JP2009238584A - Carbon particle for lithium-ion secondary battery anode, anode for lithium-ion secondary battery, and lithium-ion secondary battery - Google Patents

Carbon particle for lithium-ion secondary battery anode, anode for lithium-ion secondary battery, and lithium-ion secondary battery Download PDF

Info

Publication number
JP2009238584A
JP2009238584A JP2008083220A JP2008083220A JP2009238584A JP 2009238584 A JP2009238584 A JP 2009238584A JP 2008083220 A JP2008083220 A JP 2008083220A JP 2008083220 A JP2008083220 A JP 2008083220A JP 2009238584 A JP2009238584 A JP 2009238584A
Authority
JP
Japan
Prior art keywords
secondary battery
ion secondary
carbon
negative electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008083220A
Other languages
Japanese (ja)
Other versions
JP5540470B2 (en
Inventor
Teppei Takahashi
哲平 高橋
Yoshito Ishii
義人 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008083220A priority Critical patent/JP5540470B2/en
Publication of JP2009238584A publication Critical patent/JP2009238584A/en
Application granted granted Critical
Publication of JP5540470B2 publication Critical patent/JP5540470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide carbon particles for a lithium-ion secondary battery anode of high capacity and excellent cycle characteristics, an anode for a lithium-ion secondary battery using the same, and a lithium-ion secondary battery. <P>SOLUTION: The carbon particle used for the lithium-ion secondary battery anode is to have a roundness of a particle cross section of 0.6 to 0.9, an interlayer distance d (002) of graphite crystal found by X-ray diffraction measurement of 3.38 Å or less, and a crystallite size Lc (002) in a C-axis direction of 500 Å or more. As to a sample anode using the carbon particles, a peak intensity ratio Ih002/Ih110 of a carbon 002 face (a face horizontal to a graphite layer) to a carbon 110 face (a face vertical to a graphite layer) measured by the X-ray diffraction is to be 600 or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン二次電池負極用炭素粒子、リチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。さらに詳しくは、ポータブル機器、電気自動車、電力貯蔵等に用いるのに好適な、高容量で且つサイクル特性に優れたリチウムイオン二次電池用負極とそれを用いたリチウムイオン二次電池に関する。   The present invention relates to carbon particles for a negative electrode of a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery. More specifically, the present invention relates to a negative electrode for a lithium ion secondary battery that is suitable for use in portable equipment, electric vehicles, power storage, etc. and has a high capacity and excellent cycle characteristics, and a lithium ion secondary battery using the negative electrode.

従来のリチウムイオン二次電池の負極材には、例えば天然黒鉛粒子、コークスを黒鉛化した人造黒鉛粒子、有機系高分子材料やピッチ等を黒鉛化した人造黒鉛粒子、これらを粉砕した黒鉛粒子等がある。これらの黒鉛粒子は、有機系結着剤及び有機溶剤と混合して黒鉛ペーストとし、この黒鉛ペーストを銅箔の表面に塗布し、溶剤を乾燥、成形して、リチウムイオン二次電池用負極として使用している。負極に黒鉛を使用することでリチウムのデンドライトによる内容短絡の問題を解消し、サイクル特性の改良を図っている(例えば、特許文献1参照)。   Examples of negative electrode materials for conventional lithium ion secondary batteries include natural graphite particles, artificial graphite particles graphitized with coke, artificial graphite particles graphitized with organic polymer materials and pitch, graphite particles obtained by pulverizing these, etc. There is. These graphite particles are mixed with an organic binder and an organic solvent to form a graphite paste. The graphite paste is applied to the surface of the copper foil, and the solvent is dried and molded to form a negative electrode for a lithium ion secondary battery. I use it. By using graphite for the negative electrode, the problem of content short-circuiting due to lithium dendrite is solved, and cycle characteristics are improved (for example, see Patent Document 1).

しかしながら、黒鉛結晶が発達している天然黒鉛は、C軸方向の結晶の層間の結合力が、結晶の面方向の結合に比べて弱いため、粉砕により黒鉛層間の結合が切れ、アスペクト比が大きいいわゆる鱗片状の黒鉛粒子となる。鱗片状黒鉛は、アスペクト比が大きいために、有機系結着剤と混練して集電体に塗布して電極を作製したときに、鱗片状黒鉛粒子が集電体の面方向に配向し、その結果、充放電容量や急速充放電特性が低下しやすくなるばかりでなく、黒鉛結晶へのリチウムの吸蔵・放出の繰り返しによって発生するC軸方向の膨張・収縮により電極内部の破壊が生じ、サイクル特性が低下する問題がある。   However, natural graphite, which has developed graphite crystals, has weaker bond strength between crystal layers in the C-axis direction than the bond in the crystal plane direction. It becomes what is called scale-like graphite particles. Since the scaly graphite has a large aspect ratio, when the electrode is prepared by kneading with an organic binder and applying to the current collector, the scaly graphite particles are oriented in the surface direction of the current collector, As a result, not only the charge / discharge capacity and rapid charge / discharge characteristics are likely to deteriorate, but also the internal destruction of the electrode occurs due to expansion and contraction in the C-axis direction caused by repeated insertion and extraction of lithium into and from the graphite crystal. There is a problem that the characteristics deteriorate.

この問題を改善するために、鱗片状黒鉛を球形に近づくように改質した球形化黒鉛が示されている(例えば、特許文献2参照)。鱗片状黒鉛を機械的な処理を施すことによって、粒子を球形化することでサイクル特性を向上させている。   In order to improve this problem, spheroidized graphite obtained by modifying flaky graphite so as to approximate a sphere is disclosed (for example, see Patent Document 2). The cycle characteristics are improved by subjecting the flaky graphite to mechanical processing to spheroidize the particles.

しかし、粒子が球形であると粒子間の接触が点接触となり、粒子間の接触面積が減少する。また、黒鉛結晶へのリチウムの吸蔵・放出の繰り返しによる粒子の膨張・収縮によって、粒子間の接触面積が減少する。その結果、サイクル数が増えていくと粒子間の導電性が保たれず、結果的にサイクル特性に悪影響を及ぼすため、さらなるサイクル特性の向上には依然として不充分な点がある。   However, when the particles are spherical, the contact between the particles becomes a point contact, and the contact area between the particles decreases. In addition, the contact area between the particles decreases due to the expansion and contraction of the particles due to repeated insertion and extraction of lithium into the graphite crystal. As a result, as the number of cycles increases, the conductivity between the particles is not maintained, and as a result, the cycle characteristics are adversely affected. Therefore, there is still an insufficient point for further improvement of the cycle characteristics.

特公昭62−23433号公報Japanese Examined Patent Publication No. 62-23433 特許第3787030号Japanese Patent No. 3787030

本発明は、高容量を有し、よりサイクル特性に優れたリチウムイオン二次電池負極用炭素粒子、それを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池を提供する。   The present invention provides a carbon particle for a lithium ion secondary battery negative electrode having a high capacity and more excellent cycle characteristics, and a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using the same.

本発明者等は、リチウムイオン二次電池用として種々の負極材料を作製し検討を行った結果、特定の形状パラメータを有し、特定の結晶構造を有する炭素粒子を用いることで、負極とした状態での炭素粒子が好ましい配向を示し、高容量でサイクル特性に優れることを見出し、本発明に至った。
すなわち、具体的には、本発明は下記(1)〜(6)に記載の事項を特徴とするものである。
(1)粒子断面の円形度が0.6〜0.9であり、X線回折測定より求められる黒鉛結晶の層間距離d(002)が3.38Å以下、C軸方向の結晶子サイズLc(002)が500Å以上のリチウムイオン二次電池負極用炭素粒子であって、
該炭素粒子を下記(a)〜(b)の方法で作製した試料のX線回折で測定される炭素002面(黒鉛層と水平な面)と炭素110面(黒鉛層に垂直な面)のピーク強度比Ih002/Ih110が600以下であることを特徴とするリチウムイオン二次電池負極用炭素粒子。
(a)前記炭素粒子98質量部、スチレンブタジエン樹脂1質量部及びカルボキシメチルセルロース1質量部の混合物に対して、該混合物の25℃における粘度が1500〜2500mPa・sとなるように水を添加した水分散塗料を作製する。
(b)前記水分散塗料を銅箔上に塗工し、120℃で1時間乾燥して試料を得る。
(2)前記炭素粒子は、102〜106Åの細孔の細孔体積が、炭素粒子質量当たり、0.4〜2.0ml/gである上記(1)記載のリチウムイオン二次電池負極用炭素粒子。
(3)上記(1)又は(2)に記載のリチウム二次電池負極用炭素粒子材料を含有するリチウムイオン二次電池用負極。
(4)上記(3)に記載の負極及びリチウム化合物を含む正極を有するリチウムイオン二次電池。
As a result of producing and examining various negative electrode materials for lithium ion secondary batteries, the present inventors made a negative electrode by using carbon particles having a specific shape parameter and a specific crystal structure. The present inventors have found that the carbon particles in a state exhibit a preferable orientation, have high capacity and excellent cycle characteristics, and have reached the present invention.
Specifically, the present invention is characterized by the matters described in the following (1) to (6).
(1) The circularity of the particle cross section is 0.6 to 0.9, the interlayer distance d (002) of the graphite crystal determined by X-ray diffraction measurement is 3.38 mm or less, and the crystallite size Lc (C-axis direction) 002) is a carbon particle for a negative electrode of a lithium ion secondary battery having a thickness of 500 mm or more,
A carbon 002 plane (plane parallel to the graphite layer) and a carbon 110 plane (plane perpendicular to the graphite layer) measured by X-ray diffraction of a sample prepared by the following methods (a) to (b). A carbon particle for a negative electrode of a lithium ion secondary battery, wherein the peak intensity ratio Ih002 / Ih110 is 600 or less.
(A) Water in which water is added so that the viscosity at 25 ° C. of the mixture is 1500 to 2500 mPa · s with respect to a mixture of 98 parts by mass of the carbon particles, 1 part by mass of the styrene butadiene resin, and 1 part by mass of carboxymethyl cellulose. Make a dispersion paint.
(B) The water-dispersed paint is coated on a copper foil and dried at 120 ° C. for 1 hour to obtain a sample.
(2) The lithium ion secondary battery according to the above (1), wherein the carbon particles have a pore volume of 10 2 to 10 6細孔 of 0.4 to 2.0 ml / g per mass of the carbon particles. Carbon particles for negative electrode.
(3) A negative electrode for a lithium ion secondary battery containing the carbon particle material for a lithium secondary battery negative electrode according to (1) or (2) above.
(4) The lithium ion secondary battery which has a positive electrode containing the negative electrode and lithium compound as described in said (3).

