JP2008181949A - Electrode material for electric double-layer capacitor and the electric double-layer capacitor - Google Patents

Electrode material for electric double-layer capacitor and the electric double-layer capacitor Download PDF

Info

Publication number
JP2008181949A
JP2008181949A JP2007012633A JP2007012633A JP2008181949A JP 2008181949 A JP2008181949 A JP 2008181949A JP 2007012633 A JP2007012633 A JP 2007012633A JP 2007012633 A JP2007012633 A JP 2007012633A JP 2008181949 A JP2008181949 A JP 2008181949A
Authority
JP
Japan
Prior art keywords
electrode material
electric double
layer capacitor
double layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007012633A
Other languages
Japanese (ja)
Other versions
JP5320675B2 (en
Inventor
Masayuki Kozu
将之 神頭
Eisuke Haba
英介 羽場
Koichi Takei
康一 武井
Yoshito Ishii
義人 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007012633A priority Critical patent/JP5320675B2/en
Publication of JP2008181949A publication Critical patent/JP2008181949A/en
Application granted granted Critical
Publication of JP5320675B2 publication Critical patent/JP5320675B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode material for an electric double-layer capacitor, exhibiting high output characteristics in a low-temperature region, and to provide the electric double-layer capacitor. <P>SOLUTION: In the electrode material for the electric double-layer capacitor, a half width value (Δν1) of a peak (G1) in the vicinity of 1,580 cm<SP>-1</SP>observed in Raman spectrum is less than or equal to 77. The half width value (Δν1) is increased by 1 or larger, when the electrode material is heat treated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気二重層キャパシタ用電極材及び電気二重層キャパシタに関する。   The present invention relates to an electrode material for an electric double layer capacitor and an electric double layer capacitor.

電気二重層キャパシタは、電解液中にセパレータを介して、2対の電極を対向することにより構成される。充放電はセルに電圧を印加することにより、電解液中のイオンが電極表面に電気的吸脱着をすることにより行われる。このように、電気二重層キャパシタは電極と電解液間で化学的な反応が伴わないため、リチウムイオン二次電池、ニッケル水素電池など他の二次電池と比較して、高い出力、高い寿命、さらには高い安全性を有することが特徴である。   The electric double layer capacitor is configured by facing two pairs of electrodes in a liquid electrolyte via a separator. Charging / discharging is performed by applying a voltage to the cell so that ions in the electrolytic solution are electrically adsorbed / desorbed on the electrode surface. In this way, since the electric double layer capacitor does not involve a chemical reaction between the electrode and the electrolyte, compared with other secondary batteries such as lithium ion secondary battery and nickel metal hydride battery, high output, high life, Furthermore, it is characterized by high safety.

電気二重層キャパシタは半導体メモリのバックアップ電源として実用化され、次いで、高容量化と共に太陽電池と組み合わせた道路標識、照明等に使用されるようになった。近年、注目されている電気二重層キャパシタの利用分野は車載用電源と瞬時停電用電源である。特に車載用途は、自動車の電子制御化、ハイブリッド化と共に、電源への信頼性、寿命、出力特性に対する要求が高まり、これらの特性に優れる電気二重層キャパシタが注目されている。   The electric double layer capacitor has been put to practical use as a backup power source for semiconductor memories, and then has been used for road signs, lighting, etc. combined with a solar cell with an increase in capacity. In recent years, electric double layer capacitors that are attracting attention are in-vehicle power supplies and instantaneous power outages. In particular, in automotive applications, demands for reliability, life, and output characteristics of power sources are increasing along with electronic control and hybridization of automobiles, and electric double layer capacitors that are excellent in these characteristics are attracting attention.

電気二重層キャパシタの電極材には、高い比表面積を有する活性炭が用いられている。活性炭はナノサイズの細孔から成る多孔質炭素である。この細孔内で電気二重層形成及びイオン移動などが起こるため、電気二重層キャパシタの特性向上を目的とし、予てより電極材としての活性炭の改良検討が盛んに行われてきた。   Activated carbon having a high specific surface area is used for the electrode material of the electric double layer capacitor. Activated carbon is porous carbon composed of nano-sized pores. Since electric double layer formation and ion migration occur in the pores, improvement of activated carbon as an electrode material has been actively studied for the purpose of improving the characteristics of the electric double layer capacitor.

車載用電源用電気二重層キャパシタには、高い出力特性、特に低温域での高出力化が要求されている。一般に電気二重層キャパシタを電極材から高出力化するためには、(1)電極材固有の電気抵抗を低下させること、(2)電極材間の接触抵抗を低下させること、(3)活性炭細孔内の電解液の拡散抵抗を低下させることが挙げられる。特に、低温域では、(3)の細孔内のイオンの拡散抵抗が抵抗成分の主要因となっており、活性炭の細孔径をコントロールすることによる出力特性改善の試みが多数報告されている。   Electric double layer capacitors for on-vehicle power supplies are required to have high output characteristics, particularly high output at low temperatures. In general, in order to increase the output of an electric double layer capacitor from an electrode material, (1) reduce the electric resistance inherent to the electrode material, (2) reduce the contact resistance between the electrode materials, and (3) the activated carbon fine For example, the diffusion resistance of the electrolytic solution in the pores is reduced. In particular, in the low temperature range, the diffusion resistance of ions in the pores of (3) is the main factor of the resistance component, and many attempts to improve the output characteristics by controlling the pore diameter of activated carbon have been reported.

例えば、やしがらの炭化物を水蒸気賦活してなる活性炭であり、そのBET比表面積が2000〜2500m/g、平均細孔径が1.95nm〜2.20nm、クランストンインクレー法で算出した細孔直径5nm〜30nmの細孔容積が0.05〜0.15cm3/gであるものが体積容量、出力特性、寿命特性に優れるとの報告がある(特許文献1参照)。また、アルカリ賦活してなる活性炭について、全比表面積が1000m/g以上であり、細孔容積分布においては、直径12〜40Å細孔径の容積が400μl/g以上、直径40Å以上の細孔径については50μl/g以上、全細孔容量が1000μl/g以下に制御したものが体積容量、低温特性、出力特性に優れるとの報告がある(特許文献2参照)。 For example, activated carbon obtained by steam activation of coconut carbide, and its BET specific surface area is 2000-2500 m 2 / g, the average pore diameter is 1.95 nm-2.20 nm, and the fineness calculated by Cranston inclay method. There is a report that a pore volume with a pore diameter of 5 nm to 30 nm of 0.05 to 0.15 cm 3 / g is excellent in volume capacity, output characteristics, and life characteristics (see Patent Document 1). In addition, the activated carbon obtained by alkali activation has a total specific surface area of 1000 m 2 / g or more, and the pore volume distribution has a pore diameter of 12 to 40 mm and a pore diameter of 400 μl / g or more and a diameter of 40 mm or more. Have been reported to be excellent in volume capacity, low temperature characteristics, and output characteristics when the total pore volume is controlled to 50 μl / g or more and the total pore volume is 1000 μl / g or less (see Patent Document 2).

細孔径の拡大は電気二重層キャパシタの出力特性改善に対して大きく寄与することは公知であるが、活性炭の細孔径を拡大させることは、かさ密度の低下を引き起こし、必然的に電極材として体積容量が低下するという問題を生じさせる。上記報告ではこの問題に対して、活性炭の比表面積、細孔径、細孔容量について、一定の領域及びその量を指定することで体積容量の低下を抑制している。しかし、これらは体積容量を犠牲にして高出力特性化を図っているものであり、高い体積容量を維持し、かつ高い出力特性を得るためには、これまでのような細孔径拡大によらない、高出力電極材の開発が必要とされている。   It is known that the increase in the pore diameter greatly contributes to the improvement of the output characteristics of the electric double layer capacitor. However, the increase in the pore diameter of the activated carbon causes a decrease in the bulk density, which inevitably results in a volume as an electrode material. This causes a problem that the capacity decreases. In the above report, for this problem, a decrease in volume capacity is suppressed by designating a certain region and the amount of the specific surface area, pore diameter, and pore volume of the activated carbon. However, these are intended to achieve high output characteristics at the expense of volume capacity. In order to maintain high volume capacity and obtain high output characteristics, it does not depend on the expansion of the pore diameter as in the past. There is a need to develop high-power electrode materials.

特開2002−033249号公報JP 2002-033249 A 特開2001−118753号公報JP 2001-118753 A

このように、電気二重層キャパシタ用電極材として高体積容量と高出力化を両立させるためには、細孔径拡大などの細孔改良による手法では限界がある。本発明は、高い容量と低温での高い出力特性を有する電気二重層キャパシタ用電極材、電気二重層キャパシタを提供するものである。   As described above, in order to achieve both high volume capacity and high output as an electrode material for an electric double layer capacitor, there is a limit to a technique based on pore improvement such as pore diameter expansion. The present invention provides an electrode material for an electric double layer capacitor and an electric double layer capacitor having high capacity and high output characteristics at low temperature.

