JP2000294243A - Carbon powder for lithium secondary battery negative electrode, manufacture therefor, negative electrode for lithium secondary battery and lithium secondary battery - Google Patents

Carbon powder for lithium secondary battery negative electrode, manufacture therefor, negative electrode for lithium secondary battery and lithium secondary battery

Info

Publication number
JP2000294243A
JP2000294243A JP11103807A JP10380799A JP2000294243A JP 2000294243 A JP2000294243 A JP 2000294243A JP 11103807 A JP11103807 A JP 11103807A JP 10380799 A JP10380799 A JP 10380799A JP 2000294243 A JP2000294243 A JP 2000294243A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium secondary
carbon powder
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11103807A
Other languages
Japanese (ja)
Other versions
JP3528671B2 (en
Inventor
Yoshito Ishii
義人 石井
Tatsuya Nishida
達也 西田
Atsushi Fujita
藤田  淳
Kazuo Yamada
和夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP10380799A priority Critical patent/JP3528671B2/en
Publication of JP2000294243A publication Critical patent/JP2000294243A/en
Application granted granted Critical
Publication of JP3528671B2 publication Critical patent/JP3528671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance capacity, and to improve a cycle characteristic and a rapid charge/discharge characteristic by performing isotropic pressurizing processing on carbon powder. SOLUTION: When performing isotropic pressurizing processing on carbon powder, bulk density and fluidity are improved, a fluctuation in density of a negative electrode manufactured by using this carbon powder is reduced, and adhesion to a negative electrode current collector is improved. Pressure of this pressurizing processing is desirably set to a range of 50 to 2000 kgf/cm2. The obtained carbon powder is desirably graphite powder on which an interlayer distance d(002) of a crystal is not more than 3.38 Å, the C axis directional crystallite size Lc(002) is not less than 500 Å, the average particle size is 10 to 100 μm, the specific surface area is not more than 8 m2/g, the aspect ratio is 1.1 to 5, a true specific gravity is not less than 2.2 and bulk density is not less than 0.3 g/cm3. The carbon powder as a raw material is not particularly limited, and natural graphite, artificial graphite, amorphous carbon and low temperature processing carbon are cited.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
負極用炭素粉末の製造法、該製造法で作製したリチウム
二次電池負極用炭素粉末、この炭素粉末を使用したリチ
ウム二次電池用負極及びこの負極を使用したリチウム二
次電池に関する。さらに詳しくは、ポータブル機器、電
気自動車、電力貯蔵等に用いるのに好適な、高容量でか
つサイクル特性に優れたリチウム二次電池とそれを得る
ための負極、負極用炭素粉末及びその製造法に関する。
The present invention relates to a method for producing a carbon powder for a negative electrode of a lithium secondary battery, a carbon powder for a negative electrode of a lithium secondary battery prepared by the method, and a negative electrode for a lithium secondary battery using the carbon powder. And a lithium secondary battery using the negative electrode. More specifically, the present invention relates to a lithium secondary battery having high capacity and excellent cycle characteristics suitable for use in portable devices, electric vehicles, and electric power storage, a negative electrode for obtaining the same, a carbon powder for the negative electrode, and a method for producing the same. .

【0002】[0002]

【従来の技術】従来のリチウム二次電池の負極材には、
例えば天然黒鉛粒子、コークスを黒鉛化した人造黒鉛粒
子、有機系高分子材料、ピッチ等を黒鉛化した人造黒鉛
粒子、これらを粉砕した黒鉛粒子などがある。これらの
黒鉛粒子は、有機系結着剤及び有機溶剤と混合して黒鉛
ペーストとし、この黒鉛ペーストを銅箔の表面に塗布
し、溶剤を乾燥して、リチウム二次電池用負極として使
用している。例えば、特公昭62−23433号公報に
示されるように、負極に黒鉛を使用することでリチウム
のデンドライトによる内容短絡の問題を解消し、サイク
ル特性の改良を図っている。
2. Description of the Related Art Conventional negative electrode materials for lithium secondary batteries include:
Examples thereof include natural graphite particles, artificial graphite particles obtained by graphitizing coke, organic polymer materials, artificial graphite particles obtained by graphitizing pitch and the like, and graphite particles obtained by pulverizing these. These graphite particles are mixed with an organic binder and an organic solvent to form a graphite paste, the graphite paste is applied to the surface of a copper foil, the solvent is dried, and used as a negative electrode for a lithium secondary battery. I have. For example, as shown in JP-B-62-23433, the use of graphite for the negative electrode solves the problem of content short-circuit due to lithium dendrite, thereby improving cycle characteristics.

【0003】しかしながら、黒鉛結晶が発達している天
然黒鉛は、C軸方向の結晶の層間の結合力が、結晶の面
方向の結合に比べて弱いため、粉砕により黒鉛層間の結
合が切れ、アスペクト比が大きいいわゆる鱗状の黒鉛粒
子となる。鱗状黒鉛は、アスペクト比が大きいために、
バインダと混練して集電体に塗布して電極を作製したと
きに、鱗状黒鉛粒子が集電体の面方向に配向し、その結
果、充放電容量や急速充放電特性が低下しやすいばかり
でなく、黒鉛結晶へのリチウムの吸蔵・放出の繰り返し
によって発生するC軸方向の膨張・収縮により電極内部
の破壊が生じ、サイクル特性が低下する問題がある。
However, natural graphite in which graphite crystals are developed has a weaker bonding force between the layers of the crystal in the C-axis direction than the bonding in the plane direction of the crystals. So-called scale-like graphite particles having a large ratio are obtained. Scale-like graphite has a large aspect ratio,
When an electrode is produced by kneading with a binder and applying the mixture to a current collector, the scale-like graphite particles are oriented in the plane direction of the current collector, and as a result, the charge / discharge capacity and rapid charge / discharge characteristics are liable to be reduced. In addition, there is a problem that the inside of the electrode is broken due to the expansion and contraction in the C-axis direction caused by the repeated insertion and extraction of lithium into and from the graphite crystal, and the cycle characteristics are degraded.

【0004】一方、コークス、ピッチ、有機系材料等
を、2000℃以上で焼成した人造黒鉛は、天然黒鉛に
比べ、比較的アスペクト比を小さくすることができる
が、黒鉛結晶の発達が悪いため、充放電容量が低い。そ
こで、高容量で、サイクル特性、急速充放電特性等が向
上できるリチウム二次電池が作製できる負極用炭素材料
が要求されている。
On the other hand, artificial graphite obtained by calcining coke, pitch, organic materials, etc. at 2000 ° C. or higher can have a relatively small aspect ratio as compared with natural graphite, but the graphite crystal is poorly developed. Low charge / discharge capacity. Therefore, there is a demand for a carbon material for a negative electrode capable of producing a lithium secondary battery having a high capacity and improved cycle characteristics, rapid charge / discharge characteristics, and the like.

