JP2011046584A - Method of manufacturing active carbon, and electric double layer capacitor using the active carbon prepared by the method - Google Patents

Method of manufacturing active carbon, and electric double layer capacitor using the active carbon prepared by the method Download PDF

Info

Publication number
JP2011046584A
JP2011046584A JP2009198856A JP2009198856A JP2011046584A JP 2011046584 A JP2011046584 A JP 2011046584A JP 2009198856 A JP2009198856 A JP 2009198856A JP 2009198856 A JP2009198856 A JP 2009198856A JP 2011046584 A JP2011046584 A JP 2011046584A
Authority
JP
Japan
Prior art keywords
activated carbon
furnace
activation
water
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009198856A
Other languages
Japanese (ja)
Other versions
JP5271851B2 (en
Inventor
Noriyasu Akamatsu
徳康 赤松
Junichi Yasumaru
純一 安丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CARBON TECH KK
Kansai Coke and Chemicals Co Ltd
Original Assignee
CARBON TECH KK
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CARBON TECH KK, Kansai Coke and Chemicals Co Ltd filed Critical CARBON TECH KK
Priority to JP2009198856A priority Critical patent/JP5271851B2/en
Publication of JP2011046584A publication Critical patent/JP2011046584A/en
Application granted granted Critical
Publication of JP5271851B2 publication Critical patent/JP5271851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing active carbon capable of enlarging a pore size without increasing an amount used of an alkali activator, and without excessively elevating a specific surface area of the resultant active carbon in activation treatment using the alkali activator. <P>SOLUTION: The method of manufacturing the active carbon comprises an activation process of alkali-activating by housing a mixture of a carbon material and an alkali activator in a furnace, and heating the inside of the furnace; a hydration process of supplying water in the furnace after the activation process and a heating process of heating the inside of the furnace after supplying the water. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、活性炭の製造方法に関するものであり、特に得られる活性炭の細孔構造を制御する技術に関する。   The present invention relates to a method for producing activated carbon, and more particularly to a technique for controlling the pore structure of the obtained activated carbon.

従来、活性炭は、高い比表面積を有することから、電気二重層キャパシタ用電極材料、あるいは、排水処理、浄水器、排ガス処理のための吸着剤などに利用されている。このような活性炭の製造方法には、水蒸気、炭酸ガスなどの賦活ガスの存在下で炭素原料を加熱するガス賦活;アルカリ金属化合物などの賦活剤と炭素原料を混合して加熱する薬品賦活が知られている。   Conventionally, since activated carbon has a high specific surface area, it has been used as an electrode material for electric double layer capacitors, or as an adsorbent for wastewater treatment, water purifiers, and exhaust gas treatment. Such activated carbon production methods include gas activation in which a carbon raw material is heated in the presence of an activation gas such as water vapor and carbon dioxide; chemical activation in which an activation agent such as an alkali metal compound and a carbon raw material are mixed and heated is known. It has been.

また、活性炭は、その用途に応じて求められる物性が異なるため、所望とする物性を得るために様々な製造方法が提案されている。例えば、平均粒径が20〜500μmであるフェノール樹脂を炭化後賦活し、該賦活物を粉砕する活性炭の製造方法(特許文献1、請求項4、段落[0024]);炭素原料を水蒸気賦活して、細孔直径2.0nm(20Å)以上の比表面積と全比表面積との比が0.30以上であるものを作製し、これをさらにアルカリ賦活する活性炭の製造方法(特許文献2、請求項2、段落[0013]);炭素原料をアルカリ金属水酸化物の存在下に焼成し、アルカリ金属化合物を除去した後さらに水蒸気賦活する活性炭の製造法(特許文献3、請求項7、段落[0009]);アルカリ金属化合物を賦活剤とする炭素材のアルカリ賦活時に発生するアルカリ金属を他の炭素材で捕捉した後に、他の炭素材中のアルカリ金属を水和してアルカリ賦活剤に戻し、これをアルカリ賦活する炭素材の賦活法(特許文献4、請求項1、段落[0007]);などが提案されている。   In addition, since activated carbon has different physical properties depending on its application, various production methods have been proposed to obtain desired physical properties. For example, a method for producing activated carbon in which a phenol resin having an average particle size of 20 to 500 μm is activated after carbonization and pulverized the activated product (Patent Document 1, Claim 4, Paragraph [0024]); Then, a method for producing activated carbon in which the ratio of the specific surface area with a pore diameter of 2.0 nm (20 mm) or more and the total specific surface area is 0.30 or more is further activated with alkali (Patent Document 2, Claim) Item 2, paragraph [0013]); a process for producing activated carbon that is calcined in the presence of an alkali metal hydroxide, removed the alkali metal compound, and further activated with water vapor (Patent Document 3, claim 7, paragraph [ [0009] After capturing the alkali metal generated during the alkali activation of the carbon material using the alkali metal compound as an activator with the other carbon material, the alkali metal in the other carbon material is hydrated and the alkali activator. Back, which activation method of the carbon material to alkali activation (Patent Document 4, claim 1, paragraph [0007]); and the like have been proposed.

特開2003−203829号公報JP 2003-203829 A 特開平8−119614号公報JP-A-8-119614 特開2000−40645号公報JP 2000-40645 A 特開2001−19415号公報Japanese Patent Laid-Open No. 2001-19415

近年、特に電気二重層キャパシタ用電極材料の用途において、キャパシタの内部抵抗を低減することができる活性炭が要望されている。このような、電気二重層キャパシタの内部抵抗の低減は、活性炭に形成された細孔径を大径化することで達成できる。上記のように活性炭の製造方法が種々提案されており、形成される細孔径を大きくする製造方法も提案されている。しかし、活性炭の細孔径は、その賦活度合いが増すにつれて増大するため、細孔径を増大させると比表面積も増大してしまい、同等の比表面積を維持しつつ細孔径を大径化することは困難であった。また、アルカリ賦活剤を用いた賦活処理の場合には、細孔径を大径化するため、すなわち、賦活度合いを上げるためには、大量のアルカリ賦活剤を必要とし、製造コストが高くなるという問題があった。   In recent years, there has been a demand for activated carbon capable of reducing the internal resistance of a capacitor, particularly in applications of electrode materials for electric double layer capacitors. Such reduction of the internal resistance of the electric double layer capacitor can be achieved by increasing the diameter of the pores formed in the activated carbon. As described above, various methods for producing activated carbon have been proposed, and a method for increasing the diameter of the formed pores has also been proposed. However, since the pore diameter of activated carbon increases as the degree of activation increases, increasing the pore diameter also increases the specific surface area, making it difficult to increase the pore diameter while maintaining an equivalent specific surface area. Met. Further, in the case of activation treatment using an alkali activator, in order to increase the pore diameter, that is, to increase the degree of activation, a large amount of alkali activator is required, resulting in an increase in production cost. was there.

本発明は上記事情に鑑みてなされたものであり、アルカリ賦活剤を用いた賦活処理において、アルカリ賦活剤の使用量を増加させることなく、また、得られる活性炭の比表面積を過剰に高めることなく、細孔径を大径化できる活性炭の製造方法を提供することを目的とする。   This invention is made | formed in view of the said situation, In the activation process using an alkali activator, without increasing the usage-amount of an alkali activator, and without raising the specific surface area of the activated carbon obtained excessively. An object of the present invention is to provide a method for producing activated carbon capable of increasing the pore diameter.

上記課題を解決することができた本発明の活性炭の製造方法は、炭素原料とアルカリ賦活剤との混合物を炉に収容し、炉内を加熱する賦活工程;賦活工程後、炉内に水を供給する水和工程;水を供給した後、炉内を加熱する加熱工程;を含むことを特徴とする。   The method for producing activated carbon according to the present invention that has solved the above-described problems includes an activation process in which a mixture of a carbon raw material and an alkali activator is accommodated in a furnace, and the interior of the furnace is heated; after the activation process, water is introduced into the furnace. A hydration step of supplying; a heating step of heating the inside of the furnace after supplying water.

前記水和工程において、賦活工程で使用したアルカリ賦活剤100質量部に対して100質量部〜1000質量部の水を供給することが好ましい。また、前記水和工程において、水を供給する際の炉内温度は賦活処理温度以下が好ましい。前記水和工程において、前記水を水蒸気の状態で供給することが好ましい。前記アルカリ賦活剤としては、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムよりなる群から選択される少なくとも1種が好適である。   In the hydration step, it is preferable to supply 100 parts by mass to 1000 parts by mass of water with respect to 100 parts by mass of the alkali activator used in the activation step. Moreover, in the said hydration process, the furnace temperature at the time of supplying water has preferable activation treatment temperature or less. In the hydration step, it is preferable to supply the water in a steam state. The alkali activator is preferably at least one selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.

本発明は、前記製造方法により得られた活性炭を含有する電気二重層キャパシタ用電極および該電気二重層キャパシタ用電極を用いた電気二重層キャパシタも包含する。   The present invention also includes an electrode for an electric double layer capacitor containing activated carbon obtained by the above production method and an electric double layer capacitor using the electrode for an electric double layer capacitor.

本発明によれば、アルカリ賦活剤を用いた賦活処理において、アルカリ賦活剤の使用量を増加させることなく、また、得られる活性炭の比表面積を過剰に高めることなく、細孔径を大径化した活性炭が得られる。   According to the present invention, in the activation treatment using the alkali activator, the pore diameter is increased without increasing the amount of the alkali activator used and without excessively increasing the specific surface area of the obtained activated carbon. Activated carbon is obtained.