本発明によれば、高容量を有し、サイクル特性に優れたリチウムイオン二次電池負極用炭素粒子を得ることができる。
また、本発明によれば、電極作製時の過剰な炭素粒子の変形を抑制することで、さらにサイクル特性に優れたリチウムイオン二次電池負極用炭素粒子を得ることができる。
According to the present invention, carbon particles for a lithium ion secondary battery negative electrode having a high capacity and excellent cycle characteristics can be obtained.
Moreover, according to the present invention, carbon particles for a lithium ion secondary battery negative electrode further excellent in cycle characteristics can be obtained by suppressing excessive deformation of carbon particles during electrode production.

以下、本発明を詳細に説明する。
本発明のリチウムイオン二次電池負極用炭素粒子は、粒子断面の円形度が0.6〜0.9であり、X線回折測定により求められる黒鉛結晶の層間距離d(002)が3.38Å以下、C軸方向の結晶子サイズLc(002)が500Å以上であり、且つ負極と同じ状態とした試料の、X線回折で測定される炭素002面(黒鉛層と水平な面)と炭素110面(黒鉛層に垂直な面)のピーク強度比Ih002/Ih110が600以下であることを特徴とする。
Hereinafter, the present invention will be described in detail.
The carbon particles for a negative electrode of a lithium ion secondary battery of the present invention have a circularity of the particle cross section of 0.6 to 0.9, and the interlayer distance d (002) of the graphite crystal determined by X-ray diffraction measurement is 3.38Å. Hereinafter, a carbon 002 plane (plane parallel to the graphite layer) and carbon 110 measured by X-ray diffraction of a sample having a crystallite size Lc (002) in the C-axis direction of 500 mm or more and the same state as the negative electrode. The peak intensity ratio Ih002 / Ih110 of the plane (plane perpendicular to the graphite layer) is 600 or less.

炭素粒子断面の円形度とは、粒子断面がどれだけ円に近いかを示す指標であり、円形度が1に近いほど真円に近いことを示す。   The circularity of the carbon particle cross section is an index indicating how close the particle cross section is to a circle, and the closer the circularity is to 1, the closer to a perfect circle.

通常、リチウムイオン二次電池の電極材料は、溶媒及びバインダーと混合してスラリー化し、集電体である銅箔等に塗布して、溶剤を乾燥、成形して使用される。この場合、例えば円形度の小さい鱗片状黒鉛は、板状の形状を有することから、溶媒及びバインダーとの混合時の流動性が悪く、作製するリチウムイオン二次電池負極の密度のバラツキが大きく、かつ負極集電体との密着性が低下する傾向がある。その結果、得られるリチウムイオン二次電池のサイクル特性が低下する。
一方で、円形度が1に近い値を有する球状化粒子は、球形となり過ぎると粒子間の接触が点接触となり導電性が低下する傾向がある。また、黒鉛結晶へのリチウムの吸蔵・放出の繰り返しによる粒子の膨張・収縮により粒子間の接触面積が減少し、その結果、サイクル特性に悪影響をおよぼす傾向がある。
従って、本発明において、炭素粒子の円形度を0.6〜0.9とすることにより、リチウムイオン二次電池用負極とした状態での粒子断面像の輪郭が擬似的に多角形に近い形状を有することとなり、これにより炭素粒子間の接触面積が増大し、炭素粒子間の導電性を保ちやすい形状とすることができる。その結果、このような形状にすることによって、炭素粒子間の接触面積が減少せず、良好なサイクル特性が得られることとなる。
Usually, an electrode material of a lithium ion secondary battery is mixed with a solvent and a binder to form a slurry, which is applied to a copper foil or the like as a current collector, and the solvent is dried and molded. In this case, for example, the scaly graphite having a small circularity has a plate-like shape, so the fluidity at the time of mixing with the solvent and the binder is poor, and the density variation of the lithium ion secondary battery negative electrode to be produced is large, And there exists a tendency for adhesiveness with a negative electrode electrical power collector to fall. As a result, the cycle characteristics of the obtained lithium ion secondary battery are degraded.
On the other hand, when the spheroidized particles having a circularity value close to 1 are too spherical, the contact between the particles tends to be point contact and the conductivity tends to decrease. Further, the contact area between the particles decreases due to the expansion and contraction of the particles due to repeated insertion and extraction of lithium into and from the graphite crystal, and as a result, the cycle characteristics tend to be adversely affected.
Therefore, in the present invention, by setting the circularity of the carbon particles to 0.6 to 0.9, the contour of the particle cross-sectional image in the state of being a negative electrode for a lithium ion secondary battery is a pseudo-polygonal shape. As a result, the contact area between the carbon particles increases, and the conductivity between the carbon particles can be easily maintained. As a result, by making such a shape, the contact area between the carbon particles does not decrease, and good cycle characteristics can be obtained.

本発明の炭素粒子の円形度は以下のようにして測定する。まず、粒子断面を写真撮影して、下記式により求める。
円形度=(相当円の周囲長)/(粒子断面像の周囲長)
ここで「相当円」とは、粒子断面像と同じ面積を持つ円である。粒子断面像の周囲長とは、撮像した粒子断面像の輪郭線の長さである。本発明における円形度は、走査式電子顕微鏡で倍率1000倍に拡大し、任意に10個の炭素粒子を選択し、上記方法にて個々の炭素粒子の円形度を測定し、その平均値をとった平均円形度である。負極とした場合の炭素粒子断面像の撮影法としては、試料電極を作製し、その電極をエポキシ樹脂に埋め込んだ後、鏡面研磨して、走査式電子顕微鏡で観察を行う。本発明において試料電極は、負極材としての炭素粒子98質量部、バインダーとしてのスチレンブタジエン樹脂1質量部、及び増粘材としてのカルボキシメチルセルロース1質量部の混合物を固形分として、該混合物の25℃における粘度が1500〜2500mPa・sとなるように水を添加した水分散塗料を作製し、これを10μmの銅箔上に70μm程度の厚み(塗工時)になるように塗工後、120℃で1時間乾燥させたものを用いる。
なお、粘度の測定方法は以下のとおりである。粘度計(ブルックフィールド社製、製品名:DV−III スピンドル:SC4−18 #14)を用い、回転数100rpm、温度25℃において粘度を測定する。
相当円の周囲長及び粒子断面増の周囲長は、例えば、走査式電子顕微鏡に付属の解析ソフトによって求めることが可能である。
The circularity of the carbon particles of the present invention is measured as follows. First, the cross section of the particle is photographed and obtained by the following formula.
Circularity = (perimeter of equivalent circle) / (perimeter of particle cross-sectional image)
Here, the “equivalent circle” is a circle having the same area as the particle cross-sectional image. The peripheral length of the particle cross-sectional image is the length of the contour line of the captured particle cross-sectional image. The circularity in the present invention is magnified to 1000 times with a scanning electron microscope, 10 carbon particles are arbitrarily selected, the circularity of each carbon particle is measured by the above method, and the average value is taken. Average circularity. As a method for taking a cross-sectional image of carbon particles in the case of a negative electrode, a sample electrode is prepared, the electrode is embedded in an epoxy resin, mirror-polished, and observed with a scanning electron microscope. In the present invention, the sample electrode has a solid content of 98 parts by mass of carbon particles as a negative electrode material, 1 part by mass of styrene butadiene resin as a binder, and 1 part by mass of carboxymethyl cellulose as a thickening material. A water-dispersed paint in which water is added so that the viscosity at 1500 is 2500 to 2500 mPa · s is prepared, and this is coated on a 10 μm copper foil to a thickness of about 70 μm (at the time of coating), and then 120 ° C. And dried for 1 hour.
In addition, the measuring method of a viscosity is as follows. Using a viscometer (manufactured by Brookfield, product name: DV-III spindle: SC4-18 # 14), the viscosity is measured at a rotation speed of 100 rpm and a temperature of 25 ° C.
The perimeter of the equivalent circle and the perimeter of the increase in particle cross-section can be determined by, for example, analysis software attached to the scanning electron microscope.