発明者らは鋭意検討の結果、上記課題を解決し本発明に至った。具体的には下記の[1]〜[5]に記載の事項を特徴とするものである。
[1]ラマンスペクトルにおいて観察される1580cm−1付近のピーク(G1)の半値幅(Δν1)の値が77以下であり、熱処理を施すことにより半値幅(Δν1)の値が1以上増加する電気二重層キャパシタ用電極材。
[2]BET比表面積が1800〜2500m/g、細孔容量0.8〜1.2ml/g、平均細孔径が1.6〜2.0nm、平均粒子径が0.5〜15μm、表面官能基量が0.25〜0.60mmol/gである[1]に記載の電気二重層キャパシタ用電極材。
[3]表面改質処理を施してなる[1]又は[2]に記載の電気二重層キャパシタ用電極材。
[4]フェノール樹脂の炭化物を炭素原料として、アルカリ賦活して作製されてなる[1]〜[3]いずれかに記載の電気二重層キャパシタ用電極材。
[5]熱処理の条件が、窒素雰囲気下800℃で1時間である[1]〜[4]いずれかに記載の電気二重層キャパシタ用電極材。
[6]表面改質処理が、圧縮力及び剪断力によりなされることを特徴とする[3]〜[5]いずれかに記載の電気二重層キャパシタ用電極材。
[7][1]〜[6]いずれかに記載の電気二重層キャパシタ用電極材を用いてなる電気二重層キャパシタ。
As a result of intensive studies, the inventors have solved the above problems and have reached the present invention. Specifically, the items described in [1] to [5] below are characterized.
[1] Electricity in which the half-value width (Δν1) of the peak (G1) near 1580 cm −1 observed in the Raman spectrum is 77 or less, and the half-value width (Δν1) increases by 1 or more by heat treatment. Electrode material for double layer capacitors.
[2] BET specific surface area of 1800-2500 m 2 / g, pore volume of 0.8-1.2 ml / g, average pore size of 1.6-2.0 nm, average particle size of 0.5-15 μm, surface The electrode material for electric double layer capacitors according to [1], wherein the functional group amount is 0.25 to 0.60 mmol / g.
[3] The electrode material for an electric double layer capacitor according to [1] or [2], which is subjected to a surface modification treatment.
[4] The electrode material for an electric double layer capacitor according to any one of [1] to [3], which is manufactured by alkali activation using a phenol resin carbide as a carbon raw material.
[5] The electrode material for an electric double layer capacitor according to any one of [1] to [4], wherein the heat treatment condition is 1 hour at 800 ° C. in a nitrogen atmosphere.
[6] The electrode material for an electric double layer capacitor according to any one of [3] to [5], wherein the surface modification treatment is performed by a compressive force and a shearing force.
[7] An electric double layer capacitor using the electric double layer capacitor electrode material according to any one of [1] to [6].

本発明によれば、高容量であり、低温域において高い出力特性を有する電気二重層キャパシタ用電極材、電気二重層キャパシタを得ることが可能となる。   According to the present invention, it is possible to obtain an electrode material for an electric double layer capacitor and an electric double layer capacitor that have a high capacity and high output characteristics in a low temperature range.

以下、本発明を詳細に説明する。
本発明の電気二重層キャパシタ用電極材は、ラマンスペクトルにおいて観察される1580cm−1付近のピーク(G1)の半値幅(Δν1)の値が77以下であり、熱処理を施すことにより半値幅(Δν1)が1以上増加することを特徴とする。ラマンスペクトルに観察される1580cm−1付近のピーク(G1)の半値幅(Δν1)の値は炭素構造の結晶状態を表し、値が小さいほど電極材の結晶性が高いことを示す。半値幅(Δν1)の値は、65〜77の範囲が好ましく、65〜76の範囲がより好ましく、65〜75の範囲がさらに好ましい。半値幅(Δν1)の値が77を超えると結晶性が低く出力特性が低下する。また、高結晶なものほど出力特性が優れる傾向があるため、半値幅(Δν1)の値は低い方が好ましいが、原料、処理法などによりこの下限値は制限をされる。例えば、フェノール樹脂の炭化物を炭素原料としてアルカリ賦活をした場合、半値幅(Δν1)は68以上であることが好ましい。なお、本発明における半値幅(Δν1)は、通常、以下の方法により測定したものとする。
Hereinafter, the present invention will be described in detail.
In the electrode material for an electric double layer capacitor of the present invention, the half-value width (Δν1) of the peak (G1) near 1580 cm −1 observed in the Raman spectrum is 77 or less. ) Increases by 1 or more. The value of the half width (Δν1) of the peak (G1) near 1580 cm −1 observed in the Raman spectrum represents the crystalline state of the carbon structure, and the smaller the value, the higher the crystallinity of the electrode material. The value of the half width (Δν1) is preferably in the range of 65 to 77, more preferably in the range of 65 to 76, and still more preferably in the range of 65 to 75. When the value of the half width (Δν1) exceeds 77, the crystallinity is low and the output characteristics are deteriorated. In addition, the higher the crystal, the more excellent the output characteristics. Therefore, the lower half-value width (Δν1) is preferable, but the lower limit value is limited by the raw material, processing method, and the like. For example, when alkali activation is performed using a phenol resin carbide as a carbon raw material, the full width at half maximum (Δν1) is preferably 68 or more. In addition, the half value width (Δν1) in the present invention is usually measured by the following method.

(半値幅(Δν1)測定方法)
プレパラート上にサンプル粉末(本発明の電極材)を載せ、スライドガラスで粉末表面を平らにする。これを測定ポートにセットし、プログラムの手順に従い波長範囲830cm−1〜1940cm−1で測定を行う。測定は、レーザラマン分光光度計(励起光:アルゴンイオンレーザ514.5nm)を用いる。得られたスペクトルについて、解析ソフト(spectra manager)のフィッティング解析ソフトを用い、成分a(ピーク:1595cm−1 半値幅:75cm−1)、成分b(ピーク:1510cm−1 半値幅:65cm−1)、成分c(ピーク:1355cm−1 半値幅:175cm−1)、成分d(ピーク:1200cm−1 半値幅:200cm−1)、の4成分を仮設定し、4成分フィッティングを行い、1580cm−1付近とのピークをGバンドとして半値幅を算出し(図1参照)、3回測定の平均値を目的の値とする。
(Half width (Δν1) measurement method)
The sample powder (electrode material of the present invention) is placed on the preparation, and the powder surface is flattened with a slide glass. Set this to measurement port, the measurement is carried out in the wavelength range 830cm -1 ~1940cm -1 according to the procedure of the program. For the measurement, a laser Raman spectrophotometer (excitation light: argon ion laser 514.5 nm) is used. The obtained spectra, using a fitting analysis software analysis software (spectra manager), component a (peak: 1595cm -1 half-width: 75 cm -1), component b (peak: 1510 cm -1 half width: 65cm -1) , Component c (peak: 1355 cm −1 half-value width: 175 cm −1 ), component d (peak: 1200 cm −1 half-value width: 200 cm −1 ) are temporarily set, four-component fitting is performed, and 1580 cm −1 The full width at half maximum is calculated with the peak near the G band as shown in FIG. 1 (see FIG. 1), and the average value of three measurements is set as the target value.

また、本発明の電気二重層キャパシタ用電極材は、熱処理を施すことにより、ラマンスペクトルに観察される1580cm−1付近のピーク(G1)の半値幅(Δν1)の値が1以上増加する。熱処理の条件としては、通常、窒素雰囲気下800℃で1時間である。また、本発明において、半値幅(Δν1)の値が増加するとは、上記熱処理の前に測定した半値幅(Δν1)の値に対して、熱処理の後に測定した半値幅(Δν1)の値が1以上増加することを意味する。増加する値については、測定によるバラツキを考慮すると、1未満の場合は変化(増加)していない可能性がある。また、増加値については、1〜5であることが好ましく、1〜4であることがより好ましく、1〜3であることがさらに好ましい。増加値については5を超えると、出力特性が低下する傾向がある。 In addition, when the electrode material for an electric double layer capacitor of the present invention is subjected to heat treatment, the value of the full width at half maximum (Δν1) of the peak (G1) near 1580 cm −1 observed in the Raman spectrum is increased by 1 or more. The condition for the heat treatment is usually 1 hour at 800 ° C. in a nitrogen atmosphere. In the present invention, the value of the half width (Δν1) increases when the value of the half width (Δν1) measured after the heat treatment is 1 with respect to the value of the half width (Δν1) measured before the heat treatment. That means more. As for the increasing value, in consideration of the variation due to the measurement, if it is less than 1, there is a possibility that it does not change (increase). Moreover, it is preferable that it is 1-5 about an increase value, It is more preferable that it is 1-4, It is further more preferable that it is 1-3. When the increase value exceeds 5, the output characteristics tend to be lowered.