製造例1〜4で得られた活性炭の細孔径分布を示す図である。It is a figure which shows the pore diameter distribution of the activated carbon obtained by manufacture examples 1-4. 製造例5〜7で得られた活性炭の細孔径分布を示す図である。It is a figure which shows the pore diameter distribution of the activated carbon obtained by manufacture examples 5-7. 実施例または比較例の活性炭を使用して製造した電気二重層キャパシタを説明するための図である。It is a figure for demonstrating the electric double layer capacitor manufactured using the activated carbon of an Example or a comparative example.

本発明の活性炭の製造方法は、炭素原料とアルカリ賦活剤との混合物を炉に収容し、炉内を加熱する賦活工程;賦活工程後、炉内に水を供給する水和工程;水を供給した後、炉内を加熱する加熱工程;を含むことを特徴とする。   The activated carbon production method of the present invention includes an activation process in which a mixture of a carbon raw material and an alkali activator is housed in a furnace and heats the interior of the furnace; a hydration process in which water is supplied into the furnace after the activation process; water is supplied And a heating step of heating the inside of the furnace.

アルカリ賦活処理後に水を供給し加熱することにより、活性炭の比表面積の増大を抑制しつつ、細孔径を大径化できる理由は必ずしも明らかでないが、以下のように考えることができる。すなわち、例えば、アルカリ賦活剤として水酸化カリウムを用いた場合、賦活反応が進むにつれて水酸化カリウムが炭素原料と反応し炭酸カリウムなどの不活性なカリウム化合物が生成する。この不活性なカリウム化合物は、もはや炭素原料を侵食する作用を有しないため、それ以上賦活反応が進まない。しかし、水蒸気を供給することにより、不活性なカリウム化合物が水蒸気と反応し水酸化カリウムに戻り、さらに加熱することで局所的に賦活が進行し、比表面積を維持したまま細孔径が大径化されると考えられる。   The reason why the pore diameter can be increased by suppressing the increase in the specific surface area of the activated carbon by supplying water and heating after the alkali activation treatment is not necessarily clear, but can be considered as follows. That is, for example, when potassium hydroxide is used as the alkali activator, as the activation reaction proceeds, potassium hydroxide reacts with the carbon raw material to produce an inactive potassium compound such as potassium carbonate. Since this inactive potassium compound no longer has an action of eroding the carbon raw material, the activation reaction does not proceed any further. However, by supplying water vapor, the inactive potassium compound reacts with water vapor to return to potassium hydroxide, and further heating activates locally, increasing the pore size while maintaining the specific surface area. It is thought that it is done.

以下、本発明の活性炭の製造方法について詳しく説明する。
前記賦活工程では、炭素原料とアルカリ賦活剤との混合物を炉に収容し、炉内を加熱して賦活処理する。ここで、「賦活処理」とは、炭素原料の表面に細孔を形成して、比表面積および細孔容積を大きくすることである。
Hereafter, the manufacturing method of the activated carbon of this invention is demonstrated in detail.
In the activation step, a mixture of the carbon raw material and the alkali activator is housed in a furnace, and the inside of the furnace is heated for activation treatment. Here, the “activation process” is to increase the specific surface area and the pore volume by forming pores on the surface of the carbon raw material.

前記炭素原料としては、木材、おが屑、ヤシガラ、セルロース系繊維(紙も含む)、合成樹脂(例えば、フェノール樹脂、ポリ塩化ビニル、ポリイミド、ポリアクリロニトリル(PAN))、石油ピッチ、コールタールピッチ、メソフェーズピッチおよびこれらの複合物などの炭素質物質;前記炭素質物質の炭化物;石炭、石油コークス、石炭コークス、石油ピッチコークス、石炭ピッチコークス、木炭などの炭化物;が挙げられる。これらの炭素原料は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、炭素原料としては、石炭ピッチコークス、石炭、石油コークス、石炭コークス、石油ピッチコークス、合成樹脂、合成樹脂とセルロース系繊維との複合物およびこれらの炭化物よりなる群から選択される少なくとも1種が好適である。   Examples of the carbon raw material include wood, sawdust, coconut shell, cellulosic fiber (including paper), synthetic resin (for example, phenol resin, polyvinyl chloride, polyimide, polyacrylonitrile (PAN)), petroleum pitch, coal tar pitch, and mesophase. Carbonaceous materials such as pitch and composites thereof; carbides of the carbonaceous materials; carbides such as coal, petroleum coke, coal coke, petroleum pitch coke, coal pitch coke, and charcoal. These carbon raw materials may be used alone or in combination of two or more. Among these, the carbon raw material is at least selected from the group consisting of coal pitch coke, coal, petroleum coke, coal coke, petroleum pitch coke, synthetic resin, composite of synthetic resin and cellulosic fiber, and carbides thereof. One is preferred.

炭素原料として、前記炭素質物質の炭化物を使用する場合、炭素質物質の炭化処理は、通常、不活性ガス雰囲気下で加熱処理することによりなされる。該炭化処理の温度は、400℃以上が好ましく、より好ましくは500℃以上であり、950℃以下が好ましく、より好ましくは900℃以下である。また、炭化処理時間は、0.5時間以上が好ましく、より好ましくは1.0時間以上であり、4.0時間以下が好ましく、より好ましくは3.0時間以下である。   When the carbonaceous material carbide is used as the carbon raw material, the carbonaceous material is normally carbonized by heat treatment in an inert gas atmosphere. The temperature of the carbonization treatment is preferably 400 ° C. or higher, more preferably 500 ° C. or higher, preferably 950 ° C. or lower, more preferably 900 ° C. or lower. Further, the carbonization time is preferably 0.5 hours or longer, more preferably 1.0 hours or longer, 4.0 hours or shorter, more preferably 3.0 hours or shorter.

前記炭素原料の平均粒子径は10mm以下が好ましく、より好ましくは5mm以下、さらに好ましくは2mm以下である。なお、炭素原料の平均粒子径の下限は特に限定されるものではないが、平均粒子径が小さすぎると粉体のハンドリングが悪くなる(例えば、作業時に粉体が舞い上がってしまう)傾向がある。そのため、炭素原料の平均粒子径は1μm以上が好ましく、より好ましくは3μm以上、さらに好ましくは5μm以上である。なお、平均粒子径とは、水に分散させた試料を、レーザ回折式粒度分布測定装置(例えば、島津製作所製の「SALD(登録商標)−2000」)により測定して、求められる体積基準メディアン径である。   The carbon raw material preferably has an average particle size of 10 mm or less, more preferably 5 mm or less, and even more preferably 2 mm or less. The lower limit of the average particle size of the carbon raw material is not particularly limited, but if the average particle size is too small, the handling of the powder tends to be poor (for example, the powder will rise during operation). Therefore, the average particle diameter of the carbon raw material is preferably 1 μm or more, more preferably 3 μm or more, and further preferably 5 μm or more. The average particle diameter is a volume-based median obtained by measuring a sample dispersed in water with a laser diffraction particle size distribution measuring apparatus (for example, “SALD (registered trademark) -2000” manufactured by Shimadzu Corporation). Is the diameter.

前記アルカリ賦活剤としては、アルカリ金属化合物が好ましい。前記アルカリ金属化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどの水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸リチウムなどの炭酸塩;などが挙げられる。これらのアルカリ賦活剤は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、水酸化物が好ましく、水酸化カリウムがより好適である。   As the alkali activator, an alkali metal compound is preferable. Examples of the alkali metal compound include hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; carbonates such as sodium carbonate, potassium carbonate, and lithium carbonate; These alkali activators may be used alone or in combination of two or more. Among these, hydroxide is preferable, and potassium hydroxide is more preferable.

前記炭素原料とアルカリ賦活剤との質量比(アルカリ賦活剤/炭素原料)は、1.0以上が好ましく、より好ましくは1.5以上、さらに好ましくは2.0以上であり、4.5以下が好ましく、より好ましくは4.0以下、さらに好ましくは3.5以下である。   The mass ratio of the carbon raw material to the alkali activator (alkali activator / carbon raw material) is preferably 1.0 or more, more preferably 1.5 or more, still more preferably 2.0 or more, and 4.5 or less. Is more preferable, 4.0 or less, more preferably 3.5 or less.

また、アルカリ賦活剤を添加する際、炭素原料との混合を十分とするために、アルカリ賦活剤を水溶液として使用しても良い。このときの水の使用量は、アルカリ賦活剤の0.05質量倍〜10質量倍が好ましい。なお、アルカリ賦活剤を水溶液として使用する場合には、賦活処理のための加熱を行う前に、アルカリ賦活剤水溶液に由来する水分の突沸防止のため、賦活処理における加熱温度よりも低温での加熱処理を行って、水分を除去しておくことが好ましい。   Moreover, when adding an alkali activator, in order to fully mix with a carbon raw material, you may use an alkali activator as aqueous solution. The amount of water used at this time is preferably 0.05 times by mass to 10 times by mass of the alkali activator. In addition, when using an alkali activator as an aqueous solution, before performing heating for the activation treatment, heating at a temperature lower than the heating temperature in the activation treatment is performed to prevent bumping of moisture derived from the alkaline activator aqueous solution. It is preferable to remove moisture by performing treatment.