本発明のリチウムイオン二次電池負極用炭素粒子は、粒子断面の形状において、輪郭線に直線的な部分を含み、鋭角又は鈍角を有する形状であることが好ましい。また、上記好ましい形状において、粒子断面の形状に、へこみ、曲線部分を有する輪郭線を含んでいてもかまわない。炭素粒子が上記範囲の円形度を有することで、負極とした状態での炭素粒子間の接触面積が増大し、リチウムイオンの吸蔵・放出のくり返しによっても接触面積が大きく変化することはないため炭素粒子間の導電性を保ちやすく、良好なサイクル特性が得られると考えられる。   The carbon particles for a lithium ion secondary battery negative electrode of the present invention preferably have a shape having an acute angle or an obtuse angle, including a linear portion in the contour line in the shape of the particle cross section. In the preferable shape, the shape of the particle cross section may include a contour line having a dent and a curved portion. Since the carbon particles have a circularity in the above range, the contact area between the carbon particles in the negative electrode state increases, and the contact area does not change greatly even if the lithium ion is repeatedly occluded / released. It is considered that the conductivity between particles can be easily maintained and good cycle characteristics can be obtained.

本発明において、炭素粒子の円形度を0.6〜0.9とするには、炭素粒子の原料に円形度0.9〜1.0の球状化天然黒鉛や球状化人造黒鉛を用い、後述のように炭素粒子の原料となる黒鉛を改質処理する等で調製できる。なお、炭素粒子の原料としての、円形度0.9〜1.0の球状化天然黒鉛や球状化人造黒鉛は、後述するが、鱗片状天然黒鉛、鱗状天然黒鉛等の扁平状の天然黒鉛粒子を改質処理のための機械的処理を行うことにより得られる。   In the present invention, in order to set the circularity of the carbon particles to 0.6 to 0.9, spheroidized natural graphite or spheroidized artificial graphite having a circularity of 0.9 to 1.0 is used as a raw material for the carbon particles. Thus, it can be prepared by modifying the graphite as a raw material for carbon particles. Spherical natural graphite or spheroidized artificial graphite having a circularity of 0.9 to 1.0 as a raw material for carbon particles will be described later, but flat natural graphite particles such as scaly natural graphite and scaly natural graphite are used. Is obtained by performing mechanical treatment for reforming treatment.

本発明において、炭素粒子の黒鉛結晶の層間距離d(002)は、リチウムイオン二次電池負極に用いる炭素粒子の広角X線回折による測定から算出される値であり、この値を3.38Å以下とする。3.35〜3.37Åの範囲がより好ましい。d(002)が3.38Åを超えると放電容量が小さくなる傾向がある。d(002)の下限値に特に制限はないが、純粋な黒鉛結晶のd(002)の理論値で通常3.35Å以上とされる。
本発明の炭素粒子のd(002)の測定は、詳しくは、X線(CuKα線)を炭素粒子に照射し、回折線をゴニオメーターにより測定して得られた回折プロファイルにより、回折角2θ=24〜26°付近に現れる炭素d(002)面に対応した回折ピークより、ブラッグの式を用い算出する。
本発明において、炭素粒子のd(002)を3.38Å以下とするには、結晶性の高い天然黒鉛を用いるか、結晶性を高くした人造黒鉛を用いればよい。結晶性を高くするには、例えば、2000℃以上の温度で熱処理を施せばよい。
In the present invention, the interlaminar distance d (002) of the graphite crystal of the carbon particles is a value calculated from the measurement by wide angle X-ray diffraction of the carbon particles used for the negative electrode of the lithium ion secondary battery, and this value is 3.38 cm or less. And The range of 3.35 to 3.37cm is more preferable. When d (002) exceeds 3.38 mm, the discharge capacity tends to decrease. There is no particular limitation on the lower limit of d (002), but the theoretical value of d (002) of pure graphite crystal is usually 3.35 mm or more.
In detail, the d (002) of the carbon particles of the present invention is measured by irradiating the carbon particles with X-rays (CuKα rays) and measuring the diffraction lines with a goniometer. From the diffraction peak corresponding to the carbon d (002) plane appearing in the vicinity of 24 to 26 °, calculation is performed using the Bragg equation.
In the present invention, natural graphite having high crystallinity or artificial graphite having high crystallinity may be used in order to make d (002) of the carbon particles 3.38 mm or less. In order to increase the crystallinity, for example, heat treatment may be performed at a temperature of 2000 ° C. or higher.

また、炭素粒子のC軸方向の結晶子サイズLc(002)も広角X線回折による測定から算出される値で、この値が500Å未満であると放電容量が小さくなる傾向があることから、本発明のリチウムイオン二次電池負極材料に用いる炭素粒子は、Lc(002)を500Å以上とする。Lc(002)の上限値に特に制限はないが、通常10000Å以下とされる。
本発明の炭素粒子のLc(002)の測定は、通常の方法が用いられるが、具体的には以下のようにして行う。広角X線回折測定装置を用い、学振法に基づき、結晶子の大きさLcを算出する。
また、本発明の炭素粒子のLc(002)を500Å以上とするには、結晶性の高い天然黒鉛を用いるか、結晶性を高くした人造黒鉛を用いればよい。結晶性を高くするには、例えば、2000℃以上の温度で熱処理を施せばよい。
In addition, the crystallite size Lc (002) in the C-axis direction of the carbon particles is a value calculated from measurement by wide-angle X-ray diffraction, and if this value is less than 500 mm, the discharge capacity tends to be small. The carbon particles used for the negative electrode material of the lithium ion secondary battery of the invention have Lc (002) of 500% or more. There is no particular limitation on the upper limit value of Lc (002), but it is usually set to 10000 kg or less.
The measurement of Lc (002) of the carbon particles of the present invention is performed by a usual method, and specifically, it is performed as follows. The crystallite size Lc is calculated based on the Gakushin method using a wide-angle X-ray diffractometer.
In order to make the Lc (002) of the carbon particles of the present invention 500 or more, natural graphite with high crystallinity or artificial graphite with high crystallinity may be used. In order to increase the crystallinity, for example, heat treatment may be performed at a temperature of 2000 ° C. or higher.

本発明のリチウムイオン二次電池負極用炭素粒子は、以下のようにして作製したサンプル試料において、広角X線回折で測定される炭素002面(黒鉛層と水平な面)と炭素110面(黒鉛層に垂直な面)のピーク強度比Ih002/Ih110が、600以下である。
(a)前記炭素粒子98質量部、スチレンブタジエン樹脂1質量部及びカルボキシメチルセルロース1質量部の混合物に対し、該混合物の25℃の粘度が1500〜2500mPa・sとなるように、水を添加した水分散塗料を作製する。
(b)前記水分散塗料を銅箔上に70μmの厚みとなるよう塗工し、120℃で1時間乾燥して試料を得る。
ピーク強度比Ih002/Ih110は、配向のランダム性の指標となる値であり、X線回折(反射法)(株式会社リガク製 Multi Flex)により測定できる。炭素002面(黒鉛層と水平な面)と炭素110面(黒鉛層に垂直な面)のピーク強度比Ih002/Ih110は、好ましくは500以下、さらに好ましくは350以下である。
ここで、ピーク強度比Ih002/Ih110を測定するには、X線回折測定の試料として、上記(a)〜(b)方法で試料電極を作製する。この試料電極の回折強度比Ih(002)/Ih(110)は、CuKα線をX線源とするX線回折により、試料電極の表面を測定し、回折角2θ=26〜27度付近に検出される炭素(002)面回折ピークと、回折角2θ=70〜80度付近に検出される炭素(110)面回折ピークとの強度から下記式(1)により求めることができる。
(002)面回折ピーク強度/(110)面回折ピーク強度 ・・・・式(1)
なお、回折強度比(002)/(110)を600以下とするには、例えば、炭素粒子の平均粒径を1〜100μmとする等、用いる炭素粒子の物性を適宜調整することにより可能である。
また、炭素粒子の円形度を上記範囲としておくと、炭素粒子が層状の結晶構造をなしていてもランダムな配向状態となりやすい。
回折強度比(002)/(110)は、炭素粒子質量当たりの細孔体積の量を適宜調製する、また炭素粒子に硬い材料を用いる等によりして、形状変化や破壊等を抑えることによっても調整可能である。
The carbon particles for a negative electrode of a lithium ion secondary battery of the present invention are a carbon sample 002 plane (plane parallel to the graphite layer) and a carbon 110 plane (graphite) measured by wide-angle X-ray diffraction in a sample sample prepared as follows. The peak intensity ratio Ih002 / Ih110 of the plane perpendicular to the layer is 600 or less.
(A) Water in which water is added so that the viscosity at 25 ° C. of the mixture is 1500 to 2500 mPa · s with respect to a mixture of 98 parts by mass of the carbon particles, 1 part by mass of the styrene butadiene resin, and 1 part by mass of carboxymethyl cellulose. Make a dispersion paint.
(B) The water-dispersed paint is coated on a copper foil to a thickness of 70 μm and dried at 120 ° C. for 1 hour to obtain a sample.
The peak intensity ratio Ih002 / Ih110 is a value serving as an index of randomness of orientation, and can be measured by X-ray diffraction (reflection method) (Multi Flex, manufactured by Rigaku Corporation). The peak intensity ratio Ih002 / Ih110 between the carbon 002 plane (plane parallel to the graphite layer) and the carbon 110 plane (plane perpendicular to the graphite layer) is preferably 500 or less, more preferably 350 or less.
Here, in order to measure the peak intensity ratio Ih002 / Ih110, a sample electrode is prepared by the above-described methods (a) to (b) as a sample for X-ray diffraction measurement. The diffraction intensity ratio Ih (002) / Ih (110) of this sample electrode is detected by measuring the surface of the sample electrode by X-ray diffraction using CuKα rays as an X-ray source, and near a diffraction angle 2θ = 26 to 27 degrees. The intensity of the carbon (002) plane diffraction peak detected and the carbon (110) plane diffraction peak detected near the diffraction angle 2θ = 70 to 80 degrees can be obtained by the following formula (1).
(002) Plane diffraction peak intensity / (110) Plane diffraction peak intensity Formula (1)
In order to set the diffraction intensity ratio (002) / (110) to 600 or less, it is possible to appropriately adjust the physical properties of the carbon particles to be used, for example, by setting the average particle diameter of the carbon particles to 1 to 100 μm. .
In addition, when the circularity of the carbon particles is set in the above range, the carbon particles tend to be in a random orientation state even if the carbon particles have a layered crystal structure.
The diffraction intensity ratio (002) / (110) can also be adjusted by appropriately adjusting the amount of pore volume per mass of carbon particles, or by suppressing the change in shape or destruction by using a hard material for the carbon particles. It can be adjusted.