熱処理前後でラマンスペクトルに観察される1580cm−1付近のピーク(G1)の半値幅(Δν1)の値が増加するものとしては、例えば、電極材表面の結晶状態とバルクの結晶状態が異なる電極材、電極材表面状態が改質された電極材等が挙げられる。このような電極材としては、例えば、バルクとは結晶状態の異なる材料を表面に被覆、複合などをしたもの、電極材表面に機械的処理等を施し、表面状態を改質したもの等が挙げられる。中でも、電極材に表面改質処理を施して得られた電極材が好ましい。ここで、表面改質とは、通常、電極材表面に圧縮力と剪断力を加えることにより、表面状態の改質を行うことを示す。なお、圧縮力と剪断力は、強いことが好ましい。 Examples of the increase in the half-value width (Δν1) of the peak (G1) near 1580 cm −1 observed in the Raman spectrum before and after the heat treatment include, for example, an electrode material in which the crystal state of the electrode material surface is different from the bulk crystal state And electrode materials whose surface condition is modified. As such an electrode material, for example, a material in which the surface is coated with a material having a different crystal state from a bulk, a composite material, etc., a surface treatment is performed by applying mechanical treatment to the electrode material surface, etc. It is done. Among these, an electrode material obtained by subjecting the electrode material to a surface modification treatment is preferable. Here, the surface modification usually indicates that the surface state is modified by applying a compressive force and a shearing force to the electrode material surface. In addition, it is preferable that a compressive force and a shear force are strong.

表面改質処理に用いる装置は、表面に圧縮力、剪断力を加えられるものであれば特に制限はない。具体的にこのような装置として、例えば、メカノフュージョン(ホソカワミクロン株式会社製)、ノビルタ(ホソカワミクロン株式会社製)、ハイブリダイゼーションシステム(株式会社奈良機械試作所製)、メカノマクロス(株式会社奈良機械試作所製)などが挙げられる。このような表面改質処理により、電極材バルクの状態を維持したまま、表面状態を改質することが可能である。表面状態が改質された電極材は、熱処理を施すことにより、表面状態が改質前の状態に戻るため、上記ラマンスペクトルに観察される1580cm−1付近のピーク(G1)の半値幅(Δν1)の値が増加する。また、ラマンスペクトルに観察される1580cm−1付近のピーク(G1)の半値幅(Δν1)の値は、例えば、表面改質処理の条件を適宜調整することによって、調整することが可能である。 The apparatus used for the surface modification treatment is not particularly limited as long as it can apply a compressive force and a shearing force to the surface. Specifically, for example, mechanofusion (manufactured by Hosokawa Micron Co., Ltd.), nobilta (manufactured by Hosokawa Micron Co., Ltd.), hybridization system (manufactured by Nara Machinery Co., Ltd.), mechano macros (Nara Machinery Co., Ltd.) Manufactured). By such surface modification treatment, it is possible to modify the surface state while maintaining the state of the electrode material bulk. The electrode material whose surface state has been modified undergoes a heat treatment, so that the surface state returns to the state before the modification. Therefore, the full width at half maximum (Δν1) of the peak (G1) near 1580 cm −1 observed in the Raman spectrum. ) Value increases. Further, the value of the half width (Δν1) of the peak (G1) near 1580 cm −1 observed in the Raman spectrum can be adjusted, for example, by appropriately adjusting the conditions of the surface modification treatment.

表面改質処理の条件については、使用する装置、処理する材料の物性等によって異なる。上記装置によって表面改質処理を行う場合、印加されたエネルギーによる発熱から粒子の酸化反応が進み、過剰に処理した場合、表面官能基量が増加する傾向がある。表面官能基は電気二重層キャパシタの寿命特性低下を引き起こすため、表面改質処理条件として、表面官能基量の変化率が30%以下となるように選択することが好ましく、25%以下であることがより好ましく、20%以下であることがさらに好ましい。なお、表面官能基量は、下記の方法によって測定することができる。   The conditions for the surface modification treatment vary depending on the equipment used, the physical properties of the material to be treated, and the like. When the surface modification treatment is performed by the above apparatus, the oxidation reaction of the particles proceeds from the heat generated by the applied energy, and when the treatment is excessive, the amount of surface functional groups tends to increase. Since the surface functional group causes a decrease in the life characteristics of the electric double layer capacitor, it is preferable to select the surface modification treatment condition so that the rate of change of the surface functional group amount is 30% or less, and 25% or less. Is more preferable, and it is further more preferable that it is 20% or less. The surface functional group amount can be measured by the following method.

(表面官能基測定法)
電極材1gと0.1mol/l水酸化ナトリウム100mlをメスフラスコに入れ、25℃で20時間攪拌する。この混合液をろ過後、ろ液50mlをホールピペットで正確に量り、メスフラスコに入れる。指示薬としてメチルオレンジ3滴をろ液に適下し、この水溶液を0.1mol/lの塩酸で逆滴定する。電極材の表面官能基量は次式より評価できる。
電極材表面官能基量(mmol/g)=(50−塩酸滴下量(ml))×0.1×2
(Surface functional group measurement method)
1 g of electrode material and 100 ml of 0.1 mol / l sodium hydroxide are placed in a volumetric flask and stirred at 25 ° C. for 20 hours. After filtration of this mixture, 50 ml of the filtrate is accurately weighed with a whole pipette and placed in a volumetric flask. As an indicator, 3 drops of methyl orange are appropriately applied to the filtrate, and this aqueous solution is back titrated with 0.1 mol / l hydrochloric acid. The surface functional group amount of the electrode material can be evaluated from the following formula.
Electrode material surface functional group amount (mmol / g) = (50-hydrochloric acid dropping amount (ml)) × 0.1 × 2

本発明における電気二重層キャパシタ用電極材は、BET比表面積が1800〜2500m/gであることが好ましく、1900〜2500m/gであることがより好ましく、2000〜2500m/gであることが更に好ましい。BET比表面積が1800m/g未満であると十分な静電容量が得られない傾向があり、2500m/gを超えるとかさ密度が低くなり、電気二重層キャパシタの体積容量が低下する。なお、本発明におけるBET比表面積は窒素ガス吸着測定によって測定することが可能である。 It electric double layer capacitor electrode material in the present invention preferably has a BET specific surface area of 1800~2500m 2 / g, more preferably 1900~2500m 2 / g, a 2000~2500m 2 / g Is more preferable. When the BET specific surface area is less than 1800 m 2 / g, there is a tendency that sufficient capacitance cannot be obtained, and when it exceeds 2500 m 2 / g, the bulk density decreases and the volume capacity of the electric double layer capacitor decreases. In addition, the BET specific surface area in this invention can be measured by nitrogen gas adsorption measurement.

細孔容量は0.8〜1.2ml/gであることが好ましく、0.9〜1.2ml/gであることがより好ましく、0.95〜1.15ml/gであることがさらに好ましい。細孔容量が0.8ml/g未満であると、細孔発達が不充分であり、イオンの拡散性が低下し、高い出力特性が得られない傾向がある。1.2ml/gを超えるとかさ密度の低下から体積容量が低下する傾向がある。なお、本発明における細孔容量は、窒素ガス吸着測定によって測定することが可能であり、相対圧値0.995での窒素吸着量から細孔容量を算出することとする。   The pore volume is preferably 0.8 to 1.2 ml / g, more preferably 0.9 to 1.2 ml / g, and even more preferably 0.95 to 1.15 ml / g. . If the pore volume is less than 0.8 ml / g, pore development is insufficient, ion diffusibility tends to be lowered, and high output characteristics tend not to be obtained. When it exceeds 1.2 ml / g, the volume capacity tends to decrease due to the decrease in bulk density. The pore volume in the present invention can be measured by nitrogen gas adsorption measurement, and the pore volume is calculated from the nitrogen adsorption amount at a relative pressure value of 0.995.