前記炭素原料とアルカリ賦活剤との混合方法は、特に限定されず、機械的に混合すればよい。前記炭素原料とアルカリ賦活剤との混合物を加熱するために用いられる炉としては、特に限定されるものではないが、例えば、トンネル炉、ロータリーキルン、バッチ炉などが挙げられる。   The mixing method of the carbon raw material and the alkali activator is not particularly limited, and may be mechanically mixed. Although it does not specifically limit as a furnace used in order to heat the mixture of the said carbon raw material and an alkali activator, For example, a tunnel furnace, a rotary kiln, a batch furnace etc. are mentioned.

炉内を加熱する際には、不活性ガスを流入させる。不活性ガスの流入量は、炉の容積や炭素原料の仕込み量に応じて適宜調整すればよい。なお、不活性ガスとしては、窒素、アルゴン、ヘリウムなどを用いることができる。   When the inside of the furnace is heated, an inert gas is introduced. What is necessary is just to adjust the inflow amount of inert gas suitably according to the volume of a furnace, and the preparation amount of a carbon raw material. Note that nitrogen, argon, helium, or the like can be used as the inert gas.

賦活処理を行う際の加熱温度(炉内温度)(以下、「賦活処理温度」と称する場合がある)は600℃以上が好ましく、より好ましくは650℃以上であり、950℃以下が好ましく、より好ましくは900℃以下である。なお、アルカリ賦活剤には、微量ながら水分が含まれているため、賦活処理温度に到達する前に、アルカリ賦活剤中に含まれる水分を除去しておくことが好ましい。アルカリ賦活剤中の水分を除去するための熱処理条件は、例えば、400℃で30分間程度である。また、賦活処理を行う際の加熱時間は0.1時間以上が好ましく、より好ましくは1.5時間以上であり、3.5時間以下が好ましく、より好ましくは3.0時間以下である。なお、加熱時の雰囲気は、アルゴン、ヘリウム、窒素などの不活性ガス雰囲気が好ましい。   The heating temperature (furnace temperature) at the time of activation treatment (hereinafter sometimes referred to as “activation treatment temperature”) is preferably 600 ° C. or higher, more preferably 650 ° C. or higher, and preferably 950 ° C. or lower, more Preferably it is 900 degrees C or less. Since the alkali activator contains a small amount of moisture, it is preferable to remove the moisture contained in the alkali activator before reaching the activation treatment temperature. The heat treatment condition for removing moisture in the alkali activator is, for example, about 400 minutes at 400 ° C. In addition, the heating time in performing the activation treatment is preferably 0.1 hour or longer, more preferably 1.5 hours or longer, 3.5 hours or shorter, more preferably 3.0 hours or shorter. The atmosphere during heating is preferably an inert gas atmosphere such as argon, helium, or nitrogen.

前記水和工程では、炉内に水を供給する。賦活工程後の炉内に水を供給することにより、賦活工程で生成した不活性なアルカリ化合物を水蒸気と反応させて、水酸化物にすることができる。これにより、後述する加熱工程において、賦活炭がさらに侵食され得られる活性炭の平均細孔径をより大径化できる。なお、炉内に水を供給する態様としては、賦活工程を経た賦活炭を炉から取り出すことなく水を供給する方法が最も簡便である。   In the hydration step, water is supplied into the furnace. By supplying water into the furnace after the activation step, the inert alkali compound generated in the activation step can be reacted with water vapor to form a hydroxide. Thereby, in the heating process mentioned later, the average pore diameter of the activated carbon from which activated carbon can be further eroded can be enlarged more. In addition, as an aspect which supplies water in a furnace, the method of supplying water, without taking out the activated charcoal which passed through the activation process from a furnace is the simplest.

炉内に供給される水は、不活性なアルカリ化合物と反応させることができればよく、液体状で供給してもよいし、気体状(水蒸気)で供給してもよい。賦活炭の細孔内部に存在する不活性なアルカリ化合物と反応させるためには、水蒸気を供給することが好ましい。なお、液体状で供給したとしても、後述する加熱工程において、気体状(水蒸気)となり、賦活炭の細孔内部に存在する不活性なアルカリ化合物と反応させることができると考えられる。また、水蒸気を供給する態様としては、水蒸気を希釈せずに供給する態様;水蒸気を不活性ガスで希釈して供給する態様のいずれも可能である。   The water supplied into the furnace may be supplied in a liquid state or in a gaseous state (water vapor) as long as it can be reacted with an inert alkali compound. In order to react with the inert alkali compound existing inside the pores of the activated carbon, it is preferable to supply water vapor. In addition, even if it supplies with a liquid form, it will be thought that it becomes gaseous (water vapor | steam) in the heating process mentioned later, and can be made to react with the inert alkali compound which exists in the inside of the pore of activated carbon. Moreover, as an aspect which supplies water vapor | steam, both the aspect which supplies water vapor | steam without diluting; The aspect which dilutes and supplies water vapor | steam with an inert gas are possible.

水を供給する際の炉内温度は、特に限定されず、賦活処理を行った炉内温度のままで水を供給してもよいし、冷却してから水を供給してもよい。なお、炉内温度が低いほど水による不活性なアルカリ化合物の水和効果が高くなり、最終的に得られる活性炭の平均細孔径が大きくなる傾向がある。従って、所望とする平均細孔径に応じて、水蒸気を供給する際の温度を適宜調節すればよい。   The furnace temperature at the time of supplying water is not particularly limited, and water may be supplied at the furnace temperature at which the activation treatment is performed, or water may be supplied after cooling. In addition, there exists a tendency for the average pore diameter of the activated carbon finally obtained to become large and the hydration effect of the inactive alkali compound by water becomes high, so that the furnace temperature is low. Therefore, what is necessary is just to adjust suitably the temperature at the time of supplying water vapor | steam according to the desired average pore diameter.

得られる活性炭の比表面積の増大をより抑制したい場合、水を供給する際の炉内温度は賦活処理温度以下が好ましく、より好ましくは500℃以下、さらに好ましくは400℃以下である。水を供給する際の炉内温度を賦活処理温度以下とすることにより、水蒸気賦活が進行せず活性炭の比表面積の増大をより抑制することができる。なお、水を供給する際の炉内温度は室温(15℃)以上が好ましい。炉内温度を室温(15℃)未満にまで下げても、水による不活性なアルカリ化合物の水和効果は飽和となるため経済的でない。   When it is desired to further suppress the increase in the specific surface area of the obtained activated carbon, the furnace temperature at the time of supplying water is preferably the activation treatment temperature or less, more preferably 500 ° C. or less, and further preferably 400 ° C. or less. By making the furnace temperature at the time of supplying water below the activation treatment temperature, the steam activation does not proceed and the increase in the specific surface area of the activated carbon can be further suppressed. The furnace temperature when supplying water is preferably room temperature (15 ° C.) or higher. Even if the temperature in the furnace is lowered below room temperature (15 ° C.), the hydration effect of the inert alkali compound by water becomes saturated, which is not economical.

水和工程において、炉内に供給する水の量は、賦活工程で使用したアルカリ賦活剤100質量部に対して、100質量部以上が好ましく、より好ましくは150質量部以上、さらに好ましくは200質量部以上であり、1000質量部以下が好ましく、より好ましくは750質量部以下、さらに好ましくは500質量部以下である。水の供給量が、アルカリ賦活剤100質量部に対して100質量部以上であれば、賦活の進行に伴い生成した不活性なアルカリ化合物の大部分を水酸化物とすることができ、細孔径の大径化効果がより向上する、また1000質量部以下であれば、供給される水の大部分が不活性なアルカリ化合物との反応に寄与するため、より経済的である。   In the hydration step, the amount of water supplied into the furnace is preferably 100 parts by mass or more, more preferably 150 parts by mass or more, and still more preferably 200 masses, with respect to 100 parts by mass of the alkali activator used in the activation process. Part or more, preferably 1000 parts by mass or less, more preferably 750 parts by mass or less, and still more preferably 500 parts by mass or less. If the supply amount of water is 100 parts by mass or more with respect to 100 parts by mass of the alkali activator, most of the inactive alkali compound generated as the activation proceeds can be converted to hydroxides, and the pore diameter If the diameter increase effect is further improved and the amount is 1000 parts by mass or less, most of the supplied water contributes to the reaction with the inert alkali compound, which is more economical.

前記加熱工程では、水を供給した後、炉内を加熱する。ここで、加熱には、水を供給する際に下げた炉内温度を昇温するために加熱する態様;賦活工程から連続して加熱する態様のいずれも含む。   In the heating step, after supplying water, the inside of the furnace is heated. Here, the heating includes both an aspect of heating to raise the temperature in the furnace lowered when water is supplied; and an aspect of heating continuously from the activation step.

加熱温度(炉内温度)は600℃以上が好ましく、より好ましくは650℃以上であり、950℃以下が好ましく、より好ましくは900℃以下である。また、加熱時間は0.1時間以上が好ましく、より好ましくは1.5時間以上であり、3.5時間以下が好ましく、より好ましくは3.0時間以下である。なお、加熱時の雰囲気は、アルゴン、ヘリウム、窒素などの不活性ガス雰囲気が好ましい。   The heating temperature (furnace temperature) is preferably 600 ° C. or higher, more preferably 650 ° C. or higher, preferably 950 ° C. or lower, more preferably 900 ° C. or lower. The heating time is preferably 0.1 hour or longer, more preferably 1.5 hours or longer, 3.5 hours or shorter, more preferably 3.0 hours or shorter. The atmosphere during heating is preferably an inert gas atmosphere such as argon, helium, or nitrogen.

本発明の製造方法には、さらに、洗浄工程、熱処理工程、粉砕工程を含ませてもよい。   The production method of the present invention may further include a cleaning step, a heat treatment step, and a pulverization step.