また、負極に用いる炭素粒子は、102〜106Åの細孔の細孔体積が炭素粒子質量当たり、0.4〜2.0ml/gであることが好ましく、0.4〜1.6ml/gであることがより好ましく、0.6〜0.8ml/gであることがさらに好ましい。該炭素粒子をリチウムイオン二次電池負極に使用すると、粒子内部に電解液がしみこみやすく、急速充放電特性に優れ、リチウムイオン二次電池のサイクル特性を向上させることができる。0.4ml/gより少なすぎると粒子内部でリチウムイオンが移動しづらくなり、急速充放電特性が低下する傾向があり、2.0ml/gを超えると粒子が崩れやすくサイクル特性悪化する傾向がある。 Further, the carbon particles used for the negative electrode preferably have a pore volume of 10 2 to 10 6細孔 of 0.4 to 2.0 ml / g per carbon particle mass, and 0.4 to 1.6 ml. / G is more preferable, and 0.6 to 0.8 ml / g is more preferable. When the carbon particles are used for the negative electrode of a lithium ion secondary battery, the electrolytic solution can easily penetrate into the particles, the rapid charge / discharge characteristics are excellent, and the cycle characteristics of the lithium ion secondary battery can be improved. If the amount is less than 0.4 ml / g, lithium ions are difficult to move inside the particle, and the rapid charge / discharge characteristics tend to deteriorate. If the amount exceeds 2.0 ml / g, the particle tends to collapse and the cycle characteristics tend to deteriorate. .

前記細孔体積は、本発明の炭素粒子を用い、水銀圧入法による細孔径分布測定(例えば、株式会社島津製作所製 オートポア9520)により求めることができる。細孔の大きさもまた水銀圧入法による細孔径分布測定により知ることができる。
本発明において、炭素粒子の細孔体積を上記範囲とするには、加圧処理、機械的処理による改質、被覆処理等で調整することができる。
The pore volume can be determined by pore diameter distribution measurement by mercury porosimetry using the carbon particles of the present invention (for example, Autopore 9520 manufactured by Shimadzu Corporation). The pore size can also be determined by measuring the pore size distribution by mercury porosimetry.
In the present invention, the pore volume of the carbon particles can be adjusted by pressure treatment, modification by mechanical treatment, coating treatment, or the like to make the pore volume within the above range.

本発明の炭素粒子は、比表面積が10m/g以下のものが好ましく、より好ましくは6m/g以下である。該炭素粒子を負極に使用すると、得られるリチウムイオン二次電池のサイクル特性を向上させることができ、また、第一サイクル目の不可逆容量を小さくすることができる。比表面積が、10m/gを超えると、得られるリチウムイオン二次電池の第一サイクル目の不可逆容量が大きくなる傾向にあり、エネルギー密度が小さく、さらに負極を作製する際多くの有機系結着剤が必要になる傾向にある。得られるリチウムイオン二次電池のサイクル特性等がさらに良好な点から、比表面積は、0.5〜8m/gであることがさらに好ましく、1〜6m/gであることが極めて好ましい。
比表面積の測定は、BET法(窒素ガス吸着法)等の既知の方法をとることができる。
本発明において、炭素粒子の比表面積を10m/g以下とするには、機械的な表面改質処理、粉砕等を行えばよい。また、粒径を小さくすると比表面積は大きくなる傾向があり、粒径を大きくすると比表面積は小さくなる傾向がある。
The carbon particles of the present invention preferably have a specific surface area of 10 m 2 / g or less, more preferably 6 m 2 / g or less. When the carbon particles are used for the negative electrode, the cycle characteristics of the obtained lithium ion secondary battery can be improved, and the irreversible capacity in the first cycle can be reduced. When the specific surface area exceeds 10 m 2 / g, the irreversible capacity of the first cycle of the obtained lithium ion secondary battery tends to be large, the energy density is small, and many organic compounds are produced when producing a negative electrode. There is a tendency to require a dressing. From the cycle characteristics of the lithium ion secondary battery to be obtained better point, the specific surface area is more preferably 0.5~8m 2 / g, it is highly preferably 1~6m 2 / g.
The specific surface area can be measured by a known method such as the BET method (nitrogen gas adsorption method).
In the present invention, in order to set the specific surface area of the carbon particles to 10 m 2 / g or less, mechanical surface modification treatment, pulverization, or the like may be performed. Further, when the particle size is decreased, the specific surface area tends to increase, and when the particle size is increased, the specific surface area tends to decrease.

本発明の炭素粒子は、真比重が2.22以上2.26以下であることが好ましい。真比重が2.22未満であるとリチウムイオン二次電池の体積当りの充放電容量が低下し、また初回充放電効率が減少する傾向がある。一方、真比重が2.26を超えると、リチウムイオン二次電池の寿命特性が低下する傾向がある。
なお、真比重はブタノールを用いたピクノメーター法により求めることができる。
本発明において、炭素粒子の真比重を2.22以上2.26以下とするには、2000℃以上の高温で熱処理すればよい。
The carbon particles of the present invention preferably have a true specific gravity of 2.22 or more and 2.26 or less. If the true specific gravity is less than 2.22, the charge / discharge capacity per volume of the lithium ion secondary battery tends to decrease, and the initial charge / discharge efficiency tends to decrease. On the other hand, when the true specific gravity exceeds 2.26, the life characteristics of the lithium ion secondary battery tend to deteriorate.
The true specific gravity can be determined by a pycnometer method using butanol.
In the present invention, in order to make the true specific gravity of the carbon particles 2.22 or more and 2.26 or less, heat treatment may be performed at a high temperature of 2000 ° C. or more.

本発明の炭素粒子は、レーザー回折式粒度分布計による平均粒径が1〜100μmの範囲となることが好ましい。平均粒径をこの範囲とすることは、前記ピーク強度比Ih002/Ih110が600以下とする要素の一つである。より好ましくは1〜80μmであり、さらに好ましくは5〜30μmである。平均粒径が100μm以上であるとペーストにし塗工する際に塗工性が悪く、また、急速充放電特性に劣る傾向がある。また、平均粒径が1μm以下であるとリチウムイオンと電気化学的な反応に効率よく関与できない粒子となり、容量、サイクル特性が低下する傾向がある。
本発明において、平均粒径の測定は、レーザー回折粒度分布計で測定した際の50%Dとして算出したものである。
本発明において、炭素粒子の平均粒径を上記範囲とするには、例えば、粉砕機や篩を用いて所望の大きさの粒子を得ればよい。
The carbon particles of the present invention preferably have an average particle size in the range of 1 to 100 μm as measured by a laser diffraction particle size distribution analyzer. Setting the average particle size within this range is one of the factors that cause the peak intensity ratio Ih002 / Ih110 to be 600 or less. More preferably, it is 1-80 micrometers, More preferably, it is 5-30 micrometers. When the average particle size is 100 μm or more, the coating property is poor when applied to a paste, and the rapid charge / discharge characteristics tend to be inferior. On the other hand, if the average particle size is 1 μm or less, the particles cannot efficiently participate in the electrochemical reaction with lithium ions, and the capacity and cycle characteristics tend to decrease.
In the present invention, the average particle size is calculated as 50% D when measured with a laser diffraction particle size distribution meter.
In the present invention, in order to make the average particle diameter of the carbon particles within the above range, for example, particles having a desired size may be obtained using a pulverizer or a sieve.