平均細孔径は1.6〜2.0nmであることが好ましく、1.6〜1.9nmであることがより好ましく、1.65〜1.85nmであることがさらに好ましい。平均細孔径が1.6nm未満であると、細孔内に存在するイオンの拡散が不充分であるため、出力特性が低下する傾向がある。2.0nmを超えるとかさ密度が低くなり、体積容量が低下する傾向がある。なお、本発明における平均細孔径は窒素ガス吸着測定のBET比表面積と細孔容量から次式により算出することが可能である。
平均細孔径 D(nm)=4V/S (V:細孔容量、S:BET比表面積)
The average pore diameter is preferably 1.6 to 2.0 nm, more preferably 1.6 to 1.9 nm, and even more preferably 1.65 to 1.85 nm. If the average pore diameter is less than 1.6 nm, the diffusion of ions existing in the pores is insufficient, and the output characteristics tend to be lowered. If it exceeds 2.0 nm, the bulk density tends to be low, and the volume capacity tends to decrease. In addition, the average pore diameter in the present invention can be calculated from the BET specific surface area and the pore volume of nitrogen gas adsorption measurement by the following formula.
Average pore diameter D (nm) = 4 V / S (V: pore volume, S: BET specific surface area)

また、本発明における電気二重層キャパシタ用電極材は、表面官能基量が0.25〜0.6mmol/gであることが好ましく、0.25〜0.55mmol/gであることがより好ましく、0.25〜0.5mmol/gであることがさらに好ましい。表面官能基量0.6mmol/gを超えると、電気二重層キャパシタの寿命特性が低下する傾向がある。なお、本発明における表面官能基量は、前記記載の方法により測定することが可能である。   The electrode material for electric double layer capacitors in the present invention preferably has a surface functional group amount of 0.25 to 0.6 mmol / g, more preferably 0.25 to 0.55 mmol / g, More preferably, it is 0.25 to 0.5 mmol / g. When the surface functional group amount exceeds 0.6 mmol / g, the life characteristics of the electric double layer capacitor tend to be lowered. In addition, the surface functional group amount in the present invention can be measured by the method described above.

平均粒子径は0.5〜15μmであることが好ましく、1〜12μmであることがより好ましく、2〜10μmであることがさらに好ましい。平均粒子径が0.5μm未満であると、かさ密度が著しく低下し、体積容量が低下する傾向がある。15μmを超えると出力特性が低下する傾向がある。なお、電極材の平均粒子径は、例えば、レーザー回折粒度測定装置を用いて測定することができる。また、平均粒子径は体積基準に基づいた累積粒度分布の50%値とする。   The average particle diameter is preferably 0.5 to 15 μm, more preferably 1 to 12 μm, and further preferably 2 to 10 μm. When the average particle diameter is less than 0.5 μm, the bulk density is remarkably lowered and the volume capacity tends to be lowered. If it exceeds 15 μm, the output characteristics tend to deteriorate. In addition, the average particle diameter of an electrode material can be measured using a laser diffraction particle size measuring apparatus, for example. The average particle diameter is set to 50% of the cumulative particle size distribution based on the volume standard.

本発明の電気二重層キャパシタ用電極材の製造法に特に制限はないが、例えば、フェノール樹脂を原料として、不活性雰囲気下で炭化し、その後アルカリ賦活することによって得ることができる。原料としてフェノール樹脂を用いる場合はノボラック型フェノール樹脂を用いることが好ましく、ノボラック型フェノール樹脂は、炭化に先立って硬化剤によって硬化処理を施すことが好ましい。ノボラック樹脂を炭化して得られた炭素を用いて作製された電極材は、充電時に起こる構造変化が抑制され、出力特性の悪化が抑制されるので好ましい。   Although there is no restriction | limiting in particular in the manufacturing method of the electrode material for electric double layer capacitors of this invention, For example, it can obtain by carbonizing in inert atmosphere by using phenol resin as a raw material, and carrying out alkali activation after that. When a phenol resin is used as a raw material, it is preferable to use a novolac type phenol resin, and the novolac type phenol resin is preferably subjected to a curing treatment with a curing agent prior to carbonization. An electrode material produced using carbon obtained by carbonizing a novolak resin is preferable because structural changes that occur during charging are suppressed, and deterioration of output characteristics is suppressed.

原料となるノボラック型フェノール樹脂の硬化剤としては特に制限はないが、具体的にはヘキサメチレンテトラミン、パラホルムアルデヒド等のホルムアルデヒド供給源が挙げられる。これらは、単独又は2種以上を組み合わせて使用される。また、硬化の手法としてはノボラック型フェノール樹脂を溶融させ硬化剤と混合する溶融硬化が一般的であるが、ノボラック型フェノール樹脂を水溶液中に縣濁させた後硬化剤を添加し、水溶液中で熱処理する縣濁硬化法、また、乾燥機等の加熱処理装置を用いた加熱硬化等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用される。硬化した樹脂は粉砕して用いられることが好ましい。粉砕については、通常の粉砕機が用いられるが、具体的にはカッターミル、ピンミル、ジェットミル等によって粉砕することが挙げられる。ここれらは、単独行ってもよく又は2種以上の方法を組み合わせて行ってもよい。   Although there is no restriction | limiting in particular as a hardening | curing agent of the novolak-type phenol resin used as a raw material, Specifically, formaldehyde supply sources, such as hexamethylenetetramine and paraformaldehyde, are mentioned. These are used individually or in combination of 2 or more types. Also, as a curing method, melt curing in which a novolak type phenol resin is melted and mixed with a curing agent is generally used. After the novolac type phenol resin is suspended in an aqueous solution, a curing agent is added and the aqueous solution is added. Examples thereof include a suspension curing method in which heat treatment is performed, and heat curing using a heat treatment apparatus such as a dryer. These are used alone or in combination of two or more. The cured resin is preferably used after being pulverized. For pulverization, a normal pulverizer is used, and specific examples include pulverization with a cutter mill, a pin mill, a jet mill or the like. These may be performed alone or in combination of two or more methods.

硬化し、粉砕処理を施した樹脂は炭化することが好ましい。炭化については、通常、窒素、アルゴン、ヘリウム、真空等の不活性雰囲気下500〜1000℃の範囲で行うのが好ましく、600〜900℃で行うのがより好ましく、700〜800℃で行うことがさらに好ましい。炭化温度が500℃未満であると、得られる電極材が低結晶性のため、出力特性が悪い傾向がある。炭化温度が1000℃を超えると、賦活時に多量のアルカリ化合物が必要になるほか、結晶性の向上が出力特性に大きく寄与しなくなる傾向がある。また、得られた炭化物はさらに目的粒子径まで粉砕することが好ましい。粉砕機はピンミル、ジェットミル、ボールミル、ビーズミル等挙げられる。これらは、単独行ってもよく又は2種以上の方法を組み合わせて行ってもよい。   The cured and pulverized resin is preferably carbonized. The carbonization is usually preferably performed in an inert atmosphere such as nitrogen, argon, helium, vacuum, etc. in the range of 500 to 1000 ° C., more preferably 600 to 900 ° C., and 700 to 800 ° C. Further preferred. When the carbonization temperature is less than 500 ° C., the obtained electrode material tends to have poor output characteristics because of low crystallinity. When the carbonization temperature exceeds 1000 ° C., a large amount of alkali compound is required at the time of activation, and the improvement in crystallinity tends not to greatly contribute to the output characteristics. The obtained carbide is preferably further pulverized to the target particle size. Examples of the pulverizer include a pin mill, a jet mill, a ball mill, and a bead mill. These may be performed alone or in combination of two or more methods.

樹脂の炭化後、アルカリ賦活を行うことが好ましい。アルカリ賦活は、通常の方法により行うことができる。アルカリ賦活は下記のようにして行うことが好ましい。以下、賦活とはアルカリ賦活のことである。
炭化物とアルカリ化合物をプラネタリミキサ等の混合機を用い混合する。本発明において用いられるアルカリ化合物については特に制限はないが、例えば、水酸化カリウム、水酸化ナトリウム、炭酸カリウム等が挙げられる。中でも水酸化カリウムを用いると、高い比表面積を有する電極材が得られるため好ましい。この混合物をNi製容器に入れ、例えば、窒素、アルゴン、ヘリウム等の不活性雰囲気下で700〜900℃の範囲で0.5〜3時間熱処理を行う。この際の賦活温度は750〜850℃がより好ましく、780〜830℃がさらに好ましい。また、賦活時間は1〜2時間がより好ましい。賦活温度は700℃未満であると賦活が進みにくく、所望の比表面積を持つ活性炭が得られない傾向があり、賦活温度が900℃を超えると、Ni製容器中のアルカリ化合物による容器腐食が著しくなる傾向がある。また、賦活時間が0.5時間未満であると賦活が充分にいきわたらない傾向があり、所望の比表面積を持つ電極材が得られない傾向がある。賦活時間が3時間を超えて行っても細孔形成にほとんど変化はない傾向がある。
It is preferable to perform alkali activation after carbonization of the resin. The alkali activation can be performed by a usual method. The alkali activation is preferably performed as follows. Hereinafter, activation refers to alkali activation.
The carbide and the alkali compound are mixed using a mixer such as a planetary mixer. Although there is no restriction | limiting in particular about the alkaline compound used in this invention, For example, potassium hydroxide, sodium hydroxide, potassium carbonate etc. are mentioned. Of these, potassium hydroxide is preferable because an electrode material having a high specific surface area can be obtained. This mixture is put into a Ni container and heat-treated at 700 to 900 ° C. for 0.5 to 3 hours in an inert atmosphere such as nitrogen, argon or helium. The activation temperature at this time is more preferably 750 to 850 ° C, and further preferably 780 to 830 ° C. The activation time is more preferably 1 to 2 hours. If the activation temperature is less than 700 ° C., activation does not proceed easily, and activated carbon having a desired specific surface area tends not to be obtained. If the activation temperature exceeds 900 ° C., the corrosion of the container due to the alkali compound in the Ni container is remarkable. Tend to be. In addition, if the activation time is less than 0.5 hours, activation tends to be insufficient, and an electrode material having a desired specific surface area tends not to be obtained. Even if the activation time exceeds 3 hours, there is a tendency that the pore formation hardly changes.

