混合しただけのものであってもよいし、樹脂組成物の調製段階で付与されるエネルギーによりその一部を化学的に反応させたものであってもよい。
The apparatus for preparing the resin composition is not particularly limited. For example, when melt mixing is performed, a kneading apparatus such as a kneading roll, a single screw or a twin screw kneader can be used. Moreover, when performing melt | dissolution mixing, mixing apparatuses, such as a Henschel mixer and a disperser, can be used, for example. And when performing pulverization mixing, apparatuses, such as a hammer mill and a jet mill, can be used, for example.
The resin composition thus obtained may be one obtained by physically mixing a plurality of types of components, or a part of the resin composition is chemically treated by energy applied in the resin composition preparation stage. It may have been reacted with.

本発明の製造方法においては、以上に説明した樹脂組成物、この樹脂組成物の硬化物、あるいは、これらを予備炭化処理してなるものを炭素材前駆体として用いることができる。   In the production method of the present invention, the resin composition described above, a cured product of this resin composition, or a product obtained by pre-carbonizing these can be used as the carbon material precursor.

樹脂組成物を炭素材前駆体として用いる場合は、特に限定されないが、上記方法により調製されたものを好ましくは適度な粒度に粉砕して用いることができる。
また、樹脂組成物の主成分樹脂類として熱硬化性樹脂や重合性高分子化合物を用いた場合には、この樹脂組成物の硬化物を用いることができる。樹脂組成物の硬化方法としては特に限定されないが、例えば、樹脂組成物に硬化反応が可能な熱量を与えて熱硬化する方法、あるいは、主成分樹脂類と硬化剤とを併用する方法などが挙げられる。そして、このようにして得られた硬化物を、好ましくは適度な粒度に粉砕して用いることができる。
また、上記樹脂組成物、あるいはその硬化物を、予備炭化処理してなるものを用いる場合は、上記樹脂組成物、あるいはその硬化物を、例えば1〜200℃/時で400〜600℃まで昇温して、これを0.1〜50時間、好ましくは0.5〜10時間処理したものを常温まで冷却後、これを好ましくは適度な粒度に粉砕して用いることができる。
When the resin composition is used as a carbon material precursor, it is not particularly limited, but the one prepared by the above method can be used after being preferably pulverized to an appropriate particle size.
Moreover, when a thermosetting resin or a polymerizable polymer compound is used as the main component resin of the resin composition, a cured product of this resin composition can be used. The method for curing the resin composition is not particularly limited, and examples thereof include a method in which the resin composition is thermally cured by giving a heat amount capable of a curing reaction, or a method in which the main component resin and a curing agent are used in combination. It is done. And the hardened | cured material obtained by doing in this way can be grind | pulverized to an appropriate particle size preferably, and can be used.
In addition, when using a resin obtained by subjecting the resin composition or a cured product thereof to preliminary carbonization, the resin composition or the cured product is increased to 400 to 600 ° C. at 1 to 200 ° C./hour, for example. After heating and treating this for 0.1 to 50 hours, preferably 0.5 to 10 hours, it can be cooled to room temperature and then pulverized to an appropriate particle size.

上記樹脂組成物、この樹脂組成物の硬化物、あるいは、これらを予備炭化処理してなるものを炭素材前駆体として用いる場合の粒度は特に限定されないが、平均粒径1〜30μm、より好ましくは5〜20μmとすることが好ましい。
これにより、粒子状の炭素材前駆体の比表面積を増大させ、後述する(b)工程においてアルカリ金属含有化合物を担持させる際に担持量の均一性を向上させることができるとともに、後述する(c)工程において炭化処理する際に、熱履歴や表面状態の均一性を高め、より好適な細孔を多く形成させることができる。
また、このような粒度の炭素材前駆体を用いることで、炭素材前駆体の比表面積を好適な水準とすることができる。これにより、好適量のアルカリ金属含有化合物を炭素材前駆体表面に簡易に担持させることができる。
The particle size in the case of using the resin composition, a cured product of the resin composition, or a material obtained by pre-carbonizing these as a carbon material precursor is not particularly limited, but preferably has an average particle size of 1 to 30 μm, more preferably It is preferable to set it as 5-20 micrometers.
As a result, the specific surface area of the particulate carbon material precursor can be increased, and when the alkali metal-containing compound is supported in the step (b) to be described later, the uniformity of the supported amount can be improved and also described later (c ) When carbonizing in the process, it is possible to increase the uniformity of the thermal history and the surface state and to form more suitable fine pores.
Moreover, the specific surface area of a carbon material precursor can be made into a suitable level by using the carbon material precursor of such a particle size. Thereby, a suitable amount of an alkali metal-containing compound can be easily supported on the surface of the carbon material precursor.

上記炭素材前駆体は、それ自体が熱に対して実質的に不融の形態であるものが好ましい。
これにより、(b)工程において担持させたアルカリ金属含有化合物を炭素材前駆体の表面にそのまま保持することができるので、(c)工程において細孔を形成させる際に、アルカリ金属含有化合物の効果を最も高く発現させることができる。
それ自体が熱に対して実質的に不融である炭素材前駆体としては特に限定されないが、例えば、樹脂組成物の硬化物、樹脂組成物を予備炭化処理してなるもの、あるいは、樹脂組成物の硬化物を予備炭化処理してなるもの、などを挙げることができる。
アルカリ金属含有化合物を担持させる際の炭素材前駆体の形態は、用いる樹脂組成物の性状等に合わせて、例えば上記の中から適宜選択することができる。これらの中でも、不融の形態とした後、早い時点でアルカリ金属含有化合物を担持させることが好ましい。具体的には、例えば、樹脂組成物の硬化物を予備炭化処理してなるものにアルカリ金属含有化合物を担持させることもできるが、樹脂組成物の硬化物の時点でアルカリ金属含有化合物を担持させることがより好ましい。これにより、後述するアルカリ金属含有化合物を添加する効果を、より高めることができる。
The carbon material precursor itself is preferably in a substantially infusible form with respect to heat.
Thereby, since the alkali metal-containing compound supported in the step (b) can be held as it is on the surface of the carbon material precursor, the effect of the alkali metal-containing compound when forming pores in the step (c). Can be expressed most highly.
The carbon material precursor that itself is substantially infusible to heat is not particularly limited. For example, a cured resin composition, a resin composition preliminarily carbonized, or a resin composition Examples include those obtained by pre-carbonizing a cured product.
The form of the carbon material precursor for supporting the alkali metal-containing compound can be appropriately selected from the above, for example, according to the properties of the resin composition to be used. Among these, it is preferable to support the alkali metal-containing compound at an early point after the infusible form. Specifically, for example, an alkali metal-containing compound can be supported on a product obtained by subjecting a cured product of a resin composition to a preliminary carbonization treatment, but the alkali metal-containing compound is supported at the time of the cured product of the resin composition. It is more preferable. Thereby, the effect which adds the alkali metal containing compound mentioned later can be heightened more.

次に、本発明の製造方法においては、
(b)上記炭素材前駆体表面にアルカリ金属含有化合物を担持させ、アルカリ金属担持前駆体とする。
Next, in the production method of the present invention,
(B) An alkali metal-containing compound is supported on the surface of the carbon material precursor to obtain an alkali metal-supported precursor.