洗浄工程は、賦活工程後の活性炭を洗浄し、乾燥させる工程である。賦活工程後の賦活炭の表面には、アルカリ賦活剤として使用した水酸化アルカリ金属などが付着しているので、このような付着物を除去するために賦活炭の洗浄を行う。   The washing step is a step of washing and drying the activated carbon after the activation step. Since the alkali metal hydroxide used as the alkali activator adheres to the surface of the activated charcoal after the activation process, the activated charcoal is washed to remove such deposits.

賦活炭の洗浄としては、水洗、酸洗浄などを挙げることができる。
水洗方法は、特に限定されないが、例えば、賦活炭を水に投入し、必要に応じて撹拌、分散させた後、濾取することにより行うことが好ましい。前記撹拌、分散は、機械的撹拌、気体吹込み、超音波照射によって行うことができるが、加熱煮沸させることによっても行うことができる。水洗時の水温は、30℃以上が好ましく、より好ましくは40℃以上、さらに好ましくは50℃以上である。撹拌、分散時間は0.5時間以上が好ましく、より好ましくは1時間以上、さらに好ましくは1.5時間以上である。
Examples of the activated charcoal washing include water washing and acid washing.
The washing method is not particularly limited, but it is preferable to carry out, for example, by putting activated charcoal into water, stirring and dispersing as necessary, and then filtering. The stirring and dispersion can be performed by mechanical stirring, gas blowing, and ultrasonic irradiation, but can also be performed by heating and boiling. The water temperature during washing is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and further preferably 50 ° C. or higher. The stirring and dispersing time is preferably 0.5 hours or more, more preferably 1 hour or more, and further preferably 1.5 hours or more.

酸洗浄では、無機酸、有機酸などを含有する洗浄液を用いて賦活炭を洗浄する。なお、洗浄液の溶媒は特に限定されないが、通常は水である。酸洗浄を行うことによって、アルカリ賦活剤として使用した水酸化アルカリ金属などを効率よく除去できる。   In acid cleaning, activated charcoal is cleaned using a cleaning liquid containing an inorganic acid, an organic acid, or the like. The solvent for the cleaning liquid is not particularly limited, but is usually water. By performing the acid cleaning, the alkali metal hydroxide used as the alkali activator can be efficiently removed.

前記無機酸としては、例えば、塩酸、硝酸、硫酸、リン酸、炭酸などが挙げられる。これらの無機酸は単独で使用してもよいし、2種以上を併用してもよい。無機酸を使用する場合、洗浄液中の無機酸濃度は、0.5mol/L以上が好ましく、より好ましくは1.0mol/L以上、さらに好ましくは1.5mol/L以上であり、3.5mol/L以下が好ましく、より好ましくは3.0mol/L以下、さらに好ましくは2.5mol/L以下である。無機酸を用いて酸洗浄する場合、例えば、賦活炭と、無機酸を含有する洗浄液とを混合して、50℃〜100℃の温度で、30分間〜120分間撹拌すればよい。   Examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and carbonic acid. These inorganic acids may be used alone or in combination of two or more. When the inorganic acid is used, the concentration of the inorganic acid in the cleaning liquid is preferably 0.5 mol / L or more, more preferably 1.0 mol / L or more, still more preferably 1.5 mol / L or more, and 3.5 mol / L. L or less is preferable, More preferably, it is 3.0 mol / L or less, More preferably, it is 2.5 mol / L or less. When acid cleaning is performed using an inorganic acid, for example, activated charcoal and a cleaning liquid containing an inorganic acid may be mixed and stirred at a temperature of 50 ° C. to 100 ° C. for 30 minutes to 120 minutes.

前記有機酸としては、例えば、ギ酸、シュウ酸、マロン酸、コハク酸、酢酸、プロピオン酸などを挙げることができる。これらの有機酸は、単独で使用してもよいし、2種以上を併用してもよい。前記有機酸を含有する洗浄液中の有機酸の濃度は、1vol%以上が好ましく、より好ましくは2vol%以上、さらに好ましくは5vol%以上であり、100vol%以下が好ましく、より好ましくは80vol%以下、さらに好ましくは60vol%以下である。有機酸の濃度を1vol%以上とすることによって、有機酸による金属成分除去効果を得られるが、濃度が高くなりすぎると、製造コストが高くなる。有機酸を用いて酸洗浄する場合、例えば、賦活炭と、有機酸を含有する洗浄液とを混合して、得られた混合物を20℃〜80℃の温度で、1分間〜120分間撹拌すればよい。   Examples of the organic acid include formic acid, oxalic acid, malonic acid, succinic acid, acetic acid, propionic acid, and the like. These organic acids may be used alone or in combination of two or more. The concentration of the organic acid in the cleaning liquid containing the organic acid is preferably 1 vol% or more, more preferably 2 vol% or more, still more preferably 5 vol% or more, preferably 100 vol% or less, more preferably 80 vol% or less, More preferably, it is 60 vol% or less. By setting the concentration of the organic acid to 1 vol% or more, the metal component removal effect by the organic acid can be obtained, but if the concentration becomes too high, the manufacturing cost increases. When acid cleaning is performed using an organic acid, for example, activated charcoal and a cleaning liquid containing an organic acid are mixed, and the resulting mixture is stirred at a temperature of 20 ° C. to 80 ° C. for 1 minute to 120 minutes. Good.

本発明の製造方法においては、洗浄工程として、酸洗浄と水洗とを行うことが好ましく、より好ましくは酸洗浄を行った後、水洗を複数回行う態様である。洗浄後の賦活炭は、50℃〜120℃で、0.5時間〜2.0時間乾燥させることが好ましい。   In the manufacturing method of this invention, it is preferable to perform acid washing and water washing as a washing | cleaning process, More preferably, after performing acid washing, it is the aspect which performs water washing several times. The activated charcoal after washing is preferably dried at 50 to 120 ° C. for 0.5 to 2.0 hours.

熱処理工程は、賦活工程後あるいは洗浄工程後の賦活炭を、さらに不活性ガス雰囲気下で熱処理する工程である。賦活炭に熱処理を行うことにより、得られる活性炭の表面の官能基量を調整することができる。   The heat treatment step is a step of further heat-treating the activated charcoal after the activation step or after the cleaning step in an inert gas atmosphere. By performing heat treatment on the activated charcoal, the amount of functional groups on the surface of the obtained activated carbon can be adjusted.

前記熱処理としては、賦活工程直後の賦活炭を不活性ガス雰囲気下で熱処理する態様;賦活工程後の賦活炭を、酸洗浄および/または水洗した後、不活性ガス雰囲気下で熱処理する態様などを挙げることができる。前記不活性ガスとしては、例えば、アルゴン、窒素、ヘリウムなどを使用することができる。また、前記熱処理温度は、特に限定されないが、好ましくは400℃以上1000℃以下である。   Examples of the heat treatment include an aspect in which activated charcoal immediately after the activation process is heat-treated in an inert gas atmosphere; an activated charcoal after the activation process is heat-treated in an inert gas atmosphere after acid washing and / or water washing, and the like. Can be mentioned. As said inert gas, argon, nitrogen, helium etc. can be used, for example. The heat treatment temperature is not particularly limited, but is preferably 400 ° C. or higher and 1000 ° C. or lower.

粉砕工程は、活性炭の粒径を調整するための粉砕を行う工程である。活性炭の粉砕方法は、特に限定されるものでなく、ディスクミル、ボールミル、ビーズミルなどを用いて行えばよい。なお、活性炭の平均粒子径は1μm以上とすることが好ましく、より好ましくは2μm以上であり、15μm以下とすることが好ましく、より好ましくは10μm以下である。平均粒子径が余りに小さいと、電極における集電板と電極材料層との結着性が悪くなり、実用的な結着性を保持するためには電極材料層に要するバインダー量が増加するおそれがある。   The pulverization step is a step of performing pulverization for adjusting the particle size of the activated carbon. The method for pulverizing the activated carbon is not particularly limited, and may be performed using a disk mill, a ball mill, a bead mill, or the like. The average particle diameter of the activated carbon is preferably 1 μm or more, more preferably 2 μm or more, and preferably 15 μm or less, more preferably 10 μm or less. If the average particle diameter is too small, the binding property between the current collector plate and the electrode material layer in the electrode is deteriorated, and the amount of binder required for the electrode material layer may be increased in order to maintain the practical binding property. is there.

本発明の製造方法で得られる活性炭の比表面積は1500m2/g以上が好ましく、より好ましくは1700m2/g以上、さらに好ましくは1800m2/g以上であり、3500m2/g以下が好ましく、より好ましくは3200m2/g以下、さらに好ましくは3000m2/g以下である。ここで、本発明において比表面積とは、活性炭の窒素吸着等温線を測定するBET法により求められる値である。 The specific surface area of the activated carbon obtained by the production method of the present invention is preferably 1500 m 2 / g or more, more preferably 1700 m 2 / g or more, still more preferably 1800 m 2 / g or more, and preferably 3500 m 2 / g or less. Preferably it is 3200 m < 2 > / g or less, More preferably, it is 3000 m < 2 > / g or less. Here, in the present invention, the specific surface area is a value determined by the BET method for measuring the nitrogen adsorption isotherm of activated carbon.