賦活後は、アルカリ化合物またはNi容器から混入した金属不純物を、酸により溶解抽出する。この方法については特に限定されるものではないが、例えば、賦活後の混合物を4重量%の塩酸中で80℃以上に加熱しながら攪拌し、金属不純物を溶解させる。その後酸溶液をろ過し、再度、同濃度塩酸を用いて前記工程を5回繰り返す。次いで純水を用いて前記同様の工程を5回以上行い、電極材に付着した塩酸を除去することにより、高純度な電極材が得られる。   After activation, the metal impurities mixed from the alkali compound or Ni container are dissolved and extracted with an acid. Although there is no particular limitation on this method, for example, the mixture after activation is stirred in 4% by weight hydrochloric acid while heating to 80 ° C. or higher to dissolve the metal impurities. Thereafter, the acid solution is filtered, and the above process is repeated again 5 times using the same concentration of hydrochloric acid. Subsequently, the same process as described above is performed 5 times or more using pure water, and hydrochloric acid adhering to the electrode material is removed, whereby a high-purity electrode material is obtained.

精製された電極材は、表面官能基を低減させるため、さらに不活性雰囲気下で熱処理を行うことが好ましい。該熱処理温度は500〜1000℃が好ましく、600〜900℃がより好ましく、700〜800℃がさらに好ましい。500℃未満の温度では表面官能基が充分低減できない傾向があり、寿命特性が低下する傾向がある。また、熱処理温度1000℃を超えると、比表面積や細孔容量などが低下する傾向があり、静電容量及び出力特性が低下する傾向がある。   The purified electrode material is preferably further heat-treated in an inert atmosphere in order to reduce surface functional groups. The heat treatment temperature is preferably 500 to 1000 ° C, more preferably 600 to 900 ° C, and further preferably 700 to 800 ° C. When the temperature is lower than 500 ° C., the surface functional groups tend not to be sufficiently reduced, and the life characteristics tend to be lowered. On the other hand, when the heat treatment temperature exceeds 1000 ° C., the specific surface area and pore volume tend to decrease, and the capacitance and output characteristics tend to decrease.

本発明により得られる電気二重層キャパシタ用電極材は、低温域で高い出力特性と容量を必要とする電気二重層キャパシタの電極材として好適である。本発明の電極材を使用する電気二重層キャパシタの構成、作製方法などについては特に制限はないが、例えば、以下のようにして電気二重層キャパシタを作製することができる。   The electrode material for electric double layer capacitors obtained by the present invention is suitable as an electrode material for electric double layer capacitors that require high output characteristics and capacity at low temperatures. Although there is no restriction | limiting in particular about the structure of the electrical double layer capacitor which uses the electrode material of this invention, a manufacturing method, For example, an electrical double layer capacitor is producible as follows.

電極は、本発明の電気二重層キャパシタ用電極材、バインダー及び各種添加剤等を溶剤などと共に攪拌機、混練機などにより混合分散し、スラリーを作製する。これを集電体に塗布することにより電極を作製することができる。また、ペースト状の塗料をシート状、ペレット状などの形状に成形し、これを集電体と一体化することでも電極を作製することが可能である。   The electrode is prepared by mixing and dispersing the electrode material for an electric double layer capacitor of the present invention, a binder, various additives, and the like together with a solvent with a stirrer, a kneader, or the like. An electrode can be produced by applying this to a current collector. Further, it is possible to produce an electrode by forming a paste-like paint into a sheet shape, a pellet shape, or the like and integrating it with a current collector.

上記バインダーとしては特に限定はないが、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系樹脂や、スチレンブタジエンゴム(SBR)など用いることが可能である。これらのバインダーは、通常、粉末状として溶媒中に溶解、あるいは分散した状態で使用されるが、溶媒を用いず、粉末状のまま使用することも可能である。また、上記電極には、導電助材を混合することが好ましい。導電助剤としては、黒鉛や、アセチレンブラック、ケッチェンブラック等のカーボンブラックなどを使用することが可能である。   Although there is no limitation in particular as said binder, fluorinated resin, such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and styrene butadiene rubber (SBR) Or the like. These binders are usually used in the form of powder dissolved or dispersed in a solvent, but it is also possible to use the powder as it is without using a solvent. The electrode is preferably mixed with a conductive additive. As the conductive assistant, graphite, carbon black such as acetylene black, ketjen black, or the like can be used.

上記集電体については、例えば、アルミニウム、ニッケル、ステンレス鋼などを箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。また、多孔質材料、例えばポーラスメタル(発砲メタル)やカーボンペーパーなども使用可能である。   About the said electrical power collector, the strip | belt-shaped thing which made aluminum, nickel, stainless steel etc. into foil shape, perforated foil shape, mesh shape, etc. can be used, for example. A porous material such as porous metal (foamed metal) or carbon paper can also be used.

上記電極スラリーを塗布する方法として特に限定はないが、例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法など公知の方法が挙げられる。塗布後は、必要に応じて、平板プレス、カレンダーロール等による圧延処理を行う。また、シート状、ペレット状との形状に成形された電極材と集電体との一体化は、ロールプレスなど公知の方法により行うことが可能である。   The method for applying the electrode slurry is not particularly limited. For example, a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, screen printing method, etc. A well-known method is mentioned. After the application, a rolling process using a flat plate press, a calendar roll, or the like is performed as necessary. Further, the integration of the electrode material formed into a sheet shape or a pellet shape and the current collector can be performed by a known method such as a roll press.

本発明の電気二重層キャパシタは、本発明の電極材を用いてなる電極を、セパレータを介して対向配置し、電解液を注入することにより作製することができる。なお、キャパシタセル作製時は水分混入が起こらないように、グローブボックスなどを用いて不活性雰囲気下で行うことが好ましい。また、電極は吸着している水分を十分に除去した後、使用することが好ましい。   The electric double layer capacitor of the present invention can be produced by injecting an electrode using the electrode material of the present invention with a separator interposed therebetween and injecting an electrolytic solution. In addition, it is preferable to carry out in an inert atmosphere using a glove box etc. so that moisture mixing may not occur at the time of capacitor cell production. The electrode is preferably used after sufficiently removing the adsorbed moisture.

上記電解液は、水系、有機系と大別できるが、高電圧で使用できる点から、有機系電解液を使用することが好ましい。電解液及び電解質の種類については特に制限はないが、例えば、(CNBF、(CCHNBF等の第4級アンモニウム塩、1−エチル−3−メチルイミダゾリウムBF等の常温溶融塩、LiBF等のリチウム含有塩などをプロピレンカーボネート等の有機溶剤に溶解して用いることが可能である。電解質のアニオン種としてはBFのほか、ClO 、PF 、AsF などが用いることができる。電解質を溶解させる有機溶剤としてはPCのほか、γ−ブチロラクトン、アセトニトリル、スルホランなど用いることができる。これら電解液の構成については、使用条件などから適宜選択することが好ましい。上記セパレータとしては、ポリエチレン、ポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルムや紙などを用いることができる。 The electrolytic solution can be broadly classified into an aqueous type and an organic type, but it is preferable to use an organic electrolytic solution from the viewpoint that it can be used at a high voltage. No particular limitation is imposed on the type of electrolyte and the electrolyte, for example, (C 2 H 5) 4 NBF 4, (C 2 H 5) 3 CH 3 NBF 4 quaternary ammonium salts such as, 1-ethyl-3 It is possible to use a room temperature molten salt such as methylimidazolium BF 4 or a lithium-containing salt such as LiBF 4 dissolved in an organic solvent such as propylene carbonate. As the anion species of the electrolyte, in addition to BF 4 , ClO 4 , PF 4 , AsF 6 − and the like can be used. As the organic solvent for dissolving the electrolyte, γ-butyrolactone, acetonitrile, sulfolane and the like can be used in addition to PC. About the structure of these electrolyte solutions, it is preferable to select suitably from use conditions. As said separator, the nonwoven fabric, cloth, microporous film, paper, etc. which have polyolefins, such as polyethylene and a polypropylene, as a main component can be used.