【0005】[0005]

【発明が解決しようとする課題】本発明は、高容量で、
サイクル特性及び急速充放電特性に優れたリチウム二次
電池負極用炭素材料の製造法を提供するものである。ま
た本発明は、高容量で、サイクル特性及び急速充放電特
性に優れたリチウム二次電池負極用炭素材料を提供する
ものである。また本発明は、集電体と負極合剤の密着性
に優れ、高容量で、サイクル特性及び急速充放電特性に
優れたリチウム二次電池用負極を提供するものである。
さらに本発明は、高容量で、サイクル特性及び急速充放
電特性に優れたリチウム二次電池を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention has a high capacity,
An object of the present invention is to provide a method for producing a carbon material for a lithium secondary battery negative electrode having excellent cycle characteristics and rapid charge / discharge characteristics. Another object of the present invention is to provide a carbon material for a negative electrode of a lithium secondary battery having a high capacity and excellent in cycle characteristics and rapid charge / discharge characteristics. Another object of the present invention is to provide a negative electrode for a lithium secondary battery having excellent adhesion between a current collector and a negative electrode mixture, high capacity, and excellent cycle characteristics and rapid charge / discharge characteristics.
Further, the present invention provides a lithium secondary battery having a high capacity and excellent cycle characteristics and rapid charge / discharge characteristics.

【0006】[0006]

【課題を解決するための手段】本発明は、炭素粉末を等
方性加圧処理することを特徴とするリチウム二次電池負
極用炭素粉末の製造法に関する。また本発明は、前記加
圧処理のプレス圧力が50〜2000kgf/cm2であるリ
チウム二次電池負極用炭素粉末の製造法に関する。また
本発明は、前記の製造法により得られるリチウム二次電
池負極用炭素粉末に関する。
SUMMARY OF THE INVENTION The present invention relates to a method for producing carbon powder for a negative electrode of a lithium secondary battery, which comprises subjecting carbon powder to isotropic pressure treatment. The present invention also relates to a method for producing carbon powder for a negative electrode of a lithium secondary battery, wherein the pressing pressure in the pressure treatment is 50 to 2000 kgf / cm 2 . The present invention also relates to a carbon powder for a negative electrode of a lithium secondary battery obtained by the above-mentioned production method.

【0007】また本発明は、結晶の層間距離d(00
2)が3.38Å以下、C軸方向の結晶子サイズLc
(002)が500Å以上、平均粒径が10〜100μ
m、比表面積が8m2/g以下、アスペクト比が1.1〜
5、かさ密度が0.3g/cm3以上の黒鉛粉末である前記
の製造法により得られるリチウム二次電池負極用炭素粉
末に関する。
Further, the present invention provides a method of manufacturing a semiconductor device, comprising the steps of:
2) is 3.38 ° or less, and the crystallite size Lc in the C-axis direction is
(002) is 500 ° or more, average particle size is 10 to 100 μm
m, specific surface area is 8 m 2 / g or less, aspect ratio is 1.1 ~
5. The present invention relates to a carbon powder for a negative electrode of a lithium secondary battery, which is a graphite powder having a bulk density of 0.3 g / cm 3 or more and obtained by the above-mentioned production method.

【0008】また本発明は、前記の製造法で作製した炭
素粉末又は前記の炭素粉末を含有してなるリチウム二次
電池用負極に関する。さらに本発明は、前記の負極及び
リチウム化合物を含む正極を有してなるリチウム二次電
池に関する。
[0008] The present invention also relates to a carbon powder produced by the above-mentioned production method or a negative electrode for a lithium secondary battery containing the carbon powder. Furthermore, the present invention relates to a lithium secondary battery having the above-mentioned negative electrode and a positive electrode containing a lithium compound.

【0009】[0009]

【発明の実施の形態】本発明におけるリチウム二次電池
負極用炭素粉末の製造法は、炭素粉末を等方性加圧処理
を行うことを特徴とする。ここで等方性加圧処理とは、
一方向からの加圧のように、特定の方向からのみの加圧
(異方性加圧処理)ではなく、一般に知られている、全
方向から加圧する処理である。このように、炭素粉末に
等方性加圧処理を行うと、得られるリチウム二次電池負
極用炭素粉末のかさ密度及び流動性が向上し、作製する
リチウム二次電池負極の密度バラツキが少なくかつ負極
集電体との密着性が向上する。その結果、得られるリチ
ウム二次電池のサイクル特性を向上させることができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing carbon powder for a negative electrode of a lithium secondary battery according to the present invention is characterized in that the carbon powder is subjected to isotropic pressure treatment. Here, the isotropic pressure treatment is
This is not a pressurization only from a specific direction (anisotropic pressurization process) like a pressurization from one direction, but a generally known process of pressurizing from all directions. As described above, when the carbon powder is subjected to the isotropic pressure treatment, the bulk density and the fluidity of the obtained lithium secondary battery negative electrode carbon powder are improved, and the density variation of the lithium secondary battery negative electrode to be produced is small and Adhesion with the negative electrode current collector is improved. As a result, the cycle characteristics of the obtained lithium secondary battery can be improved.

【0010】なお、炭素粉末のかさ密度を向上させるた
めに、加圧処理の方法として等方性加圧処理以外の、一
方方向から加圧する一軸プレスやロールプレス等の異方
性加圧処理を行うと、得られるリチウム二次電池の急速
充放電特性が低下する問題がある。
In order to improve the bulk density of the carbon powder, anisotropic pressing, such as uniaxial pressing or roll pressing, which presses in one direction, other than isotropic pressing, is used as a pressing method. If this is done, there is a problem that the rapid charge / discharge characteristics of the obtained lithium secondary battery deteriorate.

【0011】炭素粉末の等方性加圧処理の方法として
は、等方的に加圧できる方法であれば特に制限はなく、
例えば炭素粉末をゴム型などの容器に入れ、水を加圧媒
体とする静水圧等方性プレスや、空気等のガスを加圧媒
体とする空圧による等方性プレスなどの加圧処理が挙げ
られる。
The method of the isotropic pressure treatment of the carbon powder is not particularly limited as long as it can be isotropically pressed.
For example, pressure treatment such as isostatic pressing using carbon powder in a container such as a rubber mold and using water as a pressurizing medium or isostatic pressing using air or other gas as a pressurizing medium can be performed. No.

【0012】炭素粉末の等方性加圧処理の加圧媒体の圧
力としては、50〜2000kgf/cm2の範囲が好まし
く、200〜2000kgf/cm2の範囲であればより好ま
しく、500〜1800kgf/cm2の範囲であればさらに
好ましい。圧力が50kgf/cm2未満では、得られるリチ
ウム二次電池のサイクル特性の向上の効果が小さくなる
傾向にある。また、圧力が2000kgf/cm2を超える
と、得られるリチウム二次電池負極用炭素材料の比表面
積が大きくなり、その結果、得られるリチウム二次電池
の第一サイクル目の不可逆容量が大きくなる傾向にあ
る。
[0012] The pressure of the pressurized medium of isotropic pressure treatment of carbon powder, preferably in the range of 50~2000kgf / cm 2, more preferably be in the range of 200~2000kgf / cm 2, 500~1800kgf / It is more preferable that the range is cm 2 . If the pressure is less than 50 kgf / cm 2 , the effect of improving the cycle characteristics of the obtained lithium secondary battery tends to be small. When the pressure exceeds 2000 kgf / cm 2 , the specific surface area of the obtained carbon material for a negative electrode of a lithium secondary battery increases, and as a result, the irreversible capacity in the first cycle of the obtained lithium secondary battery tends to increase. It is in.