本発明の炭素粒子のかさ密度は0.3g/cm以上が好ましい。かさ密度が0.3g/cm未満であると負極を作製する際に多くの有機系結着剤が必要になり、その結果作製するリチウムイオン二次電池のエネルギー密度が小さくなる傾向がある。かさ密度の上限値に特に制限はないが、通常1.5g/cm以下とされる。
かさ密度は、容量100cmのメスシリンダーを斜めにし、これに試料粉末100cmをさじを用いて徐々に投入し、メスシリンダーに栓をした後、メスシリンダーを5cmの高さから30回落下させた後の試料粉末の質量及び容積から算出することができる30回タップ密度である。
本発明において、炭素粒子のかさ比重を上記範囲とするには、例えば、粉砕機や篩を用いて所望の大きさの粒子を得ればよい。
The bulk density of the carbon particles of the present invention is preferably 0.3 g / cm 3 or more. When the bulk density is less than 0.3 g / cm 3 , many organic binders are required when producing the negative electrode, and as a result, the energy density of the produced lithium ion secondary battery tends to be small. Although there is no restriction | limiting in particular in the upper limit of bulk density, Usually, it is 1.5 g / cm < 3 > or less.
For the bulk density, graduated a 100 cm 3 graduated cylinder, slowly put 100 cm 3 of sample powder into it with a spoon, plug the graduated cylinder, and then drop the graduated cylinder 30 times from a height of 5 cm. It is a 30 times tap density which can be calculated from the mass and volume of the sample powder after.
In the present invention, in order to set the bulk specific gravity of the carbon particles within the above range, for example, particles having a desired size may be obtained using a pulverizer or a sieve.

本発明において、X線回折測定より求められる黒鉛結晶の層間距離d(002)が3.38Å以下、C軸方向の結晶子サイズLc(002)が500Å以上の炭素粒子は、例えば、鱗片状天然黒鉛、鱗状天然黒鉛等の扁平状の天然黒鉛粒子を用いて2000℃以上、好ましくは2600〜3000℃で熱処理すればよい。
また、炭素粒子の円形度を0.6〜0.9とするため、また炭素粒子の平均粒径、細孔体積を本発明の範囲内に調製するために、以下の改質処理を行う。まず、平均粒径1〜100μmで円形度0.2〜0.55である扁平状の天然黒鉛粒子を好ましい原料として用い、機械的処理を施し、炭素粒子の平均粒径を5〜50μm、円形度を0.9〜1.0とした球状化天然黒鉛を得る。機械的処理とは、上記の粒子を処理装置の一部、または粒子同士を衝突させる処理をいう。
次いで、上記球状化天然黒鉛を等方性加圧処理する。球状化天然黒鉛の等方性加圧処理の方法としては、等方的に加圧できる方法であれば特に制限はなく、例えば原料の黒鉛をゴム型等の容器に入れ、水を加圧媒体とする静水圧等方性プレスや、空気等のガスを加圧媒体とする空圧による等方性プレス等の加圧処理が挙げられる。また、一軸プレスを多方向から繰り返してもよい。
球状天然黒鉛の等方性加圧処理の加圧媒体の圧力としては、50〜2000kgf/cmの範囲が好ましく、300〜2000kgf/cmの範囲であればより好ましく、500〜1000kgf/cmの範囲であればさらに好ましい。圧力が50kgf/cm未満では、得られるリチウムイオン二次電池のサイクル特性の向上の効果が小さくなる傾向にある。また、圧力が2000kgf/cmを超えると、得られるリチウムイオン二次電池負極材料の比表面積が大きくなり、その結果、得られるリチウムイオン二次電池の第一サイクル目の不可逆容量が大きくなる傾向にある。
上記のように球状天然黒鉛に等方性加圧処理を行うと、得られる炭素粒子同士が凝集しやすくなるため、等方性加圧処理後に、解砕、篩い等の処理を行うことが好ましい。なお、炭素粒子同士が凝集しないときは解砕をしなくともよい。
In the present invention, carbon particles having an interlayer distance d (002) of 3.38 mm or less and a crystallite size Lc (002) in the C-axis direction of 500 mm or more determined by X-ray diffraction measurement are, for example, flaky natural What is necessary is just to heat-process at 2000 degreeC or more using the flat natural graphite particle | grains, such as graphite and scale natural graphite, Preferably it is 2600-3000 degreeC.
Further, in order to adjust the circularity of the carbon particles to 0.6 to 0.9 and to adjust the average particle diameter and pore volume of the carbon particles within the range of the present invention, the following modification treatment is performed. First, flat natural graphite particles having an average particle diameter of 1 to 100 μm and a circularity of 0.2 to 0.55 are used as a preferred raw material, and subjected to mechanical treatment, so that the average particle diameter of carbon particles is 5 to 50 μm and circular. Spherical natural graphite having a degree of 0.9 to 1.0 is obtained. The mechanical treatment refers to a treatment in which the particles collide with a part of the processing apparatus or particles.
Next, the spheroidized natural graphite is subjected to isotropic pressure treatment. The method of isotropic pressure treatment of the spheroidized natural graphite is not particularly limited as long as it is an isotropic pressurization method. For example, raw material graphite is placed in a container such as a rubber mold, and water is pressurized medium. And a hydrostatic pressure isotropic press, and an isotropic press with an air pressure using a gas such as air as a pressurizing medium. Moreover, you may repeat a uniaxial press from multiple directions.
The pressure of the isotropic pressure treatment of the pressurized medium of the spherical natural graphite, preferably in the range of 50~2000kgf / cm 2, more preferably be in the range of 300~2000kgf / cm 2, 500~1000kgf / cm 2 If it is the range, it is still more preferable. When the pressure is less than 50 kgf / cm 2 , the effect of improving the cycle characteristics of the obtained lithium ion secondary battery tends to be small. Moreover, when the pressure exceeds 2000 kgf / cm 2 , the specific surface area of the obtained lithium ion secondary battery negative electrode material increases, and as a result, the irreversible capacity at the first cycle of the obtained lithium ion secondary battery tends to increase. It is in.
When the isotropic pressure treatment is performed on the spherical natural graphite as described above, the obtained carbon particles are likely to aggregate with each other. Therefore, after the isotropic pressure treatment, it is preferable to perform treatment such as crushing and sieving. . In addition, when carbon particles do not aggregate, it is not necessary to crush.

本発明のリチウムイオン二次電池用負極は、上記炭素粒子を有機系結着剤及び溶剤又は水と混合し、集電体に塗布し溶剤又は水を乾燥し、加圧することにより負極層を成形しリチウムイオン二次電池用負極とすることができる。   The negative electrode for a lithium ion secondary battery according to the present invention forms the negative electrode layer by mixing the carbon particles with an organic binder and a solvent or water, applying the mixture to a current collector, drying the solvent or water, and applying pressure. And a negative electrode for a lithium ion secondary battery.

有機系結着剤としては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンラバー、ブタジエンゴム、スチレンブタジエンゴム、カルボキシメチルセルロース、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリアクリロニトリル等の高分子化合物等が用いられる。炭素粒子と有機系結着剤の混合割合は、炭素粒子100質量部に対し有機系結着剤1〜20質量部が好ましい。   Examples of the organic binder include polymer compounds such as polyethylene, polypropylene, ethylene propylene rubber, butadiene rubber, styrene butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, and polyacrylonitrile. The mixing ratio of the carbon particles and the organic binder is preferably 1 to 20 parts by mass of the organic binder with respect to 100 parts by mass of the carbon particles.

炭素粒子と有機系結着剤の混合に使用する溶剤としては特に制限が無く、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、γ−ブチロラクトン等が用いられる。
集電体としては、例えばニッケル、銅等の箔やメッシュ等が使用できる。
The solvent used for mixing the carbon particles and the organic binder is not particularly limited, and N-methylpyrrolidone, dimethylacetamide, dimethylformamide, γ-butyrolactone and the like are used.
As the current collector, for example, a foil or mesh of nickel, copper or the like can be used.

本発明のリチウムイオン二次電池用負極において、集電体上の炭素粒子及び有機系結着剤を含有する混合物層(負極層)の密度が1.40〜1.90g/cmであることが好ましい。前記密度は、1.45〜1.80g/cmがより好ましく、1.50〜1.70g/cmがさらに好ましい。
本発明の負極における集電体上の炭素粒子及び有機系結着剤を含有する負極層の密度を高くすることにより、この負極を用いて得られるリチウムイオン二次電池の体積当りのエネルギー密度を大きくすることができる。前記炭素粒子及び有機系結着剤を含有する負極層の密度が1.40g/cm未満では得られるリチウム二次電池の体積当りのエネルギー密度が小さくなる傾向がある。一方、前記炭素粒子及び有機系結着剤を含有する負極層の密度が1.90g/cmを超えると、リチウムイオン二次電池を作製するときの電解液の注液性が悪くなる傾向があるばかりでなく、作製するリチウムイオン二次電池の急速充放電特性及びサイクル特性が低下する傾向がある。
In the negative electrode for a lithium ion secondary battery of the present invention, the density of the mixture layer (negative electrode layer) containing the carbon particles and the organic binder on the current collector is 1.40 to 1.90 g / cm 3. Is preferred. The density is more preferably 1.45~1.80g / cm 3, more preferably 1.50~1.70g / cm 3.
By increasing the density of the negative electrode layer containing the carbon particles and the organic binder on the current collector in the negative electrode of the present invention, the energy density per volume of the lithium ion secondary battery obtained using this negative electrode is reduced. Can be bigger. When the density of the negative electrode layer containing the carbon particles and the organic binder is less than 1.40 g / cm 3 , the energy density per volume of the obtained lithium secondary battery tends to be small. On the other hand, when the density of the negative electrode layer containing the carbon particles and the organic binder exceeds 1.90 g / cm 3 , the pouring property of the electrolytic solution when producing a lithium ion secondary battery tends to deteriorate. In addition, there is a tendency that rapid charge / discharge characteristics and cycle characteristics of a lithium ion secondary battery to be manufactured are deteriorated.