本発明の電気二重層キャパシタの構造について特に限定はされないが、通常、正負極及びセパレータを扁平渦巻状に捲回して捲回式極板群としたり、これらを平板状として積層して積層式極板群とし、これら極板群を外装体内に封入した構造とするのが一般的である。   The structure of the electric double layer capacitor of the present invention is not particularly limited. Usually, the positive and negative electrodes and the separator are wound in a flat spiral shape to form a wound electrode plate group, or these are laminated in a flat plate shape to form a laminated electrode. In general, a plate group is used, and the electrode plate group is enclosed in an exterior body.

本発明の電気二重層キャパシタは、コイン型、積層型、円筒型セルなどとして使用される。また、本発明は電気二重層キャパシタ用電極材は、電気二重層キャパシタの他にも各種蓄電デバイス用電極材、電気化学素子等に適用可能である。   The electric double layer capacitor of the present invention is used as a coin type, multilayer type, cylindrical cell or the like. In addition, the electrode material for electric double layer capacitors of the present invention can be applied to electrode materials for various power storage devices, electrochemical elements, etc. in addition to electric double layer capacitors.

以下に実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples.

(実施例1)
フェノールホルムアルデヒド樹脂を500g秤量し、ヘキサミン50gとともに粉砕・混合した。混合物をホットプレート上のPTFE(ポリテトラフルオロエチレン)をコーティングしたバットで溶融混合し、フェノール樹脂の半硬化物を得た。得られたフェノール樹脂半硬化物は熱風乾燥機で180℃、2時間アフターキュアを行い、樹脂硬化物を得た。得られた樹脂硬化物をカッターミルで100μm程度に粉砕し、雰囲気焼成炉にて窒素気流中、300ml/分の流量で室温(25℃)から750℃まで昇温し、2時間保持してフェノール樹脂炭化物を作製した。得られた炭化物は平均粒子径4μmまで粉砕し、これと炭化物重量に対し3.3倍量の水酸化カリウムと混合し、ボックス炉にて窒素気流中、300ml/分の流量で室温(25℃)から800℃まで昇温し、2時間保持してアルカリ賦活を行った。温度が室温(25℃)に戻ったらサンプルを取り出し、前述記載の酸により溶解抽出する方法により金属不純物を除去し、これを120℃で40時間乾燥し、活性炭を得た。得られた活性炭は窒素雰囲気下で室温(25℃)から800℃まで昇温後、1時間熱処理を行うことにより電極材を得た。得られた電極材は、圧縮剪断型の表面改質装置(装置名:ノビルタNOB−130、ホソカワミクロン株式会社製)にて、1分間表面改質処理を実施した。
(Example 1)
500 g of phenol formaldehyde resin was weighed and ground and mixed with 50 g of hexamine. The mixture was melt-mixed with a vat coated with PTFE (polytetrafluoroethylene) on a hot plate to obtain a semi-cured product of a phenol resin. The obtained phenol resin semi-cured product was after-cured at 180 ° C. for 2 hours with a hot air dryer to obtain a cured resin product. The obtained resin cured product is pulverized to about 100 μm with a cutter mill, heated from room temperature (25 ° C.) to 750 ° C. at a flow rate of 300 ml / min in an atmosphere baking furnace, and kept for 2 hours to phenol. Resin carbide was produced. The obtained carbide was pulverized to an average particle size of 4 μm, mixed with 3.3 times the amount of potassium hydroxide with respect to the weight of the carbide, and room temperature (25 ° C. at a flow rate of 300 ml / min in a nitrogen stream in a box furnace. ) To 800 ° C. and held for 2 hours to activate the alkali. When the temperature returned to room temperature (25 ° C.), a sample was taken out, metal impurities were removed by the method of dissolving and extracting with the acid described above, and this was dried at 120 ° C. for 40 hours to obtain activated carbon. The obtained activated carbon was heated from room temperature (25 ° C.) to 800 ° C. in a nitrogen atmosphere and then heat treated for 1 hour to obtain an electrode material. The obtained electrode material was subjected to a surface modification treatment for 1 minute by a compression shear type surface modification device (device name: Nobilta NOB-130, manufactured by Hosokawa Micron Corporation).

表面改質された電極材のBET比表面積、細孔容量、平均細孔径については、Nガス吸着測定装置に株式会社島津製作所製ASAP−2010を用いて測定した。平均粒径については、レーザー回折粒度測定装置に株式会社島津製作所製SALD−3000Jを用いて測定した。表面官能基量は前述記載の方法(表面官能基測定法)により評価した。半値幅(Δν1)の値は、得られた電極材及び、窒素雰囲気下、800℃で1時間熱処理をした電極材について、レーザラマン分光光度計として日本分光製NRS−1000型を用いて、前述記載の方法(半値幅(Δν1)測定方法)により求めた。静電容量及び出力特性については、以下の方法により電極セルを作製し評価した。結果を表1及び表2に示した。なお、電極材の表面官能基量の変化率は19%であった。
なお、表2中において、「Δν1」の値は、ラマンスペクトルにおいて観察される1580cm−1付近のピーク(G1)の半値幅(Δν1)の値であり、「熱処理前」とは、熱処理前の電極材であり、「熱処理後」とは、窒素雰囲気下、800℃で1時間熱処理をした電極材であり、「変化量」とは、熱処理による半値幅(Δν1)の値の増加値である。
The BET specific surface area, pore volume, and average pore diameter of the surface-modified electrode material were measured using ASAP-2010 manufactured by Shimadzu Corporation in an N 2 gas adsorption measuring device. The average particle size was measured using a SALD-3000J manufactured by Shimadzu Corporation with a laser diffraction particle size measuring apparatus. The amount of surface functional groups was evaluated by the method described above (surface functional group measurement method). The value of half width (Δν1) is described above using the NRS-1000 model manufactured by JASCO as a laser Raman spectrophotometer for the obtained electrode material and the electrode material heat-treated at 800 ° C. for 1 hour in a nitrogen atmosphere. (The half-value width (Δν1) measuring method). For the capacitance and output characteristics, an electrode cell was prepared and evaluated by the following method. The results are shown in Tables 1 and 2. In addition, the change rate of the surface functional group amount of the electrode material was 19%.
In Table 2, the value of “Δν1” is the half-value width (Δν1) of the peak (G1) near 1580 cm −1 observed in the Raman spectrum, and “before heat treatment” means “before heat treatment”. “After heat treatment” is an electrode material that is heat-treated at 800 ° C. for 1 hour in a nitrogen atmosphere, and “change amount” is an increase in the half-value width (Δν1) due to the heat treatment. .

(電極セル作製方法)
電極材と導電助剤(電気化学工業株式会社製 HS100)及びカルボキシメチルセルロース(ダイセル化学工業株式会社製 DN−10L)2重量%水溶液、60重量%PTFE水分散液(ダイキン工業株式会社製 M−390)を100:10:200:5の割合で混合し、水を加えスラリーを作製した後、アルミエッチング箔(宝泉製 膜圧20μm)に電極厚70μmとなるように塗布する。塗布電極を乾燥機にて80℃5時間、120℃3時間で乾燥した後、電極を直径16mmの円形の大きさに打ち抜き、電極を作製する。この電極を正極用負極用に二枚用意し、紙セパレータ(日本高度紙工業株式会社製 TF40)とSUS製コインセル上下蓋、アルミスペーサーとともに真空乾燥機を用い120℃で3時間真空乾燥を行う。乾燥後はアルゴン置換グローブボックス内にて、コイン型キャパシタセルを作製する。セルは、セパレータを介して2枚の電極を対向させた後、セル内の空間を埋めるためアルミスペーサーを入れる。電解液を約0.03ml入れた後、サイドボックス内で10torr以下の減圧度で10分間減圧含浸処理を行ってからコインセルを密封する。作製したセルは充放電試験機(東陽システム株式会社製 TOSCAT)に接続し、充放電試験を行う。なお、電解液としてエチルメチルイミダゾリウムテトラフルオロボレートの1.5mol/lプロピレンカーボネート溶液(広栄化学工業株式会社製)を用いたが、本発明の効果は、特に電解液の種類、濃度などに制限はされない。
(Electrode cell manufacturing method)
Electrode material and conductive additive (HS100 manufactured by Denki Kagaku Kogyo Co., Ltd.) and carboxymethylcellulose (DN-10L manufactured by Daicel Chemical Industries, Ltd.) 2 wt% aqueous solution, 60 wt% PTFE aqueous dispersion (Daikin Kogyo Co., Ltd. M-390) ) Is mixed at a ratio of 100: 10: 200: 5 and water is added to prepare a slurry, which is then applied to an aluminum etching foil (film pressure 20 μm manufactured by Hosen) to an electrode thickness of 70 μm. The coated electrode is dried in a dryer at 80 ° C. for 5 hours and 120 ° C. for 3 hours, and then the electrode is punched into a circular shape having a diameter of 16 mm to produce an electrode. Two of these electrodes are prepared for the negative electrode for the positive electrode, and are vacuum-dried at 120 ° C. for 3 hours using a vacuum separator together with a paper separator (TF40 manufactured by Nippon Advanced Paper Industry Co., Ltd.), a SUS coin cell upper and lower lid, and an aluminum spacer. After drying, a coin-type capacitor cell is produced in an argon-substituted glove box. In the cell, two electrodes are opposed to each other via a separator, and then an aluminum spacer is inserted to fill the space in the cell. After adding about 0.03 ml of the electrolytic solution, the coin cell is sealed after performing a reduced pressure impregnation treatment in a side box at a reduced pressure of 10 torr or less for 10 minutes. The produced cell is connected to a charge / discharge tester (TOSCAT manufactured by Toyo System Co., Ltd.), and a charge / discharge test is performed. Although 1.5 mol / l propylene carbonate solution of ethylmethylimidazolium tetrafluoroborate (manufactured by Guangei Chemical Industry Co., Ltd.) was used as the electrolytic solution, the effects of the present invention are particularly limited to the type and concentration of the electrolytic solution. Not done.