本発明の製造方法で得られる活性炭の細孔容積は0.5cm3/g以上が好ましく、より好ましくは0.7cm3/g以上であり、2.0cm3/g以下が好ましく、より好ましくは1.6cm3/g以下である。ここで、本発明において全細孔容積とは、相対圧P/P0(P:吸着平衡にある吸着質の気体の圧力、P0:吸着温度における吸着質の飽和蒸気圧)が0.93までの窒素吸着量を測定するBET法により求められる値である。 Pore volume of the resulting activated carbon in the production process of the present invention is preferably at least 0.5 cm 3 / g, more preferably 0.7 cm 3 / g or more, is preferably from 2.0 cm 3 / g, more preferably It is 1.6 cm 3 / g or less. Here, in the present invention, the total pore volume means that the relative pressure P / P 0 (P: pressure of the adsorbate gas in the adsorption equilibrium, P 0 : saturated vapor pressure of the adsorbate at the adsorption temperature) is 0.93. It is a value calculated | required by BET method which measures the nitrogen adsorption amount until.

本発明の製造方法で得られる活性炭の平均細孔径は1.9nm以上が好ましく、より好ましくは2.0nm以上、さらに好ましくは2.1nm以上であり、3.0nm以下が好ましく、より好ましくは2.6nm以下である。ここで、本発明において平均細孔径とは、BJH法により求められる値である。   The average pore diameter of the activated carbon obtained by the production method of the present invention is preferably 1.9 nm or more, more preferably 2.0 nm or more, still more preferably 2.1 nm or more, and preferably 3.0 nm or less, more preferably 2 .6 nm or less. Here, in the present invention, the average pore diameter is a value determined by the BJH method.

本発明の製造方法により得られる活性炭は、電気二重層キャパシタ用電極材料として用いることができ、当該電極材料を使用して、電気二重層キャパシタ用電極や電気二重層キャパシタを製造することが可能である。本発明の製造方法によれば、活性炭の比表面積の増大を抑制しつつ、細孔径を大径化することができる。すなわち、活性炭の密度の低下を抑制しつつ、電解液中のイオンを吸脱着し易くできる。そのため、本発明の製造方法により得られた活性炭を電気二重層キャパシタに用いれば、電極体積当たりの静電容量を維持しつつ、内部抵抗を低減できる。   Activated carbon obtained by the production method of the present invention can be used as an electrode material for an electric double layer capacitor, and an electrode for an electric double layer capacitor or an electric double layer capacitor can be produced using the electrode material. is there. According to the production method of the present invention, the pore diameter can be increased while suppressing an increase in the specific surface area of the activated carbon. That is, it is possible to easily adsorb and desorb ions in the electrolytic solution while suppressing a decrease in the density of the activated carbon. Therefore, if the activated carbon obtained by the production method of the present invention is used for an electric double layer capacitor, the internal resistance can be reduced while maintaining the capacitance per electrode volume.

次に、本発明の電気二重層キャパシタについて説明する。本発明の電気二重層キャパシタは、前記の製造方法により得られた活性炭を電極構成材料に用いたことを特徴とする。   Next, the electric double layer capacitor of the present invention will be described. The electric double layer capacitor of the present invention is characterized in that activated carbon obtained by the above-described manufacturing method is used as an electrode constituent material.

電気二重層キャパシタ用電極としては、例えば、活性炭、導電性付与剤およびバインダーを混練し、さらに溶媒を添加してペーストを調製し、このペーストをアルミ箔などの集電板に塗布した後、溶媒を乾燥除去したものが挙げられる。   As an electrode for an electric double layer capacitor, for example, activated carbon, a conductivity-imparting agent and a binder are kneaded, a solvent is further added to prepare a paste, and this paste is applied to a current collector plate such as an aluminum foil. Is obtained by drying and removing.

前記電気二重層キャパシタ用電極に使用されるバインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系高分子化合物や、カルボキシメチルセルロース、スチレン−ブタジエンゴム、石油ピッチ、フェノール樹脂などを使用できる。また、導電性付与剤としては、アセチレンブラック、ケッチェンブラックなどを使用できる。   As the binder used for the electrode for the electric double layer capacitor, fluorine-based polymer compounds such as polytetrafluoroethylene and polyvinylidene fluoride, carboxymethyl cellulose, styrene-butadiene rubber, petroleum pitch, phenol resin, and the like can be used. As the conductivity imparting agent, acetylene black, ketjen black, or the like can be used.

電気二重層キャパシタは、一般的には、電極、電解液、およびセパレータを主要構成とし、一対の電極間にセパレータを配置した構造となっている。前記電解液としては、例えば、プロピレンカーボネート、エチレンカーボネート、メチルエチルカーボネートなどの有機溶剤に、アミジン塩を溶解した電解液;過塩素酸の4級アンモニウム塩を溶解した電解液;4級アンモニウムやリチウムなどのアルカリ金属の四フッ化ホウ素塩や六フッ化リン塩を溶解した電解液;4級ホスホニウム塩を溶解した電解液などが挙げられる。また、前記セパレータとしては、例えば、セルロース、ガラス繊維、または、ポリエチレンやポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルムが挙げられる。   An electric double layer capacitor generally has a structure in which an electrode, an electrolytic solution, and a separator are main components, and a separator is disposed between a pair of electrodes. Examples of the electrolytic solution include an electrolytic solution in which an amidine salt is dissolved in an organic solvent such as propylene carbonate, ethylene carbonate, and methyl ethyl carbonate; an electrolytic solution in which a quaternary ammonium salt of perchloric acid is dissolved; quaternary ammonium or lithium An electrolytic solution in which an alkali metal boron tetrafluoride salt or phosphorous hexafluoride salt is dissolved; an electrolytic solution in which a quaternary phosphonium salt is dissolved may be mentioned. Examples of the separator include cellulose, glass fiber, or a nonwoven fabric, cloth, or microporous film mainly composed of polyolefin such as polyethylene or polypropylene.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.

1.比表面積、全細孔容積、平均細孔径
活性炭0.2gを150℃にて真空加熱した後、窒素吸着装置(マイクロメリティックス社製、「ASAP−2400」)を用いて、吸着等温線を求め、BET法により比表面積、全細孔容積を算出した。また、活性炭に形成された細孔の形状をシリンダー状と仮定し、細孔径1.0nm〜30nmの範囲における細孔容積と比表面積に基づき、下記式(1)により平均細孔径を算出した。
1. Specific surface area, total pore volume, average pore diameter After 0.2 g of activated carbon was heated under vacuum at 150 ° C., an adsorption isotherm was measured using a nitrogen adsorption device (“ASAP-2400” manufactured by Micromeritics). The specific surface area and total pore volume were calculated by the BET method. Further, assuming that the shape of the pores formed in the activated carbon is cylindrical, the average pore size was calculated by the following formula (1) based on the pore volume and specific surface area in the pore size range of 1.0 nm to 30 nm.

2.静電容量、内部抵抗
充放電装置(楠本化成社製、「ETAC(登録商標) Ver.4.4」)の充放電端子を電気二重層キャパシタの集電板に接続し、集電板間電圧が2.5Vになるまで40mAの定電流充電を行い、続けて、2.5Vの定電圧で30分間充電を行った。充電後、定電流(放電電流10mA)で電気二重層キャパシタの放電を行った。このとき、集電板間電圧がV1、V2となるまでに要した放電時間t1、t2を測定し、下記式(2)を用いて静電容量を求めた。得られた静電容量を、キャパシタ用電極における電極材料層の総体積で除することにより体積基準静電容量(F/cm3)を求めた。また、下記式(3)を用いて内部抵抗を求めた。なお、静電容量の測定は、25℃および−30℃の温度下で行った。
2. Capacitance, internal resistance The charging / discharging terminal of the charging / discharging device (manufactured by Enomoto Kasei Co., Ltd., “ETAC (registered trademark) Ver. 4.4”) is connected to the current collecting plate of the electric double layer capacitor, and the voltage between the current collecting plates The battery was charged at a constant current of 40 mA until the voltage reached 2.5 V, and then charged at a constant voltage of 2.5 V for 30 minutes. After charging, the electric double layer capacitor was discharged with a constant current (discharge current 10 mA). At this time, the discharge times t1 and t2 required until the voltage between the current collector plates became V1 and V2 were measured, and the capacitance was obtained using the following formula (2). The obtained capacitance was divided by the total volume of the electrode material layer in the capacitor electrode to obtain a volume-based capacitance (F / cm 3 ). Moreover, internal resistance was calculated | required using following formula (3). The capacitance was measured at 25 ° C. and −30 ° C.


I:10(mA)
t1:電気二重層キャパシタ電圧がV1となるまでに要した放電時間(sec)
t2:電気二重層キャパシタ電圧がV2となるまでに要した放電時間(sec)
V0:2.5(V)
V1:2.0(V)
V2:1.0(V)

I: 10 (mA)
t1: Discharge time required for the electric double layer capacitor voltage to reach V1 (sec)
t2: Discharge time (sec) required for the electric double layer capacitor voltage to reach V2
V0: 2.5 (V)
V1: 2.0 (V)
V2: 1.0 (V)

活性炭の製造
製造例1
炭素原料としてのフェノール樹脂炭化物(フェノール樹脂(住友ベークライト社製)を処理温度700℃で炭化したもの(平均粒子径:5mm〜15mm))25.0gに対して、水酸化カリウム(純度85質量%)73.5g(水酸化カリウム/炭素原料(質量比)=2.5)を添加し、十分に混合した。次いで、混合物を円筒炉(大阪精工社製)に収容し、窒素流通下(1L/分)、昇温速度10℃/minで400℃まで加熱し、400℃で30分間保持した後、続いて昇温速度10℃/minで850℃まで加熱し、850℃で2時間加熱し賦活処理を行った。
Production and production example 1 of activated carbon
Carbon hydroxide (purity 85% by mass) with respect to 25.0 g of phenol resin carbide (phenol resin (manufactured by Sumitomo Bakelite Co., Ltd.) carbonized at a processing temperature of 700 ° C. (average particle diameter: 5 mm to 15 mm)) as a carbon raw material ) 73.5 g (potassium hydroxide / carbon raw material (mass ratio) = 2.5) was added and mixed well. Next, the mixture was placed in a cylindrical furnace (manufactured by Osaka Seiko Co., Ltd.), heated to 400 ° C. at a heating rate of 10 ° C./min under a nitrogen flow (1 L / min), and kept at 400 ° C. for 30 minutes. It heated to 850 degreeC with the temperature increase rate of 10 degree-C / min, and heated at 850 degreeC for 2 hours, and performed the activation process.