【0013】上記のように炭素粉末を等方性加圧処理を
行うと、粒子同士が凝集しやすくなるため、等方性加圧
処理後に、解砕、篩い等の処理を行うことが好ましい。
なお、粒子同士が凝集しないときは解砕をしなくともよ
い。
When the carbon powder is subjected to isotropic pressure treatment as described above, the particles tend to agglomerate. Therefore, it is preferable to perform a treatment such as crushing and sieving after the isotropic pressure treatment.
When the particles do not agglomerate, the particles need not be disintegrated.

【0014】以上の方法により、サイクル特性等を大幅
に向上させることが可能であるが、このようにして作製
したリチウム二次電池負極用炭素粉末は、結晶の層間距
離d(002)が3.38Å以下、C軸方向の結晶子サ
イズLc(002)が500Å以上、平均粒径が10〜
100μm、比表面積が8m2/g以下、アスペクト比が
1.1〜5、真比重が2.2以上、かさ密度が0.3g/
cm3以上の黒鉛粉末であると、高容量で、急速充放電特
性及びサイクル特性に優れたリチウム二次電池が得られ
るので好ましい。
Although the cycle characteristics and the like can be greatly improved by the above method, the carbon powder for a negative electrode of a lithium secondary battery produced in this manner has a crystal interlayer distance d (002) of 3. 38 ° or less, crystallite size Lc (002) in the C-axis direction is 500 ° or more, and average particle size is 10 to
100 μm, specific surface area 8 m 2 / g or less, aspect ratio 1.1-5, true specific gravity 2.2 or more, bulk density 0.3 g / g
A graphite powder of cm 3 or more is preferable because a lithium secondary battery having high capacity and excellent in rapid charge / discharge characteristics and cycle characteristics can be obtained.

【0015】ここで結晶の層間距離d(002)はリチ
ウム二次電池負極用炭素粉末の広角X線回折の測定から
算出される値で、この値が3.38Åを超えると放電容
量が小さくなる傾向がある。d(002)の下限値に特
に制限はないが、通常3.35Å以上とされる。また、
C軸方向の結晶子サイズLc(002)も広角X線回折
の測定から算出される値で、この値が500Å未満であ
ると放電容量が小さくなる傾向がある。Lc(002)
の上限値に特に制限はないが、通常10000Å以下と
される。
Here, the interlayer distance d (002) of the crystal is a value calculated from the measurement of wide-angle X-ray diffraction of the carbon powder for a negative electrode of a lithium secondary battery. When this value exceeds 3.38 °, the discharge capacity becomes small. Tend. The lower limit of d (002) is not particularly limited, but is usually 3.35 ° or more. Also,
The crystallite size Lc (002) in the C-axis direction is also a value calculated from the measurement of wide-angle X-ray diffraction. If this value is less than 500 °, the discharge capacity tends to be small. Lc (002)
The upper limit is not particularly limited, but is usually set to 10,000 ° or less.

【0016】また、アスペクト比が1.1未満では、粒
子間の接触面積が減ることにより、導電性が低下する傾
向にある。一方、アスペクトが5より大きくなると、急
速充放電特性が低下し易くなる傾向がある。なお、アス
ペクト比は、リチウム二次電池負極用炭素粉末の長軸方
向の長さをA、短軸方向の長さをBとしたとき、A/B
で表される。本発明におけるアスペクト比は、顕微鏡で
リチウム二次電池負極用炭素粉末を拡大し、任意に10
個の粒子を選択し、A/Bを測定し、その平均値をとっ
たものである。
On the other hand, if the aspect ratio is less than 1.1, the contact area between the particles tends to decrease, so that the conductivity tends to decrease. On the other hand, when the aspect ratio is larger than 5, the rapid charge / discharge characteristics tend to decrease. The aspect ratio is A / B, where A is the length in the major axis direction of the carbon powder for the negative electrode of the lithium secondary battery and B is the length in the minor axis direction.
It is represented by In the present invention, the aspect ratio is determined by enlarging the carbon powder for a negative electrode of a lithium secondary battery with a microscope,
The number of particles was selected, A / B was measured, and the average was taken.

【0017】また、リチウム二次電池負極用炭素粉末の
比表面積が8m2/gを超えると得られるリチウム二次電池
の第一サイクル目の不可逆容量が大きくなり、エネルギ
ー密度が小さく、さらに負極を作製する際多くの結着剤
が必要になる傾向にある。比表面積は1m2/g以上である
ことがより好ましい。比表面積の測定は、BET法(窒
素ガス吸着法)などの既知の方法をとることができる。
Further, when the specific surface area of the carbon powder for a negative electrode of a lithium secondary battery exceeds 8 m 2 / g, the irreversible capacity of the lithium secondary battery obtained in the first cycle becomes large, the energy density is small, and There is a tendency for many binders to be required when making. More preferably, the specific surface area is 1 m 2 / g or more. The specific surface area can be measured by a known method such as a BET method (nitrogen gas adsorption method).

【0018】また、リチウム二次電池負極用炭素粉末の
かさ密度は0.3g/cm3未満であると負極を作製する際
多くの結着剤が必要になり易く、その結果作製するリチ
ウム二次電池のエネルギー密度が小さくなる。かさ密度
の上限値に特に制限はないが、通常1.5g/cm3以下と
される。かさ密度の測定は、容量100cm3のメスシリ
ンダーを斜めにし、これに試料粉末100cm3をさじを
用いて徐々に投入し、メスシリンダーに栓をした後、メ
スシリンダーを5cmの高さから50回落下させた後の試
料粉末の重量及び容積から算出することができる。
If the bulk density of the carbon powder for a negative electrode of a lithium secondary battery is less than 0.3 g / cm 3 , a large amount of a binder is likely to be required when manufacturing the negative electrode, and as a result, the lithium secondary The energy density of the battery decreases. Although the upper limit of the bulk density is not particularly limited, it is usually 1.5 g / cm 3 or less. To measure the bulk density, a measuring cylinder having a capacity of 100 cm 3 was slanted, and 100 cm 3 of sample powder was gradually poured into the measuring cylinder using a spoon. After the measuring cylinder was plugged, the measuring cylinder was dropped 50 times from a height of 5 cm. It can be calculated from the weight and volume of the sample powder after the drop.

【0019】また、真比重は通常2.3以下とされる。
そして、得られるリチウム二次電池負極用炭素粉末の平
均粒径は、10〜100μmが好ましく、10〜50μ
mがより好ましい。本発明における平均粒径は、レーザ
ー回折式粒度分布計により測定することができる。
The true specific gravity is usually 2.3 or less.
The average particle size of the obtained carbon powder for a negative electrode of a lithium secondary battery is preferably 10 to 100 μm, and 10 to 50 μm.
m is more preferred. The average particle size in the present invention can be measured by a laser diffraction type particle size distribution meter.