(電極特性の評価方法)
前記で作製したキャパシタセルは、恒温槽にて所定温度で3時間以上放置した後、以下の条件により充放電試験を行い、25℃(常温)及び−30℃(低温)での電極特性評価を行った。結果を表2に示した。
・充電条件:定電流/定電圧
・充電電流:2mA
・充電電圧:2V
・充電時間:2時間
・放電条件:定電圧
・放電電流:2mA
・放電電圧:0V
静電容量は、前記記載の充放電試験で得られた放電曲線の1.7V(電圧:V1、時間:T1(秒))から1.3V(電圧:V2、時間:T2(秒))の傾きから算出する(次式参照)。
静電容量(F/g)=(T2−T1)×0.002/(V1−V2)/G
(G:活物質量(g))
(Evaluation method of electrode characteristics)
The capacitor cell prepared above was left in a thermostatic chamber at a predetermined temperature for 3 hours or more, and then subjected to a charge / discharge test under the following conditions to evaluate electrode characteristics at 25 ° C. (room temperature) and −30 ° C. (low temperature). went. The results are shown in Table 2.
・ Charging conditions: constant current / constant voltage ・ Charging current: 2 mA
・ Charging voltage: 2V
・ Charging time: 2 hours ・ Discharging conditions: constant voltage ・ Discharging current: 2 mA
・ Discharge voltage: 0V
The capacitance is 1.7 V (voltage: V1, time: T1 (seconds)) to 1.3 V (voltage: V2, time: T2 (seconds)) of the discharge curve obtained in the charge / discharge test described above. Calculate from the slope (see next formula).
Capacitance (F / g) = (T2-T1) × 0.002 / (V1-V2) / G
(G: active material amount (g))

また、出力特性は直流抵抗値を指標として評価した。直流抵抗値は放電曲線の10秒から40秒までの曲線について近似直線を引き、この切片値と満充電電圧値の差分を電圧低下ΔVとし、次式により抵抗値を求めた。
抵抗値(Ω)=ΔV/0.002
The output characteristics were evaluated using the DC resistance value as an index. For the DC resistance value, an approximate straight line was drawn for the curve from 10 seconds to 40 seconds of the discharge curve, and the difference between the intercept value and the full charge voltage value was defined as a voltage drop ΔV, and the resistance value was obtained by the following equation.
Resistance value (Ω) = ΔV / 0.002

(実施例2)
樹脂硬化物の炭化温度を730℃とし、アルカリ賦活時の水酸化カリウム量を炭化物重量に対して3倍量とした以外は、実施例1と同様に行った。なお、電極材の表面官能基量の変化率は17%であった。
(Example 2)
The same procedure as in Example 1 was performed except that the carbonization temperature of the cured resin was 730 ° C., and the amount of potassium hydroxide during alkali activation was 3 times the amount of the carbide. In addition, the change rate of the surface functional group amount of the electrode material was 17%.

(実施例3)
樹脂硬化物の炭化温度を700℃とし、アルカリ賦活時の水酸化カリウム量を炭化物重量に対して2.5倍量とした以外は、実施例1と同様に行った。なお、電極材の表面官能基量の変化率は10%であった。
(Example 3)
The same procedure as in Example 1 was performed except that the carbonization temperature of the cured resin was 700 ° C., and the amount of potassium hydroxide at the time of alkali activation was 2.5 times the weight of the carbide. In addition, the change rate of the surface functional group amount of the electrode material was 10%.

(比較例1)
表面改質処理を実施しなかった以外は、実施例3と同様に行った。なお、電極材の表面官能基量の変化率は0%であった。
(Comparative Example 1)
The same procedure as in Example 3 was performed except that the surface modification treatment was not performed. The change rate of the surface functional group amount of the electrode material was 0%.

(比較例2)
樹脂硬化物の炭化温度を600℃とし、アルカリ賦活時の水酸化カリウム量を炭化物重量に対して2.15倍量とし、表面改質処理をしなかった以外は、実施例1と同様に行った。なお、電極材の表面官能基量の変化率は0%であった。
(Comparative Example 2)
The same procedure as in Example 1 was performed except that the carbonization temperature of the cured resin was 600 ° C., the amount of potassium hydroxide during alkali activation was 2.15 times the weight of the carbide, and the surface modification treatment was not performed. It was. The change rate of the surface functional group amount of the electrode material was 0%.

(比較例3)
表面改質処理時間を1分間とした以外は、比較例2と同様に行った。なお、電極材の表面官能基量の変化率は2%であった。
(Comparative Example 3)
The same procedure as in Comparative Example 2 was performed except that the surface modification treatment time was 1 minute. The change rate of the surface functional group amount of the electrode material was 2%.

Figure 2008181949
Figure 2008181949

Figure 2008181949
Figure 2008181949

表2に示したように、ラマンスペクトルにおいて観察される1580cm−1付近のピーク(G1)の半値幅(Δν1)の値が77以下であり、熱処理により半値幅(Δν1)の値が1以上増加した実施例1〜3は、−30℃(低温)での静電容量が、25℃(常温)の場合とほとんど変わらないことがわかる。また、実施例1〜3は、−30℃(低温)での抵抗値が、比較例1〜3と比較して低いこともわかる。それに対し、熱処理後の増加値(変化量)が0.4の比較例1は、−30℃(低温)での抵抗値が高く、また熱処理前の半値幅(Δν1)の値が77を超す比較例2、3は、−30℃(低温)での抵抗値が著しく高く、静電容量も低下している。 As shown in Table 2, the half-value width (Δν1) of the peak (G1) near 1580 cm −1 observed in the Raman spectrum is 77 or less, and the half-value width (Δν1) is increased by 1 or more by heat treatment. In Examples 1 to 3, the capacitance at −30 ° C. (low temperature) is almost the same as that at 25 ° C. (normal temperature). Moreover, Examples 1-3 show that resistance value in -30 degreeC (low temperature) is low compared with Comparative Examples 1-3. In contrast, Comparative Example 1 in which the increase value (change amount) after the heat treatment is 0.4 has a high resistance value at −30 ° C. (low temperature), and the half width (Δν1) before the heat treatment exceeds 77. In Comparative Examples 2 and 3, the resistance value at −30 ° C. (low temperature) is remarkably high, and the capacitance is also reduced.

本発明によれば、高容量であり、低温域において高い出力特性を有する電気二重層キャパシタ用電極材、電気二重層キャパシタを得ることが可能となることが判った。   According to the present invention, it has been found that an electrode material for an electric double layer capacitor and an electric double layer capacitor having a high capacity and high output characteristics in a low temperature range can be obtained.

ラマンスペクトルによる1580cm−1付近と1360cm−1付近のピークをGバンドおよびDバンドとして半値幅を算出するための方法を示す図である。It is a diagram illustrating a method for calculating the half value width of the peak around 1580 cm -1 and near 1360 cm -1 by Raman spectra as G-band and D-band.