次に、炉内温度を室温(25℃)まで冷却した後、水蒸気を200g供給した。水蒸気は、窒素により希釈して混合気体(水蒸気分圧81.6kPa、全圧:101.3kPa)とし、流量1L/分で供給した。
水蒸気を供給した後、再度、窒素流通下(1L/分)、昇温速度10℃/minで850℃まで加熱し、850℃で2時間加熱した。
Next, after the furnace temperature was cooled to room temperature (25 ° C.), 200 g of water vapor was supplied. The water vapor was diluted with nitrogen to form a mixed gas (water vapor partial pressure 81.6 kPa, total pressure: 101.3 kPa) and supplied at a flow rate of 1 L / min.
After supplying water vapor, it was heated again to 850 ° C. at a temperature rising rate of 10 ° C./min under a nitrogen flow (1 L / min), and heated at 850 ° C. for 2 hours.

得られた賦活物とカリウム成分の混合物に、水1.6Lと塩酸(濃度:35質量%)0.4Lを加え、100℃で2時間加熱後、賦活物を濾取することにより塩酸洗浄を行った。その後、塩酸洗浄を終えた賦活物に水2Lを加え、100℃に加熱して2時間煮沸した後、賦活物を濾取することにより温水洗浄を行った。同様の操作を繰り返して温水洗浄をさらに1回行った。塩酸洗浄1回と温水洗浄2回を経た賦活物を、110℃で2時間乾燥し、活性炭No.Aを得た。得られた活性炭について評価し、結果を表1および図1に示した。   To the obtained mixture of activated material and potassium component, 1.6 L of water and 0.4 L of hydrochloric acid (concentration: 35% by mass) were added, heated at 100 ° C. for 2 hours, and then the activated material was collected by filtration to wash hydrochloric acid. went. Thereafter, 2 L of water was added to the activated product after washing with hydrochloric acid, heated to 100 ° C. and boiled for 2 hours, and then the activated product was filtered to perform warm water washing. The same operation was repeated, and washing with warm water was further performed once. The activated product that had been washed once with hydrochloric acid and washed twice with hot water was dried at 110 ° C. for 2 hours. A was obtained. The obtained activated carbon was evaluated, and the results are shown in Table 1 and FIG.

製造例2
製造例1と同様に賦活処理を行った。次に、炉内温度を400℃まで冷却した後、水蒸気を200g供給した。水蒸気は、窒素により希釈して混合気体(水蒸気分圧81.6kPa、全圧:101.3kPa)とし、流量1L/分で供給した。水蒸気を供給した後、再度、窒素流通下(1L/分)、昇温速度10℃/minで850℃まで加熱し、850℃で2時間加熱した。得られた賦活物の洗浄および乾燥を製造例1と同様に行い、活性炭No.Bを得た。得られた活性炭について評価し、結果を表1および図1に示した。
Production Example 2
The activation process was performed in the same manner as in Production Example 1. Next, after the furnace temperature was cooled to 400 ° C., 200 g of water vapor was supplied. The water vapor was diluted with nitrogen to form a mixed gas (water vapor partial pressure 81.6 kPa, total pressure: 101.3 kPa) and supplied at a flow rate of 1 L / min. After supplying water vapor, it was heated again to 850 ° C. at a temperature rising rate of 10 ° C./min under a nitrogen flow (1 L / min), and heated at 850 ° C. for 2 hours. The obtained activated product was washed and dried in the same manner as in Production Example 1, and activated carbon No. B was obtained. The obtained activated carbon was evaluated, and the results are shown in Table 1 and FIG.

製造例3
製造例1と同様に賦活処理を行った。次に、炉内温度を700℃まで冷却した後、水蒸気を200g供給した。水蒸気は、窒素により希釈して混合気体(水蒸気分圧81.6kPa、全圧:101.3kPa)とし、流量1L/分で供給した。水蒸気を供給した後、再度、窒素流通下(1L/分)、昇温速度10℃/minで850℃まで加熱し、850℃で2時間加熱した。得られた賦活物の洗浄および乾燥を製造例1と同様に行い、活性炭No.Cを得た。得られた活性炭について評価し、結果を表1および図1に示した。
Production Example 3
The activation process was performed in the same manner as in Production Example 1. Next, after the furnace temperature was cooled to 700 ° C., 200 g of water vapor was supplied. The water vapor was diluted with nitrogen to form a mixed gas (water vapor partial pressure 81.6 kPa, total pressure: 101.3 kPa) and supplied at a flow rate of 1 L / min. After supplying water vapor, it was heated again to 850 ° C. at a temperature rising rate of 10 ° C./min under a nitrogen flow (1 L / min), and heated at 850 ° C. for 2 hours. The obtained activated product was washed and dried in the same manner as in Production Example 1, and activated carbon No. C was obtained. The obtained activated carbon was evaluated, and the results are shown in Table 1 and FIG.

製造例4
製造例1と同様に賦活処理を行った。次に、炉内温度を下げることなく、水蒸気を200g供給した。水蒸気は、窒素により希釈して混合気体(水蒸気分圧81.6kPa、全圧:101.3kPa)とし、流量1L/分で供給した。水蒸気を供給した後、再度、窒素流通下(1L/分)、850℃で2時間加熱した。得られた賦活物の洗浄および乾燥を製造例1と同様に行い、活性炭No.Dを得た。得られた活性炭について評価し、結果を表1および図1に示した。
Production Example 4
The activation process was performed in the same manner as in Production Example 1. Next, 200 g of water vapor was supplied without lowering the furnace temperature. The water vapor was diluted with nitrogen to form a mixed gas (water vapor partial pressure 81.6 kPa, total pressure: 101.3 kPa) and supplied at a flow rate of 1 L / min. After supplying water vapor, it was again heated at 850 ° C. for 2 hours under a nitrogen flow (1 L / min). The obtained activated product was washed and dried in the same manner as in Production Example 1, and activated carbon No. D was obtained. The obtained activated carbon was evaluated, and the results are shown in Table 1 and FIG.

製造例5
炭素原料としてのフェノール樹脂炭化物(フェノール樹脂(住友ベークライト社製)を処理温度700℃で炭化したもの(平均粒子径:5mm〜15mm))25.0gに対して、水酸化カリウム(純度85質量%)73.5g(水酸化カリウム/炭素原料(質量比)=2.5)を添加し、十分に混合した。次いで、混合物を円筒炉(大阪精工社製)に収容し、窒素流通下(1L/分)、昇温速度10℃/minで400℃まで加熱し、400℃で30分間保持した後、続いて昇温速度10℃/minで850℃まで加熱し、850℃で2時間加熱し、賦活処理を行った。得られた賦活物の洗浄および乾燥を製造例1と同様に行い、活性炭No.Eを得た。得られた活性炭について評価し、結果を表1および図2に示した。
Production Example 5
Carbon hydroxide (purity 85% by mass) with respect to 25.0 g of phenol resin carbide (phenol resin (manufactured by Sumitomo Bakelite Co., Ltd.) carbonized at a processing temperature of 700 ° C. (average particle diameter: 5 mm to 15 mm)) as a carbon raw material ) 73.5 g (potassium hydroxide / carbon raw material (mass ratio) = 2.5) was added and mixed well. Next, the mixture was placed in a cylindrical furnace (manufactured by Osaka Seiko Co., Ltd.), heated to 400 ° C. at a heating rate of 10 ° C./min under a nitrogen flow (1 L / min), and kept at 400 ° C. for 30 minutes. It heated to 850 degreeC with the temperature increase rate of 10 degrees C / min, and heated at 850 degreeC for 2 hours, and performed the activation process. The obtained activated product was washed and dried in the same manner as in Production Example 1, and activated carbon No. E was obtained. The obtained activated carbon was evaluated, and the results are shown in Table 1 and FIG.

製造例6
水酸化カリウム(純度85質量%)の使用量を147.6g(水酸化カリウム/炭素原料(質量比)=5.0)に変更したこと以外は、製造例5と同様にして活性炭No.Fを得た。得られた活性炭について評価し、結果を表1および図2に示した。
Production Example 6
In the same manner as in Production Example 5 except that the amount of potassium hydroxide (purity 85% by mass) used was changed to 147.6 g (potassium hydroxide / carbon raw material (mass ratio) = 5.0), activated carbon No. F was obtained. The obtained activated carbon was evaluated, and the results are shown in Table 1 and FIG.