上記(b)工程で用いられるアルカリ金属含有化合物としては特に限定されないが、水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物、炭酸リチウム、炭酸ナトリウムなどのアルカリ金属炭酸塩、酸化リチウム、酸化ナトリウムなどのアルカリ金属酸化物などが挙げられる。これらを単独または2種類以上組み合わせて使用することができる。
上記アルカリ金属含有化合物を用いる形態としては特に限定されないが、例えば、粉末状に粉砕した形態で用いる方法、水に溶解させて水溶液の形態で用いる方法、などを適用することができる。
これらの中でも、水酸化リチウム、炭酸リチウムなどのリチウム金属化合物、水酸化ナトリウム、炭酸ナトリウムなどのナトリウム金属化合物を、水溶液の形態で用いることが好ましい。これらは容易に水溶液を調製でき、安全性が高い。また、リチウムやナトリウムは、アルカリ金属の中でも分子の大きさが小さいので、より高い均一性で炭素材前駆体表面にアルカリ金属成分を担持させることができる。
The alkali metal-containing compound used in the step (b) is not particularly limited, but alkali metal hydroxides such as lithium hydroxide and sodium hydroxide, alkali metal carbonates such as lithium carbonate and sodium carbonate, lithium oxide, and oxidation. Examples thereof include alkali metal oxides such as sodium. These can be used alone or in combination of two or more.
Although it does not specifically limit as a form using the said alkali metal containing compound, For example, the method of using in the form grind | pulverized to the powder form, the method of dissolving in water and using it in the form of aqueous solution, etc. are applicable.
Among these, lithium metal compounds such as lithium hydroxide and lithium carbonate, and sodium metal compounds such as sodium hydroxide and sodium carbonate are preferably used in the form of an aqueous solution. These can easily prepare an aqueous solution and have high safety. Moreover, since lithium and sodium have a small molecular size among alkali metals, the alkali metal component can be supported on the surface of the carbon material precursor with higher uniformity.

炭素材前駆体表面にアルカリ金属含有化合物を担持させる方法としては特に限定されないが、例えば、アルカリ金属含有化合物を水溶液の形態とし、これに炭素材前駆体を浸漬させた後、真空脱水等の手法により水分のみを除去する方法、スプレー装置を用いて炭素材前駆体に上記水溶液を噴霧した後、同様に水分のみを除去する方法、あるいは、固形状のアルカリ金属含有化合物を微粉砕したものを用い、これと炭素材前駆体の微粉砕品とを混合する方法、などが挙げられる。
これらの中でも、アルカリ金属含有化合物を水溶液の形態とし、これに炭素材前駆体を浸漬させた後、真空脱水等の手法により水分のみを除去する方法が好ましい。これにより、簡易な方法でアルカリ金属含有化合物を炭素材前駆体表面に高い均一性で担持させることができる。また、炭素材前駆体に対するアルカリ金属含有化合物の担持量を簡易に設定することができる。
The method for supporting the alkali metal-containing compound on the surface of the carbon material precursor is not particularly limited. For example, the alkali metal-containing compound is in the form of an aqueous solution, and the carbon material precursor is immersed in this, followed by vacuum dehydration or the like. Using a method of removing only water by spraying, a method of spraying the aqueous solution onto the carbon material precursor using a spray device, and similarly removing only water, or a finely pulverized solid alkali metal-containing compound And a method of mixing this with a finely pulverized carbon material precursor.
Among these, a method in which the alkali metal-containing compound is in the form of an aqueous solution, the carbon material precursor is immersed in the aqueous solution, and then only water is removed by a technique such as vacuum dehydration. Thus, the alkali metal-containing compound can be supported on the carbon material precursor surface with high uniformity by a simple method. Moreover, the load of the alkali metal containing compound with respect to a carbon material precursor can be set easily.

上記(b)工程において担持されるアルカリ金属含有化合物の量としては特に限定されないが、炭素材前駆体に対して、アルカリ金属成分換算で0.1〜5.0重量%とすることが好ましい。さらに好ましくは0.5〜3.0重量%である。これにより、(c)工程において炭素材表面に細孔を好適量形成させることができる。
アルカリ金属含有化合物の担持量が上記上限値を超えると、(c)工程における反応時に、アルカリ金属の触媒としての効果が過大となるために細孔容積が小さくなる傾向がある。一方、上記下限値未満では、アルカリ金属の触媒としての効果が過小となるために、細孔容積の適度な減少が起こりにくくなり、細孔容積が大きくなる傾向がある。このように、炭素材前駆体表面へのアルカリ金属含有化合物の担持量を調整することにより、炭素材表面に形成される細孔容積を制御することができる。
The amount of the alkali metal-containing compound supported in the step (b) is not particularly limited, but is preferably 0.1 to 5.0% by weight in terms of alkali metal component with respect to the carbon material precursor. More preferably, it is 0.5 to 3.0% by weight. Thereby, a suitable amount of pores can be formed on the carbon material surface in the step (c).
When the supported amount of the alkali metal-containing compound exceeds the above upper limit, the pore volume tends to be small because the effect of the alkali metal as a catalyst becomes excessive during the reaction in the step (c). On the other hand, if it is less than the above lower limit value, the effect of the alkali metal as a catalyst becomes too small, so that it is difficult for the pore volume to decrease appropriately and the pore volume tends to increase. Thus, the pore volume formed on the carbon material surface can be controlled by adjusting the amount of the alkali metal-containing compound supported on the carbon material precursor surface.

アルカリ金属含有化合物の担持量の測定方法としては、アルカリ金属含有化合物の担持方法により適宜選定することができる。例えば、所定量のアルカリ金属含有化合物を含む水溶液を用い、担持処理後に水分のみを除去する方法や、所定量の固形のアルカリ金属含有化合物を用いる方法の場合は、アルカリ金属担持前駆体を調製するのに用いた炭素材前駆体とアルカリ金属含有化合物との量から、これを算出することができる。
また、アルカリ金属含有化合物の担持処理を連続的に行う場合など、アルカリ金属担持前駆体の段階では算出できない場合は、アルカリ金属担持前駆体を800℃にて空気中で灰化し、灰化処理後の処理物中に含有されるアルカリ金属成分の量から、これを算出することができる。
The method for measuring the amount of the alkali metal-containing compound supported can be appropriately selected depending on the method for supporting the alkali metal-containing compound. For example, in the case of a method using an aqueous solution containing a predetermined amount of an alkali metal-containing compound and removing only moisture after the supporting treatment, or a method using a predetermined amount of a solid alkali metal-containing compound, an alkali metal-supported precursor is prepared. This can be calculated from the amounts of the carbon material precursor and the alkali metal-containing compound used in the above.
In addition, when it is not possible to calculate at the stage of the alkali metal-supported precursor, such as when the support treatment of the alkali metal-containing compound is continuously performed, the alkali metal-supported precursor is ashed in air at 800 ° C. This can be calculated from the amount of the alkali metal component contained in the processed product.

次に、本発明の製造方法においては、
(c)上記アルカリ金属担持前駆体を、炭化処理する。
Next, in the production method of the present invention,
(C) The alkali metal supported precursor is carbonized.