ここで、前記炭素粒子及び有機系結着剤を含有する負極層の密度は、炭素粒子及び有機系結着剤を含有する負極層の質量及び体積の測定値から算出できる。
負極層の集電体への一体化後の炭素粒子及び有機系結着剤を含有する負極層の密度は、例えば、一体化成形するときの圧力やロールプレス等の装置のクリアランス等により適宜調整することができる。
Here, the density of the negative electrode layer containing the carbon particles and the organic binder can be calculated from the measured values of the mass and volume of the negative electrode layer containing the carbon particles and the organic binder.
The density of the negative electrode layer containing the carbon particles and the organic binder after integration of the negative electrode layer into the current collector is appropriately adjusted by, for example, the pressure at the time of integral molding, the clearance of a device such as a roll press, etc. can do.

得られた負極を用いて、本発明のリチウムイオン二次電池とするために、例えばリチウム化合物を含む正極とセパレータを介して対向して配置し、電解液を注入する。リチウム化合物を含む正極としては、例えば、LiNiO、LiCoO、LiMn等を単独又は混合して使用することができる。正極は、負極と同様にして、集電体表面上に正極層を形成することで得ることができる。
また、電解液は、例えばLiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、例えばエチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、ジメチルカーボネート、メチルエチルカーボネートテトラヒドロフラン等に溶解したものが使用できる。また、電解液のかわりに固体又はゲル状のいわゆるポリマ電解質を用いることもできる。
In order to obtain the lithium ion secondary battery of the present invention using the obtained negative electrode, for example, the positive electrode containing a lithium compound is placed opposite to the separator, and an electrolytic solution is injected. The positive electrode containing a lithium compound, for example, can be used alone or as a mixture of LiNiO 2, LiCoO 2, LiMn 2 O 4 or the like. The positive electrode can be obtained by forming a positive electrode layer on the current collector surface in the same manner as the negative electrode.
Further, the electrolytic solution is, for example, a lithium salt such as LiClO 4 , LiPF 4 , LiAsF, LiBF 4 , LiSO 3 CF 4 dissolved in, for example, ethylene carbonate, diethyl carbonate, dimethoxyethane, dimethyl carbonate, methyl ethyl carbonate tetrahydrofuran, etc. Can be used. Also, a solid or gel so-called polymer electrolyte can be used in place of the electrolytic solution.

セパレータとしては、例えばポリエチレン、ポリプロピレン等ポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものを用いることができる。なお、作製するリチウムイオン二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用しなくてもよい。   As the separator, for example, a nonwoven fabric mainly composed of polyolefin such as polyethylene or polypropylene, cloth, microporous film, or a combination thereof can be used. In addition, when it is set as the structure where the positive electrode and negative electrode of the lithium ion secondary battery to produce are not directly contacted, it is not necessary to use a separator.

本発明のリチウムイオン二次電池の構造は、特に限定されないが、通常、正極及び負極と、必要に応じて設けられるセパレータとを、扁平状渦巻状に巻回して巻回式極板群とする、またはこれらを平板状として積層して積層式極板群とし、これら極板群を外装体中に封入した構造とするのが一般的である。
本発明のリチウムイオン二次電池は、特に限定されないが、ペーパー型電池、ボタン電池、コイン型電池、積層型電池、円筒型電池等として使用される。
The structure of the lithium ion secondary battery of the present invention is not particularly limited. Usually, a positive electrode and a negative electrode, and a separator provided as necessary, are wound into a flat spiral to form a wound electrode group. Or these are laminated | stacked as flat form, and it is common to set it as the laminated | stacked type | formula electrode group, and set it as the structure which enclosed these electrode plate groups in the exterior body.
Although the lithium ion secondary battery of this invention is not specifically limited, It is used as a paper-type battery, a button battery, a coin-type battery, a laminated battery, a cylindrical battery, etc.

以下、本発明の実施例を説明する。
(実施例1)
(1)リチウムイオン二次電池負極の作製
球状化天然黒鉛(平均粒径20μm、円形度0.98、比表面積5.4m/g、真比重2.243、Lc>1000Å、d(002)3.354Å、かさ密度0.84g/cm)をゴム製の容器に充填、密閉したのち、該ゴム製容器を静水圧プレス機で、加圧媒体の圧力1000kgf/cmで、等方性加圧処理を行った。ついで、カッターミルで解砕して、リチウム二次電池用負極に用いる炭素粒子を得た。
得られたリチウムイオン二次電池用負極に用いる炭素粒子のd(002)、Lc(002)、ピーク強度比Ih002/Ih110、円形度、細孔体積、比表面積、真比重、かさ密度、平均粒径を表1に示す。
円形度及びピーク強度比Ih002/Ih110は、下記のように試料電極を作製して測定した。試料電極は、炭素粒子98質量部、バインダーとしてスチレンブタジエン樹脂(SBR40%水分散液)(製造元:日本ゼオン(株)、製品名:BM−408B)1質量部、及び増粘材としてカルボキシメチルセルロース(製造元:第一工業製薬、製品名:セロゲンWS−C)1質量部の混合物を固形分として、25℃における粘度が1623mPa・sとなるように水を加えた水分散塗料を作製し、これを10μmの銅箔上に70μm程度の厚みになるように塗工後、120℃で1時間乾燥させたものを試料電極として用いた。
まず円形度は、試料電極をエポキシ樹脂に埋め込んだ後、鏡面研磨して、走査式電子顕微鏡(株式会社キーエンス製 VE−7800)で観察を行った。
ピーク強度比Ih002/Ih110は、CuKα線をX線源とするX線回折により、試料電極の表面を測定することにより、求めた。
水分散塗料の粘度は、粘度計(ブルックフィールド社製 DV−III(スピンドル SC4−18 #14 温度:25℃、回転数100rpm))により求めた。
相当円の周囲長及び粒子断面増の周囲長は、走査式電子顕微鏡に付属の解析ソフト(VE−7800観察アプリケーション)によって求めた。
Examples of the present invention will be described below.
(Example 1)
(1) Production of negative electrode for lithium ion secondary battery Spherical natural graphite (average particle size 20 μm, circularity 0.98, specific surface area 5.4 m 2 / g, true specific gravity 2.243, Lc> 1000 Å, d (002) 3.354 mm, bulk density 0.84 g / cm 3 ) was filled into a rubber container and sealed, and then the rubber container was isotropic with a hydrostatic press at a pressure of 1000 kgf / cm 2 of the pressurized medium. A pressure treatment was performed. Subsequently, it was pulverized with a cutter mill to obtain carbon particles used for a negative electrode for a lithium secondary battery.
D (002), Lc (002), peak intensity ratio Ih002 / Ih110, circularity, pore volume, specific surface area, true specific gravity, bulk density, average particle size of carbon particles used in the obtained negative electrode for lithium ion secondary battery The diameter is shown in Table 1.
The circularity and the peak intensity ratio Ih002 / Ih110 were measured by preparing a sample electrode as follows. The sample electrode is composed of 98 parts by mass of carbon particles, 1 part by mass of a styrene butadiene resin (SBR 40% aqueous dispersion) (manufacturer: Nippon Zeon Co., Ltd., product name: BM-408B) as a binder, and carboxymethyl cellulose (as a thickener). (Manufacturer: Daiichi Kogyo Seiyaku Co., Ltd., Product Name: Serogen WS-C) A mixture of 1 part by mass is used as a solid content, and a water-dispersed paint is prepared by adding water so that the viscosity at 25 ° C. is 1623 mPa · s. The sample electrode was coated on a 10 μm copper foil to a thickness of about 70 μm and then dried at 120 ° C. for 1 hour.
First, after the sample electrode was embedded in an epoxy resin, the circularity was mirror-polished and observed with a scanning electron microscope (VE-7800 manufactured by Keyence Corporation).
The peak intensity ratio Ih002 / Ih110 was obtained by measuring the surface of the sample electrode by X-ray diffraction using CuKα rays as an X-ray source.
The viscosity of the water-dispersed paint was determined with a viscometer (DV-III (spindle SC4-18 # 14 temperature: 25 ° C., rotation speed: 100 rpm) manufactured by Brookfield).
The perimeter of the equivalent circle and the perimeter of the increase in the particle cross section were determined by analysis software (VE-7800 observation application) attached to the scanning electron microscope.