製造例7
炭素原料としてのフェノール樹脂炭化物(フェノール樹脂(住友ベークライト社製)を処理温度700℃で炭化したもの(平均粒子径:5mm〜15mm))25.0gに対して、水酸化カリウム(純度85質量%)73.5g(水酸化カリウム/炭素原料(質量比)=2.5)を添加し、十分に混合した。次いで、混合物を円筒炉(大阪精工社製)に収容し、窒素流通下(1L/分)、昇温速度10℃/minで400℃まで加熱し、400℃で30分間保持した後、続いて昇温速度10℃/minで850℃まで加熱し、850℃で2時間加熱し賦活処理を行った。
Production Example 7
Carbon hydroxide (purity 85% by mass) with respect to 25.0 g of phenol resin carbide (phenol resin (manufactured by Sumitomo Bakelite Co., Ltd.) carbonized at a processing temperature of 700 ° C. (average particle diameter: 5 mm to 15 mm)) as a carbon raw material ) 73.5 g (potassium hydroxide / carbon raw material (mass ratio) = 2.5) was added and mixed well. Next, the mixture was placed in a cylindrical furnace (manufactured by Osaka Seiko Co., Ltd.), heated to 400 ° C. at a heating rate of 10 ° C./min under a nitrogen flow (1 L / min), and kept at 400 ° C. for 30 minutes. It heated to 850 degreeC with the temperature increase rate of 10 degree-C / min, and heated at 850 degreeC for 2 hours, and performed the activation process.

次に、炉内温度を室温(25℃)まで冷却した後、再度、窒素流通下(1L/分)、昇温速度10℃/minで850℃まで加熱し、850℃で2時間加熱した。得られた賦活物の洗浄および乾燥を製造例1と同様に行い、活性炭No.Gを得た。得られた活性炭について評価し、結果を表1および図2に示した。   Next, after the furnace temperature was cooled to room temperature (25 ° C.), it was again heated to 850 ° C. at a temperature rising rate of 10 ° C./min under nitrogen flow (1 L / min), and heated at 850 ° C. for 2 hours. The obtained activated product was washed and dried in the same manner as in Production Example 1, and activated carbon No. G was obtained. The obtained activated carbon was evaluated, and the results are shown in Table 1 and FIG.

製造例1〜4は、賦活工程後、炉内に水を供給し、加熱処理を行った場合である。これらの製造例では、アルカリ賦活のみを行った製造例5に対して、比表面積を過剰に高めることなく、平均細孔径の大径化が達成されている。これらの製造例1〜4を比較すると、水蒸気投入時の炉内温度が低いほど比表面積の増大を抑制しつつ平均細孔径を大径化できることがわかる。特に、炉内温度を25℃に下げてから水を供給した製造例1では、比表面積はほとんど変化せず、平均細孔径が大幅に大径化されている。製造例6はアルカリ賦活剤の使用量を2倍量に増加させた場合であるが、比表面積が過剰に高められている。製造例7は、賦活工程後、炉内温度を室温まで下げてから、再度加熱した場合であるが、平均細孔径は大径化されていない。   Production Examples 1 to 4 are cases where water is supplied into the furnace after the activation process and heat treatment is performed. In these production examples, the average pore diameter is increased without excessively increasing the specific surface area compared to Production Example 5 in which only alkali activation is performed. Comparing these production examples 1 to 4, it can be seen that the average pore diameter can be increased while the increase in the specific surface area is suppressed as the furnace temperature at the time of introducing the steam is lower. In particular, in Production Example 1 in which water was supplied after the furnace temperature was lowered to 25 ° C., the specific surface area hardly changed, and the average pore diameter was greatly increased. Production Example 6 is a case where the amount of the alkali activator used is increased by a factor of 2, but the specific surface area is excessively increased. In Production Example 7, after the activation step, the furnace temperature was lowered to room temperature and then heated again, but the average pore diameter was not increased.

電気二重層キャパシタの製造
上記活性炭No.A〜Gを用いて電気二重層キャパシタを製造した。具体的には、活性炭に、ポリテトラフルオロエチレン(PTFE)粉末とアセチレンブラックとを、活性炭:PTFE:アセチレンブラック=8:1:1(質量比)になるように混合し、ペースト状になるまで混練した。ついで、ミニブレンダーで粉砕し、500μmのステンレス鋼製篩で篩って粒度を揃えた。次に、直径2.54cm(1インチ)の金型を用い、プレス後の厚みが0.5mmになるように仕込み量を調節し、50.4MPaの圧力でプレス成形して、キャパシタ用電極を作成した。
Production of electric double layer capacitor Electric double layer capacitors were manufactured using A to G. Specifically, polytetrafluoroethylene (PTFE) powder and acetylene black are mixed with activated carbon so as to be activated carbon: PTFE: acetylene black = 8: 1: 1 (mass ratio), until a paste is obtained. Kneaded. Subsequently, it grind | pulverized with the mini blender and sieved with the 500 micrometers stainless steel sieve, and the particle size was arrange | equalized. Next, using a mold having a diameter of 2.54 cm (1 inch), adjusting the preparation amount so that the thickness after pressing becomes 0.5 mm, press-molding with a pressure of 50.4 MPa, and the capacitor electrode Created.

得られたキャパシタ用電極を真空条件下、200℃、1時間の条件で乾燥した後、窒素ガスを流通させたグローブボックス内で電解液(1Mテトラエチルアンモニウムテトラフルオロボレートのプロピレンカーボネート溶液)を電極に真空含浸させた。この電極を使用して図3に示すように電気二重層キャパシタを組み立てた。図3に示す電気二重層キャパシタは、前記電解液を含浸させたセパレータ(Celgard社製、「セルガード(登録商標)#3501」)1を前記キャパシタ用電極2で挟み、電極をOリング3で囲繞した後、さらに集電板としてのアルミニウム板4で挟んで作成した。   The obtained capacitor electrode was dried under vacuum conditions at 200 ° C. for 1 hour, and then an electrolyte (1M tetraethylammonium tetrafluoroborate propylene carbonate solution) was used as an electrode in a glove box in which nitrogen gas was circulated. Vacuum impregnated. Using this electrode, an electric double layer capacitor was assembled as shown in FIG. The electric double layer capacitor shown in FIG. 3 has a separator (Celgard, “Celguard (registered trademark) # 3501”) 1 impregnated with the electrolytic solution sandwiched between the capacitor electrodes 2, and the electrodes are surrounded by an O-ring 3. Then, it was further sandwiched between aluminum plates 4 as current collector plates.

製造例1〜7で得られた活性炭の評価結果および、これらの活性炭を用いて製造した電気二重層キャパシタについての評価結果を表2に示した。   Table 2 shows the evaluation results of the activated carbons obtained in Production Examples 1 to 7 and the evaluation results of the electric double layer capacitors produced using these activated carbons.

活性炭No.A〜Dを用いた場合、活性炭No.Eを用いた場合に比べて、得られる電気二重層キャパシタの内部抵抗が25℃においても−30℃においても大幅に低下している。また、これらの活性炭No.A〜Dを用いた場合、静電容量も十分に高い値が得られている。   Activated carbon No. When AD is used, activated carbon No. Compared with the case where E is used, the internal resistance of the obtained electric double layer capacitor is greatly reduced both at 25 ° C. and at −30 ° C. In addition, these activated carbon No. When A to D are used, a sufficiently high value is obtained for the capacitance.

本発明の活性炭の製造方法は、活性炭の製造方法に関するものであり、得られる活性炭の比表面積を過剰に高めることなく、細孔径を大径化できる。   The method for producing activated carbon of the present invention relates to a method for producing activated carbon, and can increase the pore diameter without excessively increasing the specific surface area of the obtained activated carbon.

1:セパレータ、2:キャパシタ用電極、3:Oリング、4:アルミニウム板、5:ポリテトラフルオロエチレン板、6:ステンレス鋼板 1: Separator, 2: Electrode for capacitor, 3: O-ring, 4: Aluminum plate, 5: Polytetrafluoroethylene plate, 6: Stainless steel plate

Claims (7)

炭素原料とアルカリ賦活剤との混合物を炉に収容し、炉内を加熱する賦活工程;
賦活工程後、炉内に水を供給する水和工程;
水を供給した後、炉内を加熱する加熱工程;を含むことを特徴とする活性炭の製造方法。
An activation process in which a mixture of a carbon raw material and an alkali activator is housed in a furnace and the interior of the furnace is heated;
A hydration step of supplying water into the furnace after the activation step;
A method for producing activated carbon, comprising: a heating step of heating the inside of the furnace after supplying water.
前記水和工程において、賦活工程で使用したアルカリ賦活剤100質量部に対して100質量部〜1000質量部の水を供給する請求項1に記載の活性炭の製造方法。   The manufacturing method of the activated carbon of Claim 1 which supplies 100 mass parts-1000 mass parts water with respect to 100 mass parts of alkali activators used at the activation process in the said hydration process. 前記水和工程において、水を供給する際の炉内温度が賦活処理温度以下である請求項1または2に記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1 or 2, wherein in the hydration step, the furnace temperature when supplying water is equal to or lower than the activation treatment temperature. 前記水和工程において、前記水を水蒸気の状態で供給する請求項1〜3のいずれか一項に記載の活性炭の製造方法。   The manufacturing method of the activated carbon as described in any one of Claims 1-3 which supplies the said water in the state of water vapor | steam in the said hydration process. 前記アルカリ賦活剤が、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムよりなる群から選択される少なくとも1種である請求項1〜4のいずれか一項に記載の活性炭の製造方法。   The method for producing activated carbon according to any one of claims 1 to 4, wherein the alkali activator is at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, and lithium hydroxide. 請求項1〜5のいずれか一項に記載の製造方法により得られた活性炭を含有することを特徴とする電気二重層キャパシタ用電極。   6. An electrode for an electric double layer capacitor, comprising activated carbon obtained by the production method according to any one of claims 1 to 5. 請求項6に記載の電気二重層キャパシタ用電極を用いたことを特徴とする電気二重層キャパシタ。   An electric double layer capacitor using the electric double layer capacitor electrode according to claim 6.
JP2009198856A 2009-08-28 2009-08-28 Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method Active JP5271851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198856A JP5271851B2 (en) 2009-08-28 2009-08-28 Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198856A JP5271851B2 (en) 2009-08-28 2009-08-28 Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method