【0020】また、等方性加圧処理を行う前の炭素粉末
として、上記各特性を備えた黒鉛粉末を用いると、高容
量で、急速充放電特性及びサイクル特性に特に優れたリ
チウム二次電池が得られるので好ましい。上記の等方性
加圧処理を行う前の炭素粉末は、特に制限はなく、天然
黒鉛、コークスを黒鉛化した人造黒鉛、有機系高分子材
料、ピッチ等を黒鉛化した人造黒鉛、非晶質炭素、低温
処理炭素などが挙げられるが、人造黒鉛であることが好
ましく、中でも、黒鉛化可能な骨材又は黒鉛と黒鉛化可
能なバインダと黒鉛化触媒を混合し、焼成及び粉砕工程
を経て作製したものが好ましい。黒鉛化可能な骨材又は
黒鉛と黒鉛化可能なバインダを、混合することで、得ら
れる炭素粉末のアスペクト比を小さくするができ、その
結果、作製するリチウム二次電池の急速充放電特性を向
上させることができる。
Further, when a graphite powder having the above-mentioned characteristics is used as the carbon powder before the isotropic pressure treatment, a lithium secondary battery having a high capacity, particularly excellent in rapid charge / discharge characteristics and cycle characteristics is used. Is preferred. The carbon powder before performing the above isotropic pressure treatment is not particularly limited, and natural graphite, artificial graphite obtained by graphitizing coke, organic polymer material, artificial graphite obtained by graphitizing pitch, etc. Carbon, low-temperature-treated carbon and the like, but preferably artificial graphite, among which, a graphitizable aggregate or a mixture of graphite and a graphitizable binder and a graphitization catalyst, and produced through a firing and pulverization process Are preferred. By mixing graphitizable aggregates or graphite with a graphitizable binder, the aspect ratio of the resulting carbon powder can be reduced, thereby improving the rapid charge / discharge characteristics of the lithium secondary battery produced. Can be done.

【0021】黒鉛化可能な骨材としては、例えば、コー
クス粉末、樹脂炭化物等が挙げられる。黒鉛化可能なバ
インダとしては、ピッチ、タールの他、熱硬化性樹脂、
熱可塑性樹脂等の有機系材料があげられる。また、黒鉛
化触媒を添加することで、得られる炭素粉末の結晶が発
達しやすくなり、得られるリチウム二次電池の放電容量
を向上させることができる。
Examples of the graphitizable aggregate include coke powder and resin carbide. Graphitizable binders include pitch, tar, thermosetting resin,
An organic material such as a thermoplastic resin may be used. Further, by adding the graphitization catalyst, the crystal of the obtained carbon powder is easily developed, and the discharge capacity of the obtained lithium secondary battery can be improved.

【0022】黒鉛化触媒としては、Ti、Si、Fe、
Ni、B等の金属又はその酸化物若しくは炭化物が好ま
しい。黒鉛化触媒は、骨材とバインダを混合する際に添
加し、同時に混合することが好ましい。混合する温度
は、黒鉛化可能なバインダが軟化溶融する温度であるこ
とが好ましく、その温度は使用する材料によってことな
るが、50〜350℃の範囲が好ましい。また、黒鉛化
可能なバインダを溶剤等によって、溶液にする場合に
は、黒鉛化触媒を常温で混合しても良い。
As the graphitization catalyst, Ti, Si, Fe,
Metals such as Ni and B or oxides or carbides thereof are preferred. The graphitization catalyst is preferably added when the aggregate and the binder are mixed, and mixed at the same time. The mixing temperature is preferably a temperature at which the graphitizable binder softens and melts. The temperature varies depending on the material used, but is preferably in the range of 50 to 350 ° C. When the graphitizable binder is made into a solution with a solvent or the like, the graphitizing catalyst may be mixed at room temperature.

【0023】次いで、黒鉛化可能な骨材又は黒鉛と黒鉛
化可能なバインダと黒鉛化触媒を混合した混合物を、2
500℃以上の温度で焼成して黒鉛化することが好まし
い。本発明において、該混合物を2500℃以上の温度
で黒鉛化する前に、粉砕、成形を行い、さらに700〜
1300℃程度の温度で焼成しておいてもよい。また、
700〜1300℃程度の温度で焼成した後、粉砕し、
粒度を調整してから、粉体で2500℃以上の温度で焼
成して黒鉛化してもよい。黒鉛化時の焼成温度は、得ら
れる負極炭素材料の結晶性及び放電容量の点で2500
℃以上が好ましく、2800℃以上であればより好まし
く、3000℃以上であればさらに好ましい。焼成時の
雰囲気は、酸化しにくい条件であれば特に制限はなく、
例えば、自己揮発性ガス雰囲気、窒素雰囲気、アルゴン
雰囲気、真空中等があげられる。
Next, a graphitizable aggregate or a mixture of graphite, a graphitizable binder and a graphitizing catalyst is mixed with 2%
It is preferable to graphitize by firing at a temperature of 500 ° C. or higher. In the present invention, before the mixture is graphitized at a temperature of 2500 ° C. or higher, pulverization and molding are performed, and
It may be fired at a temperature of about 1300 ° C. Also,
After firing at a temperature of about 700 to 1300 ° C., pulverizing,
After adjusting the particle size, the powder may be baked at a temperature of 2500 ° C. or more to graphitize. The firing temperature at the time of graphitization is 2500 in terms of crystallinity and discharge capacity of the obtained negative electrode carbon material.
C. or higher, more preferably 2800 C. or higher, even more preferably 3000 C. or higher. The atmosphere during firing is not particularly limited as long as it is not easily oxidized,
For example, a self-volatile gas atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum or the like can be given.

【0024】次いで、粉砕し、粒度を調整して炭素粉末
とするが、粉砕方法としては、特に制限はなく、例え
ば、ジェットミル、ハンマーミル、ピンミル等の衝撃粉
砕方式をとることができる。粉砕後の炭素粉末の平均粒
径は、10〜100μmが好ましい。なお、黒鉛化前に
粉砕し、粒度を調整してある場合は、黒鉛化後に粉砕し
なくとも良い。
Next, the powder is pulverized to adjust the particle size to obtain a carbon powder. The pulverization method is not particularly limited, and an impact pulverization method such as a jet mill, a hammer mill, and a pin mill can be used. The average particle size of the pulverized carbon powder is preferably 10 to 100 μm. In addition, when pulverized before graphitization and the particle size is adjusted, it is not necessary to pulverize after graphitization.

【0025】以上の如く作製した炭素粉末は、等方性加
圧処理を施すことで、サイクル特性及び急速充放電特性
に優れたリチウム二次電池に好適なリチウム二次電池負
極用炭素粉末とすることができる。
The carbon powder produced as described above is subjected to isotropic pressure treatment to obtain a carbon powder for a negative electrode of a lithium secondary battery suitable for a lithium secondary battery having excellent cycle characteristics and rapid charge / discharge characteristics. be able to.

【0026】本発明になるリチウム二次電池負極用炭素
粉末は、有機系結着剤及び溶剤と混練して、ペースト状
の負極合剤にし、シート状、ペレット状等の形状に成形
することができる。有機系結着剤としては、例えば、ポ
リエチレン、ポリプロピレン、エチレンプロピレンター
ポリマー、ブタジエンゴム、スチレンブタジエンゴム、
ブチルゴム、イオン伝導率の大きな高分子化合物等が使
用できる。
The carbon powder for a negative electrode of a lithium secondary battery according to the present invention may be kneaded with an organic binder and a solvent to form a paste-like negative electrode mixture, which may be formed into a sheet-like or pellet-like shape. it can. As the organic binder, for example, polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber,
Butyl rubber, a polymer compound having a high ionic conductivity, or the like can be used.

【0027】前記イオン伝導率の大きな高分子化合物と
しては、ポリフッ化ビニリデン、ポリエチレンオキサイ
ド、ポリエピクロルヒドリン、ポリファスファゼン、ポ
リアクリロニトリル等が使用できる。炭素粉末と有機系
結着剤との混合比率は、炭素粉末100重量部に対し
て、有機系結着剤を1〜20重量部とすることが好まし
い。
As the high molecular compound having a high ionic conductivity, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphasphazene, polyacrylonitrile and the like can be used. The mixing ratio of the carbon powder and the organic binder is preferably 1 to 20 parts by weight based on 100 parts by weight of the carbon powder.