(2)評価セル作製法
試料電極は、前記炭素粒子98質量%、バインダーとしてスチレンブタジエン樹脂(SBR40%水分散液)(製造元:日本ゼオン(株)、製品名:BM−408B、)1質量%、増粘材としてカルボキシメチルセルロース(製造元:第一工業製薬(株)、製品名:セロゲンWS−C)1質量%を固形分として、水を加えた水分散塗料(粘度1623mPa・s)を作製し、これを50μmの銅箔上に70μm程度の厚みになるように塗工した。塗工電極は、80℃で5時間、120℃で3時間乾燥させた。乾燥後、1.5g/cmと1.7g/cmの2種が得られるようプレスし、1.5g/cmと1.7g/cmの2種の試料電極(負極)として、放電容量評価用に9.5mmφの円形状に打ち抜いた。
評価電池は、CR2016型コインセルに上記負極と金属リチウムを40μmのポリプロピレン製セパレータを介して対向させ、電解液を注入することにより作製した。電解液は、エチルカーボネート(EC)とメチルエチルカーボネート(MEC)を体積比3対7混合溶媒にビニレンカーボネートを0.5質量%添加させ、LiPFを1mol/Lの濃度になるように溶解させたものを用いた(1M LiPF EC:MEC=3:7 VC0.5wt%)。
(3)評価条件
放電容量評価は、初回の充放電試験の放電容量とした。なお、試料電極として、上記の評価セル作製方法で得られた、電極密度1.7g/cmの試料電極を用いた。試料電極評価条件は25℃雰囲気下、0.2mA(0.28mA/cm)の定電流で0Vまで充電後、0Vの定電圧で電流値が0.02mAになるまで充電し、次いで、0.2mAの定電流で1.5Vの電圧値まで放電を行うことを50サイクル繰り返し、50サイクル目の放電容量維持率を測定した。結果を表2に示す。
(2) Evaluation cell preparation method The sample electrode is 98% by mass of the carbon particles, and styrene butadiene resin (SBR 40% aqueous dispersion) as a binder (manufacturer: Nippon Zeon Co., Ltd., product name: BM-408B) 1% by mass. As a thickener, carboxymethylcellulose (manufacturer: Daiichi Kogyo Seiyaku Co., Ltd., product name: Serogen WS-C) 1% by mass was used as a solid content, and water-dispersed paint (viscosity 1623 mPa · s) with water added was prepared. This was applied to a thickness of about 70 μm on a 50 μm copper foil. The coated electrode was dried at 80 ° C. for 5 hours and 120 ° C. for 3 hours. After drying, pressed to two 1.5 g / cm 3 and 1.7 g / cm 3 is obtained, as two sample electrode of 1.5 g / cm 3 and 1.7 g / cm 3 (negative electrode), A 9.5 mmφ circular shape was punched for evaluation of the discharge capacity.
The evaluation battery was produced by injecting an electrolyte solution with a CR2016 coin cell facing the negative electrode and metallic lithium through a 40 μm polypropylene separator. The electrolytic solution is ethyl carbonate (EC) and methyl ethyl carbonate (MEC) mixed in a volume ratio of 3 to 7 by adding 0.5% by mass of vinylene carbonate to a mixed solvent and dissolving LiPF 6 to a concentration of 1 mol / L. Was used (1M LiPF 6 EC: MEC = 3: 7 VC 0.5 wt%).
(3) Evaluation conditions The discharge capacity evaluation was the discharge capacity of the first charge / discharge test. As the sample electrode, a sample electrode having an electrode density of 1.7 g / cm 3 obtained by the above-described evaluation cell manufacturing method was used. The sample electrode was evaluated under the conditions of 25 ° C., charged to 0 V at a constant current of 0.2 mA (0.28 mA / cm 2 ), charged to a current value of 0.02 mA at a constant voltage of 0 V, and then 0 Discharging to a voltage value of 1.5 V at a constant current of 2 mA was repeated 50 cycles, and the discharge capacity retention rate at the 50th cycle was measured. The results are shown in Table 2.

(実施例2)
実施例1において、該ゴム製容器を静水圧プレス機で、加圧媒体の圧力300kgf/cmで等方性加圧処理を行った以外は、同様の実験を行った。得られたリチウムイオン二次電池用負極に用いる炭素粒子のd(002)、Lc(002)、ピーク強度比Ih002/Ih110、円形度、細孔体積、比表面積、真比重、かさ密度、平均粒径を表1に示す。また、50サイクル目放電容量維持率の結果を表2に示す。
(Example 2)
In Example 1, the same experiment was conducted except that the rubber container was subjected to isotropic pressure treatment with a hydrostatic pressure press at a pressure of 300 kgf / cm 2 of the pressure medium. D (002), Lc (002), peak intensity ratio Ih002 / Ih110, circularity, pore volume, specific surface area, true specific gravity, bulk density, average particle size of carbon particles used in the obtained negative electrode for lithium ion secondary battery The diameter is shown in Table 1. The results of the 50th cycle discharge capacity retention rate are shown in Table 2.

(比較例1)
実施例1において、該ゴム製容器を静水圧プレス機での等方性加圧処理を行わないこと以外は、同様の実験を行った。得られたリチウムイオン二次電池用負極に用いる炭素粒子のd(002)、Lc(002)、ピーク強度比Ih002/Ih110、円形度、細孔体積、比表面積、真比重、かさ密度、平均粒径を表1に示す。また、50サイクル目放電容量維持率の結果を表2に示す。
(Comparative Example 1)
In Example 1, the same experiment was conducted except that the rubber container was not subjected to an isotropic pressure treatment with a hydrostatic press. D (002), Lc (002), peak intensity ratio Ih002 / Ih110, circularity, pore volume, specific surface area, true specific gravity, bulk density, average particle size of carbon particles used in the obtained negative electrode for lithium ion secondary battery The diameter is shown in Table 1. The results of the 50th cycle discharge capacity retention rate are shown in Table 2.

(比較例2)
実施例1において、球状化天然黒鉛の代わりに中国産鱗片状黒鉛(平均粒径22μm、円形度0.44、比表面積4.5m/g、真比重2.250、Lc>1000Å、d(002)3.354Å、かさ密度0.31g/cm、)を用いた以外は、同様の実験を行った。得られたリチウムイオン二次電池用負極に用いる炭素粒子のd(002)、Lc(002)、ピーク強度比Ih002/Ih110、円形度、細孔体積、比表面積、真比重、かさ密度、平均粒径を表1に示す。また、50サイクル目放電容量維持率の結果を表2に示す。
(Comparative Example 2)
In Example 1, instead of spheroidized natural graphite, Chinese scale graphite (average particle size 22 μm, circularity 0.44, specific surface area 4.5 m 2 / g, true specific gravity 2.250, Lc> 1000 Å, d ( 002) 3.354 mm, bulk density 0.31 g / cm 3 )). D (002), Lc (002), peak intensity ratio Ih002 / Ih110, circularity, pore volume, specific surface area, true specific gravity, bulk density, average particle size of carbon particles used in the obtained negative electrode for lithium ion secondary battery The diameter is shown in Table 1. The results of the 50th cycle discharge capacity retention rate are shown in Table 2.

Figure 2009238584
Figure 2009238584

Figure 2009238584
Figure 2009238584

Claims (4)

粒子断面の円形度が0.6〜0.9であり、X線回折測定より求められる黒鉛結晶の層間距離d(002)が3.38Å以下、C軸方向の結晶子サイズLc(002)が500Å以上のリチウムイオン二次電池負極用炭素粒子であって、
該炭素粒子を下記(a)〜(b)の方法で作製した試料のX線回折で測定される炭素002面(黒鉛層と水平な面)と炭素110面(黒鉛層に垂直な面)のピーク強度比Ih002/Ih110が600以下であることを特徴とするリチウムイオン二次電池負極用炭素粒子。
(a)前記炭素粒子98質量部、スチレンブタジエン樹脂1質量部及びカルボキシメチルセルロース1質量部の混合物に対して、該混合物の25℃における粘度が1500〜2500mPa・sとなるように水を添加した水分散塗料を作製する。
(b)前記水分散塗料を銅箔上に70μmの厚みとなるよう塗工し、120℃で1時間乾燥して試料を得る。
The circularity of the particle cross section is 0.6 to 0.9, the interlayer distance d (002) of the graphite crystal determined by X-ray diffraction measurement is 3.38 mm or less, and the crystallite size Lc (002) in the C-axis direction is A carbon particle for a negative electrode of a lithium ion secondary battery having a capacity of 500 mm or more,
A carbon 002 plane (plane parallel to the graphite layer) and a carbon 110 plane (plane perpendicular to the graphite layer) measured by X-ray diffraction of a sample prepared by the following methods (a) to (b). A carbon particle for a negative electrode of a lithium ion secondary battery, wherein the peak intensity ratio Ih002 / Ih110 is 600 or less.
(A) Water in which water is added so that the viscosity at 25 ° C. of the mixture is 1500 to 2500 mPa · s with respect to a mixture of 98 parts by mass of the carbon particles, 1 part by mass of the styrene butadiene resin, and 1 part by mass of carboxymethyl cellulose. Make a dispersion paint.
(B) The water-dispersed paint is coated on a copper foil to a thickness of 70 μm and dried at 120 ° C. for 1 hour to obtain a sample.
前記炭素材料は、102〜106Åの細孔の細孔体積が、炭素粒子質量当たり、0.4〜2.0ml/gである請求項1記載のリチウムイオン二次電池負極用炭素粒子。 2. The carbon particles for a negative electrode of a lithium ion secondary battery according to claim 1, wherein the carbon material has a pore volume of 10 2 to 10 6 pores of 0.4 to 2.0 ml / g per mass of the carbon particles. . 請求項1又は2に記載のリチウムイオン二次電池負極用炭素粒子を含有するリチウム二次電池用負極。   The negative electrode for lithium secondary batteries containing the carbon particle for lithium ion secondary battery negative electrodes of Claim 1 or 2. 請求項3に記載の負極及びリチウム化合物を含む正極を有するリチウムイオン二次電池。   A lithium ion secondary battery comprising the negative electrode according to claim 3 and a positive electrode containing a lithium compound.
JP2008083220A 2008-03-27 2008-03-27 Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery Active JP5540470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008083220A JP5540470B2 (en) 2008-03-27 2008-03-27 Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008083220A JP5540470B2 (en) 2008-03-27 2008-03-27 Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014051376A Division JP5817872B2 (en) 2014-03-14 2014-03-14 Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2009238584A true JP2009238584A (en) 2009-10-15
JP5540470B2 JP5540470B2 (en) 2014-07-02