Publications (2)

Publication Number Publication Date
JP2011046584A true JP2011046584A (en) 2011-03-10
JP5271851B2 JP5271851B2 (en) 2013-08-21

Family

ID=43833327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198856A Active JP5271851B2 (en) 2009-08-28 2009-08-28 Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method

Country Status (1)

Country Link
JP (1) JP5271851B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079705A (en) * 2009-10-07 2011-04-21 Osaka Gas Chem Kk Method and apparatus for producing activated carbon
JP2013023405A (en) * 2011-07-20 2013-02-04 Kansai Coke & Chem Co Ltd Activated carbon and method for producing the same
KR20140070625A (en) * 2011-09-28 2014-06-10 코닝 인코포레이티드 Method for Making Alkali Activated Carbon
KR20150126636A (en) 2013-03-07 2015-11-12 제이엑스 닛코 닛세키 에네루기 가부시키가이샤 Activated carbon for electric double layer capacitor electrode and production method for same
WO2016013619A1 (en) * 2014-07-25 2016-01-28 関西熱化学株式会社 Activated carbon with excellent adsorption performance and process for producing same
JPWO2014017588A1 (en) * 2012-07-26 2016-07-11 関西熱化学株式会社 Activated carbon with high active surface area
CN106128782A (en) * 2016-07-25 2016-11-16 云南大学 A kind of nano manganic manganous oxide/absorbent charcoal composite material and preparation method thereof
WO2017135405A1 (en) 2016-02-04 2017-08-10 Tpr株式会社 Core-shell composite, method for producing same, electrode material, catalyst, electrode, secondary battery, and electric double-layer capacitor
JP2017171538A (en) * 2016-03-24 2017-09-28 関西熱化学株式会社 Active carbon and method for producing the same, and electric double layer capacitor comprising the active carbon
KR20180037064A (en) 2016-06-17 2018-04-10 티피알 가부시키가이샤 Electric double layer capacitor
CN110914942A (en) * 2017-07-18 2020-03-24 帝伯爱尔株式会社 Hybrid capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247731A (en) * 1992-03-09 1993-09-24 Mitsubishi Kasei Corp Fibrous activated carbon and its production
JP2001019415A (en) * 1999-07-09 2001-01-23 Petoca Ltd Method and device for alkali recycle regeneration of carbon material
JP2003104710A (en) * 2001-09-27 2003-04-09 Kyocera Corp Solid state activated carbon and its producing method and electric double-layer capacitor using it and its producing method
JP2008127232A (en) * 2006-11-17 2008-06-05 Advanced Capacitor Technologies Inc Method for producing hydrogenated non-porous carbon
JP2008270653A (en) * 2007-04-24 2008-11-06 Power System:Kk Non-porosity carbon manufactured from subelement content material and electric double-layer capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247731A (en) * 1992-03-09 1993-09-24 Mitsubishi Kasei Corp Fibrous activated carbon and its production
JP2001019415A (en) * 1999-07-09 2001-01-23 Petoca Ltd Method and device for alkali recycle regeneration of carbon material
JP2003104710A (en) * 2001-09-27 2003-04-09 Kyocera Corp Solid state activated carbon and its producing method and electric double-layer capacitor using it and its producing method
JP2008127232A (en) * 2006-11-17 2008-06-05 Advanced Capacitor Technologies Inc Method for producing hydrogenated non-porous carbon
JP2008270653A (en) * 2007-04-24 2008-11-06 Power System:Kk Non-porosity carbon manufactured from subelement content material and electric double-layer capacitor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079705A (en) * 2009-10-07 2011-04-21 Osaka Gas Chem Kk Method and apparatus for producing activated carbon
JP2013023405A (en) * 2011-07-20 2013-02-04 Kansai Coke & Chem Co Ltd Activated carbon and method for producing the same
KR20140070625A (en) * 2011-09-28 2014-06-10 코닝 인코포레이티드 Method for Making Alkali Activated Carbon
JP2014530167A (en) * 2011-09-28 2014-11-17 コーニング インコーポレイテッド Production method of alkaline activated carbon
KR101965018B1 (en) 2011-09-28 2019-04-02 코닝 인코포레이티드 Method for Making Alkali Activated Carbon
JPWO2014017588A1 (en) * 2012-07-26 2016-07-11 関西熱化学株式会社 Activated carbon with high active surface area
US10008337B2 (en) 2013-03-07 2018-06-26 Power Carbon Technology Co., Ltd. Activated carbon for an electric double-layer capacitor electrode and manufacturing method for same
KR20150126636A (en) 2013-03-07 2015-11-12 제이엑스 닛코 닛세키 에네루기 가부시키가이샤 Activated carbon for electric double layer capacitor electrode and production method for same
KR102050342B1 (en) 2014-07-25 2019-11-29 간사이네쯔카가꾸가부시끼가이샤 Activated carbon with excellent adsorption performance and process for producing same
KR20170035907A (en) * 2014-07-25 2017-03-31 간사이네쯔카가꾸가부시끼가이샤 Activated carbon with excellent adsorption performance and process for producing same
US10105680B2 (en) 2014-07-25 2018-10-23 Kansai Coke And Chemicals Co., Ltd. Activated carbon with excellent adsorption performance and process for producing same
WO2016013619A1 (en) * 2014-07-25 2016-01-28 関西熱化学株式会社 Activated carbon with excellent adsorption performance and process for producing same
WO2017135405A1 (en) 2016-02-04 2017-08-10 Tpr株式会社 Core-shell composite, method for producing same, electrode material, catalyst, electrode, secondary battery, and electric double-layer capacitor
US10510493B2 (en) 2016-02-04 2019-12-17 Tpr Co., Ltd. Core-shell composite, method for producing the same, electrode material, catalyst, electrode, secondary battery, and electric double-layer capacitor
JP2017171538A (en) * 2016-03-24 2017-09-28 関西熱化学株式会社 Active carbon and method for producing the same, and electric double layer capacitor comprising the active carbon
KR20180037064A (en) 2016-06-17 2018-04-10 티피알 가부시키가이샤 Electric double layer capacitor
US10636581B2 (en) 2016-06-17 2020-04-28 Tpr Co., Ltd. Electric double layer capacitor
CN106128782A (en) * 2016-07-25 2016-11-16 云南大学 A kind of nano manganic manganous oxide/absorbent charcoal composite material and preparation method thereof
CN110914942A (en) * 2017-07-18 2020-03-24 帝伯爱尔株式会社 Hybrid capacitor
CN110914942B (en) * 2017-07-18 2020-10-13 帝伯爱尔株式会社 Hybrid capacitor

Also Published As

Publication number Publication date
JP5271851B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5271851B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP5027849B2 (en) Method for producing activated carbon, and electric double layer capacitor using activated carbon obtained by the method
JP5770550B2 (en) Activated carbon and manufacturing method thereof
JP5210504B2 (en) Activated carbon purification method and activated carbon purification apparatus
CN102460620B (en) Carbon material for electric double layer capacitor electrode and method for producing same
JP2011136856A (en) Activated carbon for electric double-layer capacitor electrode, and method for producing the same
JP5676074B2 (en) Method for reforming activated carbon
JP2012101948A (en) Method for producing activated carbon
KR102113719B1 (en) Activated carbon and its manufacturing method
JP4576374B2 (en) Activated carbon, its production method and its use
US20180212229A1 (en) High specific surface area hard carbon-based electrode active material through carbonization process control and electrode active material by thereof
JP6371787B2 (en) Activated carbon, method for producing the same, and electric double layer capacitor using the activated carbon
JP2015151324A (en) Activated carbon and method for producing the same
JP4313547B2 (en) Method for producing carbon material for electric double layer capacitor
JP5619367B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP5563239B2 (en) Method for producing porous carbon material
JP5503196B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP4615868B2 (en) Method for producing porous carbon for electric double layer capacitor, porous carbon for electric double layer capacitor obtained by the production method, and electric double layer capacitor using porous carbon for electric double layer capacitor
JP2007153639A (en) Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor
JP4096653B2 (en) Method for producing activated carbon, polarizable electrode and electric double layer capacitor
JP2006219305A (en) Method and apparatus for producing porous carbon material
JP5208160B2 (en) Method for producing porous carbon for electric double layer capacitor, porous carbon for electric double layer capacitor obtained by the production method, and electric double layer capacitor using porous carbon for electric double layer capacitor
JP5367974B2 (en) Electrode material for electric double layer capacitor and additive for the electrode material
JP4377610B2 (en) Porous carbon for electric double layer capacitor, method for producing the same, and electric double layer capacitor
KR102020126B1 (en) Method for manufacturing activated carbon for electrode material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130513

R150 Certificate of patent or registration of utility model

Ref document number: 5271851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250