上記(c)工程における炭化処理の条件としては特に限定されないが、例えば、常温から1〜200℃/時間で昇温して、800〜3000℃、好ましくは1000〜1400℃で、0.1〜50時間、好ましくは0.5〜10時間保持して行うことができる。炭化処理時の雰囲気としては例えば、窒素、ヘリウムガスなどの不活性雰囲気下、もしくは不活性ガス中に微量の酸素が存在するような、実質的に不活性な雰囲気下で行うことができる。
このような炭化処理時の温度、時間等の条件は、炭素材の特性を最適なものにするため適宜調整することができる。
Although it does not specifically limit as the conditions of the carbonization process in the said (c) process, For example, it heats up at 1-200 degreeC / hour from normal temperature, 800-3000 degreeC, Preferably it is 1000-1400 degreeC, The reaction can be carried out for 50 hours, preferably 0.5 to 10 hours. As an atmosphere during the carbonization treatment, for example, an inert atmosphere such as nitrogen or helium gas, or a substantially inert atmosphere in which a trace amount of oxygen is present in the inert gas can be used.
Conditions such as temperature and time during the carbonization can be adjusted as appropriate in order to optimize the characteristics of the carbon material.

次に、本発明の製造方法においては、
(d)上記炭化処理後の処理物を水洗して、該処理物中のアルカリ金属成分を実質的に除去する。
Next, in the production method of the present invention,
(D) The treated product after carbonization is washed with water to substantially remove the alkali metal component in the treated product.

上記(d)工程において、炭化処理後の処理物を水洗する方法としては特に限定されないが、例えば、水中に処理物を入れて撹拌する方法、処理物を流水で水洗する方法、などにより実施することができる。これにより、処理物表面よりアルカリ金成分を実質的に水中に溶解除去し、不純物・異物が実質的に含有されない炭素材を得ることができる。   In the step (d), the method of washing the treated product after carbonization treatment is not particularly limited. For example, the method is a method of stirring the treated product in water, a method of washing the treated product with running water, and the like. be able to. Thereby, the alkaline gold component can be substantially dissolved and removed from the treated product surface in water, and a carbon material substantially free of impurities and foreign matters can be obtained.

本発明の炭素材は、上記本発明の製造方法により得られたものである。
本発明の炭素材の表面に形成された細孔容積は特に限定されないが、0.33nmを超える細孔径を有する細孔容積が、1〜100ml/kgであることが好ましい。さらに好ましくは1〜50ml/kgである。
これにより、二次電池用負極材に用いた場合に、可逆細孔の量を適正化することができるとともに、不可逆細孔の量を減らすことができるので、高い充放電特性を有する二次電池用負極材を得ることができる。
上記細孔容積が上記下限値より小さいと、リチウムを吸蔵することができる可逆細孔そのものが減少するため、充放電容量が小さくなる傾向がある。一方、上記上限値より大きいと、リチウムを吸蔵した後に放出できず、不可逆となる細孔が相対的に多くなるので、同様に充放電効率が低下するようになる。
The carbon material of the present invention is obtained by the production method of the present invention.
The pore volume formed on the surface of the carbon material of the present invention is not particularly limited, but the pore volume having a pore diameter exceeding 0.33 nm is preferably 1 to 100 ml / kg. More preferably, it is 1-50 ml / kg.
As a result, when used as a negative electrode material for a secondary battery, the amount of reversible pores can be optimized and the amount of irreversible pores can be reduced, so a secondary battery having high charge / discharge characteristics. A negative electrode material can be obtained.
If the pore volume is smaller than the lower limit, the reversible pores that can occlude lithium are reduced, and the charge / discharge capacity tends to be small. On the other hand, if it is larger than the above upper limit value, since lithium cannot be released after occlusion and irreversible pores are relatively increased, charge / discharge efficiency similarly decreases.

本発明の製造方法により、二次電池用負極材に好適に用いることができる炭素材が得られる理由は、明確ではないが、以下のように推測される。   The reason why the carbon material that can be suitably used for the negative electrode material for secondary batteries is obtained by the production method of the present invention is not clear, but is presumed as follows.

熱硬化性樹脂あるいはその硬化物を炭化する過程においては、三次元架橋反応、熱分解反応、及び、環縮合反応により炭素材表面に細孔が形成されていくが、細孔径のばらつきが大きい炭素材表面が形成されることが多く、また、その細孔容積自体も大きい。これは、樹脂構造や熱処理方法によって上記一連の反応が不均一に進行することも一因であると推測される。
これに対して、本発明の製造方法においては、炭素材前駆体表面にアルカリ金属含有化合物を担持させ、これを炭化処理する。これにより、特に熱分解反応や環縮合反応が起こる段階で、アルカリ金属成分が触媒として機能し、炭素材を形成する炭素環の縮合が促進されると考えられる。この作用により、上記一連の反応が円滑に進行し、炭素材表面に形成された細孔径の均一性が向上するとともに、細孔容積を好適な水準とすることができると考えられる。
ここで用いられるアルカリ金属の中でも、リチウム又はナトリウムを用いた場合により良好な特性が得られる。この理由として、リチウム及びナトリウムはアルカリ金属の中でも比較的分子の大きさは小さく、また強いアルカリ性を有していることから、上記触媒作用を高い均一性で効果的に発現させることができるためではないかと考えられる。
また、必要に応じて、炭素材前駆体表面に担持させるアルカリ金属含有化合物の量を調整することにより、炭素材表面に形成される細孔容積の大きさを制御することができ、目的とする電池特性に応じた炭素材を得ることが可能となる。
In the process of carbonizing the thermosetting resin or its cured product, pores are formed on the surface of the carbon material by three-dimensional crosslinking reaction, thermal decomposition reaction, and ring condensation reaction. The material surface is often formed, and the pore volume itself is large. This is presumed to be partly due to non-uniform progression of the series of reactions depending on the resin structure and heat treatment method.
In contrast, in the production method of the present invention, an alkali metal-containing compound is supported on the surface of the carbon material precursor and carbonized. Thereby, it is considered that the alkali metal component functions as a catalyst particularly at the stage where the thermal decomposition reaction or the ring condensation reaction occurs, and the condensation of the carbocycle forming the carbon material is promoted. By this action, it is considered that the series of reactions proceed smoothly, the uniformity of the pore diameter formed on the surface of the carbon material is improved, and the pore volume can be set to a suitable level.
Among the alkali metals used here, better characteristics can be obtained when lithium or sodium is used. The reason for this is that lithium and sodium have a relatively small molecular size among alkali metals and have strong alkalinity, so that the above catalytic action can be effectively expressed with high uniformity. It is thought that there is not.
Further, if necessary, by adjusting the amount of the alkali metal-containing compound supported on the carbon material precursor surface, the size of the pore volume formed on the carbon material surface can be controlled. It becomes possible to obtain a carbon material according to battery characteristics.

本発明の製造方法によれば、例えば、炭化温度を高くするなどの手段により炭素材の細孔容積を制御する方法などに比べると、より低温で炭化処理を行って所望とする炭素材を低コストで得ることができる。
そして、このようにして得られた炭素材は、実質的に不純物を含有しない。このため、二次電池用負極材として用いた場合に、充放電時にリチウムイオンの挿入・脱離反応が副反応などにより阻害されることが少ない。このような炭素材を用いることにより、充放電特性に優れた非水電解質二次電池用の負極材を製造することができる。
According to the production method of the present invention, for example, compared with a method of controlling the pore volume of the carbon material by means such as increasing the carbonization temperature, the carbon material that is desired is reduced by performing carbonization at a lower temperature. Can be obtained at a cost.
And the carbon material obtained in this way does not contain an impurity substantially. For this reason, when used as a negative electrode material for a secondary battery, the insertion / extraction reaction of lithium ions during charging / discharging is rarely hindered by side reactions. By using such a carbon material, a negative electrode material for a nonaqueous electrolyte secondary battery excellent in charge / discharge characteristics can be produced.

なお、本発明の炭素材において、上記細孔容積は下記の方法により測定したものである。
島津製作所社製・細孔分布測定装置装置「ASAP2010」を用いて、測定試料(炭素材)を623Kで真空加熱前処理後、測定ガスとしてCO(分子径;0.33nm)を用い、273.15Kでの吸着等温線を測定し、Dubinin−Radushkevichの式を用いてそれぞれの吸着ガスの細孔容積を計算し、これをもとにそれぞれの細孔容積を次式に基づいて計算した。
W=W・exp[−(A/E)n]、A=RT[ln(Ps/P)]
W:吸着分子が占有しているエネルギー[ml/g]
E:吸着特性エネルギー[J/mol]
P:平行蒸気圧[mmHg]
T:吸着温度[K]
:細孔容積[ml/g]
Ps:飽和蒸気圧[mmHg]
n:構造指数=2[−]
In the carbon material of the present invention, the pore volume is measured by the following method.
Using a pore distribution measuring device “ASAP2010” manufactured by Shimadzu Corporation, a measurement sample (carbon material) was preheated at 623 K under vacuum heating, and then CO 2 (molecular diameter; 0.33 nm) was used as a measurement gas. The adsorption isotherm at .15 K was measured, and the pore volume of each adsorbed gas was calculated using the Dubinin-Radushkevic equation, and based on this, the pore volume was calculated based on the following equation.
W = W 0 · exp [− (A / E) n], A = RT [ln (Ps / P)]
W: Energy [ml / g] occupied by adsorbed molecules
E: Adsorption characteristic energy [J / mol]
P: Parallel vapor pressure [mmHg]
T: Adsorption temperature [K]
W 0 : pore volume [ml / g]
Ps: saturated vapor pressure [mmHg]
n: Structural index = 2 [−]

次に、本発明の二次電池用負極材について説明する。
本発明の二次電池用負極材は、上記本発明の炭素材を含有することを特徴とするものである。
Next, the negative electrode material for secondary batteries of the present invention will be described.
The negative electrode material for secondary batteries of the present invention is characterized by containing the carbon material of the present invention.

本発明の二次電池用負極材は特に限定されないが、例えば、本発明の炭素材100重量部に対し、ポリエチレン、ポリプロピレン等を含むフッ素系高分子、ブチルゴム,ブタジエンゴム等のゴム状高分子等の有機高分子結着剤1〜30重量部、及びN−メチル−2−ピロリドン、ジメチルホルムアミド等の粘度調整用溶剤を適量添加して混練し、ペースト状にした混合物を圧縮成形、ロール成形等によりシート状、ペレット状等に成形して得ることができる。また、粘度調整用溶剤にてスラリー状にした混合物を銅箔、ニッケル箔等の集電体に塗布成形して得ることもできる。   The negative electrode material for a secondary battery of the present invention is not particularly limited. For example, a fluorine-based polymer containing polyethylene, polypropylene, etc., a rubbery polymer such as butyl rubber, butadiene rubber, etc. with respect to 100 parts by weight of the carbon material of the present invention. 1 to 30 parts by weight of an organic polymer binder and an appropriate amount of a viscosity adjusting solvent such as N-methyl-2-pyrrolidone and dimethylformamide are added and kneaded to form a paste-like mixture by compression molding, roll molding, etc. Can be obtained by molding into a sheet shape, a pellet shape or the like. Moreover, it can also obtain by apply | coating-molding the mixture made into the slurry form with the solvent for viscosity adjustments on collectors, such as copper foil and nickel foil.

次に、本発明の非水電解質二次電池について説明する。
本発明の非水電解質二次電池は、上記本発明の二次電池負極材を用いることを特徴とするものである。
Next, the nonaqueous electrolyte secondary battery of the present invention will be described.
The nonaqueous electrolyte secondary battery of the present invention is characterized by using the secondary battery negative electrode material of the present invention.

本発明の非水電解質二次電池に上記二次電池用負極材を適用する場合は特に限定されないが、例えば、二次電池用負極材を、セパレータを介して正極材と対向して配置し、電解液を用いることにより非水電解質二次電池が得られる。
正極材としては特に限定されないが、例えば、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等の複合酸化物やポリアニリン、ポリピロール等の導電性高分子等を用いることができる。セパレータとしては特に限定されないが、例えば、ポリエチレン、ポリプロピレン等の微多孔質フィルム、不織布等を用いることができる。電解液としては特に限定されないが、例えば、非水系溶媒に電解質となるリチウム塩を溶解したものを用いることができる。電解質としては特に限定されないが、例えば、LiClO,LiPF等のリチウム金属塩、テトラアルキルアンモニウム塩等を用いることができる。非水系溶媒としては、特に限定されないが、例えば、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン等の環状エステル類、ジメチルカーボネート、ジエチルカーボネート等の鎖状エステル類、ジメトキシエタン等のエーテル類等の混合物等を用いることができる。また、上記塩類をポリエチレンオキサイド、ポリアクリロニトリル等に混合された固体電解質を用いることもできるが特に限定されるものではない。
When the above-mentioned negative electrode material for a secondary battery is applied to the nonaqueous electrolyte secondary battery of the present invention, it is not particularly limited.For example, the negative electrode material for a secondary battery is disposed to face the positive electrode material via a separator, A nonaqueous electrolyte secondary battery can be obtained by using the electrolytic solution.
Although it does not specifically limit as a positive electrode material, For example, conductive polymers, such as complex oxides, such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide, polyaniline, polypyrrole, etc. can be used. Although it does not specifically limit as a separator, For example, microporous films, such as polyethylene and a polypropylene, a nonwoven fabric, etc. can be used. Although it does not specifically limit as electrolyte solution, For example, what melt | dissolved lithium salt used as electrolyte in a non-aqueous solvent can be used. No particular limitation is imposed on the electrolyte, for example, it can be used LiClO 4, lithium metal salt such as LiPF 6, tetraalkylammonium salts, and the like. The non-aqueous solvent is not particularly limited. For example, a mixture of cyclic esters such as propylene carbonate, ethylene carbonate and γ-butyrolactone, chain esters such as dimethyl carbonate and diethyl carbonate, ethers such as dimethoxyethane, and the like. Can be used. A solid electrolyte in which the above salts are mixed with polyethylene oxide, polyacrylonitrile or the like may be used, but is not particularly limited.

以下、本発明を実施例により説明する。しかし、本発明は実施例に限定されるものではない。又、実施例、比較例で示される「部」は「重量部」、「%」は「重量%」を示す。   Hereinafter, the present invention will be described by way of examples. However, the present invention is not limited to the examples. In the examples and comparative examples, “part” indicates “part by weight”, and “%” indicates “% by weight”.

実施例及び比較例で用いた原材料は以下のとおりである。
(1)ノボラック型フェノール樹脂:住友ベークライト社製・「PR−53195」、重量平均分子量約3000
The raw materials used in the examples and comparative examples are as follows.
(1) Novolac type phenolic resin: “PR-53195” manufactured by Sumitomo Bakelite Co., Ltd., weight average molecular weight of about 3000

1.炭素材の製造
<実施例1>
(1)炭素材前駆体(樹脂組成物の硬化物)の調製
ノボラック型フェノール樹脂100部と、ヘキサメチレンテトラミン10部とを粉砕混合して樹脂組成物を調製した。得られた樹脂組成物を、100℃から5時間かけて昇温して、200℃に到達後、さらに1時間保持して硬化処理した後、振動ボールミルで平均粒径20μmに粉砕して、炭素材前駆体を得た。
(2)アルカリ金属担持前駆体の調製
上記で得られた炭素材前駆体100部を、水100部に対して水酸化ナトリウム6部を溶解させたアルカリ水溶液に1時間浸漬した。この後、真空脱水装置を用いて水分のみを除去し、アルカリ金属担持前駆体を得た。
(3)炭素材の製造
上記で得られたアルカリ金属担持前駆体を、室温から100℃/時間で昇温して、1200℃に到達後、さらに10時間保持して炭化処理を行った。この後、常温まで冷却し、炭素材1重量部に対して水10重量部を用いて、約10分間攪拌、洗浄した後に、ろ過、乾燥を行って炭素材を得た。
1. Production of carbon material <Example 1>
(1) Preparation of carbon material precursor (cured product of resin composition) 100 parts of a novolak type phenol resin and 10 parts of hexamethylenetetramine were pulverized and mixed to prepare a resin composition. The obtained resin composition was heated from 100 ° C. over 5 hours, reached 200 ° C., further held for 1 hour and cured, and then pulverized to a mean particle size of 20 μm by a vibration ball mill, A material precursor was obtained.
(2) Preparation of Alkali Metal-Supported Precursor 100 parts of the carbon material precursor obtained above was immersed in an alkaline aqueous solution in which 6 parts of sodium hydroxide was dissolved in 100 parts of water for 1 hour. Thereafter, only water was removed using a vacuum dehydrator to obtain an alkali metal-supported precursor.
(3) Production of Carbon Material The alkali metal-supported precursor obtained above was heated from room temperature at 100 ° C./hour, and after reaching 1200 ° C., it was further held for 10 hours for carbonization treatment. Then, after cooling to normal temperature and using 10 weight part of water with respect to 1 weight part of carbon material, stirring and washing for about 10 minutes, filtration and drying were performed to obtain a carbon material.

<実施例2>
実施例1(2)アルカリ金属担持前駆体の調製、において、水100部に対して水酸化ナトリウムを3部に減量して溶解させたアルカリ金属水溶液を用いた以外は、実施例1と同様にして、炭素材前駆体、アルカリ金属担持前駆体、及び、炭素材を得た。
<Example 2>
Example 1 (2) In the preparation of an alkali metal-supported precursor, the same procedure as in Example 1 was used, except that an aqueous alkali metal solution in which sodium hydroxide was reduced to 3 parts and dissolved in 100 parts of water was used. Thus, a carbon material precursor, an alkali metal carrying precursor, and a carbon material were obtained.

<実施例3>
実施例1(2)アルカリ金属担持前駆体の調製、において、水100部に対して水酸化ナトリウムを0.5部に減量して溶解させたアルカリ金属水溶液を用いた以外は、実施例1と同様にして、炭素材前駆体、アルカリ金属担持前駆体、及び、炭素材を得た。
<Example 3>
Example 1 (2) In the preparation of an alkali metal-supported precursor, Example 1 and Example 1 were used except that an aqueous alkali metal solution in which sodium hydroxide was reduced to 0.5 part and dissolved in 100 parts of water was used. Similarly, a carbon material precursor, an alkali metal carrying precursor, and a carbon material were obtained.

<実施例4>
実施例1(2)アルカリ金属担持前駆体の調製、において、水100部に対して水酸化ナトリウムを8部に増量して溶解させたアルカリ金属水溶液を用いた以外は、実施例1と同様にして、炭素材前駆体、アルカリ金属担持前駆体、及び、炭素材を得た。
<Example 4>
Example 1 (2) In the preparation of the alkali metal-supported precursor, the same procedure as in Example 1 was used, except that an aqueous alkali metal solution in which sodium hydroxide was increased to 8 parts and dissolved in 100 parts of water was used. Thus, a carbon material precursor, an alkali metal carrying precursor, and a carbon material were obtained.

<実施例5>
実施例1(2)アルカリ金属担持前駆体の調製、において、水100部に対して水酸化ナトリウムの代わりに水酸化リチウム10部を溶解させたアルカリ金属水溶液を用いた以外は、実施例1と同様にして、炭素材前駆体、アルカリ金属担持前駆体、及び、炭素材を得た。
<Example 5>
Example 1 (2) In the preparation of the alkali metal-supported precursor, Example 1 and Example 1 were used except that an alkali metal aqueous solution in which 10 parts of lithium hydroxide was dissolved instead of sodium hydroxide with respect to 100 parts of water was used. Similarly, a carbon material precursor, an alkali metal carrying precursor, and a carbon material were obtained.

<実施例6>
(1)炭素前駆体(樹脂組成物の硬化物を予備炭化処理したもの)の調製
ノボラック型フェノール樹脂100部、ヘキサメチレンテトラミン10部を粉砕混合して樹脂組成物を調製した。得られた樹脂組成物を、100℃から5時間かけて昇温して、200℃に到達後、さらに1時間保持して硬化処理した後、振動ボールミルで平均粒径20μmに粉砕して、樹脂組成物の硬化物を得た。
得られた樹脂組成物の硬化物を室温から100℃/時間で昇温して、600℃に到達後、更に10時間保持して予備炭化処理を行い、炭素材前駆体を得た。
得られた炭素材前駆体を用いて、これ以降は、実施例1(2)アルカリ金属担持前駆体の調製、において、水100部に対して水酸化ナトリウム7部を溶解させたアルカリ金属水溶液を用いた以外は、実施例1と同様にして、アルカリ金属担持前駆体と炭素材を得た。
<Example 6>
(1) Preparation of carbon precursor (prepared carbonized cured resin composition)
A resin composition was prepared by pulverizing and mixing 100 parts of a novolac-type phenol resin and 10 parts of hexamethylenetetramine. The obtained resin composition was heated from 100 ° C. over 5 hours, and after reaching 200 ° C., it was further cured by holding for 1 hour, and then pulverized to an average particle size of 20 μm with a vibration ball mill, A cured product of the composition was obtained.
The cured product of the obtained resin composition was heated from room temperature at 100 ° C./hour, and after reaching 600 ° C., it was further maintained for 10 hours to perform preliminary carbonization treatment to obtain a carbon material precursor.
After that, using the obtained carbon material precursor, in Example 1 (2) Preparation of alkali metal-supported precursor, an alkali metal aqueous solution in which 7 parts of sodium hydroxide was dissolved in 100 parts of water was used. An alkali metal-supported precursor and a carbon material were obtained in the same manner as in Example 1 except that they were used.

<比較例>
(1)組成物の調製
ノボラック型フェノール樹脂100部、ヘキサメチレンテトラミン10部を粉砕混合して樹脂組成物を調製した。
得られた樹脂組成物を、100℃から5時間かけて昇温して、200℃に到達後、さらに1時間保持して硬化処理した後、振動ボールミルで平均粒径20μmに粉砕して、樹脂組成物の硬化物を得た。
(2)炭素材の製造
上記で得られた樹脂組成物の硬化物を、室温から10℃/時間で昇温して、1200℃に到達後、さらに10時間保持して炭化処理を行い、炭素材を得た。
<Comparative example>
(1) Preparation of composition 100 parts of novolak type phenol resin and 10 parts of hexamethylenetetramine were pulverized and mixed to prepare a resin composition.
The obtained resin composition was heated from 100 ° C. over 5 hours, and after reaching 200 ° C., it was further cured by holding for 1 hour, and then pulverized to an average particle size of 20 μm with a vibration ball mill, A cured product of the composition was obtained.
(2) Production of carbon material The cured product of the resin composition obtained above was heated from room temperature at 10 ° C./hour, reached 1200 ° C., and held for another 10 hours for carbonization treatment, I got the material.

2.樹脂組成物及び炭素材の評価
実施例及び比較例で得られたアルカリ金属担持前駆体及び炭素材について下記の評価を行った。
結果を表1に示す。
2. Evaluation of Resin Composition and Carbon Material The following evaluation was performed on the alkali metal-supported precursor and the carbon material obtained in Examples and Comparative Examples.
The results are shown in Table 1.

(1)樹脂組成物の配合
実施例、比較例で用いた樹脂組成物の配合を示した。
(1) Blending of resin composition The blending of resin compositions used in Examples and Comparative Examples was shown.

(2)アルカリ金属担持前駆体のアルカリ金属成分の担持量
アルカリ金属担持前駆体を調製する際に用いた炭素材前駆体、及び、アルカリ金属含有化合物の配合量から算出した。
(2) Amount of alkali metal component supported in alkali metal-supported precursor The amount was calculated from the amount of carbon material precursor used in preparing the alkali metal-supported precursor and the amount of alkali metal-containing compound.

(3)炭素材の細孔容積の評価
細孔径と細孔容積は、以下の方法で測定した。
島津製作所社製・細孔分布測定装置装置「ASAP2010」を用いて、測定試料(炭素材)623Kで真空加熱前処理後、測定ガスとしてCO(分子径:0.33nm)を用い、273.15Kでの吸着等温線を測定し、Dubinin−Radushkevichの式を用いてそれぞれの吸着ガスの細孔容積を計算し、これをもとにそれぞれの細孔容積を次式に基づいて計算した。
W=W・exp[−(A/E)n]、A=RT[ln(Ps/P)]
W:吸着分子が占有しているエネルギー[ml/g]
E:吸着特性エネルギー[J/mol]
P:平行蒸気圧[mmHg]
T:吸着温度[K]
:細孔容積[ml/g]
Ps:飽和蒸気圧[mmHg]
n:構造指数=2[−]
R:気体定数
(3) Evaluation of pore volume of carbon material The pore diameter and pore volume were measured by the following methods.
Using a pore distribution measuring device “ASAP2010” manufactured by Shimadzu Corporation, pre-vacuum heating pretreatment with a measurement sample (carbon material) 623K, then using CO 2 (molecular diameter: 0.33 nm) as a measurement gas 273. The adsorption isotherm at 15 K was measured, and the pore volume of each adsorbed gas was calculated using the Dubinin-Radushkevic equation, and based on this, the pore volume was calculated based on the following equation.
W = W 0 · exp [− (A / E) n], A = RT [ln (Ps / P)]
W: Energy [ml / g] occupied by adsorbed molecules
E: Adsorption characteristic energy [J / mol]
P: Parallel vapor pressure [mmHg]
T: Adsorption temperature [K]
W 0 : pore volume [ml / g]
Ps: saturated vapor pressure [mmHg]
n: Structural index = 2 [−]
R: Gas constant

3.二次電池用負極材としての評価
(1)二次電池評価用二極式コインセルの製造
実施例及び比較例で得られた炭素材100部に対して、結合剤としてポリフッ化ビニリデン10部、希釈溶媒としてN−メチル−2−ピロリドンを適量加え混合し、スラリー状の負極混合物を調製した。調製した負極スラリー状混合物を18μmの銅箔の両面に塗布し、その後、110℃で1時間真空乾燥した。真空乾燥後、ロールプレスによって電極を加圧成形した。これを直径16.156mmの円形として切り出し負極を作製した。
正極はリチウム金属を用いて二極式コインセルにて評価を行った。電解液として体積比が1:1のエチレンカーボネートとジエチルカーボネートの混合液に過塩素酸リチウムを1モル/リットル溶解させたものを用いた。
3. Evaluation as negative electrode material for secondary battery (1) Production of bipolar coin cell for secondary battery evaluation 10 parts of polyvinylidene fluoride as a binder with respect to 100 parts of carbon material obtained in Examples and Comparative Examples, diluted An appropriate amount of N-methyl-2-pyrrolidone as a solvent was added and mixed to prepare a slurry-like negative electrode mixture. The prepared negative electrode slurry-like mixture was applied to both sides of 18 μm copper foil, and then vacuum-dried at 110 ° C. for 1 hour. After vacuum drying, the electrode was pressure-formed by a roll press. This was cut out as a circle having a diameter of 16.156 mm to produce a negative electrode.
The positive electrode was evaluated with a bipolar coin cell using lithium metal. As the electrolytic solution, a solution obtained by dissolving 1 mol / liter of lithium perchlorate in a mixed solution of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 was used.

(2)充電容量、放電容量の評価
充電条件は、電流25mA/gの定電流で1mVになるまで充電した後、1mV保持で1.25mA/g以下まで電流が減衰したところを充電終止とした。放電条件は 1.25mAh/g以下に電流が減衰するまでとした。また、放電条件のカットオフ電位は、1.5Vとした。
(2) Evaluation of charging capacity and discharging capacity The charging condition was that charging was terminated at a constant current of 25 mA / g until it reached 1 mV, and then the current was attenuated to 1.25 mA / g or less with 1 mV holding. . The discharge conditions were set until the current was attenuated to 1.25 mAh / g or less. The cut-off potential under discharge conditions was 1.5V.

(3)充放電効率の評価
上記(2)で得られた値をもとに、下記式により算出した。
充放電効率(%)=[放電容量/充電容量]×100
(3) Evaluation of charge / discharge efficiency Based on the value obtained in the above (2), the charge / discharge efficiency was calculated by the following formula.
Charge / discharge efficiency (%) = [discharge capacity / charge capacity] × 100

Figure 2006264993
Figure 2006264993

実施例1〜6はいずれも、本発明の製造方法により得られた炭素材であり、これを用いた炭素材を二次電池の負極材として用いた評価では、従来の製造法である比較例と比べて充放電効率が高いものとなった。
特に、実施例1〜4は、アルカリ金属担持前駆体のアルカリ金属成分の担持量、担持方法が最適であったので、これらの特性のバランスに優れたものとなった。
比較例は、アルカリ金属含有化合物を用いていないため、細孔容積が大きく、充電容量は実施例より大きいものの、放電容量が相対的に小さいため、充放電効率は低い水準であった。
Each of Examples 1 to 6 is a carbon material obtained by the production method of the present invention, and in the evaluation using the carbon material using the carbon material as a negative electrode material of a secondary battery, a comparative example which is a conventional production method The charge / discharge efficiency was higher than
In particular, Examples 1 to 4 were excellent in the balance of these characteristics because the amount and method of supporting the alkali metal component of the alkali metal supporting precursor were optimal.
Since the comparative example did not use an alkali metal-containing compound, the pore volume was large and the charge capacity was larger than that of the example, but the discharge capacity was relatively small, so the charge / discharge efficiency was at a low level.

本発明の炭素材の製造方法により得られる炭素材は、リチウムイオン二次電池用負極、コンデンサー用電極、電解用電極、活性炭など多様な範囲の用途に合わせて好適に用いることができるものである。
The carbon material obtained by the method for producing a carbon material according to the present invention can be suitably used for various purposes such as a negative electrode for a lithium ion secondary battery, an electrode for a capacitor, an electrode for electrolysis, and activated carbon. .

Claims (7)

炭素材前駆体を炭化処理してなる炭素材の製造方法であって、
(a)樹脂組成物、該樹脂組成物の硬化物、あるいは、これらを予備炭化処理してなるもののいずれかである炭素材前駆体を調製する工程、
(b)前記炭素材前駆体表面にアルカリ金属含有化合物を担持させ、アルカリ金属担持前駆体とする工程、
(c)前記アルカリ金属担持前駆体を、炭化処理する工程、及び、
(d)前記炭化処理後の処理物を水洗して、該処理物中のアルカリ金属成分を実質的に除去する工程、
を有することを特徴とする、炭素材の製造方法。
A method for producing a carbon material obtained by carbonizing a carbon material precursor,
(A) a step of preparing a carbon material precursor that is either a resin composition, a cured product of the resin composition, or a material obtained by pre-carbonizing the resin composition,
(B) a step of supporting an alkali metal-containing compound on the surface of the carbon material precursor to obtain an alkali metal-supported precursor;
(C) a step of carbonizing the alkali metal-supported precursor; and
(D) a step of washing the treated product after the carbonization treatment with water to substantially remove an alkali metal component in the treated product;
A method for producing a carbon material, comprising:
前記樹脂組成物は、ノボラック型フェノール樹脂、メラミン樹脂、フラン樹脂、及び、アニリン樹脂から選ばれる1種以上を有するものである請求項1に記載の炭素材の製造方法。 The method for producing a carbon material according to claim 1, wherein the resin composition has at least one selected from a novolac type phenol resin, a melamine resin, a furan resin, and an aniline resin. 前記アルカリ金属含有化合物の担持量は、前記炭素材前駆体に対して、アルカリ金属成分換算で0.1〜5重量%である請求項1又は2に記載の炭素材の製造方法。 The method for producing a carbon material according to claim 1 or 2, wherein the supported amount of the alkali metal-containing compound is 0.1 to 5% by weight in terms of an alkali metal component with respect to the carbon material precursor. 請求項1ないし3のいずれかに記載の製造方法により得られたものであることを特徴とする炭素材。 A carbon material obtained by the production method according to claim 1. 前記炭素材は、その表面に形成された0.33nmを超える細孔径を有する細孔容積が、1〜100ml/kgである請求項4に記載の炭素材。 The carbon material according to claim 4, wherein the carbon material has a pore volume of 1 to 100 ml / kg having a pore diameter of more than 0.33 nm formed on a surface thereof. 請求項4又は5に記載の炭素材を含有することを特徴とする二次電池用負極材。 A negative electrode material for a secondary battery, comprising the carbon material according to claim 4 or 5. 請求項6に記載の二次電池用負極材を用いることを特徴とする非水電解質二次電池。
A nonaqueous electrolyte secondary battery using the negative electrode material for a secondary battery according to claim 6.
JP2005081092A 2005-03-22 2005-03-22 Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell Pending JP2006264993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005081092A JP2006264993A (en) 2005-03-22 2005-03-22 Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005081092A JP2006264993A (en) 2005-03-22 2005-03-22 Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JP2006264993A true JP2006264993A (en) 2006-10-05

Family

ID=37201345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005081092A Pending JP2006264993A (en) 2005-03-22 2005-03-22 Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JP2006264993A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082645A1 (en) * 2009-01-16 2010-07-22 住友化学株式会社 Method for producing carbon material
JP2012079683A (en) * 2010-09-09 2012-04-19 Nec Corp Conductive paste and circuit board using the same
CN102479943A (en) * 2010-11-30 2012-05-30 上海杉杉科技有限公司 Hard carbon cathode material, preparation method and use thereof
US8281706B2 (en) 2006-12-01 2012-10-09 Ixetic Bad Homburg Gmbh Sealing device
JP2013049617A (en) * 2011-08-02 2013-03-14 Toc Capacitor Kk Method for producing activated carbon porous body, activated carbon porous body, and electrode for electric double layer capacitor
US20170015559A1 (en) * 2014-03-14 2017-01-19 Energ2 Technologies, Inc. Novel methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
KR20170026606A (en) 2014-08-08 2017-03-08 가부시끼가이샤 구레하 Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery, and carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
KR20170027833A (en) 2014-08-08 2017-03-10 가부시끼가이샤 구레하 Carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
US9985289B2 (en) 2010-09-30 2018-05-29 Basf Se Enhanced packing of energy storage particles
US10141122B2 (en) 2006-11-15 2018-11-27 Energ2, Inc. Electric double layer capacitance device
US10147950B2 (en) 2015-08-28 2018-12-04 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US10287170B2 (en) 2009-07-01 2019-05-14 Basf Se Ultrapure synthetic carbon materials
US10424790B2 (en) 2014-08-08 2019-09-24 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode
US10490358B2 (en) 2011-04-15 2019-11-26 Basf Se Flow ultracapacitor
US10522836B2 (en) 2011-06-03 2019-12-31 Basf Se Carbon-lead blends for use in hybrid energy storage devices
US10763501B2 (en) 2015-08-14 2020-09-01 Group14 Technologies, Inc. Nano-featured porous silicon materials
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11401363B2 (en) 2012-02-09 2022-08-02 Basf Se Preparation of polymeric resins and carbon materials
US11495793B2 (en) 2013-03-14 2022-11-08 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US11611071B2 (en) 2017-03-09 2023-03-21 Group14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141122B2 (en) 2006-11-15 2018-11-27 Energ2, Inc. Electric double layer capacitance device
US10600581B2 (en) 2006-11-15 2020-03-24 Basf Se Electric double layer capacitance device
US8281706B2 (en) 2006-12-01 2012-10-09 Ixetic Bad Homburg Gmbh Sealing device
WO2010082645A1 (en) * 2009-01-16 2010-07-22 住友化学株式会社 Method for producing carbon material
US10287170B2 (en) 2009-07-01 2019-05-14 Basf Se Ultrapure synthetic carbon materials
JP2012079683A (en) * 2010-09-09 2012-04-19 Nec Corp Conductive paste and circuit board using the same
US9985289B2 (en) 2010-09-30 2018-05-29 Basf Se Enhanced packing of energy storage particles
CN102479943A (en) * 2010-11-30 2012-05-30 上海杉杉科技有限公司 Hard carbon cathode material, preparation method and use thereof
US10490358B2 (en) 2011-04-15 2019-11-26 Basf Se Flow ultracapacitor
US10522836B2 (en) 2011-06-03 2019-12-31 Basf Se Carbon-lead blends for use in hybrid energy storage devices
JP2013049617A (en) * 2011-08-02 2013-03-14 Toc Capacitor Kk Method for producing activated carbon porous body, activated carbon porous body, and electrode for electric double layer capacitor
US11725074B2 (en) 2012-02-09 2023-08-15 Group 14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US11732079B2 (en) 2012-02-09 2023-08-22 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US11718701B2 (en) 2012-02-09 2023-08-08 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US11401363B2 (en) 2012-02-09 2022-08-02 Basf Se Preparation of polymeric resins and carbon materials
US11495793B2 (en) 2013-03-14 2022-11-08 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US10814304B2 (en) 2013-11-05 2020-10-27 Group14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US11707728B2 (en) 2013-11-05 2023-07-25 Group14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US20170015559A1 (en) * 2014-03-14 2017-01-19 Energ2 Technologies, Inc. Novel methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
JP2017522417A (en) * 2014-03-14 2017-08-10 エナジーツー・テクノロジーズ・インコーポレイテッドEnerg2 Technologies, Inc. Novel method for sol-gel polymerization in the absence of solvent, and fabrication of variable carbon structure derived from sol-gel polymerization
US11661517B2 (en) 2014-03-14 2023-05-30 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US10590277B2 (en) 2014-03-14 2020-03-17 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
CN107074994A (en) * 2014-03-14 2017-08-18 艾纳G2技术公司 The solvent-free new method for carrying out sol-gel polymerizations and being generated by it adjustable carbon structure
US10711140B2 (en) 2014-03-14 2020-07-14 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US10424790B2 (en) 2014-08-08 2019-09-24 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode
EP3686975A1 (en) 2014-08-08 2020-07-29 Kureha Corporation Production method for carbonaceous material for non-aqueous electrolyte secondary battery anode, and carbonaceous material for non-aqueous electrolyte secondary battery anode
US10797319B2 (en) 2014-08-08 2020-10-06 Kureha Corporation Production method for carbonaceous material for non-aqueous electrolyte secondary battery anode, and carbonaceous material for non-aqueous electrolyte secondary battery anode
KR20170026606A (en) 2014-08-08 2017-03-08 가부시끼가이샤 구레하 Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery, and carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
KR20170027833A (en) 2014-08-08 2017-03-10 가부시끼가이샤 구레하 Carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
US10411261B2 (en) 2014-08-08 2019-09-10 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anodes
US10763501B2 (en) 2015-08-14 2020-09-01 Group14 Technologies, Inc. Nano-featured porous silicon materials
US11942630B2 (en) 2015-08-14 2024-03-26 Group14 Technologies, Inc. Nano-featured porous silicon materials
US11611073B2 (en) 2015-08-14 2023-03-21 Group14 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
US10923722B2 (en) 2015-08-28 2021-02-16 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11437621B2 (en) 2015-08-28 2022-09-06 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11495798B1 (en) 2015-08-28 2022-11-08 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10147950B2 (en) 2015-08-28 2018-12-04 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10608254B2 (en) 2015-08-28 2020-03-31 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10756347B2 (en) 2015-08-28 2020-08-25 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10784512B2 (en) 2015-08-28 2020-09-22 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11646419B2 (en) 2015-08-28 2023-05-09 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11611071B2 (en) 2017-03-09 2023-03-21 Group14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11611070B2 (en) 2020-08-18 2023-03-21 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low Z
US11498838B2 (en) 2020-08-18 2022-11-15 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low z
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11804591B2 (en) 2020-08-18 2023-10-31 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composite materials comprising ultra low Z
US11492262B2 (en) 2020-08-18 2022-11-08 Group14Technologies, Inc. Silicon carbon composites comprising ultra low Z

Similar Documents

Publication Publication Date Title
JP2006264993A (en) Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell
TWI565654B (en) Production method of carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery and carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery
JP6450480B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material
JP5365611B2 (en) Carbon material for lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4660146B2 (en) Carbon material, secondary battery negative electrode material and non-aqueous electrolyte secondary battery
JP4899396B2 (en) Carbon material, and negative electrode material and non-aqueous electrolyte secondary battery for secondary battery using the same
TWI604655B (en) Non-aqueous electrolyte secondary battery negative carbonaceous material
JP2011198690A (en) Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2008047456A (en) Carbon material and its manufacturing method, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery
JP2017183080A (en) Carbonaceous material for nonaqueous electrolyte secondary battery negative electrode, and method for manufacturing the same
JP2006264991A (en) Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell
JP5050604B2 (en) Carbon material and manufacturing method thereof, secondary battery negative electrode material and non-aqueous electrolyte secondary battery
JP5031981B2 (en) Carbon material precursor, carbon material, negative electrode material for secondary battery and nonaqueous electrolyte secondary battery using the same
JP4838991B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbon material, secondary battery negative electrode material using the same, and non-aqueous electrolyte secondary battery
JP5017897B2 (en) Carbon material, secondary battery negative electrode material, and non-aqueous electrolyte secondary battery
JP2006089349A (en) Method for producing carbon material, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery
JP2006089348A (en) Method for producing carbon material, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery
KR20150008874A (en) Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2016136452A (en) Carbon material for sodium ion secondary battery, active material for sodium ion secondary battery negative electrode, sodium ion secondary negative electrode, sodium ion secondary battery, resin composition for sodium ion secondary battery negative electrode, and method of manufacturing carbon material for sodium ion secondary battery negative electrode
JP2021116197A (en) Carbonaceous material containing nitrogen element, method for producing the same, electrode and battery
JP2016066434A (en) Negative electrode material, negative electrode, alkali metal ion battery, and manufacturing method of negative electrode material
JP2013051213A (en) Carbon material and method for producing the same, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery
JP5447287B2 (en) Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP4511811B2 (en) Lithium ion secondary battery negative electrode active material resin composition, negative electrode active material carbon material, method for producing the same, and lithium ion secondary battery
JP6065713B2 (en) Negative electrode material for alkali metal ion secondary battery, negative electrode active material for alkali metal ion secondary battery, negative electrode for alkali metal ion secondary battery, and alkali metal ion secondary battery