Family

ID=41252277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008083220A Active JP5540470B2 (en) 2008-03-27 2008-03-27 Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5540470B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052452A1 (en) * 2009-10-27 2011-05-05 日立化成工業株式会社 Carbon particles for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011175842A (en) * 2010-02-24 2011-09-08 Hitachi Chem Co Ltd Negative electrode material for lithium battery, negative electrode for lithium secondary battery, and lithium battery
WO2012137770A1 (en) * 2011-04-08 2012-10-11 住友金属工業株式会社 Modified natural graphite particles
JP2012221951A (en) * 2011-04-01 2012-11-12 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, method for manufacturing the same, negative electrode for lithium secondary battery, and lithium secondary battery
JP2013001582A (en) * 2011-06-13 2013-01-07 Kansai Coke & Chem Co Ltd Isotropic graphite material, and method for producing the same
WO2013080379A1 (en) * 2011-12-02 2013-06-06 トヨタ自動車株式会社 Lithium secondary battery and method for manufacturing same
JP2013211228A (en) * 2012-03-30 2013-10-10 Sony Corp Battery, negative electrode for battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system
CN103456919A (en) * 2012-06-01 2013-12-18 株式会社半导体能源研究所 Negative electrode for power storage device and power storage device
WO2014156098A1 (en) * 2013-03-28 2014-10-02 エム・ティー・カーボン株式会社 Amorphous carbon material and graphite carbon material for negative electrodes of lithium ion secondary batteries, lithium ion secondary battery using same, and method for producing carbon material for negative electrodes of lithium ion secondary batteries
JPWO2013080379A1 (en) * 2011-12-02 2015-04-27 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
JPWO2013118757A1 (en) * 2012-02-06 2015-05-11 株式会社クレハ Carbonaceous materials for non-aqueous electrolyte secondary batteries
KR20160113585A (en) * 2014-01-29 2016-09-30 제온 코포레이션 Slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN106914244A (en) * 2017-03-06 2017-07-04 南京工业大学 A kind of graphene-based metallic compound nano array material preparation and application

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331839A (en) * 2002-05-14 2003-11-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2004127913A (en) * 2002-07-31 2004-04-22 Matsushita Electric Ind Co Ltd Lithium secondary battery
WO2005069410A1 (en) * 2004-01-16 2005-07-28 Hitachi Chemical Co., Ltd. Negative electrode for lithium secondary battery and lithium secondary battery
JP3787030B2 (en) * 1998-03-18 2006-06-21 関西熱化学株式会社 Scale-like natural graphite modified particles, process for producing the same, and secondary battery
JP2006228505A (en) * 2005-02-16 2006-08-31 Hitachi Chem Co Ltd Graphite particles for anode of lithium-ion secondary battery, its manufacturing method, as well as anode for lithium-ion secondary battery and lithium-ion secondary battery using the same
JP2007200871A (en) * 2005-12-28 2007-08-09 Mitsubishi Chemicals Corp Lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3787030B2 (en) * 1998-03-18 2006-06-21 関西熱化学株式会社 Scale-like natural graphite modified particles, process for producing the same, and secondary battery
JP2003331839A (en) * 2002-05-14 2003-11-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2004127913A (en) * 2002-07-31 2004-04-22 Matsushita Electric Ind Co Ltd Lithium secondary battery
WO2005069410A1 (en) * 2004-01-16 2005-07-28 Hitachi Chemical Co., Ltd. Negative electrode for lithium secondary battery and lithium secondary battery
JP2006228505A (en) * 2005-02-16 2006-08-31 Hitachi Chem Co Ltd Graphite particles for anode of lithium-ion secondary battery, its manufacturing method, as well as anode for lithium-ion secondary battery and lithium-ion secondary battery using the same
JP2007200871A (en) * 2005-12-28 2007-08-09 Mitsubishi Chemicals Corp Lithium ion secondary battery

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052452A1 (en) * 2009-10-27 2011-05-05 日立化成工業株式会社 Carbon particles for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5887934B2 (en) * 2009-10-27 2016-03-16 日立化成株式会社 Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
US9450246B2 (en) 2009-10-27 2016-09-20 Hitachi Chemical Company, Ltd. Carbon particles for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011175842A (en) * 2010-02-24 2011-09-08 Hitachi Chem Co Ltd Negative electrode material for lithium battery, negative electrode for lithium secondary battery, and lithium battery
JP2012221951A (en) * 2011-04-01 2012-11-12 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, method for manufacturing the same, negative electrode for lithium secondary battery, and lithium secondary battery
JPWO2012137770A1 (en) * 2011-04-08 2014-07-28 中央電気工業株式会社 Modified natural graphite particles
WO2012137770A1 (en) * 2011-04-08 2012-10-11 住友金属工業株式会社 Modified natural graphite particles
KR101562724B1 (en) 2011-04-08 2015-10-22 쥬오 덴끼 고교 가부시키가이샤 Modified natural graphite particles
JP2013001582A (en) * 2011-06-13 2013-01-07 Kansai Coke & Chem Co Ltd Isotropic graphite material, and method for producing the same
WO2013080379A1 (en) * 2011-12-02 2013-06-06 トヨタ自動車株式会社 Lithium secondary battery and method for manufacturing same
CN103959520A (en) * 2011-12-02 2014-07-30 丰田自动车株式会社 Lithium secondary battery and method for manufacturing same
JPWO2013080379A1 (en) * 2011-12-02 2015-04-27 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
JPWO2013118757A1 (en) * 2012-02-06 2015-05-11 株式会社クレハ Carbonaceous materials for non-aqueous electrolyte secondary batteries
JP2013211228A (en) * 2012-03-30 2013-10-10 Sony Corp Battery, negative electrode for battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system
US9054364B2 (en) 2012-03-30 2015-06-09 Sony Corporation Battery, negative electrode for battery, battery pack, electronic apparatus, electric vehicle, electricity storage apparatus and electric power system
US9508979B2 (en) 2012-03-30 2016-11-29 Sony Corporation Battery, negative electrode for battery, battery pack, electronic apparatus, electric vehicle, electricity storage apparatus and electric power system
CN103456919A (en) * 2012-06-01 2013-12-18 株式会社半导体能源研究所 Negative electrode for power storage device and power storage device
US9490080B2 (en) 2012-06-01 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9698412B2 (en) 2012-06-01 2017-07-04 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9911971B2 (en) 2012-06-01 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US10541409B2 (en) 2012-06-01 2020-01-21 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
WO2014156098A1 (en) * 2013-03-28 2014-10-02 エム・ティー・カーボン株式会社 Amorphous carbon material and graphite carbon material for negative electrodes of lithium ion secondary batteries, lithium ion secondary battery using same, and method for producing carbon material for negative electrodes of lithium ion secondary batteries
JP2014194852A (en) * 2013-03-28 2014-10-09 Mt Carbon Co Ltd Amorphous carbon material for lithium ion secondary battery negative electrode, graphitic carbon material, lithium ion secondary battery arranged by use thereof, and method for manufacturing carbon material for lithium ion secondary battery negative electrode
KR20160113585A (en) * 2014-01-29 2016-09-30 제온 코포레이션 Slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR102355810B1 (en) 2014-01-29 2022-01-25 제온 코포레이션 Slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN106914244A (en) * 2017-03-06 2017-07-04 南京工业大学 A kind of graphene-based metallic compound nano array material preparation and application
CN106914244B (en) * 2017-03-06 2019-08-13 南京工业大学 A kind of graphene-based metallic compound nano array material preparation and application

Also Published As

Publication number Publication date
JP5540470B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5540470B2 (en) Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6123839B2 (en) Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
US10651458B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP5563743B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery and lithium ion secondary battery using the same
JP6297746B2 (en) Carbonaceous molded body for battery electrode and method for producing the same
JP2007141677A (en) Compound graphite and lithium secondary cell using same
JPWO2019031543A1 (en) Negative electrode active material for secondary battery and secondary battery
JP5817872B2 (en) Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2010267629A (en) Negative electrode for lithium secondary battery, and lithium secondary battery
JP2000294243A (en) Carbon powder for lithium secondary battery negative electrode, manufacture therefor, negative electrode for lithium secondary battery and lithium secondary battery
JP5737347B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery and lithium ion secondary battery using the same
JP4985611B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2017033945A (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2005108858A (en) Negative electrode for lithium secondary battery
JP2005123206A (en) Negative electrode for lithium secondary battery
JP2005123207A (en) Negative electrode for lithium secondary battery
JP2017157575A (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2013211279A (en) Negative electrode for lithium secondary battery, and lithium secondary battery
JP2011175983A (en) Negative electrode for lithium secondary battery
JP2011181524A (en) Carbon powder for lithium secondary battery negative electrode, method of manufacturing the same, negative electrode for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R151 Written notification of patent or utility model registration

Ref document number: 5540470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350