【0028】溶剤としては、特に制限はなく、N−メチ
ル−2−ピロリドン、ジメチルホルムアミド、イソプロ
パノール等があげられる。溶剤の量も特に制限はない。
炭素粉末は、有機系結着剤及び溶剤と混練し、粘度を調
整した後、集電体に塗布し、該集電体と一体化して負極
とすることができる。集電体としては、例えばニッケ
ル、銅等の箔、メッシュなどのの金属集電体が使用でき
る。なお一体化は、例えばロール、プレス等の成形法で
行うことができ、またこれらの成形法を組み合わせて一
体化しても良い。
The solvent is not particularly restricted but includes N-methyl-2-pyrrolidone, dimethylformamide, isopropanol and the like. The amount of the solvent is not particularly limited.
The carbon powder is kneaded with an organic binder and a solvent, and after adjusting the viscosity, applied to a current collector, and integrated with the current collector to form a negative electrode. As the current collector, for example, a metal current collector such as a foil of nickel, copper or the like, or a mesh can be used. In addition, the integration can be performed by a molding method such as a roll, a press, or the like, and these molding methods may be combined to be integrated.

【0029】このようにして得られた負極は、リチウム
化合物を含む正極とともに、本発明のリチウム二次電池
に用いられる。リチウム二次電池は、例えば、正極と負
極をセパレータを介して対向して配置し、かつ電解液を
注入することにより得ることができる。本発明のリチウ
ム二次電池は、従来の炭素粉末を負極に使用したリチウ
ム二次電池に比較して、高容量でサイクル特性、急速充
放電特性に優れる。
The negative electrode thus obtained is used together with the positive electrode containing a lithium compound in the lithium secondary battery of the present invention. The lithium secondary battery can be obtained, for example, by arranging a positive electrode and a negative electrode to face each other with a separator interposed therebetween, and injecting an electrolytic solution. The lithium secondary battery of the present invention has high capacity, excellent cycle characteristics, and excellent rapid charge / discharge characteristics, as compared with a conventional lithium secondary battery using carbon powder for the negative electrode.

【0030】本発明におけるリチウム二次電池の正極は
リチウム化合物を含むが、その材料に特に制限はなく、
例えばLiNiO2、LiCoO2、LiMn24等を単
独又は混合して使用することができる。本発明における
リチウム二次電池は、正極及び負極とともに、通常リチ
ウム化合物を含む電解液を含む。電解液としては、Li
ClO4、LiPF6、LiAsF、LiBF4、LiS
3CF4等のリチウム塩を、例えばエチレンカーボネー
ト、ジエチルカーボネート、ジメトキシエタン、ジメチ
ルカーボネート、メチルエチルカーボネート、メチルエ
チルカーボネート、テトラヒドロフラン等の非水系溶剤
に溶かしたいわゆる有機電解液や、固体若しくはゲル状
のいわゆるポリマー電解質を使用することができる。
The positive electrode of the lithium secondary battery of the present invention contains a lithium compound, but the material is not particularly limited.
For example, LiNiO 2 , LiCoO 2 , LiMn 2 O 4 and the like can be used alone or in combination. The lithium secondary battery according to the present invention generally contains an electrolyte containing a lithium compound together with a positive electrode and a negative electrode. As the electrolyte, Li
ClO 4 , LiPF 6 , LiAsF, LiBF 4 , LiS
A so-called organic electrolytic solution in which a lithium salt such as O 3 CF 4 is dissolved in a non-aqueous solvent such as ethylene carbonate, diethyl carbonate, dimethoxyethane, dimethyl carbonate, methyl ethyl carbonate, methyl ethyl carbonate, tetrahydrofuran, etc .; So-called polymer electrolytes can be used.

【0031】セパレータとしては、例えばポリエチレ
ン、ポリプロピレン等のポリオレフィンを主成分とした
不織布、クロス、微孔フィルム又はそれらを組み合わせ
たものを使用することができる。なお、作製するリチウ
ム二次電池の正極と負極が使用中も直接接触しない構造
にした場合は、セパレータを使用しなくとも良い。
As the separator, for example, a nonwoven fabric, cloth, microporous film, or a combination thereof containing polyolefin such as polyethylene and polypropylene as a main component can be used. Note that when the positive electrode and the negative electrode of the lithium secondary battery to be manufactured do not directly contact during use, the separator may not be used.

【0032】図1に円筒型リチウム二次電池の一例の一
部断面正面図を示す。図1に示す円筒型リチウム二次電
池は、薄板状に加工された正極1と、同様に加工された
負極2がポリエチレン製微孔膜等のセパレータ3を介し
て重ねあわせたものを捲回し、これを金属製等の電池缶
7に挿入し、密閉化されている。正極1は正極タブ4を
介して正極蓋6に接合され、負極2は負極タブ5を介し
て電池底部へ接合されている。正極蓋6はガスケット8
にて電池缶(正極缶)7へ固定されている。
FIG. 1 shows a partial cross-sectional front view of an example of a cylindrical lithium secondary battery. The cylindrical lithium secondary battery shown in FIG. 1 is obtained by winding a positive electrode 1 processed into a thin plate and a negative electrode 2 processed in the same manner via a separator 3 such as a polyethylene microporous membrane. This is inserted into a battery can 7 made of metal or the like, and sealed. The positive electrode 1 is connected to a positive electrode cover 6 via a positive electrode tab 4, and the negative electrode 2 is connected to a battery bottom via a negative electrode tab 5. The positive cover 6 is a gasket 8
To the battery can (positive electrode can) 7.

【0033】[0033]

【実施例】以下、本発明の実施例を説明する。 実施例1 〔加圧処理用炭素粉末の作製〕平均粒径15μmのコー
クス粉末50重量部と、ピッチ15重量部と、コールタ
ール20重量部と、炭化けい素10重量部を、230℃
で1時間混合した。次いで、この混合物を平均粒径25
μmに粉砕し、該粉砕物を金型に入れプレス成形し、直
方体に成形した。この成形体を1000℃で熱処理した
後、さらに3000℃で熱処理し、黒鉛成形体を得た。
さらにこの黒鉛成形体を粉砕し、炭素粉末を得た。
Embodiments of the present invention will be described below. Example 1 [Preparation of carbon powder for pressure treatment] 50 parts by weight of coke powder having an average particle size of 15 µm, 15 parts by weight of pitch, 20 parts by weight of coal tar, and 10 parts by weight of silicon carbide were heated at 230 ° C.
For 1 hour. The mixture is then averaged with a particle size of 25.
It was pulverized to a size of μm, and the pulverized product was put into a mold and press-formed to form a rectangular parallelepiped. After heat-treating this compact at 1000 ° C., it was further heat-treated at 3000 ° C. to obtain a graphite compact.
The graphite compact was further pulverized to obtain a carbon powder.

【0034】〔リチウム二次電池負極用炭素粉末の作
製〕前記で得られた炭素粉末をゴム製の容器に充填、密
閉したのち、該ゴム製容器を静水圧プレス機で、加圧媒
体の圧力1500kgf/cm2で、等方性加圧処理を行っ
た。ついで、カッターミルで解砕して、リチウム二次電
池負極用炭素粉末を得た。得られたリチウム二次電池負
極用炭素粉末のかさ密度、平均粒径、比表面積、d(0
02)、Lc(002)、アスペクト比を表1に示す。
[Preparation of Carbon Powder for Negative Electrode of Lithium Secondary Battery] The carbon powder obtained as described above is filled in a rubber container and sealed, and then the rubber container is pressurized with a hydrostatic press machine under the pressure of a pressurized medium. An isotropic pressure treatment was performed at 1500 kgf / cm 2 . Then, the mixture was pulverized with a cutter mill to obtain carbon powder for a negative electrode of a lithium secondary battery. The bulk density, average particle size, specific surface area, d (0
02), Lc (002), and aspect ratio are shown in Table 1.

【0035】次いで、得られた負極用炭素粉末を使用し
て負極及びリチウム二次電池を作製した。図1に示した
本発明のリチウム二次電池を以下のようにして作製し
た。正極活物質としてLiCoO2 88重量%を用い
て、導電剤として平均粒径2μmの鱗片状黒鉛を7重量
%、結着剤としてポリフッ化ビニリデン(PVDF)5
重量%添加して、これにN−メチル−2−ピロリドンを
加えて混合して正極合剤のペーストを調整した。同様に
負極活物質として、前記の方法で作製した負極炭素材料
に、結着剤としてPVDFを10重量%添加して、これ
にN−メチル−2−ピロリドンを加えて混合して負極合
剤のペーストを調整した。
Next, a negative electrode and a lithium secondary battery were manufactured using the obtained carbon powder for a negative electrode. The lithium secondary battery of the present invention shown in FIG. 1 was manufactured as follows. 88% by weight of LiCoO 2 is used as a positive electrode active material, 7% by weight of flake graphite having an average particle diameter of 2 μm is used as a conductive agent, and polyvinylidene fluoride (PVDF) 5 is used as a binder.
% N-methyl-2-pyrrolidone was added thereto and mixed to prepare a positive electrode mixture paste. Similarly, as a negative electrode active material, 10% by weight of PVDF was added as a binder to the negative electrode carbon material prepared by the above method, and N-methyl-2-pyrrolidone was added thereto, followed by mixing. The paste was adjusted.

【0036】正極合剤を厚み25μmのアルミニウム箔
の両面に塗付し、その後120℃で1時間真空乾燥した
後、ロールプレスによって電極を加圧成形し、さらに巾
40mm長さ285mmの大きさに切り出して正極を作製し
た。但し、正極の両端の長さ10mmの部分は正極合剤が
塗布されておらずアルミニウム箔が露出しており、この
一方に正極タブを超音波接合によって圧着している。
The positive electrode mixture was applied to both sides of a 25-μm-thick aluminum foil, and then vacuum-dried at 120 ° C. for 1 hour. Then, the electrode was pressure-formed by a roll press, and further formed into a size having a width of 40 mm and a length of 285 mm. This was cut out to produce a positive electrode. However, the positive electrode mixture was not applied to both ends of the positive electrode at a length of 10 mm, and the aluminum foil was exposed. A positive electrode tab was pressure-bonded to one of these parts by ultrasonic bonding.

【0037】一方、負極合剤は厚み10μmの銅箔の両
面に塗布し、その後120℃で1時間真空乾燥した。真
空乾燥後、ロールプレスによって電極を加圧成形し、さ
らに巾40mm長さ290mmの大きさに切り出して負極を
作製した。正極と同様に、負極の両端の長さ10mmの部
分は負極合剤が塗布されておらず銅箔が露出しており、
この一方に負極タブを超音波接合によって圧着した。
On the other hand, the negative electrode mixture was applied to both sides of a copper foil having a thickness of 10 μm, and then vacuum dried at 120 ° C. for 1 hour. After vacuum drying, the electrode was pressure-formed by a roll press, and cut into a size of 40 mm in width and 290 mm in length to produce a negative electrode. Like the positive electrode, the negative electrode mixture was not applied to the 10 mm long portions of both ends of the negative electrode, and the copper foil was exposed,
A negative electrode tab was pressure-bonded to one of the two by ultrasonic bonding.

【0038】セパレータは、厚み25μm巾44mmのポ
リエチレン製の微孔膜を用いた。正極、セパレータ、負
極、セパレータの順で重ね合わせ、これを捲回して電極
群とした。これを単三サイズの電池缶に挿入して、負極
タブを缶底溶接し、正極蓋をかしめるための絞り部を設
けた。体積比が1:2のエチレンカーボネートとジメチ
ルカーボネートの混合溶媒に六フッ化リン酸リチウムを
1モル/リットル溶解させた電解液を電池缶に注入した
後、正極タブを正極蓋に溶接した後、正極蓋をかしめ付
けて電池を作製した。
As the separator, a polyethylene microporous membrane having a thickness of 25 μm and a width of 44 mm was used. A positive electrode, a separator, a negative electrode, and a separator were superimposed in this order and wound to form an electrode group. This was inserted into an AA size battery can, the negative electrode tab was welded to the bottom of the can, and a throttle portion for caulking the positive electrode lid was provided. An electrolyte obtained by dissolving lithium hexafluorophosphate at 1 mol / liter in a mixed solvent of ethylene carbonate and dimethyl carbonate having a volume ratio of 1: 2 was injected into the battery can, and then the positive electrode tab was welded to the positive electrode cover. The battery was produced by caulking the positive electrode lid.

【0039】この電池を用いて、充放電特性を評価し
た。作製したリチウム二次電池の充電条件は、電流30
0mAで電池電圧4.2Vまで定電流で充電した後、電池
電圧4.2Vで電流が30mAになるまで定電圧充電し
た。電流300mAで電池電圧が2.8Vになるまで定電
流放電した時の放電容量を表2に示す。また、電流30
0mAの時の放電容量に対し、電流900mAで電池電圧が
2.8Vになるまで定電流放電した時の放電容量維持率
を表2に示す。また、電流300mAで電池電圧4.2V
まで定電流で充電した後、電池電圧4.2Vで電流が3
0mAになるまで定電圧充電し、電流300mAで電池電圧
が2.8Vになるまで定電流放電するサイクルを300
回及び500回繰り返した時の放電容量維持率を表2に
示す。
Using this battery, the charge and discharge characteristics were evaluated. The charging condition of the manufactured lithium secondary battery is as follows.
After charging at 0 mA with a constant current to a battery voltage of 4.2 V, the battery was charged at a constant voltage of 4.2 V until the current reached 30 mA. Table 2 shows the discharge capacity when the battery was discharged at a constant current at a current of 300 mA until the battery voltage reached 2.8 V. In addition, current 30
Table 2 shows the discharge capacity retention ratio when the battery was discharged at a constant current until the battery voltage reached 2.8 V at a current of 900 mA with respect to the discharge capacity at 0 mA. At a current of 300 mA, the battery voltage is 4.2 V.
After charging the battery with a constant current up to
A cycle of constant voltage charging until the current reaches 0 mA and constant current discharging until the battery voltage reaches 2.8 V at a current of 300 mA is performed for 300 cycles.
Table 2 shows the discharge capacity retention ratio when the discharge was repeated for 500 times and 500 times.

【0040】実施例2及び実施例3 実施例1において、静水圧プレス機による加圧媒体の圧
力を、600kgf/cm(実施例2)及び1000
kgf/cm(実施例3)の圧力に変えた以外は、全
く同様に炭素粉末の等方性加圧処理を行い、得られた炭
素粉末を用いて実施例1と同様にリチウム二次電池を作
製し、充放電特性を評価した。炭素粉末のかさ密度、平
均粒径、比表面積、d(002)、Lc(002)、ア
スペクト比を表1に示す。また実施例1と同様の方法で
評価した充放電特性評価結果を表2に示す。
Example 2 and Example 3 In Example 1, the pressure of the pressurized medium by the hydrostatic press was changed to 600 kgf / cm 2 (Example 2) and 1000 kgf / cm 2.
Except that the pressure was changed to kgf / cm 2 (Example 3), the carbon powder was subjected to isotropic pressure treatment in exactly the same manner, and the obtained carbon powder was used in the same manner as in Example 1 to obtain a lithium secondary battery. Was prepared, and the charge / discharge characteristics were evaluated. Table 1 shows the bulk density, average particle size, specific surface area, d (002), Lc (002), and aspect ratio of the carbon powder. Table 2 shows the results of the evaluation of the charge / discharge characteristics evaluated in the same manner as in Example 1.

【0041】比較例1 実施例1で作製した炭素粉末を等方性加圧処理を行わ
ず、そのままリチウム二次電池負極用炭素粉末として使
用した以外は、実施例1と同様にリチウム二次電池を作
製し、充放電特性を評価した。炭素粉末のかさ密度、平
均粒径、比表面積、d(002)、Lc(002)、ア
スペクト比を表1に示す。また実施例1と同様の方法で
評価した充放電特性評価結果を表2に示す。
Comparative Example 1 A lithium secondary battery was produced in the same manner as in Example 1 except that the carbon powder prepared in Example 1 was not subjected to isotropic pressure treatment and was used as it was as a carbon powder for a negative electrode of a lithium secondary battery. Was prepared, and the charge / discharge characteristics were evaluated. Table 1 shows the bulk density, average particle size, specific surface area, d (002), Lc (002), and aspect ratio of the carbon powder. Table 2 shows the results of the evaluation of the charge / discharge characteristics evaluated in the same manner as in Example 1.

【0042】比較例2 実施例1と同様の方法で作製した炭素粉末を、金型に充
填し、一軸プレスで上部から1500kgf/cm2の圧力で
一定方向に加圧処理を行った以外は、実施例1と同様の
方法でリチウム二次電池負極炭素粉末を作製した。得ら
れたリチウム二次電池負極用炭素粉末のかさ密度、平均
粒径、比表面積、d(002)、Lc(002)、アス
ペクト比を表1に示す。また実施例1と同様の方法で評
価した充放電特性評価結果を表2に示す。
Comparative Example 2 A carbon powder produced in the same manner as in Example 1 was filled in a mold and subjected to a uniaxial press to apply a pressure of 1500 kgf / cm 2 from above in a fixed direction. A negative electrode carbon powder for a lithium secondary battery was produced in the same manner as in Example 1. Table 1 shows the bulk density, average particle size, specific surface area, d (002), Lc (002), and aspect ratio of the obtained carbon powder for a lithium secondary battery negative electrode. Table 2 shows the results of the evaluation of the charge / discharge characteristics evaluated in the same manner as in Example 1.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】表2から明らかなように、本発明のリチウ
ム二次電池負極用炭素粉末は、高容量で、サイクル特
性、急速充放電特性に優れたリチウム二次電池として好
適であることが示された。
As is clear from Table 2, the carbon powder for a negative electrode of a lithium secondary battery of the present invention is suitable as a lithium secondary battery having a high capacity, excellent cycle characteristics and rapid charge / discharge characteristics. Was.

【0046】[0046]

【発明の効果】本発明の製造法によれば、高容量で、サ
イクル特性及び急速充放電特性に優れたリチウム二次電
池負極用炭素材料が得られる。また本発明の二次電池負
極用炭素材料は、高容量で、サイクル特性及び急速充放
電特性に優れるものである。また本発明のリチウム二次
電池用負極は、集電体と負極合剤の密着性に優れ、高容
量で、サイクル特性及び急速充放電特性に優れるもので
ある。さらに本発明のリチウム二次電池は、高容量で、
サイクル特性及び急速充放電特性に優れるものである。
According to the production method of the present invention, a carbon material for a negative electrode of a lithium secondary battery having a high capacity and excellent in cycle characteristics and rapid charge / discharge characteristics can be obtained. Further, the carbon material for a negative electrode of a secondary battery of the present invention has high capacity and excellent cycle characteristics and rapid charge / discharge characteristics. Further, the negative electrode for a lithium secondary battery of the present invention has excellent adhesion between the current collector and the negative electrode mixture, has high capacity, and has excellent cycle characteristics and rapid charge / discharge characteristics. Further, the lithium secondary battery of the present invention has a high capacity,
It has excellent cycle characteristics and rapid charge / discharge characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のリチウム二次電池の一例を示す概略図
である。
FIG. 1 is a schematic view showing one example of a lithium secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極タブ 5 負極タブ 6 正極蓋 7 電池缶 8 ガスケット DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode tab 5 Negative electrode tab 6 Positive electrode cover 7 Battery can 8 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 淳 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内 (72)発明者 山田 和夫 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内 Fターム(参考) 4G046 CA06 CA07 CB00 CB02 CB09 CC03 5H003 AA02 AA04 BA05 BB01 BC01 BC06 BD00 BD01 BD02 BD03 BD05 5H014 AA01 BB05 EE08 HH00 HH01 HH06 HH08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Atsushi Fujita 3-3-1 Ayukawacho, Hitachi City, Ibaraki Prefecture Inside the Yamazaki Plant of Hitachi Chemical Co., Ltd. (72) Kazuo Yamada 3-chome Ayukawacho, Hitachi City, Ibaraki Prefecture No. 1 F-term in Hitachi Chemical Co., Ltd. Yamazaki Plant (reference) 4G046 CA06 CA07 CB00 CB02 CB09 CC03 5H003 AA02 AA04 BA05 BB01 BC01 BC06 BD00 BD01 BD02 BD03 BD05 5H014 AA01 BB05 EE08 HH00 HH01 HH06 HH08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炭素粉末を等方性加圧処理することを特
徴とするリチウム二次電池負極用炭素粉末の製造法。
1. A method for producing a carbon powder for a negative electrode of a lithium secondary battery, wherein the carbon powder is subjected to isotropic pressure treatment.
【請求項2】 加圧処理のプレス圧力が50〜2000
kgf/cm2である請求項1記載のリチウム二次電池負極用
炭素粉末の製造法。
2. The pressing pressure of the pressure treatment is 50 to 2000.
The method for producing a carbon powder for a negative electrode of a lithium secondary battery according to claim 1, wherein the weight is kgf / cm 2 .
【請求項3】 請求項1又は2記載の製造法により得ら
れるリチウム二次電池負極用炭素粉末。
3. A carbon powder for a negative electrode of a lithium secondary battery obtained by the production method according to claim 1.
【請求項4】 結晶の層間距離d(002)が3.38
Å以下、C軸方向の結晶子サイズLc(002)が50
0Å以上、平均粒径が10〜100μm、比表面積が8
m2/g以下、アスペクト比が1.1〜5、かさ密度が0.
3g/cm3以上の黒鉛粉末である請求項3記載のリチウム
二次電池負極用炭素粉末。
4. The interlayer distance d (002) of the crystal is 3.38.
Å Hereinafter, the crystallite size Lc (002) in the C-axis direction is 50
0 ° or more, average particle size of 10 to 100 μm, specific surface area of 8
m 2 / g or less, aspect ratio of 1.1 to 5, bulk density of 0.
4. The carbon powder for a negative electrode of a lithium secondary battery according to claim 3, which is a graphite powder of 3 g / cm 3 or more.
【請求項5】 請求項1若しくは2記載の製造法で作製
した炭素粉末又は請求項3若しくは4記載の炭素粉末を
含有してなるリチウム二次電池用負極。
5. A negative electrode for a lithium secondary battery comprising the carbon powder prepared by the method according to claim 1 or 2 or the carbon powder according to claim 3 or 4.
【請求項6】 請求項5記載の負極及びリチウム化合物
を含む正極を有してなるリチウム二次電池。
6. A lithium secondary battery comprising the negative electrode according to claim 5 and a positive electrode containing a lithium compound.
JP10380799A 1999-04-12 1999-04-12 Carbon powder for negative electrode of lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery Expired - Lifetime JP3528671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10380799A JP3528671B2 (en) 1999-04-12 1999-04-12 Carbon powder for negative electrode of lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10380799A JP3528671B2 (en) 1999-04-12 1999-04-12 Carbon powder for negative electrode of lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003140694A Division JP4079032B2 (en) 2003-05-19 2003-05-19 Carbon powder for negative electrode of lithium secondary battery, production method thereof, negative electrode for lithium secondary battery, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2000294243A true JP2000294243A (en) 2000-10-20
JP3528671B2 JP3528671B2 (en) 2004-05-17

Family

ID=14363682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10380799A Expired - Lifetime JP3528671B2 (en) 1999-04-12 1999-04-12 Carbon powder for negative electrode of lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3528671B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077534A (en) * 2001-08-31 2003-03-14 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2003077535A (en) * 2001-08-31 2003-03-14 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2005050807A (en) * 2003-07-16 2005-02-24 Kansai Coke & Chem Co Ltd Negative electrode material for lithium ion secondary battery and its manufacturing method, as well as negative electrode for lithium ion secondary battery and lithium ion secondary battery using negative electrode material
KR100793691B1 (en) 2003-07-16 2008-01-10 간사이네쯔카가꾸가부시끼가이샤 Material for negative electrode of lithium ion secondary battery, process for manufacturing the same, and negative electrode using the same and lithium ion secondary battery using the negative electrode
US7563543B2 (en) 2003-07-16 2009-07-21 The Kansai Coke And Chemicals Co., Ltd. Negative electrode of lithium ion secondary battery obtained by isostatically pressing a spherical graphite to eliminate voids therein
WO2011052452A1 (en) * 2009-10-27 2011-05-05 日立化成工業株式会社 Carbon particles for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2012133700A1 (en) * 2011-03-30 2012-10-04 三菱化学株式会社 Carbon material and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2014005201A (en) * 2004-11-24 2014-01-16 Kaneka Corp Method for producing graphite film

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077535A (en) * 2001-08-31 2003-03-14 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2003077534A (en) * 2001-08-31 2003-03-14 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2005050807A (en) * 2003-07-16 2005-02-24 Kansai Coke & Chem Co Ltd Negative electrode material for lithium ion secondary battery and its manufacturing method, as well as negative electrode for lithium ion secondary battery and lithium ion secondary battery using negative electrode material
KR100793691B1 (en) 2003-07-16 2008-01-10 간사이네쯔카가꾸가부시끼가이샤 Material for negative electrode of lithium ion secondary battery, process for manufacturing the same, and negative electrode using the same and lithium ion secondary battery using the negative electrode
US7563543B2 (en) 2003-07-16 2009-07-21 The Kansai Coke And Chemicals Co., Ltd. Negative electrode of lithium ion secondary battery obtained by isostatically pressing a spherical graphite to eliminate voids therein
JP4499498B2 (en) * 2003-07-16 2010-07-07 関西熱化学株式会社 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode material
JP2014005201A (en) * 2004-11-24 2014-01-16 Kaneka Corp Method for producing graphite film
JP2015181116A (en) * 2009-10-27 2015-10-15 日立化成株式会社 Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN102576874A (en) * 2009-10-27 2012-07-11 日立化成工业株式会社 Carbon particles for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2011052452A1 (en) * 2009-10-27 2011-05-05 日立化成工業株式会社 Carbon particles for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5887934B2 (en) * 2009-10-27 2016-03-16 日立化成株式会社 Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
US9450246B2 (en) 2009-10-27 2016-09-20 Hitachi Chemical Company, Ltd. Carbon particles for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101845369B1 (en) * 2009-10-27 2018-04-04 히타치가세이가부시끼가이샤 Carbon particles for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20180035944A (en) * 2009-10-27 2018-04-06 히타치가세이가부시끼가이샤 Carbon particles for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101878129B1 (en) * 2009-10-27 2018-07-12 히타치가세이가부시끼가이샤 Carbon particles for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2012133700A1 (en) * 2011-03-30 2012-10-04 三菱化学株式会社 Carbon material and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
CN103460459A (en) * 2011-03-30 2013-12-18 三菱化学株式会社 Carbon material and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
KR20140010406A (en) 2011-03-30 2014-01-24 미쓰비시 가가꾸 가부시키가이샤 Carbon material and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
CN103460459B (en) * 2011-03-30 2016-01-20 三菱化学株式会社 Non-aqueous secondary battery material with carbon element and negative pole and non-aqueous secondary battery

Also Published As

Publication number Publication date
JP3528671B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
KR100377993B1 (en) Graphite particles and lithium secondary battery using them as negative electrode
EP1720211A1 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP3305995B2 (en) Graphite particles for lithium secondary battery negative electrode
JPH10158005A (en) Graphite particle, its production, graphite paste using the same, negative electrode of lithium secondary cell and lithium secondary cell
JP3361510B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JP3528671B2 (en) Carbon powder for negative electrode of lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP3732654B2 (en) Graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP2002083587A (en) Negative electrode for lithium secondary battery
JP3951219B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4079032B2 (en) Carbon powder for negative electrode of lithium secondary battery, production method thereof, negative electrode for lithium secondary battery, and lithium secondary battery
JP3892957B2 (en) Method for producing graphite particles
JP3582336B2 (en) Manufacturing method of graphite powder
JP4483560B2 (en) Negative electrode for lithium secondary battery
JP4811699B2 (en) Negative electrode for lithium secondary battery
JP4135162B2 (en) Negative electrode for lithium secondary battery
JP4952549B2 (en) Carbon powder for negative electrode of lithium secondary battery, production method thereof, negative electrode for lithium secondary battery, and lithium secondary battery
JP2002343341A (en) Negative electrode for lithium secondary battery
JP4828118B2 (en) Negative electrode for lithium secondary battery
JP4066699B2 (en) Negative electrode for lithium secondary battery
JP5853293B2 (en) Negative electrode for lithium secondary battery
JP3487155B2 (en) Carbon particles, negative electrode for lithium secondary battery and lithium secondary battery
JP5704473B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4687661B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2004099438A (en) Graphite powder, negative pole for lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term