Claims (7)

ラマンスペクトルにおいて観察される1580cm−1付近のピーク(G1)の半値幅(Δν1)の値が77以下であり、熱処理を施すことにより半値幅(Δν1)の値が1以上増加する電気二重層キャパシタ用電極材。 Electric double layer capacitor in which the half-value width (Δν1) of the peak (G1) near 1580 cm −1 observed in the Raman spectrum is 77 or less, and the half-value width (Δν1) is increased by 1 or more by heat treatment Electrode material. BET比表面積が1800〜2500m/g、細孔容量0.8〜1.2ml/g、平均細孔径が1.6〜2.0nm、平均粒子径が0.5〜15μm、表面官能基量が0.25〜0.60mmol/gである請求項1に記載の電気二重層キャパシタ用電極材。 BET specific surface area of 1800-2500 m 2 / g, pore volume of 0.8-1.2 ml / g, average pore size of 1.6-2.0 nm, average particle size of 0.5-15 μm, surface functional group content The electrode material for an electric double layer capacitor according to claim 1, wherein is from 0.25 to 0.60 mmol / g. 表面改質処理を施してなる請求項1又は2に記載の電気二重層キャパシタ用電極材。   The electrode material for an electric double layer capacitor according to claim 1 or 2, which has been subjected to a surface modification treatment. フェノール樹脂の炭化物を炭素原料として、アルカリ賦活して作製されてなる請求項1〜3いずれかに記載の電気二重層キャパシタ用電極材。   The electrode material for an electric double layer capacitor according to any one of claims 1 to 3, wherein a carbonized material of phenol resin is used as a carbon raw material and is produced by alkali activation. 熱処理の条件が、窒素雰囲気下800℃で1時間である請求項1〜4いずれかに記載の電気二重層キャパシタ用電極材。   The electrode material for an electric double layer capacitor according to any one of claims 1 to 4, wherein the heat treatment condition is 800 ° C in a nitrogen atmosphere for 1 hour. 表面改質処理が、圧縮力及び剪断力によりなされることを特徴とする請求項3〜5いずれかに記載の電気二重層キャパシタ用電極材。   The electrode material for an electric double layer capacitor according to any one of claims 3 to 5, wherein the surface modification treatment is performed by a compressive force and a shearing force. 請求項1〜6いずれかに記載の電気二重層キャパシタ用電極材を用いてなる電気二重層キャパシタ。   The electric double layer capacitor formed using the electrode material for electric double layer capacitors in any one of Claims 1-6.
JP2007012633A 2007-01-23 2007-01-23 Electrode material for electric double layer capacitor and electric double layer capacitor Expired - Fee Related JP5320675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012633A JP5320675B2 (en) 2007-01-23 2007-01-23 Electrode material for electric double layer capacitor and electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012633A JP5320675B2 (en) 2007-01-23 2007-01-23 Electrode material for electric double layer capacitor and electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2008181949A true JP2008181949A (en) 2008-08-07
JP5320675B2 JP5320675B2 (en) 2013-10-23

Family

ID=39725639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012633A Expired - Fee Related JP5320675B2 (en) 2007-01-23 2007-01-23 Electrode material for electric double layer capacitor and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP5320675B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105885A (en) * 2008-10-31 2010-05-13 Kansai Coke & Chem Co Ltd Method of modifying activated carbon, electrode material for electric double-layer capacitor, electrode for electric double-layer capacitor and electric double-layer capacitor
CN103508522A (en) * 2013-09-30 2014-01-15 天津大学 Ion exchange resin modified carbon electrode as well as preparation method and application of ion exchange resin modified carbon electrode
WO2015146459A1 (en) * 2014-03-27 2015-10-01 Jx日鉱日石エネルギー株式会社 Activated carbon, method for producing activated carbon and method for treating activated carbon
JPWO2018155647A1 (en) * 2017-02-27 2019-12-19 株式会社クラレ Carbonaceous material, electrode material for electric double layer capacitor containing the carbonaceous material, electrode for electric double layer capacitor, and electric double layer capacitor
US11527359B2 (en) 2019-12-18 2022-12-13 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213589A (en) * 1996-02-02 1997-08-15 Takeda Chem Ind Ltd Activated carbon for electric double-layer capacitor and manufacture thereof
JP2005129707A (en) * 2003-10-23 2005-05-19 Nippon Oil Corp Electric double layer capacitor, activated carbon for its electrode, and method of producing the carbon
JP2006004997A (en) * 2004-06-15 2006-01-05 Nippon Oil Corp Carbon for electric double layer capacitor electrode, its manufacturing method and electric double layer capacitor
JP2006093401A (en) * 2004-09-24 2006-04-06 Nippon Oil Corp Original coal composition of carbon material for electrode for electric dipole-layer capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213589A (en) * 1996-02-02 1997-08-15 Takeda Chem Ind Ltd Activated carbon for electric double-layer capacitor and manufacture thereof
JP2005129707A (en) * 2003-10-23 2005-05-19 Nippon Oil Corp Electric double layer capacitor, activated carbon for its electrode, and method of producing the carbon
JP2006004997A (en) * 2004-06-15 2006-01-05 Nippon Oil Corp Carbon for electric double layer capacitor electrode, its manufacturing method and electric double layer capacitor
JP2006093401A (en) * 2004-09-24 2006-04-06 Nippon Oil Corp Original coal composition of carbon material for electrode for electric dipole-layer capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105885A (en) * 2008-10-31 2010-05-13 Kansai Coke & Chem Co Ltd Method of modifying activated carbon, electrode material for electric double-layer capacitor, electrode for electric double-layer capacitor and electric double-layer capacitor
CN103508522A (en) * 2013-09-30 2014-01-15 天津大学 Ion exchange resin modified carbon electrode as well as preparation method and application of ion exchange resin modified carbon electrode
WO2015146459A1 (en) * 2014-03-27 2015-10-01 Jx日鉱日石エネルギー株式会社 Activated carbon, method for producing activated carbon and method for treating activated carbon
JPWO2018155647A1 (en) * 2017-02-27 2019-12-19 株式会社クラレ Carbonaceous material, electrode material for electric double layer capacitor containing the carbonaceous material, electrode for electric double layer capacitor, and electric double layer capacitor
JP7033118B2 (en) 2017-02-27 2022-03-09 株式会社クラレ A carbonaceous material, and an electrode material for an electric double layer capacitor, an electrode for an electric double layer capacitor, and an electric double layer capacitor containing the carbonaceous material.
US11527359B2 (en) 2019-12-18 2022-12-13 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and manufacturing method thereof

Also Published As

Publication number Publication date
JP5320675B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
Shao et al. Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries
CN107148692B (en) Conductive composition for electrode, electrode using same, and lithium ion secondary battery
US10886533B2 (en) Nonaqueous lithium power storage element
JPWO2006118120A1 (en) Negative electrode active material for electricity storage devices
US10825616B2 (en) Nonaqueous lithium storage element
JP5320675B2 (en) Electrode material for electric double layer capacitor and electric double layer capacitor
JP2019021775A (en) Nonaqueous lithium type power-storage device
JP2018056410A (en) Nonaqueous lithium power storage element
JP2012204310A (en) Lithium pre-doping method, manufacturing method of electrode, and power storage device made using the methods
Mao et al. Advanced Aqueous Zinc‐Ion Batteries Enabled by 3D Ternary MnO/Reduced Graphene Oxide/Multiwall Carbon Nanotube Hybrids
JP4838152B2 (en) Porous carbon material, method for producing the same, and electric double layer capacitor
JP2015230915A (en) Negative electrode for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by using thereof
JP2017092303A (en) Active carbon for electrode for high potential capacitor, manufacturing method thereof, and electric double-layer capacitor with the active carbon
JP4935374B2 (en) Electrode material for electric double layer capacitor, method for producing the same, and electric double layer capacitor
Wang et al. Cable‐like V2O5 Decorated Carbon Cloth as a High‐Capacity Cathode for Flexible Zinc Ion Batteries
JP5136123B2 (en) Electrode material for electric double layer capacitor, method for producing the same, and electric double layer capacitor
Li et al. Controlled synthesis of Li3VO4/C nanofibers as anode for Li-ion batteries
JP2018092978A (en) Electric double layer capacitor
CN116114041A (en) Nonaqueous alkali metal power storage element and positive electrode coating liquid
JP2018056436A (en) Nonaqueous lithium power storage element
WO2015163093A1 (en) Positive electrode for lithium ion capacitor, and lithium ion capacitor
US20140004414A1 (en) Non-aqueous electrolyte secondary battery and method for manufacturing the same
EP3076417B9 (en) Negative-electrode active material for lithium ion capacitor
JP2018061019A (en) Nonaqueous lithium power storage element
JP2010103152A (en) Electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130417

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130417

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130425

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R151 Written notification of patent or utility model registration

Ref document number: 5320675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees