WO2012133700A1 - Carbon material and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery - Google Patents

Carbon material and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery Download PDF

Info

Publication number
WO2012133700A1
WO2012133700A1 PCT/JP2012/058473 JP2012058473W WO2012133700A1 WO 2012133700 A1 WO2012133700 A1 WO 2012133700A1 JP 2012058473 W JP2012058473 W JP 2012058473W WO 2012133700 A1 WO2012133700 A1 WO 2012133700A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
secondary battery
negative electrode
particles
natural graphite
Prior art date
Application number
PCT/JP2012/058473
Other languages
French (fr)
Japanese (ja)
Inventor
信亨 石渡
山田 俊介
宇尾野 宏之
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to CN201280015656.XA priority Critical patent/CN103460459B/en
Priority to KR1020137024877A priority patent/KR101952464B1/en
Publication of WO2012133700A1 publication Critical patent/WO2012133700A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a carbon material used for a non-aqueous secondary battery, a negative electrode formed using the material, and a lithium ion secondary battery having the negative electrode.
  • lithium ion secondary batteries having higher energy density and excellent large current charge / discharge characteristics have attracted attention as compared to nickel / cadmium batteries and nickel / hydrogen batteries.
  • graphite is known to use graphite as a carbon material for a lithium ion secondary battery.
  • graphite having a high degree of graphitization is used as a negative electrode active material for a lithium ion secondary battery, a capacity close to 372 mAh / g, which is the theoretical capacity of lithium occlusion of graphite, is obtained, and further, cost and durability are also improved. Since it is excellent, it is known that it is preferable as an active material.
  • Patent Document 1 proposes a carbon material that has been spheroidized using mechanical energy treatment.
  • Patent Document 2 1 to 50% by mass of a graphitization catalyst is added to and mixed with a graphitizable aggregate or graphite and a graphitizable binder, and calcined at 2000 ° C. or higher so that the graphitization catalyst is removed.
  • Carbon materials that have been graphitized and then ground have been proposed.
  • Patent Document 3 proposes a carbon material in which spheroidized graphite is coated with graphite.
  • Patent Document 4 discloses a method of pressure-treating spherical graphite isotropically (hereinafter sometimes referred to as “CIP treatment”)
  • Patent Document 5 discloses a patent. It is disclosed that a negative electrode material as described in Document 2 is subjected to CIP treatment.
  • Patent Document 5 discloses a technique for subjecting the negative electrode material to isotropic pressure treatment, but there is room for improvement in terms of reducing the irreversible capacity as in Patent Document 4.
  • the present invention has been made in view of such problems, and suppresses the reaction between the surface of the carbon material and the non-aqueous electrolyte and impairs the immersion of the electrolyte when used as a battery electrode.
  • the present invention provides a carbon material for producing a non-aqueous secondary battery, in particular, a lithium ion secondary battery having excellent initial capacity and rate characteristics, and further excellent cycle characteristics. It aims at providing the non-aqueous secondary battery excellent in the characteristic, especially a lithium ion secondary battery.
  • the present inventors have selected two types of carbon materials from among the many carbon materials for negative electrodes that have been proposed so far, and carbon materials containing these carbon materials. Surprisingly, it has been found that a lithium ion secondary battery excellent in both cycle characteristics and initial capacity can be obtained by applying to a carbon material for a non-aqueous secondary battery, and the present invention has been completed.
  • the gist of the present invention is shown in the following ⁇ 1> to ⁇ 7>.
  • a carbon material for a non-aqueous secondary battery ⁇ 2> The carbon material for a non-aqueous secondary battery according to ⁇ 1>, wherein the carbonaceous material composite particles (b) are carbonaceous material-coated graphite.
  • the natural graphite particles (a) have irregularities on the surface, and the diameter (D) of the irregularities of the irregularities is 0 with respect to the average particle diameter (d50) of the natural graphite particles (a).
  • the specific surface area of the carbonaceous material composite particles (b) is 0.5 m 2 / g or more and 6.5 m 2 / g or less, the Raman R value is 0.03 or more and 0.19 or less, and the tap density is 0.
  • a non-aqueous secondary battery carbon material according to any one of 1.2 g / cm 3 or less is the ⁇ 1> to ⁇ 3>.
  • the mass ratio ((a) / ⁇ (a) + (b) ⁇ ) of the natural graphite particles (a) and the carbonaceous material composite particles (b) is 0.1 or more and 0.9 or less.
  • a negative electrode for a non-aqueous secondary battery comprising a current collector and an active material layer formed on the current collector, wherein the active material layer is any one of the items ⁇ 1> to ⁇ 5>
  • a negative electrode for a non-aqueous secondary battery comprising the carbon material for a non-aqueous secondary battery according to claim 1.
  • a nonaqueous secondary battery comprising a positive electrode and a negative electrode, and an electrolyte, wherein the negative electrode is the negative electrode for a nonaqueous secondary battery according to ⁇ 6>.
  • a non-aqueous secondary battery excellent in both cycle characteristics and initial capacity can be provided.
  • FIG. 1 is a diagram showing an SEM photograph of natural graphite particles (a) and the diameter (D) of the approximate circle of the concave surface in the irregularities on the surface of the natural graphite particles (a).
  • FIG. 2 is an explanatory view showing a method for calculating the amount of internal voids by Hg porosimetry measurement.
  • the natural graphite particles (a) represent natural graphite particles (a) capable of occluding and releasing lithium ions, and satisfy the condition that at least the internal porosity is 1% or more and 20% or less.
  • the natural graphite particles (a) in the present invention preferably exhibit the following physical properties.
  • (I) Internal porosity The internal porosity of the natural graphite particles (a) is 1% or more, preferably 3% or more, more preferably 5% or more, and further preferably 7% or more.
  • the internal porosity is 20% or less, Preferably it is 18% or less, More preferably, it is 15% or less, More preferably, it is 12% or less. If the internal porosity is too small, the amount of liquid in the particles tends to decrease, and charge / discharge characteristics tend to deteriorate. If the internal porosity is too large, there are few interparticle voids in the case of an electrode, and the electrolyte diffuses. Tend to be insufficient.
  • the internal porosity is tangent to the minimum slope value based on the pore distribution (integral curve) (L) obtained by the known Hg porosimetry measurement (mercury intrusion method).
  • (M) is subtracted to determine the branch point (P) of the tangent line (M) and the integral curve (L), and the pore volume smaller than the branch point is determined as the intra-particle pore volume (cm 3 / g) (V ).
  • the internal porosity can be calculated from the amount of pores in the particles obtained and the true density of graphite.
  • the true density of graphite used for calculation is 2.26 g / cm 3 , which is the true density of general graphite.
  • the calculation formula is shown in Formula 1.
  • the concave portion of the surface of the SEM image of the natural graphite particles (a) is a circle and assuming that the diameter of the approximate circle is (D)
  • the natural graphite particles (a) with respect to d50 of the natural graphite particles (a) The ratio of the diameter (D) of the concave portion on the surface (the diameter (D) / d50 of the concave portion) is usually 0.15 times or more and 7 times or less. Preferably it is 0.2 times or more, more preferably 0.3 times or more. Further, the upper limit is usually 7 times or less, preferably 5 times or less, more preferably 3 times or less.
  • the ratio of (the diameter of the concave portion (D) / d50) is too large, the particles tend to be flat and tend to be oriented in a direction parallel to the electrode when formed into an electrode. Moreover, when the ratio of the (diameter (D) / d50) portion of the concave portion of the natural graphite particle (a) is too small, the contact property between the particles is deteriorated when the electrode is formed, and sufficient cycle characteristics tend not to be obtained. is there.
  • the diameter (D) of the concave portion of the natural graphite particles (a) is calculated using an SEM image.
  • SEM image As a measuring method of the SEM image, for example, VE-7800 manufactured by Keyence Corporation is used, and measurement is performed at an acceleration voltage of 5 kV.
  • An approximate circle is drawn assuming that the concave portion of the surface of the obtained natural graphite particle (a) is a circle, and the diameter of the approximate circle is the diameter (D) of the concave portion of the natural graphite particle (a).
  • the diameter of the concave portion (D) / d50 is calculated.
  • an SEM image of the natural graphite particles (a) used in Example 1 and Comparative Example 3 and a circle approximating the concave portion are shown in FIG.
  • the diameter (D) of the concave portion is usually 0.1 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, further preferably 10 ⁇ m or more, and usually 100 ⁇ m or less, preferably 70 ⁇ m or less, more preferably 50 ⁇ m or less, and further Preferably it is 30 micrometers or less. If this diameter (D) is too large, the uneven shape becomes gentle, so that it becomes flat particles, and when it is made into an electrode, it tends to be oriented parallel to the electrode, while the diameter (D) is If it is too small, the contact between the particles tends to deteriorate.
  • the average particle size d50 is measured by first suspending 0.01 g of a sample in 10 mL of a 0.2 mass% aqueous solution of polyoxyethylene sorbitan monolaurate (for example, Tween 20 (registered trademark)) as a surfactant. And introduced into a commercially available laser diffraction / scattering particle size distribution measuring device “LA-920 manufactured by HORIBA”, irradiated with 28 kHz ultrasonic waves at an output of 60 W for 1 minute, and then measured as a volume-based median diameter in the measuring device Is d50.
  • LA-920 manufactured by HORIBA irradiated with 28 kHz ultrasonic waves at an output of 60 W for 1 minute
  • the average particle diameter (d50) of the natural graphite particles (a) is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and usually 40 ⁇ m or less, preferably 35 ⁇ m or less, more preferably 30 ⁇ m or less. . If the average particle size is too small, the specific surface area tends to be large and it is difficult to prevent an increase in irreversible capacity. Moreover, when an average particle diameter is too large, it will become difficult to prevent the rapid charge / discharge property fall by the contact area of electrolyte solution and carbonaceous material composite particle (b) reducing.
  • the crystallite size (Lc) in the c-axis direction and the crystallite size in the a-axis direction of the natural graphite particles (a) determined by X-ray diffraction by the Gakushin method of natural graphite particles (a) La) is preferably 30 nm or more, and more preferably 100 nm or more. If the crystallite size is within this range, the amount of lithium that can be charged into the natural graphite particles (a) increases, and a high capacity is easily obtained, which is preferable.
  • the Raman R value of the natural graphite particles (a) is a value measured by using an argon ion laser Raman spectrum method, and is usually 0.01 or more, preferably 0.03 or more. More preferably, it is 0.1 or more, usually 1.5 or less, preferably 1.2 or less, more preferably 1 or less, and particularly preferably 0.5 or less.
  • the Raman R value When the Raman R value is too small, the crystallinity of the particle surface becomes too high, and there is a tendency that the number of sites where Li ions enter the interlayer is reduced with charge / discharge. That is, charge acceptance may be reduced.
  • charge acceptance may be reduced.
  • densification is performed by pressing a negative electrode obtained by applying an active material layer containing natural graphite particles (a) to a current collector, crystals are easily oriented in a direction parallel to the electrode plate, The load characteristics may be degraded.
  • a Raman R value of 0.1 or more is more preferable because a suitable film can be formed on the negative electrode surface, thereby improving storage characteristics, cycle characteristics, and load characteristics.
  • the Raman R value is too large, the crystallinity of the particle surface is lowered, the reactivity with the non-aqueous electrolyte solution is increased, and the charge / discharge efficiency is decreased and the gas generation is increased.
  • the Raman half width of the peak in the vicinity of 1580 cm ⁇ 1 of the negative electrode active material is not particularly limited, but is usually 10 cm ⁇ 1 or more, preferably 15 cm ⁇ 1 or more, and is usually 100 cm ⁇ 1 or less, preferably 80 cm ⁇ 1 or less. More preferably, it is 60 cm ⁇ 1 or less, particularly preferably 40 cm ⁇ 1 or less.
  • the Raman half-width is too small, the crystallinity of the particle surface becomes too high, and there is a tendency that the number of sites where Li ions enter the interlayer is reduced with charge / discharge. That is, charge acceptance may be reduced.
  • the Raman spectrum is measured by using a Raman spectrometer (for example, a Raman spectrometer manufactured by JASCO Corporation) to drop the sample naturally into the measurement cell, filling it, and irradiating the sample surface in the cell with argon ion laser light. However, the cell is rotated in a plane perpendicular to the laser beam.
  • the resulting Raman spectrum, the intensity I A of the peak P A in the vicinity of 1580 cm -1, and measuring the intensity I B of a peak P B in the vicinity of 1360 cm -1, the intensity ratio R (R I B / I A) Is calculated.
  • the Raman R value calculated by the measurement is defined as the Raman R value of the negative electrode active material of the present invention.
  • the half width of the peak P A in the vicinity of 1580 cm -1 of the resulting Raman spectrum was measured, which is defined as the Raman half-value width of the negative electrode active material of the present invention.
  • the BET specific surface area (SA) of the natural graphite particles (a) is a value of the specific surface area measured using the BET method, and is usually 0.1 m 2 ⁇ g ⁇ 1 or more, preferably 0.8. 7 m 2 ⁇ g ⁇ 1 or more, more preferably 1.0 m 2 ⁇ g ⁇ 1 or more, particularly preferably 1.5 m 2 ⁇ g ⁇ 1 or more, and usually 20 m 2 ⁇ g ⁇ 1 or less, preferably 17 m. 2 ⁇ g ⁇ 1 or less, more preferably 14 m 2 ⁇ g ⁇ 1 or less, particularly preferably 10 m 2 ⁇ g ⁇ 1 or less.
  • the value of the BET specific surface area is too small, the acceptability of lithium ions tends to deteriorate during charging, lithium tends to precipitate on the electrode surface, and the stability tends to decrease.
  • the value of the BET specific surface area is too large, the reactivity with the non-aqueous electrolyte increases, gas generation tends to increase, and a preferable battery tends to be difficult to obtain.
  • the specific surface area is measured by the BET method using, for example, a surface area meter (a fully automated surface area measuring device manufactured by Okura Riken), preliminarily drying the sample at 350 ° C. for 15 minutes under a nitrogen flow, and then measuring nitrogen against atmospheric pressure.
  • a nitrogen adsorption BET one-point method using a gas flow method is performed using a nitrogen-helium mixed gas that is accurately adjusted so that the relative pressure value of the gas becomes 0.3.
  • the specific surface area obtained by the measurement is defined as the BET specific surface area of the natural graphite particles (a) of the present invention.
  • the tap density of the natural graphite particles (a) is usually 0.1 g ⁇ cm ⁇ 3 or more, preferably 0.5 g ⁇ cm ⁇ 3 or more, more preferably 0.7 g ⁇ cm ⁇ 3 or more, particularly Preferably, it is 0.8 g ⁇ cm ⁇ 3 or more, usually 2 g ⁇ cm ⁇ 3 or less, preferably 1.8 g ⁇ cm ⁇ 3 or less, more preferably 1.6 g ⁇ cm ⁇ 3 or less. If the tap density is too small, it is difficult to increase the packing density when the negative electrode is used, and it is difficult to obtain a high-capacity battery. On the other hand, if the tap density is too high, there are too few voids between the particles in the electrode, and it is difficult to ensure conductivity between the particles, and it is difficult to obtain preferable battery characteristics.
  • the tap density is measured by passing the sample through a sieve having a mesh size of 300 ⁇ m, dropping the sample onto a tapping cell of, for example, 20 cm 3 and filling the sample to the upper end surface of the cell, and then measuring a powder density measuring instrument (for example, Seishin Enterprise Co., Ltd.).
  • the tap density is calculated from the volume at that time and the mass of the sample.
  • the tap density calculated by the measurement is defined as the tap density of the natural graphite particles (a) of the present invention.
  • the orientation ratio of the natural graphite particles (a) is usually 0.005 or more, preferably 0.01 or more, more preferably 0.015 or more, and usually 0.6 or less. Preferably it is 0.5 or less, more preferably 0.4 or less. When the orientation ratio is below the above range, the high-speed charge / discharge characteristics may tend to be reduced. In addition, 0.6 which is the normal upper limit of the said range is a theoretical upper limit of the orientation ratio of a carbonaceous material.
  • the orientation ratio is measured by X-ray diffraction measurement after pressure-molding the sample.
  • a molded body obtained by filling 0.47 g of a sample into a molding machine having a diameter of 17 mm and compressing it with 58.8 MN ⁇ m ⁇ 2 and a load of 600 kg becomes the same surface as the surface of the measurement sample holder using clay.
  • the X-ray diffraction is measured.
  • a ratio represented by ⁇ (110) diffraction peak intensity / (004) diffraction peak intensity ⁇ is calculated.
  • the orientation ratio calculated by the measurement is defined as the orientation ratio of the natural graphite particles (a) of the present invention.
  • the X-ray diffraction measurement conditions are as follows. “2 ⁇ ” indicates a diffraction angle.
  • ⁇ Target Cu (K ⁇ ray) graphite monochromator
  • Light receiving slit 0.15
  • Scattering slit 0.5 degrees
  • Measurement range, step angle and measurement time (110) plane: 75 degrees ⁇ 2 ⁇ ⁇ 80 degrees, 1 degree / 60 seconds (004) plane; 52 degrees ⁇ 2 ⁇ ⁇ 57 degrees, 1 degree / 60 seconds
  • the natural graphite particles (a) in the present invention preferably have irregularities on the surface as shown in FIG.
  • the convex portion is a portion that maintains the roundness of the spheroidized graphite as it is, and the concave portion is a pressure treatment, preferably by other graphite particles by an isotropically pressurized CIP treatment. It means the compressed part.
  • the manufacturing method of the natural graphite particle (a) of the present invention is not particularly limited as long as the physical properties described above are satisfied. An example of a preferable production method is described below.
  • the natural graphite particles (a) are preferably subjected to a step (pressure treatment) for molding the raw natural graphite particles under pressure.
  • Natural graphite is preferably one having few impurities, and is subjected to various purification treatments as necessary. Further, those having a high degree of graphitization are preferred, and specifically, those having a (002) plane spacing (d 002 ) of less than 3.37 mm (0.337 nm) by X-ray wide angle diffraction method are preferred.
  • natural graphite for example, highly purified flaky graphite or spheroidized graphite can be used. Among these, spherical graphite subjected to spheroidizing treatment is particularly preferable from the viewpoint of particle filling properties and charge / discharge rate characteristics.
  • an apparatus used for the spheroidization treatment for example, an apparatus that repeatedly gives mechanical action such as compression, friction, shearing force, etc. including the interaction of particles mainly with impact force to the particles can be used. Specifically, it has a rotor with a large number of blades installed inside the casing, and mechanical action such as impact compression, friction, shearing force, etc. on the carbon material introduced inside the rotor by rotating at high speed.
  • An apparatus that provides a surface treatment is preferable.
  • Preferable apparatuses include, for example, a hybridization system (manufactured by Nara Machinery Co., Ltd.), kryptron (manufactured by Earth Technica), CF mill (manufactured by Ube Industries), mechano-fusion system (manufactured by Hosokawa Micron), and theta composer (Tokuju Kosakusho). Etc.).
  • a hybridization system manufactured by Nara Machinery Co., Ltd. is preferable.
  • the peripheral speed of the rotating rotor is preferably 30 to 100 m / sec, more preferably 40 to 100 m / sec, and more preferably 50 to 100 m / sec. Is more preferable.
  • the spheroidizing treatment can be performed by simply passing the carbonaceous material through the apparatus, but it is preferable to circulate or stay in the apparatus for 30 seconds or more, and circulate or stay in the apparatus for 1 minute or more. More preferably, it is processed.
  • ⁇ Process to form raw natural graphite particles by pressure pressure treatment
  • the raw natural graphite particles are pressed and molded.
  • isotropic pressure treatment CIP
  • the method of molding by pressure treatment is not particularly limited, and isotropic pressure treatment is preferably performed with a hydrostatic pressure press, a roll compactor, a roll press, a pricket machine, and a tablet machine. Further, if necessary, the graphite particles can be molded simultaneously with the press according to the pattern carved in the roll. Moreover, the method of exhausting the air which exists between graphite particles and vacuum-pressing can also be applied.
  • the pressure for pressurizing the feed natural graphite particles is not particularly limited, usually 50 kgf / cm 2 or higher, preferably 100 kgf / cm 2, more preferably 300 kgf / cm 2 or more, more preferably 500 kgf / cm 2 or more Particularly preferably, it is 700 kgf / cm 2 or more.
  • the upper limit of the pressure treatment is not particularly limited, but is usually 2000 kgf / cm 2 or less, preferably 1800 kgf / cm 2 or less, more preferably 1600 kgf / cm 2 or less, and further preferably 1500 kgf / cm 2 or less.
  • the pressurizing time is usually 1 minute or longer, preferably 2 minutes or longer, more preferably 3 minutes or longer, and further preferably 4 minutes or longer. Moreover, it is normally 30 minutes or less, Preferably it is 25 minutes or less, More preferably, it is 20 minutes or less, More preferably, it is 15 minutes or less.
  • a step of crushing the pressure-treated natural graphite may be performed.
  • the shape is arbitrary, but is usually granular with an average particle size (d50) of 2 to 50 ⁇ m. It is preferable to grind and classify so that the average particle size is 5 to 35 ⁇ m, particularly 8 to 30 ⁇ m.
  • Carbonaceous composite particles (b) are not particularly limited as long as the carbonaceous material is composited, and are not particularly limited as long as the physical properties described below are satisfied.
  • (1) Physical properties of carbonaceous material composite particles (b) The physical properties of carbonaceous material composite particles (b) are measured according to the methods described in natural graphite particles (a) unless otherwise specified.
  • the carbonaceous material composite particles (b) of the present invention generally have a dibutyl phthalate oil absorption amount (hereinafter referred to as “DBP oil absorption amount”) of 0.31 mL / g or more and 0.85 mL. / G or less, preferably 0.42 mL / g or more, more preferably 0.45 mL / g or more, still more preferably 0.50 mL / g or more, and the upper limit is preferably 0.85 mL / g or less. Is 0.80 mL / g or less, more preferably 0.76 mL / g or less.
  • DBP oil absorption is less than this range, there will be less voids that can be infiltrated by the non-aqueous electrolyte solution, so lithium ion insertion / desorption will not be in time when rapid charge / discharge is performed, and lithium metal will be deposited accordingly. Cycle characteristics tend to deteriorate.
  • the binder is likely to be absorbed into the gap during electrode plate production, and accordingly, the electrode plate strength and initial efficiency tend to be reduced.
  • the measurement of DBP oil absorption amount can be performed in the following procedures using a measurement material.
  • the measurement of DBP oil absorption is based on the viscosity of JIS K6217 standard, 40 g of measurement material is added, the dropping speed is 4 ml / min, the rotation speed is 125 rpm, and the measurement is performed until the maximum value of torque is confirmed. It is defined by a value calculated from the amount of dropped oil when a torque of 70% of the maximum torque is shown in a range in which the maximum torque is shown.
  • the specific surface area of the carbonaceous material composite particles (b) of the present invention is a value of the specific surface area measured using the BET method, and is usually 0.5 m 2 ⁇ g ⁇ 1 or more and 6.5 m 2. g -1 or less, preferably 1.0 m 2 ⁇ g -1 or more, more preferably 1.3 m 2 ⁇ g -1 or more, particularly preferably 1.5 m 2 ⁇ g -1 or more, and usually 6.5m against 2 ⁇ g -1 or less, preferably 6.0 m 2 ⁇ g -1 or less, more preferably 5.5 m 2 ⁇ g -1 or less, particularly preferably 5.0 m 2 ⁇ g -1 or less It is.
  • the value of the specific surface area is less than this range, the lithium ion acceptability tends to deteriorate during charging when used as a negative electrode material, lithium metal tends to precipitate on the electrode surface, and the cycle characteristics tend to deteriorate.
  • the reactivity with the non-aqueous electrolyte increases, the initial charge / discharge efficiency tends to decrease, and a preferable battery is difficult to obtain.
  • the Raman R value of the particles composed of the carbonaceous material composite particle (b) of the present invention is a value measured using an argon ion laser Raman spectrum method, and is usually 0.03 or more and 0. .19 or less, preferably 0.05 or more, more preferably 0.07 or more, and usually 0.19 or less, preferably 0.18 or less, more preferably 0.16 or less, particularly Preferably it is 0.14 or less.
  • the Raman R value is lower than the above range, the crystallinity of the particle surface becomes too high, and there are cases where the number of sites where lithium ions enter between the layers becomes smaller along with charge / discharge. That is, the charge acceptance may be reduced and the cycle characteristics may be deteriorated.
  • the negative electrode is densified by applying it to the current collector and then pressing it, the crystals are likely to be oriented in a direction parallel to the electrode plate, which may lead to a decrease in load characteristics.
  • the above range is exceeded, the crystallinity of the particle surface is lowered, the reactivity with the non-aqueous electrolyte is increased, and the initial efficiency may be lowered and the gas generation may be increased.
  • the value of O / C represented by the following formula 2 is usually 0.1% or more, preferably 0.2% or more, more preferably Is 0.3% or more, particularly preferably 0.5 or more, and is usually 2.2% or less, preferably 2.0% or less, and more preferably 1.8% or less. If the surface functional group amount O / C is too small, the reactivity with the electrolytic solution is poor, and stable SEI formation cannot be performed, and the cycle characteristics may be deteriorated. On the other hand, if the surface functional group amount O / C is too large, the crystal on the particle surface is disturbed, the reactivity with the electrolytic solution is increased, and there is a risk of increasing the irreversible capacity and increasing gas generation.
  • Formula 2 O / C (%) ⁇ O atom concentration determined based on the peak area of the O1s spectrum in X-ray photoelectron spectroscopy (XPS) analysis / C atom concentration determined based on the peak area of the C1s spectrum in XPS analysis ⁇ ⁇ 100
  • the surface functional group amount O / C in the present invention can be measured using X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the surface functional group amount O / C is measured by using an X-ray photoelectron spectrometer as an X-ray photoelectron spectroscopy measurement, placing the object to be measured on a sample stage so that the surface is flat, and using K ⁇ rays of aluminum as an X-ray source.
  • the spectra of C1s (280 to 300 eV) and O1s (525 to 545 eV) are measured by plex measurement.
  • the obtained C1s peak top is corrected to be 284.3 eV, the peak areas of the C1s and O1s spectra are obtained, and the device sensitivity coefficient is multiplied to calculate the surface atomic concentrations of C and O, respectively.
  • the obtained O / C atomic concentration ratio O / C (O atomic concentration / C atomic concentration) is defined as the surface functional group amount O / C of the negative electrode material.
  • the tap density of the carbonaceous material composite particles (b) of the present invention is usually 0.7 g ⁇ cm ⁇ 3 or more, preferably 0.8 g ⁇ cm ⁇ 3 or more, more preferably 0.9 g ⁇ cm ⁇ . 3 or more, usually 1.25 g ⁇ cm ⁇ 3 or less, preferably 1.2 g ⁇ cm ⁇ 3 or less, more preferably 1.18 g ⁇ cm ⁇ 3 or less, particularly preferably 1.15 g ⁇ cm ⁇ 3. It is as follows. In particular, it is preferably 0.7 g ⁇ cm ⁇ 3 or more and 1.2 g ⁇ cm ⁇ 3 or less.
  • the packing density is difficult to increase when used as a negative electrode, and a high-capacity battery may not be obtained.
  • the above range is exceeded, there are too few voids between particles in the electrode, it is difficult to ensure conductivity between the particles, and it may be difficult to obtain preferable battery characteristics.
  • the volume-based average particle diameter of the carbonaceous material composite particles (b) of the present invention is such that the volume-based average particle diameter d50 (median diameter) determined by the laser diffraction / scattering method is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably. Is 5 ⁇ m or more, particularly preferably 7 ⁇ m or more, and is usually 100 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, particularly preferably 30 ⁇ m or less. If the average particle size d50 is too small, the irreversible capacity may increase, leading to loss of initial battery capacity. On the other hand, if it is too large, it tends to be a non-uniform coating surface when an electrode is produced by coating, which may be undesirable in the battery production process.
  • (Vii) X-ray parameter
  • (La) is preferably 30 nm or more, and more preferably 100 nm or more. If the crystallite size is in this range, the amount of lithium that can be charged in the negative electrode material is increased, and a high capacity is easily obtained, which is preferable.
  • orientation ratio of the carbonaceous material composite particles (b) of the present invention is usually 0.005 or more, preferably 0.01 or more, more preferably 0.015 or more, and usually 0. .67 or less, preferably 0.5 or less, more preferably 0.4 or less.
  • the normal upper limit of the said range is a theoretical upper limit of the orientation ratio of a carbonaceous material.
  • the form of the particles composed of the carbonaceous material composite particles (b) of the present invention is not particularly limited, but may be spherical, elliptical, massive, plate-like, polygonal, etc. Among them, a spherical shape, an elliptical shape, a lump shape, and a polygonal shape are preferable because the particle filling property can be improved when the negative electrode is used.
  • the carbonaceous material composite particles (b) satisfy the above-described physical properties, and are not particularly limited as long as the carbonaceous material is composited.
  • Specific examples thereof include graphite particles having a carbon layer.
  • Graphite particles are, for example, naturally produced graphite in the form of scales, lumps or plates, and artificial graphite produced by heating petroleum coke, coal pitch coke, coal needle coke, mesophase pitch, etc. to 2500 ° C. or higher. It is possible to use spheroidized graphite particles formed into particles by applying a crystallization treatment. Among these, spheroidized natural graphite is particularly preferable.
  • the carbon layer include those made of amorphous carbon or graphite.
  • the form of the graphite particles provided with the carbon layer is preferably a graphite (carbonaceous material-coated graphite) structure coated with a carbonaceous material, and is coated with amorphous carbon-coated graphite particles and graphite material.
  • Graphite particles are more preferable, and graphite particles coated with a graphite material are particularly preferable from the viewpoint that the particle surface that is an interface with the electrolytic solution can be efficiently modified.
  • Carbon layer is provided on at least a part of the surface”, and the carbon layer covers not only a part or all of the surface of the graphite particles in a layered manner, It includes a form in which the carbon layer adheres or adheres to part or all of the surface.
  • the carbon layer may be provided so as to cover the entire surface, or a part of the carbon layer may be covered or attached / attached.
  • the carbonaceous material composite particles (b) may be produced by any production method as long as they have the above properties. It can be obtained by referring to the production methods described in 2007-042611 and International Publication No. 2006-025377.
  • the carbon material described in the natural graphite particles (a) described above can be used as a raw material.
  • these for example, naturally produced graphite in scale-like, scale-like, plate-like and massive shapes, and artificial graphite produced by heating petroleum coke, coal pitch coke, coal needle coke and mesophase pitch at 2500 ° C. or more.
  • the spherical graphite particles produced by applying the mechanical energy treatment as described above are preferably used as raw materials.
  • the use of graphite particles that have been roughened by applying mechanical energy to the spheroidized graphite particles (formed with irregularities) as raw materials increases the packing density of the particles by reducing internal voids. Further, it is more preferable in that it is difficult to align in the electrode.
  • the carbonaceous material composite particles (b) are graphite particles coated with a graphite material
  • the carbonaceous material-coated graphite particles are added to the spheroidized graphite particles, petroleum-based and coal-based tars and pitches, polyvinyl alcohol,
  • a resin such as acrylonitrile, phenolic resin and cellulose
  • firing in a non-oxidizing atmosphere, preferably 1500 ° C. or higher, more preferably 1800 ° C., particularly preferably 2000 ° C. or higher. can get.
  • pulverization classification may be performed as necessary.
  • the coverage indicating the amount of graphitic carbon covering the spheroidized graphite particles is preferably in the range of 0.1 to 50%, more preferably in the range of 0.5 to 30%. A range of ⁇ 20% is particularly preferred.
  • the pulverization step operations such as increasing the number of pulverization rotations or multistage pulverization can be eliminated. Further, by setting the coverage to 50% or less, the binding force between the particles of the coated graphitic carbon is strengthened, thereby preventing an increase in irreversible capacity due to an increase in the BET specific surface area of the graphite carbon-coated graphite particles. Can do.
  • the carbon material for a non-aqueous secondary battery according to the present invention is a mixture containing at least natural graphite particles (a) and carbonaceous material composite particles (b).
  • the negative electrode material of the present invention exhibits the effects of the present invention by appropriately selecting the natural graphite particles (a) and the carbonaceous material composite particles (b) under the specific conditions described above, regardless of the production method, and mixing them. can do.
  • the apparatus used for mixing with natural graphite particles (a) and carbonaceous material composite particles (b) is not particularly limited.
  • a rotary mixer a cylindrical mixer, a twin cylindrical mixer, a double cone mixer, a regular cubic mixer, a vertical mixer; in the case of a fixed mixer, a spiral mixer, Ribbon type mixers, Muller type mixers, Helical Flight type mixers, Pugmill type mixers, fluidized type mixers, and the like can be used.
  • the negative electrode material of the present invention is a mixed carbon material containing the above natural graphite particles (a) and carbonaceous material composite particles (b). .
  • the ratio of the natural graphite particles (a) to the total amount of the natural graphite particles (a) and the carbonaceous material composite particles (b) is And usually 0.1 or more and 0.9 or less, preferably 0.2 or more, more preferably 0.3 or more, and usually 0.9 or less, preferably 0.8 or less, more preferably 0. 7 or less, more preferably 0.6 or less.
  • the non-aqueous secondary battery carbon material according to the present invention includes at least natural graphite particles (a) and carbonaceous material composite particles (b). However, typical physical property values thereof are shown below.
  • BET specific surface area of the non-aqueous secondary battery carbon material having a specific surface area of the present invention according to the BET method is preferably usually 10 m 2 / g or less, and more preferably less 7m 2 / g . Further, it is preferably 2m 2 / g or more, more preferably 3m 2 / g or more.
  • the specific surface area of the carbon material for a non-aqueous secondary battery of the present invention is too large, it tends to be difficult to prevent a decrease in capacity due to an increase in irreversible capacity. On the other hand, if the specific surface area is too small, the contact area between the electrolytic solution and the negative electrode material becomes small, so that sufficient charge / discharge load characteristics tend not to be obtained.
  • the interplanar spacing (d 002 ) of the (002) plane of the carbon material for a non-aqueous secondary battery of the present invention by X-ray wide angle diffraction method is usually 3.37 mm or less, preferably 3.36 mm or less.
  • the crystallite size Lc is usually 900 mm or more, preferably 950 mm or more. If the face spacing (d 002 ) of the (002) plane is too large, the crystallinity of most parts excluding the surface of the carbon material particles will be low, and the irreversible capacity as seen in the amorphous carbon material will be large. There is a tendency to see a decrease in capacity. If the crystallite size Lc is too small, the crystallinity tends to be low.
  • the tap density of the carbon material for a non-aqueous secondary battery of the present invention is usually 1.2 g / cm 3 or less, preferably 1.1 g / cm 3 or less, more preferably 1.0 g / cm 3 or less. It is. Moreover, it is 0.8 g / cm 3 or more, preferably 0.9 g / cm 3 or more.
  • the tap density of the negative electrode material is too large, there is a tendency that it is difficult to take contact between particles when an electrode is formed. On the other hand, if the tap density is too small, the slurry characteristics when the electrode is produced deteriorates, and the production of the electrode tends to be difficult.
  • Raman R value is the peak intensity ratio in the vicinity of 1360 cm -1 to the peak intensity near 1580 cm -1 in the argon ion laser Raman spectrum of the non-aqueous secondary battery carbon material for the Raman R value present invention is usually 0. 001 or more, preferably 0.005 or more, more preferably 0.01 or more, and usually 0.7 or less, preferably 0.6 or less, more preferably 0.5 or less. If the Raman R value is too small, the crystallinity of the particle surface becomes too high, and when the density is increased, the crystals are likely to be oriented in a direction parallel to the electrode plate, and the load characteristics may be deteriorated. On the other hand, if the Raman R value is too large, the crystal on the particle surface is disturbed, the reactivity with the electrolytic solution increases, and the charge / discharge efficiency tends to decrease and the gas generation tends to increase.
  • the aspect ratio of the carbon material for a non-aqueous secondary battery of the present invention is usually 15 or less, preferably 10 or less, more preferably 5 or less. When the aspect ratio is too large, there is a tendency to be oriented when the electrode is formed.
  • the average particle diameter (d50) of the carbon material for non-aqueous secondary batteries of the present invention is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and usually 35 ⁇ m or less, preferably 30 ⁇ m. Hereinafter, it is more preferably 25 ⁇ m or less. If the average particle size is too small, the specific surface area tends to be large and it is difficult to prevent an increase in irreversible capacity. Moreover, when an average particle diameter is too large, it will become difficult to prevent the rapid charge / discharge property fall by the contact area of electrolyte solution and carbonaceous material composite particle (b) reducing.
  • a negative electrode material blended with a binder resin is made into a slurry with an aqueous or organic medium, and if necessary, a thickener is added to the current collector. What is necessary is just to apply
  • the binder resin it is preferable to use a resin that is stable with respect to the non-aqueous electrolyte and water-insoluble.
  • rubbery polymers such as styrene, butadiene rubber, isoprene rubber and ethylene / propylene rubber; synthetic resins such as polyethylene, polypropylene, polyethylene terephthalate and aromatic polyamide; styrene / butadiene / styrene block copolymers and hydrogenated products thereof , Thermoplastic elastomers such as styrene / ethylene / butadiene, styrene copolymers, styrene / isoprene and styrene block copolymers and hydrides thereof; syndiotactic-1,2-polybutadiene, ethylene / vinyl acetate copolymers, and Soft resinous polymers such as copolymers of ethylene and ⁇ -olefins having 3 to 12 carbon atoms; polytetrafluoroethylene / ethylene copolymers, polyvinylidene fluoride
  • the binding resin provides sufficient binding force between the negative electrode materials and between the negative electrode material and the current collector, and can prevent the battery capacity from being reduced and the recycling characteristics from deteriorating due to the separation of the negative electrode material from the negative electrode. It is usually preferable to use 0.1 parts by weight or more, preferably 0.2 parts by weight or more with respect to 100 parts by weight. In addition, since the capacity of the negative electrode can be prevented, and problems such as preventing lithium ions from entering and leaving the negative electrode material can be prevented, the binder resin should be 10 parts by weight or less with respect to 100 parts by weight of the negative electrode material. Is preferable, and it is more preferable to set it as 7 weight part or less.
  • the thickener added to the slurry of the negative electrode material and the binder resin for example, water-soluble celluloses such as carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose, polyvinyl alcohol, polyethylene glycol, and the like may be used. Of these, carboxymethylcellulose is preferred.
  • the thickener is preferably used in an amount of usually 0.1 to 10 parts by weight, preferably 0.2 to 7 parts by weight, with respect to 100 parts by weight of the negative electrode material. The strength tends to be difficult to maintain, and too much binder resin leads to a decrease in battery capacity and an increase in resistance.
  • the negative electrode current collector for example, copper, copper alloy, stainless steel, nickel, titanium, and carbon that are conventionally known to be usable for this purpose may be used.
  • the shape of the current collector is usually a sheet, and those having irregularities on the surface thereof, or those using a net, punching metal, or the like are preferable.
  • pressurize to increase the density of the electrode formed on the current collector, thereby increasing the battery capacity per unit volume of the negative electrode layer Is preferred.
  • the density of the electrode is usually 1.2 g / cm 3 or more, preferably 1.3 g / cm 3 or more, and usually 1.8 g / cm 3 or less, preferably 1.6 g / cm 3 or less.
  • the density of the electrode is too small, it tends to be difficult to prevent a decrease in battery capacity accompanying an increase in electrode thickness. Also, if the electrode density is too large, the amount of electrolyte solution retained in the voids decreases as the interparticle voids in the electrode decrease, and it becomes difficult to prevent the rapid charge / discharge characteristics from being lowered due to the low mobility of Li ions. Tend.
  • Non-aqueous secondary battery The non-aqueous secondary battery according to the present invention can be produced according to a conventional method except that the above negative electrode is used.
  • the positive electrode material include a lithium cobalt composite oxide having a basic composition represented by LiCoO 2 ; a lithium nickel composite oxide represented by LiNiO 2 ; a lithium manganese composite oxide represented by LiMnO 2 and LiMn 2 O 4 .
  • Lithium transition metal composite oxides such as, transition metal oxides such as manganese dioxide, and composite oxide mixtures thereof may be used.
  • TiS 2 , FeS 2 , Nb 3 S 4 , Mo 3 S 4 , CoS 2 , V 2 O 5 , CrO 3 , V 3 O 3 , FeO 2 , GeO 2 and LiNi 0.33 Mn 0.33 Co 0 .33 O 2 or the like can also be used.
  • a positive electrode can be produced by slurrying a mixture of the positive electrode material and a binder resin with an appropriate solvent, and applying and drying to a current collector.
  • the slurry preferably contains a conductive material such as acetylene black and ketjen black.
  • you may contain a thickener as desired.
  • the thickener and the binder resin those well-known in this application, for example, those exemplified as those used for producing the negative electrode may be used.
  • the blending ratio of the conductive agent with respect to 100 parts by weight of the positive electrode material is usually 0.2 parts by weight or more, preferably 0.5 parts by weight or more, more preferably 1 part by weight or more, and usually 20 parts by weight or less, preferably 15 parts by weight. Below, more preferably 10 parts by weight or less.
  • the blending ratio of the binder resin to 100 parts by weight of the positive electrode material is preferably 0.2 to 10 parts by weight, particularly preferably 0.5 to 7 parts by weight when the binder resin is slurried with water.
  • the amount is preferably 0.5 to 20 parts by weight, particularly 1 to 15 parts by weight.
  • Examples of the positive electrode current collector include aluminum, titanium, zirconium, hafnium, niobium and tantalum, and alloys thereof. Of these, aluminum, titanium and tantalum and alloys thereof are preferred, and aluminum and alloys thereof are most preferred.
  • the electrolytic solution a solution in which various lithium salts are dissolved in a conventionally known non-aqueous solvent can be used.
  • the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate; chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate; cyclic esters such as ⁇ -butyrolactone; Cyclic ethers such as 2-methyltetrahydrofuran, tetrahydrofuran, 1,2-dimethyltetrahydrofuran and 1,3-dioxolane; chain ethers such as 1,2-dimethoxyethane may be used. Usually some of these are used together. Among these, it is preferable to use a cyclic carbonate and a chain carbonate, or another solvent in combination with this.
  • vinylene carbonate, vinyl ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone, diethylsulfone, and other compounds such as difluorophosphate such as lithium difluorophosphate may be added to the electrolytic solution.
  • an overcharge inhibitor such as diphenyl ether and cyclohexylbenzene may be added.
  • Examples of the electrolyte dissolved in the non-aqueous solvent include LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 and the like can be used.
  • the concentration of the electrolyte in the electrolytic solution is usually 0.5 to 2 mol / L, preferably 0.6 to 1.5 mol / L.
  • the separator interposed between the positive electrode and the negative electrode it is preferable to use a porous sheet or non-woven fabric of polyolefin such as polyethylene or polypropylene.
  • the capacity ratio of the negative electrode / positive electrode is preferably designed to be 1.01 to 1.5, and designing to 1.2 to 1.4 can suppress deterioration of the battery. To more preferable.
  • the internal porosity is calculated by drawing a tangent line (M) with respect to the minimum value of the slope and calculating a branch point (P) between the tangent line and the integral curve.
  • the pore volume smaller than that is determined and defined as the pore volume (V) in the particle (FIG. 2).
  • the internal porosity was calculated from the amount of pores in the obtained particles and the true density of graphite.
  • the true density of graphite used for the calculation was 2.26 g / cm 3, which is the true density of general graphite.
  • the calculation formula is shown in Formula 1.
  • the diameter (D) in the approximate circle for the concave portion was determined from the SEM image and the cross-sectional SEM image.
  • the SEM image was measured using VE-7800 manufactured by Keyence Corporation at an acceleration voltage of 5 kV. Assuming that the concave portion of the SEM image of the obtained natural graphite particles (a) is a circle, a circle approximation is performed, and the diameter of the approximate circle is the diameter (D) of the concave portion of the natural graphite particles (a). .
  • FIG. 1 a circle approximate to the SEM image of the natural graphite particles (a) used in Example 1 and Comparative Example 3 is shown in FIG.
  • the average particle size (d50) of the natural graphite particles (a) was adjusted to 10 mL of a 0.2% by weight aqueous solution of polyoxyethylene sorbitan monolaurate (for example, Tween 20 (registered trademark)) as a surfactant.
  • 01 g was suspended, introduced into a commercially available laser diffraction / scattering particle size distribution analyzer “LA-920 manufactured by HORIBA”, irradiated with 28 kHz ultrasonic waves at an output of 60 W for 1 minute, and then the volume-based median diameter in the measuring device was measured as an average particle diameter (d50).
  • DBP Dibutyl phthalate
  • the DBP oil absorption was measured using the negative electrode material according to the following procedure.
  • the measurement of DBP oil absorption is based on the viscosity of JIS K6217 standard, 40 g of measurement material is added, the dropping speed is 4 ml / min, the rotation speed is 125 rpm, and the measurement is performed until the maximum value of torque is confirmed. It was defined by a value calculated from the amount of dropped oil when a torque of 70% of the maximum torque was shown in the range between showing the maximum torque.
  • SA BET specific surface area
  • AMS8000 manufactured by Okura Riken Co., Ltd.
  • nitrogen gas adsorption flow method After filling the cell with 0.4 g of sample and heating to 350 ° C., pre-treatment, cooling to liquid nitrogen temperature, saturated adsorption of 30% nitrogen and 70% He gas, then heating to room temperature The amount of desorbed gas was measured, and the specific surface area was calculated from the obtained results by the usual BET method.
  • the tap density of the carbonaceous material composite particles (b) is 1.6 cm in diameter and 20 cm 3 in volume capacity using a powder density measuring device (Tap Denser KYT-4000, manufactured by Seishin Enterprise Co., Ltd.).
  • the sample was dropped into a cylindrical tap cell through a sieve having an opening of 300 ⁇ m, and the cell was fully filled, and then the volume and the weight of the sample after 1000 taps with a stroke length of 10 mm were obtained.
  • Argon ion laser light wavelength 514.5 nm
  • Laser power on sample 25 mW
  • 4cm -1 Measurement range: 1100 cm ⁇ 1 to 1730 cm ⁇ 1
  • Peak intensity measurement, peak half-width measurement background processing, smoothing processing (convolution 5 points by simple averaging)
  • the Raman R value is the maximum peak P A (G band) and 1358cm -1 near the maximum peak P B (D band) and the ratio of the peak intensity I of around 1580 cm -1, ie defined in I B / I A ( F. Tuinstra, JL Koenig, J. Chem. Phys, 53, 1126 [1970]).
  • styrene-butadiene rubber aqueous dispersion (BM400B, manufactured by Nippon Zeon Co., Ltd.) having a weight average molecular weight of 270,000, using a hybrid mixer manufactured by Keyence.
  • the mixture was stirred for 5 minutes and defoamed for 30 seconds to obtain a slurry.
  • the slurry is applied to a width of 5 cm by a doctor blade method so that the negative electrode material adheres to 12.8 ⁇ 0.2 mg / cm 2 on a 18 ⁇ m-thick copper foil as a current collector, and air-dried at room temperature. Went.
  • the laminate type battery produced by the above method was left for 12 hours, and then charged at a current density of 0.2 CmA / cm 3 until the potential difference between both electrodes reached 4.1 V, and then until the voltage became 3 V. Discharge was performed at 2 CmA / cm 3 . This was repeated twice and further charged with the same current value until the potential difference between both electrodes reached 4.2 V, discharged to 3.0 V, and conditioned.
  • Rate characteristic measurement method 1C / 0.2C discharge rate (%) is the battery before the start of the cycle when charged to 4.2V at 0.5C and subsequently discharged to 3.0V at 0.2C. It calculated from the ratio of the discharge capacity when charging to 4.2 V at 0.5 C and then discharging to 3.0 V at 1 C with respect to the discharge capacity.
  • the internal porosity and the diameter (D) of the concave portion of the obtained natural graphite particles (a) were measured by the above methods.
  • Table 1 summarizes the values of the internal porosity and the diameter (D) / d50 of the concave portion.
  • the obtained graphite-coated graphite was roughly crushed and pulverized to obtain a powder sample of carbonaceous material composite particles (b).
  • Table 1 summarizes the results of physical property evaluation (oil absorption amount, specific surface area, Raman R value, and tap density) of the obtained carbonaceous material-coated graphite.
  • Natural graphite particles (a) and graphitic material-coated graphite roughened as carbonaceous material-coated graphite as carbonaceous material composite particles (b) were mixed at a mass ratio (a) / (a + b) shown in Table 1.
  • a negative electrode was produced using the obtained carbon material, a laminate type battery was produced by the above method, and a 200 cycle maintenance factor was calculated from the initial discharge capacity and the discharge capacity at the 200th cycle.
  • the discharge rate characteristics were examined by the ratio of the discharge capacity at 1 C to 0.5 C after charging to 4.2 V at 0.5 C to the discharge capacity at 0.2 C discharge rate. It was. The results are shown in Table 1.
  • Example 1 The same method as in Example 1, except that the natural graphite particles (a) having the characteristics described in Table 1 and the carbonaceous material composite particles (b) were mixed at a mass ratio described in Table 1 to obtain a carbon material. Electrodes were prepared and various measurements were performed (Comparative Examples 1 to 3). In addition, using the carbonaceous material composite particles (b) alone, electrodes were prepared in the same manner as in Example 1 and various measurements were performed (Comparative Example 4). The results are shown in Table 1.
  • the cycle retention rate is improved while maintaining the initial capacity by mixing the natural graphite particles (a) and the carbonaceous material composite particles (b) in Examples 1 to 4.
  • the mixture of natural graphite particles (a) and carbonaceous material composite particles (b) is very high regardless of the mass ratio of (a) and (b). It was found that cycle characteristics can be obtained.
  • the cycle characteristics were significantly improved by subjecting the natural graphite particles (a) to pressure treatment to lower the internal porosity.
  • the internal porosity can be controlled by the pressure applied during the pressure treatment, but the cycle characteristics improved even when the internal porosity was reduced from 25% to 20% when not treated.
  • the lithium ion secondary battery using the carbon material for a non-aqueous secondary battery according to the present invention as an electrode improves the cycle characteristics while maintaining high initial discharge capacity and discharge rate characteristics.
  • the properties can be balanced. These characteristics are achieved for the first time by mixing the natural graphite particles (a) and the carbonaceous material composite particles (b) in the present invention.
  • the carbon material according to the present invention is used as a carbon material for a non-aqueous secondary battery, thereby maintaining a high initial capacity and a high rate characteristic, and a non-aqueous secondary battery excellent in cycle characteristics, particularly a lithium ion secondary battery. Can be provided.
  • D Diameter of approximate circle in concave and convex portions formed on the surface of natural graphite particles
  • L Pore distribution (integral curve) in Hg porosimetry measurement
  • M tangent to the minimum value portion of the slope of the integral curve in the Hg porosimetry measurement
  • P branch point of the integral curve and the tangent line in the Hg porosimetry measurement
  • V amount of pores in the particle in the Hg porosimetry measurement

Abstract

The purpose of the present invention is to provide a carbon material for a nonaqueous secondary battery for fabricating a nonaqueous secondary battery, and among the same, a lithium ion secondary battery, having superior cycle characteristics in addition to superior high initial capacity and rate characteristics. The present invention relates to a carbon material for a nonaqueous secondary battery that contains natural graphite particles (a) with an internal porosity of 1 - 20% and carbonaceous composite particles (b) for which dibutyl phthalate oil absorption is 0.31 - 0.85 mL/g or less.

Description

非水系二次電池用炭素材、及び負極、並びに、非水系二次電池Non-aqueous secondary battery carbon material, negative electrode, and non-aqueous secondary battery
 本発明は、非水系二次電池に用いる炭素材と、その材料を用いて形成された負極と、その負極を有するリチウムイオン二次電池に関するものである。 The present invention relates to a carbon material used for a non-aqueous secondary battery, a negative electrode formed using the material, and a lithium ion secondary battery having the negative electrode.
 近年、電子機器の小型化に伴い、高容量の二次電池に対する需要が高まってきている。特に、ニッケル・カドミウム電池や、ニッケル・水素電池に比べ、よりエネルギー密度が高く、大電流充放電特性に優れたリチウムイオン二次電池が注目されてきている。
 リチウムイオン二次電池の炭素材としては黒鉛を使用することが知られている。特に、黒鉛化度の高い黒鉛をリチウムイオン二次電池用の負極活物質として用いると、黒鉛のリチウム吸蔵の理論容量である372mAh/gに近い容量が得られ、さらに、コスト・耐久性にも優れることから、活物質として好ましいことが知られている。
In recent years, demand for high-capacity secondary batteries has increased with the downsizing of electronic devices. In particular, lithium ion secondary batteries having higher energy density and excellent large current charge / discharge characteristics have attracted attention as compared to nickel / cadmium batteries and nickel / hydrogen batteries.
It is known to use graphite as a carbon material for a lithium ion secondary battery. In particular, when graphite having a high degree of graphitization is used as a negative electrode active material for a lithium ion secondary battery, a capacity close to 372 mAh / g, which is the theoretical capacity of lithium occlusion of graphite, is obtained, and further, cost and durability are also improved. Since it is excellent, it is known that it is preferable as an active material.
 そこで、負極材として、特許文献1では力学的エネルギー処理を用いて球形化処理を行った炭素材が提案されている。特許文献2では、黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバインダに、黒鉛化触媒を1~50質量%添加して混合し、黒鉛化触媒が抜けるように、2000℃以上で焼成、黒鉛化処理した後粉砕した炭素材が提案されている。特許文献3では、球状化黒鉛に黒鉛を被覆した炭素材が提案されている。 Therefore, as a negative electrode material, Patent Document 1 proposes a carbon material that has been spheroidized using mechanical energy treatment. In Patent Document 2, 1 to 50% by mass of a graphitization catalyst is added to and mixed with a graphitizable aggregate or graphite and a graphitizable binder, and calcined at 2000 ° C. or higher so that the graphitization catalyst is removed. Carbon materials that have been graphitized and then ground have been proposed. Patent Document 3 proposes a carbon material in which spheroidized graphite is coated with graphite.
 しかしながら、上記炭素材では、初期効率、サイクル特性、負荷特性などの要求特性をバランス良く、十分に満足することはできず、改良が必要であった。
 そこで、上述した要求特性を満足する方法として、特許文献4では、球状黒鉛を等方的に加圧処理する方法(以下、「CIP処理」と称する場合がある)や、特許文献5では、特許文献2に記載されているような負極材にCIP処理を行うことが開示されている。
However, the above carbon material cannot satisfy the required characteristics such as initial efficiency, cycle characteristics, and load characteristics in a well-balanced manner, and needs to be improved.
Therefore, as methods for satisfying the above-described required characteristics, Patent Document 4 discloses a method of pressure-treating spherical graphite isotropically (hereinafter sometimes referred to as “CIP treatment”), and Patent Document 5 discloses a patent. It is disclosed that a negative electrode material as described in Document 2 is subjected to CIP treatment.
日本国特開平10-158005号公報Japanese Laid-Open Patent Publication No. 10-158005 日本国特開2000-340232号公報Japanese Unexamined Patent Publication No. 2000-340232 日本国特開2007-042611号公報Japanese Unexamined Patent Publication No. 2007-042611 日本国特開2005-50807号公報Japanese Unexamined Patent Publication No. 2005-50807 日本国特開2000-294243号公報Japanese Unexamined Patent Publication No. 2000-294243
 しかしながら本発明者らの検討によると、上述したように特許文献1~3に記載の炭素材を非水系二次電池の負極材として用いても、高容量、優れたサイクル特性、及び高負荷特性を維持する点において改良の余地があった。
 また、特許文献4に記載の炭素材を非水系二次電池の負極材として用いても、黒鉛を加圧処理しているだけのために、電極の密度が高く、不可逆容量が大きくなり、さらには、炭素材への電解液の浸液性も確保できないことから、改善の余地があった。更に特許文献5は、負極材に等方的加圧処理を施す技術が開示されているが、特許文献4と同様に不可逆容量を小さくする点において改善の余地があった。
However, according to the study by the present inventors, as described above, even when the carbon materials described in Patent Documents 1 to 3 are used as the negative electrode material of the non-aqueous secondary battery, high capacity, excellent cycle characteristics, and high load characteristics are obtained. There was room for improvement in terms of maintaining
Further, even when the carbon material described in Patent Document 4 is used as a negative electrode material for a non-aqueous secondary battery, since the graphite is only pressure-treated, the electrode density is high, the irreversible capacity is increased, However, there is room for improvement because it is impossible to secure the immersion property of the electrolytic solution into the carbon material. Further, Patent Document 5 discloses a technique for subjecting the negative electrode material to isotropic pressure treatment, but there is room for improvement in terms of reducing the irreversible capacity as in Patent Document 4.
 そこで、本発明は、かかる課題に鑑みてなされたものであり、炭素材表面と非水系電解液との反応を抑制し、電池用電極として用いた場合に、電解液の浸液性を損ねることなく、初期容量、及びレート特性に優れ、さらにサイクル特性に優れた非水系二次電池、中でもリチウムイオン二次電池を作製するための炭素材を提供し、さらにその結果として、高容量、且つサイクル特性に優れた非水系二次電池、中でも、リチウムイオン二次電池を提供することを目的とする。 Therefore, the present invention has been made in view of such problems, and suppresses the reaction between the surface of the carbon material and the non-aqueous electrolyte and impairs the immersion of the electrolyte when used as a battery electrode. In addition, the present invention provides a carbon material for producing a non-aqueous secondary battery, in particular, a lithium ion secondary battery having excellent initial capacity and rate characteristics, and further excellent cycle characteristics. It aims at providing the non-aqueous secondary battery excellent in the characteristic, especially a lithium ion secondary battery.
 本発明者らは、前記課題を解決すべく鋭意検討を行った結果、今まで提案されてきた多数の負極用炭素材から、特定の2種の炭素材を選択し、これらを含有する炭素材を非水系二次電池用炭素材に適用すると、意外にもサイクル特性と初期容量が共に優れたリチウムイオン二次電池を得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have selected two types of carbon materials from among the many carbon materials for negative electrodes that have been proposed so far, and carbon materials containing these carbon materials. Surprisingly, it has been found that a lithium ion secondary battery excellent in both cycle characteristics and initial capacity can be obtained by applying to a carbon material for a non-aqueous secondary battery, and the present invention has been completed.
 即ち本発明の要旨は、以下の<1>~<7>に示すものである。
<1>内部空隙率が1%以上20%以下である天然黒鉛粒子(a)とフタル酸ジブチル吸油量が0.31mL/g以上、0.85mL/g以下である炭素質物複合粒子(b)とを含有する非水系二次電池用炭素材。
<2>前記炭素質物複合粒子(b)が炭素質物被覆黒鉛である、前記<1>に記載の非水系二次電池用炭素材。
<3>前記天然黒鉛粒子(a)は、表面に凹凸を有しており、前記凹凸の凹部分の直径(D)が前記天然黒鉛粒子(a)の平均粒径(d50)に対して0.15倍以上、7倍以下である前記<1>または<2>に記載の非水系二次電池用炭素材。
<4>前記炭素質物複合粒子(b)の比表面積が0.5m/g以上、6.5m/g以下、ラマンR値が0.03以上、0.19以下、及びタップ密度が0.7g/cm以上、1.2g/cm以下である前記<1>~<3>のいずれか1に記載の非水系二次電池用炭素材料。
<5>前記天然黒鉛粒子(a)と前記炭素質物複合粒子(b)の質量比((a)/{(a)+(b)})が、0.1以上0.9以下である前記<1>~<4>のいずれか1に記載の非水系二次電池用炭素材。
<6>集電体と、前記集電体上に形成された活物質層とを備える非水系二次電池用負極であって、前記活物質層が、前記<1>~<5>のいずれか1に記載の非水系二次電池用炭素材を含有する、非水系二次電池用負極。
<7>正極及び負極、並びに、電解質を備える非水系二次電池であって、前記負極が、前記<6>に記載の非水系二次電池用負極である、非水系二次電池。
That is, the gist of the present invention is shown in the following <1> to <7>.
<1> Natural graphite particles (a) having an internal porosity of 1% or more and 20% or less and carbonaceous material composite particles (b) having a dibutyl phthalate oil absorption of 0.31 mL / g or more and 0.85 mL / g or less And a carbon material for a non-aqueous secondary battery.
<2> The carbon material for a non-aqueous secondary battery according to <1>, wherein the carbonaceous material composite particles (b) are carbonaceous material-coated graphite.
<3> The natural graphite particles (a) have irregularities on the surface, and the diameter (D) of the irregularities of the irregularities is 0 with respect to the average particle diameter (d50) of the natural graphite particles (a). The carbon material for nonaqueous secondary batteries according to <1> or <2>, wherein the carbon material is 15 times or more and 7 times or less.
<4> The specific surface area of the carbonaceous material composite particles (b) is 0.5 m 2 / g or more and 6.5 m 2 / g or less, the Raman R value is 0.03 or more and 0.19 or less, and the tap density is 0. .7g / cm 3 or more, a non-aqueous secondary battery carbon material according to any one of 1.2 g / cm 3 or less is the <1> to <3>.
<5> The mass ratio ((a) / {(a) + (b)}) of the natural graphite particles (a) and the carbonaceous material composite particles (b) is 0.1 or more and 0.9 or less. The carbon material for a non-aqueous secondary battery according to any one of <1> to <4>.
<6> A negative electrode for a non-aqueous secondary battery comprising a current collector and an active material layer formed on the current collector, wherein the active material layer is any one of the items <1> to <5> A negative electrode for a non-aqueous secondary battery, comprising the carbon material for a non-aqueous secondary battery according to claim 1.
<7> A nonaqueous secondary battery comprising a positive electrode and a negative electrode, and an electrolyte, wherein the negative electrode is the negative electrode for a nonaqueous secondary battery according to <6>.
 本発明に係る非水系二次電池用炭素材を用いることにより、サイクル特性と初期容量が共に優れた非水系二次電池を提供することができる。 By using the carbon material for a non-aqueous secondary battery according to the present invention, a non-aqueous secondary battery excellent in both cycle characteristics and initial capacity can be provided.
図1は、天然黒鉛粒子(a)のSEM写真及び当該天然黒鉛粒子(a)の表面に有する凹凸における凹面の近似円の直径(D)を示した図である。FIG. 1 is a diagram showing an SEM photograph of natural graphite particles (a) and the diameter (D) of the approximate circle of the concave surface in the irregularities on the surface of the natural graphite particles (a). 図2は、Hgポロシメトリー測定による内部空隙量算出方法を示した解説図である。FIG. 2 is an explanatory view showing a method for calculating the amount of internal voids by Hg porosimetry measurement.
 以下、本発明の内容を詳細に述べる。なお、以下に記載する発明構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨をこえない限り、これらの形態に特定されるものではない。
 また、ここで“重量%”は“質量%”と、“重量部”は“質量部”と、それぞれ同義である。
Hereinafter, the contents of the present invention will be described in detail. The description of the invention constituent elements described below is an example (representative example) of an embodiment of the present invention, and the present invention is not limited to these forms unless it exceeds the gist.
Here, “wt%” is synonymous with “mass%” and “part by weight” is synonymous with “part by mass”.
 <天然黒鉛粒子(a)>
 本明細書において、天然黒鉛粒子(a)とはリチウムイオンを吸蔵・放出可能な天然黒鉛粒子(a)を表し、少なくとも内部空隙率が1%以上20%以下の条件を満たすものである。
(1)天然黒鉛粒子(a)の物性
 本発明における天然黒鉛粒子(a)は以下の物性を示すものが好ましい。
 (i)内部空隙率
 天然黒鉛粒子(a)の内部空隙率は1%以上、好ましくは3%以上、より好ましく5%以上、更に好ましくは7%以上である。また20%以下、好ましくは18%以下、より好ましくは15%以下、更に好ましくは12%以下である。この内部空隙率が小さすぎると粒子内の液量が少なくなり、充放電特性が悪化する傾向があり、内部空隙率が大きすぎると、電極にした場合に粒子間空隙が少なく、電解液の拡散が不十分になる傾向がある。
<Natural graphite particles (a)>
In this specification, the natural graphite particles (a) represent natural graphite particles (a) capable of occluding and releasing lithium ions, and satisfy the condition that at least the internal porosity is 1% or more and 20% or less.
(1) Physical properties of natural graphite particles (a) The natural graphite particles (a) in the present invention preferably exhibit the following physical properties.
(I) Internal porosity The internal porosity of the natural graphite particles (a) is 1% or more, preferably 3% or more, more preferably 5% or more, and further preferably 7% or more. Moreover, it is 20% or less, Preferably it is 18% or less, More preferably, it is 15% or less, More preferably, it is 12% or less. If the internal porosity is too small, the amount of liquid in the particles tends to decrease, and charge / discharge characteristics tend to deteriorate. If the internal porosity is too large, there are few interparticle voids in the case of an electrode, and the electrolyte diffuses. Tend to be insufficient.
 内部空隙率は、例えば、図2に示す様に、公知のHgポロシメトリー測定(水銀圧入法)により得られた細孔分布(積分曲線)(L)を元に傾きの最小値に対して接線(M)を引き、当該接線(M)と前記積分曲線(L)の分岐点(P)を求め、その分岐点よりも小さい細孔容積を粒子内細孔量(cm/g)(V)として定義する。得られた粒子内細孔量と黒鉛の真密度から内部空隙率を算出できる。算出に用いる黒鉛の真密度は、一般的な黒鉛の真密度である2.26g/cmを用いる。算出式を式1に示す。 For example, as shown in FIG. 2, the internal porosity is tangent to the minimum slope value based on the pore distribution (integral curve) (L) obtained by the known Hg porosimetry measurement (mercury intrusion method). (M) is subtracted to determine the branch point (P) of the tangent line (M) and the integral curve (L), and the pore volume smaller than the branch point is determined as the intra-particle pore volume (cm 3 / g) (V ). The internal porosity can be calculated from the amount of pores in the particles obtained and the true density of graphite. The true density of graphite used for calculation is 2.26 g / cm 3 , which is the true density of general graphite. The calculation formula is shown in Formula 1.
 式1
 内部空隙率(%)=[粒子内細孔量/{粒子内細孔量+(1/黒鉛の真密度)}]×100
Formula 1
Internal porosity (%) = [intraparticle pore volume / {intraparticle pore volume + (1 / true graphite density)}] × 100
 (ii)平均粒径(d50)に対する凹部分の直径(D)の比率(凹部分の直径(D)/d50)
 天然黒鉛粒子(a)は、力学的エネルギーを加えて表面を粗面化処理を施した(凹凸を形成した)黒鉛粒子を原料に用いることが内部空隙率を減らし、粒子の充填密度が高くなり、電極内で配向しにくくなる点から、さらに好ましい。
 天然黒鉛粒子(a)のSEM画像の表面の凹部分を円であると仮定して近似円の直径を(D)とした場合、天然黒鉛粒子(a)のd50に対する、天然黒鉛粒子(a)表面の凹部分の直径(D)の比率である(凹部分の直径(D)/d50)は通常0.15倍以上、7倍以下である。好ましくは0.2倍以上、より好ましくは0.3倍以上である。また上限は通常7倍以下のうち、好ましくは5倍以下、より好ましくは3倍以下である。
 (凹部分の直径(D)/d50)の比率が大きすぎると粒子が偏平になりやすくなり、電極にした際に電極と平行方向に配向しやすくなる傾向がある。また天然黒鉛粒子(a)の凹部分の(直径(D)/d50)の比率が小さすぎると、電極にした際に粒子同士の接触性が悪くなり、十分なサイクル特性が得られない傾向がある。
(Ii) Ratio of the diameter (D) of the concave portion to the average particle diameter (d50) (diameter of the concave portion (D) / d50)
For natural graphite particles (a), the use of graphite particles whose surface is roughened by applying mechanical energy (formed with irregularities) as a raw material reduces the internal porosity and increases the packing density of the particles. From the viewpoint that it is difficult to orient in the electrode.
Assuming that the concave portion of the surface of the SEM image of the natural graphite particles (a) is a circle and assuming that the diameter of the approximate circle is (D), the natural graphite particles (a) with respect to d50 of the natural graphite particles (a) The ratio of the diameter (D) of the concave portion on the surface (the diameter (D) / d50 of the concave portion) is usually 0.15 times or more and 7 times or less. Preferably it is 0.2 times or more, more preferably 0.3 times or more. Further, the upper limit is usually 7 times or less, preferably 5 times or less, more preferably 3 times or less.
If the ratio of (the diameter of the concave portion (D) / d50) is too large, the particles tend to be flat and tend to be oriented in a direction parallel to the electrode when formed into an electrode. Moreover, when the ratio of the (diameter (D) / d50) portion of the concave portion of the natural graphite particle (a) is too small, the contact property between the particles is deteriorated when the electrode is formed, and sufficient cycle characteristics tend not to be obtained. is there.
 天然黒鉛粒子(a)の凹部分の直径(D)はSEM画像を用いて算出する。
 SEM画像の測定方法は、例えば株式会社キーエンス社製のVE-7800を用い、加速電圧5kVで測定する。
 得られた天然黒鉛粒子(a)のSEM画像の表面の凹部分を円であると仮定して近似円を描き、その近似円の直径を天然黒鉛粒子(a)の凹部分の直径(D)とする。そして下記測定方法で測定した天然黒鉛粒子(a)のd50を用いて(凹部分の直径(D)/d50)を算出する。
 例として実施例1及び比較例3に用いた天然黒鉛粒子(a)のSEM画像と凹部分に近似した円を図1に示す。
The diameter (D) of the concave portion of the natural graphite particles (a) is calculated using an SEM image.
As a measuring method of the SEM image, for example, VE-7800 manufactured by Keyence Corporation is used, and measurement is performed at an acceleration voltage of 5 kV.
An approximate circle is drawn assuming that the concave portion of the surface of the obtained natural graphite particle (a) is a circle, and the diameter of the approximate circle is the diameter (D) of the concave portion of the natural graphite particle (a). And Then, using the d50 of the natural graphite particles (a) measured by the following measuring method, the diameter of the concave portion (D) / d50 is calculated.
As an example, an SEM image of the natural graphite particles (a) used in Example 1 and Comparative Example 3 and a circle approximating the concave portion are shown in FIG.
 凹部分の直径(D)は、通常0.1μm以上、好ましくは1μm以上、より好ましくは5μm以上、更に好ましくは10μm以上であり、通常100μm以下、好ましくは70μm以下、より好ましくは50μm以下、更に好ましくは30μm以下である。この直径(D)が大きすぎると凹凸形状が緩やかになることから偏平粒子になってしまい、電極にした際に電極に対して並行に配向してしまう傾向があり、一方、直径(D)が小さすぎると粒子間の接触性が悪くなる傾向がある。 The diameter (D) of the concave portion is usually 0.1 μm or more, preferably 1 μm or more, more preferably 5 μm or more, further preferably 10 μm or more, and usually 100 μm or less, preferably 70 μm or less, more preferably 50 μm or less, and further Preferably it is 30 micrometers or less. If this diameter (D) is too large, the uneven shape becomes gentle, so that it becomes flat particles, and when it is made into an electrode, it tends to be oriented parallel to the electrode, while the diameter (D) is If it is too small, the contact between the particles tends to deteriorate.
 平均粒径d50の測定方法は、まず、界面活性剤であるポリオキシエチレンソルビタンモノラウレート(例として、Tween20(登録商標))の0.2質量%水溶液10mLに、サンプル0.01gを懸濁させ、市販のレーザー回折/散乱式粒度分布測定装置「HORIBA製LA-920」に導入し、28kHzの超音波を出力60Wで1分間照射した後、測定装置における体積基準のメジアン径として測定したものを、d50とする。 The average particle size d50 is measured by first suspending 0.01 g of a sample in 10 mL of a 0.2 mass% aqueous solution of polyoxyethylene sorbitan monolaurate (for example, Tween 20 (registered trademark)) as a surfactant. And introduced into a commercially available laser diffraction / scattering particle size distribution measuring device “LA-920 manufactured by HORIBA”, irradiated with 28 kHz ultrasonic waves at an output of 60 W for 1 minute, and then measured as a volume-based median diameter in the measuring device Is d50.
 また、天然黒鉛粒子(a)の平均粒径(d50)は、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、通常40μm以下、好ましくは35μm以下、より好ましくは30μm以下である。平均粒径が小さすぎると、比表面積が大きくなり不可逆容量の増加を防ぎにくくなる傾向がある。また、平均粒径が大きすぎると、電解液と炭素質物複合粒子(b)との接触面積が減ることによる急速充放電性の低下を防ぎにくくなる。 The average particle diameter (d50) of the natural graphite particles (a) is usually 5 μm or more, preferably 10 μm or more, more preferably 15 μm or more, and usually 40 μm or less, preferably 35 μm or less, more preferably 30 μm or less. . If the average particle size is too small, the specific surface area tends to be large and it is difficult to prevent an increase in irreversible capacity. Moreover, when an average particle diameter is too large, it will become difficult to prevent the rapid charge / discharge property fall by the contact area of electrolyte solution and carbonaceous material composite particle (b) reducing.
 (iii)X線パラメータ
 天然黒鉛粒子(a)の学振法によるX線回折で求めた天然黒鉛粒子(a)のc軸方向の結晶子サイズ(Lc)、及びa軸方向の結晶子サイズ(La)は、30nm以上であることが好ましく、中でも100nm以上であることが更に好ましい。結晶子サイズがこの範囲であれば、天然黒鉛粒子(a)に充電可能なリチウム量が多くなり、高容量を得易いので好ましい。
(Iii) X-ray parameters The crystallite size (Lc) in the c-axis direction and the crystallite size in the a-axis direction of the natural graphite particles (a) determined by X-ray diffraction by the Gakushin method of natural graphite particles (a) La) is preferably 30 nm or more, and more preferably 100 nm or more. If the crystallite size is within this range, the amount of lithium that can be charged into the natural graphite particles (a) increases, and a high capacity is easily obtained, which is preferable.
 (iv)ラマンR値、ラマン半値幅
 天然黒鉛粒子(a)のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値であり、通常0.01以上、好ましくは0.03以上、更に好ましくは0.1以上であり、また、通常1.5以下であり、好ましくは1.2以下、更に好ましくは1以下、特に好ましくは0.5以下である。
(Iv) Raman R value, Raman half value width The Raman R value of the natural graphite particles (a) is a value measured by using an argon ion laser Raman spectrum method, and is usually 0.01 or more, preferably 0.03 or more. More preferably, it is 0.1 or more, usually 1.5 or less, preferably 1.2 or less, more preferably 1 or less, and particularly preferably 0.5 or less.
 ラマンR値が小さすぎると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiイオンが層間に入るサイトが少なくなる傾向がある。即ち、充電受入性が低下する場合がある。また、集電体に天然黒鉛粒子(a)を含む活物質層を塗布して得られた負極をプレスすることによって高密度化した場合に、電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。ラマンR値が0.1以上であると、負極表面に好適な被膜を形成し、これにより保存特性やサイクル特性、負荷特性を向上させることができ、より好ましい。
 一方、ラマンR値が大きすぎると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、充放電効率の低下やガス発生の増加を招く傾向がある。
When the Raman R value is too small, the crystallinity of the particle surface becomes too high, and there is a tendency that the number of sites where Li ions enter the interlayer is reduced with charge / discharge. That is, charge acceptance may be reduced. In addition, when densification is performed by pressing a negative electrode obtained by applying an active material layer containing natural graphite particles (a) to a current collector, crystals are easily oriented in a direction parallel to the electrode plate, The load characteristics may be degraded. A Raman R value of 0.1 or more is more preferable because a suitable film can be formed on the negative electrode surface, thereby improving storage characteristics, cycle characteristics, and load characteristics.
On the other hand, if the Raman R value is too large, the crystallinity of the particle surface is lowered, the reactivity with the non-aqueous electrolyte solution is increased, and the charge / discharge efficiency is decreased and the gas generation is increased.
 負極活物質の1580cm-1付近のピークのラマン半値幅は特に制限されないが、通常10cm-1以上、好ましくは15cm-1以上であり、また、通常100cm-1以下、好ましくは80cm-1以下、更に好ましくは60cm-1以下、特に好ましくは40cm-1以下である。
 ラマン半値幅が小さすぎると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiイオンが層間に入るサイトが少なくなる傾向がある。即ち、充電受入性が低下する場合がある。また、集電体に天然黒鉛粒子(a)を含む活物質層を塗布して得られた負極をプレスすることによって高密度化した場合に、電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く傾向がある。
 一方、ラマン半値幅が大きすぎると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、充放電効率の低下やガス発生の増加を招く傾向がある。
The Raman half width of the peak in the vicinity of 1580 cm −1 of the negative electrode active material is not particularly limited, but is usually 10 cm −1 or more, preferably 15 cm −1 or more, and is usually 100 cm −1 or less, preferably 80 cm −1 or less. More preferably, it is 60 cm −1 or less, particularly preferably 40 cm −1 or less.
When the Raman half-width is too small, the crystallinity of the particle surface becomes too high, and there is a tendency that the number of sites where Li ions enter the interlayer is reduced with charge / discharge. That is, charge acceptance may be reduced. In addition, when densification is performed by pressing a negative electrode obtained by applying an active material layer containing natural graphite particles (a) to a current collector, crystals are easily oriented in a direction parallel to the electrode plate, There is a tendency for load characteristics to deteriorate.
On the other hand, if the Raman half width is too large, the crystallinity of the particle surface decreases, the reactivity with the non-aqueous electrolyte increases, and the charge / discharge efficiency tends to decrease and gas generation increases.
 ラマンスペクトルの測定は、ラマン分光器(例えば、日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。
 得られるラマンスペクトルについて、1580cm-1付近のピークPの強度Iと、1360cm-1付近のピークPの強度Iとを測定し、その強度比R(R=I/I)を算出する。当該測定で算出されるラマンR値を、本発明の負極活物質のラマンR値と定義する。また、得られるラマンスペクトルの1580cm-1付近のピークPの半値幅を測定し、これを本発明の負極活物質のラマン半値幅と定義する。
The Raman spectrum is measured by using a Raman spectrometer (for example, a Raman spectrometer manufactured by JASCO Corporation) to drop the sample naturally into the measurement cell, filling it, and irradiating the sample surface in the cell with argon ion laser light. However, the cell is rotated in a plane perpendicular to the laser beam.
The resulting Raman spectrum, the intensity I A of the peak P A in the vicinity of 1580 cm -1, and measuring the intensity I B of a peak P B in the vicinity of 1360 cm -1, the intensity ratio R (R = I B / I A) Is calculated. The Raman R value calculated by the measurement is defined as the Raman R value of the negative electrode active material of the present invention. Further, the half width of the peak P A in the vicinity of 1580 cm -1 of the resulting Raman spectrum was measured, which is defined as the Raman half-value width of the negative electrode active material of the present invention.
 上記のラマンスペクトルの測定条件は、次の通りである。
・アルゴンイオンレーザー波長  :514.5nm
・試料上のレーザーパワー    :15~25mW
・分解能            :10~20cm-1
・測定範囲           :1100cm-1~1730cm-1
・ラマンR値、ラマン半値幅解析 :バックグラウンド処理・スムージング処理(単純平均、コンボリューション5ポイント)
The measurement conditions of the above Raman spectrum are as follows.
Argon ion laser wavelength: 514.5nm
・ Laser power on the sample: 15-25mW
・ Resolution: 10-20cm -1
Measurement range: 1100 cm −1 to 1730 cm −1
・ Raman R value, Raman half-width analysis: Background processing ・ Smoothing processing (simple average, 5 points of convolution)
 (v)BET比表面積
 天然黒鉛粒子(a)のBET比表面積(SA)は、BET法を用いて測定した比表面積の値であり、通常0.1m・g-1以上、好ましくは0.7m・g-1以上、更に好ましくは1.0m・g-1以上、特に好ましくは1.5m・g-1以上であり、また、通常20m・g-1以下、好ましくは17m・g-1以下、更に好ましくは14m・g-1以下、特に好ましくは10m・g-1以下である。
(V) BET specific surface area The BET specific surface area (SA) of the natural graphite particles (a) is a value of the specific surface area measured using the BET method, and is usually 0.1 m 2 · g −1 or more, preferably 0.8. 7 m 2 · g −1 or more, more preferably 1.0 m 2 · g −1 or more, particularly preferably 1.5 m 2 · g −1 or more, and usually 20 m 2 · g −1 or less, preferably 17 m. 2 · g −1 or less, more preferably 14 m 2 · g −1 or less, particularly preferably 10 m 2 · g −1 or less.
 BET比表面積の値が小さすぎると、充電時にリチウムイオンの受け入れ性が悪くなりやすく、リチウムが電極表面で析出しやすくなり、安定性が低下する傾向がある。一方、BET比表面積の値が大きすぎると、非水系電解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい傾向がある。
 BET法による比表面積の測定は、例えば表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。当該測定で求められる比表面積を、本発明の天然黒鉛粒子(a)のBET比表面積と定義する。
If the value of the BET specific surface area is too small, the acceptability of lithium ions tends to deteriorate during charging, lithium tends to precipitate on the electrode surface, and the stability tends to decrease. On the other hand, if the value of the BET specific surface area is too large, the reactivity with the non-aqueous electrolyte increases, gas generation tends to increase, and a preferable battery tends to be difficult to obtain.
The specific surface area is measured by the BET method using, for example, a surface area meter (a fully automated surface area measuring device manufactured by Okura Riken), preliminarily drying the sample at 350 ° C. for 15 minutes under a nitrogen flow, and then measuring nitrogen against atmospheric pressure. A nitrogen adsorption BET one-point method using a gas flow method is performed using a nitrogen-helium mixed gas that is accurately adjusted so that the relative pressure value of the gas becomes 0.3. The specific surface area obtained by the measurement is defined as the BET specific surface area of the natural graphite particles (a) of the present invention.
 (vi)タップ密度
 天然黒鉛粒子(a)のタップ密度は、通常0.1g・cm-3以上、好ましくは0.5g・cm-3以上、更に好ましくは0.7g・cm-3以上、特に好ましくは0.8g・cm-3以上であり、また、通常2g・cm-3以下、好ましくは1.8g・cm-3以下、更に好ましくは1.6g・cm-3以下である。
 タップ密度が小さすぎると、負極とした場合に充填密度が上がり難く、高容量の電池を得にくくなる傾向がある。また、タップ密度が大きすぎると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい傾向がある。
(Vi) Tap density The tap density of the natural graphite particles (a) is usually 0.1 g · cm −3 or more, preferably 0.5 g · cm −3 or more, more preferably 0.7 g · cm −3 or more, particularly Preferably, it is 0.8 g · cm −3 or more, usually 2 g · cm −3 or less, preferably 1.8 g · cm −3 or less, more preferably 1.6 g · cm −3 or less.
If the tap density is too small, it is difficult to increase the packing density when the negative electrode is used, and it is difficult to obtain a high-capacity battery. On the other hand, if the tap density is too high, there are too few voids between the particles in the electrode, and it is difficult to ensure conductivity between the particles, and it is difficult to obtain preferable battery characteristics.
 タップ密度の測定は、目開き300μmの篩を通過させて、例えば20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。該測定で算出されるタップ密度を、本発明の天然黒鉛粒子(a)のタップ密度として定義する。 The tap density is measured by passing the sample through a sieve having a mesh size of 300 μm, dropping the sample onto a tapping cell of, for example, 20 cm 3 and filling the sample to the upper end surface of the cell, and then measuring a powder density measuring instrument (for example, Seishin Enterprise Co., Ltd.). The tap density is calculated from the volume at that time and the mass of the sample. The tap density calculated by the measurement is defined as the tap density of the natural graphite particles (a) of the present invention.
 (vii)配向比
 天然黒鉛粒子(a)の粉体の配向比は、通常0.005以上、好ましくは0.01以上、更に好ましくは0.015以上であり、また、通常0.6以下、好ましくは0.5以下、より好ましくは0.4以下である。配向比が上記範囲を下回ると、高速充放電特性が低下する傾向が見られる場合がある。なお、上記範囲の通常の上限である0.6とは、炭素質材料の配向比の理論上限値である。
(Vii) Orientation ratio The orientation ratio of the natural graphite particles (a) is usually 0.005 or more, preferably 0.01 or more, more preferably 0.015 or more, and usually 0.6 or less. Preferably it is 0.5 or less, more preferably 0.4 or less. When the orientation ratio is below the above range, the high-speed charge / discharge characteristics may tend to be reduced. In addition, 0.6 which is the normal upper limit of the said range is a theoretical upper limit of the orientation ratio of a carbonaceous material.
 配向比は、試料を加圧成型してからX線回折測定により測定する。例えば、試料0.47gを直径17mmの成型機に充填し58.8MN・m-2、荷重600kgで圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、{(110)回折ピーク強度/(004)回折ピーク強度}で表わされる比を算出する。当該測定で算出される配向比を、本発明の天然黒鉛粒子(a)の配向比と定義する。 The orientation ratio is measured by X-ray diffraction measurement after pressure-molding the sample. For example, a molded body obtained by filling 0.47 g of a sample into a molding machine having a diameter of 17 mm and compressing it with 58.8 MN · m −2 and a load of 600 kg becomes the same surface as the surface of the measurement sample holder using clay. Then, the X-ray diffraction is measured. From the (110) diffraction and (004) diffraction peak intensities of the obtained carbon, a ratio represented by {(110) diffraction peak intensity / (004) diffraction peak intensity} is calculated. The orientation ratio calculated by the measurement is defined as the orientation ratio of the natural graphite particles (a) of the present invention.
 X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :発散スリット=0.5度
       受光スリット=0.15mm
       散乱スリット=0.5度
・測定範囲、ステップ角度及び計測時間:
  (110)面;75度≦2θ≦80度,1度/60秒
  (004)面;52度≦2θ≦57度,1度/60秒
The X-ray diffraction measurement conditions are as follows. “2θ” indicates a diffraction angle.
・ Target: Cu (Kα ray) graphite monochromator ・ Slit: Divergent slit = 0.5 degree Light receiving slit = 0.15 mm
Scattering slit = 0.5 degrees ・ Measurement range, step angle and measurement time:
(110) plane: 75 degrees ≦ 2θ ≦ 80 degrees, 1 degree / 60 seconds (004) plane; 52 degrees ≦ 2θ ≦ 57 degrees, 1 degree / 60 seconds
 (2)天然黒鉛粒子(a)の形状
 本発明における天然黒鉛粒子(a)は図1に示すように表面に凹凸を有していることが好ましい。当該凹凸のうち凸部分とは、球形化黒鉛の丸みをそのまま維持した部分のことであり、凹部分とは、加圧処理、好ましくは等方的に加圧したCIP処理により他の黒鉛粒子によって圧縮された部分のことを意味する。
(2) Shape of natural graphite particles (a) The natural graphite particles (a) in the present invention preferably have irregularities on the surface as shown in FIG. Of the irregularities, the convex portion is a portion that maintains the roundness of the spheroidized graphite as it is, and the concave portion is a pressure treatment, preferably by other graphite particles by an isotropically pressurized CIP treatment. It means the compressed part.
 (3)天然黒鉛粒子(a)の製造方法
 本発明の天然黒鉛粒子(a)の製造方法は、上述した物性を満たせば特に制限はない。以下に好ましい製造方法の一例を記載する。
 例えば、天然黒鉛粒子(a)のは、原料天然黒鉛粒子を加圧により成型する工程(加圧処理)を行うことが好ましい。
(3) Manufacturing method of natural graphite particle (a) The manufacturing method of the natural graphite particle (a) of the present invention is not particularly limited as long as the physical properties described above are satisfied. An example of a preferable production method is described below.
For example, the natural graphite particles (a) are preferably subjected to a step (pressure treatment) for molding the raw natural graphite particles under pressure.
・天然黒鉛粒子(a)及び原料となる天然黒鉛粒子の種類
 天然黒鉛は、商業的にも容易に入手可能であり、理論上372mAh/gの高い充放電容量を有することができ、さらに他の負極活物質を用いた場合よりも高電流密度での充放電特性の改善効果が著しく大きいために好ましい。
Natural graphite particles (a) and types of raw natural graphite particles Natural graphite is easily available commercially, and can theoretically have a high charge / discharge capacity of 372 mAh / g. This is preferable because the effect of improving charge / discharge characteristics at a high current density is remarkably greater than when a negative electrode active material is used.
 天然黒鉛としては、不純物の少ないものが好ましく、必要に応じて種々の精製処理を施して用いる。また、黒鉛化度の大きいものが好ましく、具体的には、X線広角回折法による(002)面の面間隔(d002)が、3.37Å(0.337nm)未満のものが好ましい。
 天然黒鉛としては、例えば、高純度化した鱗片状黒鉛や球形化した黒鉛を用いることができる。中でも、粒子の充填性や充放電レート特性の観点から、球形化処理を施した球状黒鉛が特に好ましい。
Natural graphite is preferably one having few impurities, and is subjected to various purification treatments as necessary. Further, those having a high degree of graphitization are preferred, and specifically, those having a (002) plane spacing (d 002 ) of less than 3.37 mm (0.337 nm) by X-ray wide angle diffraction method are preferred.
As natural graphite, for example, highly purified flaky graphite or spheroidized graphite can be used. Among these, spherical graphite subjected to spheroidizing treatment is particularly preferable from the viewpoint of particle filling properties and charge / discharge rate characteristics.
 球形化処理に用いる装置としては、例えば、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に与える装置を用いることができる。
 具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置が好ましい。また、炭素材を循環させることによって機械的作用を繰り返して与える機構を有するものであるのが好ましい。
 好ましい装置として、例えば、ハイブリダイゼーションシステム(奈良機械製作所社製)、クリプトロン(アーステクニカ社製)、CFミル(宇部興産社製)、メカノフュージョンシステム(ホソカワミクロン社製)、シータコンポーザ(徳寿工作所社製)等が挙げられる。これらの中で、奈良機械製作所社製のハイブリダイゼーションシステムが好ましい。
As an apparatus used for the spheroidization treatment, for example, an apparatus that repeatedly gives mechanical action such as compression, friction, shearing force, etc. including the interaction of particles mainly with impact force to the particles can be used.
Specifically, it has a rotor with a large number of blades installed inside the casing, and mechanical action such as impact compression, friction, shearing force, etc. on the carbon material introduced inside the rotor by rotating at high speed. An apparatus that provides a surface treatment is preferable. Moreover, it is preferable to have a mechanism that repeatedly gives mechanical action by circulating the carbon material.
Preferable apparatuses include, for example, a hybridization system (manufactured by Nara Machinery Co., Ltd.), kryptron (manufactured by Earth Technica), CF mill (manufactured by Ube Industries), mechano-fusion system (manufactured by Hosokawa Micron), and theta composer (Tokuju Kosakusho). Etc.). Among these, a hybridization system manufactured by Nara Machinery Co., Ltd. is preferable.
 例えば前述の装置を用いて処理する場合は、回転するローターの周速度を30~100m/秒にすることが好ましく、40~100m/秒にすることがより好ましく、50~100m/秒にすることが更に好ましい。また、球形化処理は炭素質物を単に装置内を通過させるだけでも可能であるが、30秒以上装置内を循環又は滞留させて処理することが好ましく、1分以上装置内を循環又は滞留させて処理することがより好ましい。 For example, when processing using the above-mentioned apparatus, the peripheral speed of the rotating rotor is preferably 30 to 100 m / sec, more preferably 40 to 100 m / sec, and more preferably 50 to 100 m / sec. Is more preferable. The spheroidizing treatment can be performed by simply passing the carbonaceous material through the apparatus, but it is preferable to circulate or stay in the apparatus for 30 seconds or more, and circulate or stay in the apparatus for 1 minute or more. More preferably, it is processed.
・原料天然黒鉛粒子を加圧により成型する工程(加圧処理)
 本工程では、原料天然黒鉛粒子を加圧して成型する。好ましくは、等方的に加圧処理(CIP)する。なお、原料天然黒鉛粒子を等方的に加圧する処理することは、黒鉛粒子表面に凹凸を形成させて均一に粒子内空隙を減らすことで、所定の内部空隙率となるため好ましい。
・ Process to form raw natural graphite particles by pressure (pressure treatment)
In this step, the raw natural graphite particles are pressed and molded. Preferably, isotropic pressure treatment (CIP) is performed. In addition, it is preferable to perform isotropic pressing of the raw natural graphite particles because a predetermined internal porosity is obtained by forming irregularities on the surface of the graphite particles and uniformly reducing the interparticle voids.
 加圧処理によって成型する方法は、特に限定されず、静水圧プレス機、ロールコンパクター、ロールプレス、プリケット機、及びタブレット機により、等方的に加圧処理することが好ましい。
 また、必要があればロールに彫り込まれたパターンどおりに、黒鉛粒子を加圧と同時に成型することも可能である。また、黒鉛粒子間に存在する空気を排気し、真空プレスする方法も適用できる。
The method of molding by pressure treatment is not particularly limited, and isotropic pressure treatment is preferably performed with a hydrostatic pressure press, a roll compactor, a roll press, a pricket machine, and a tablet machine.
Further, if necessary, the graphite particles can be molded simultaneously with the press according to the pattern carved in the roll. Moreover, the method of exhausting the air which exists between graphite particles and vacuum-pressing can also be applied.
 原料天然黒鉛粒子を加圧する圧力は、特に限定されるものではないが、通常50kgf/cm以上、好ましくは100kgf/cm、より好ましくは300kgf/cm以上、更に好ましくは500kgf/cm以上、特に好ましくは700kgf/cm以上である。また、加圧処理の上限は特に限定されないが、通常2000kgf/cm以下、好ましくは1800kgf/cm以下、より好ましくは1600kgf/cm以下、更に好ましくは1500kgf/cm以下である。
 圧力が低すぎると、粒子内空隙量の減少、及び粒子表面における凹凸の形成が不十分になる傾向があり、圧力が高すぎると粉砕時に余計な力が必要となるため粒子が破壊され本来の特性を十分に発揮できなくなる傾向がある。
The pressure for pressurizing the feed natural graphite particles is not particularly limited, usually 50 kgf / cm 2 or higher, preferably 100 kgf / cm 2, more preferably 300 kgf / cm 2 or more, more preferably 500 kgf / cm 2 or more Particularly preferably, it is 700 kgf / cm 2 or more. The upper limit of the pressure treatment is not particularly limited, but is usually 2000 kgf / cm 2 or less, preferably 1800 kgf / cm 2 or less, more preferably 1600 kgf / cm 2 or less, and further preferably 1500 kgf / cm 2 or less.
If the pressure is too low, the amount of voids in the particles and the formation of irregularities on the particle surface tend to be insufficient, and if the pressure is too high, extra force is required at the time of pulverization and the particles are destroyed. There is a tendency that the characteristics cannot be fully exhibited.
 加圧する時間は、通常1分以上、好ましくは2分以上、より好ましくは3分以上、さらに好ましくは4分以上である。また、通常30分以下、好ましくは25分以下、より好ましくは20分以下、更に好ましくは15分以下である。時間が長すぎると、生産性が著しく低下してしまう傾向があり、時間が短すぎると十分に処理が施されない傾向がある。
 必要に応じて、加圧処理された天然黒鉛を解砕する工程を行ってもよい。その形状は任意であるが、通常は平均粒径(d50)が2~50μmの粒状とする。平均粒径が5~35μm、特に8~30μmとなるように粉砕・分級することが好ましい。
The pressurizing time is usually 1 minute or longer, preferably 2 minutes or longer, more preferably 3 minutes or longer, and further preferably 4 minutes or longer. Moreover, it is normally 30 minutes or less, Preferably it is 25 minutes or less, More preferably, it is 20 minutes or less, More preferably, it is 15 minutes or less. When the time is too long, the productivity tends to be remarkably lowered, and when the time is too short, the treatment is not sufficiently performed.
If necessary, a step of crushing the pressure-treated natural graphite may be performed. The shape is arbitrary, but is usually granular with an average particle size (d50) of 2 to 50 μm. It is preferable to grind and classify so that the average particle size is 5 to 35 μm, particularly 8 to 30 μm.
 <炭素質物複合粒子(b)>
 炭素質物複合粒子(b)は、炭素質物が複合化されているものであれば、特に制限はなく下記に記載の物性を満足すれば特に制限はない。
 (1)炭素質物複合粒子(b)の物性
 炭素質物複合粒子(b)の物性の測定方法は、特に制限がなければ天然黒鉛粒子(a)に記載の方法に準じるものとする。
<Carbonaceous composite particles (b)>
The carbonaceous material composite particles (b) are not particularly limited as long as the carbonaceous material is composited, and are not particularly limited as long as the physical properties described below are satisfied.
(1) Physical properties of carbonaceous material composite particles (b) The physical properties of carbonaceous material composite particles (b) are measured according to the methods described in natural graphite particles (a) unless otherwise specified.
 (i)DBP(フタル酸ジブチル)吸油量
 本発明の炭素質物複合粒子(b)のフタル酸ジブチル吸油量(以下「DBP吸油量」と称する。)は、通常0.31mL/g以上0.85mL/g以下であり、好ましくは0.42mL/g以上、より好ましくは0.45mL/g以上、更に好ましくは0.50mL/g以上、また上限は通常0.85mL/g以下に対して、好ましくは0.80mL/g以下、更に好ましくは0.76mL/g以下である。
 DBP吸油量がこの範囲よりも小さすぎると、非水系電解液の浸入可能な空隙が少なくなる為、急速充放電をさせた時にリチウムイオンの挿入脱離が間に合わなくなり、それに伴いリチウム金属が析出しサイクル特性が悪化する傾向がある。一方、この範囲よりも大きすぎると、極板作製時にバインダーが空隙に吸収され易くなり、それに伴い極板強度の低下や初期効率の低下を招く傾向がある。
(I) DBP (dibutyl phthalate) oil absorption amount The carbonaceous material composite particles (b) of the present invention generally have a dibutyl phthalate oil absorption amount (hereinafter referred to as “DBP oil absorption amount”) of 0.31 mL / g or more and 0.85 mL. / G or less, preferably 0.42 mL / g or more, more preferably 0.45 mL / g or more, still more preferably 0.50 mL / g or more, and the upper limit is preferably 0.85 mL / g or less. Is 0.80 mL / g or less, more preferably 0.76 mL / g or less.
If the DBP oil absorption is less than this range, there will be less voids that can be infiltrated by the non-aqueous electrolyte solution, so lithium ion insertion / desorption will not be in time when rapid charge / discharge is performed, and lithium metal will be deposited accordingly. Cycle characteristics tend to deteriorate. On the other hand, if it is larger than this range, the binder is likely to be absorbed into the gap during electrode plate production, and accordingly, the electrode plate strength and initial efficiency tend to be reduced.
 なお、DBP吸油量の測定は、測定材料を用いて以下の手順で行なうことができる。
 DBP吸油量の測定はJIS K6217規格の粘度に準拠し、測定材料を40g投入し、滴下速度4ml/min、回転数125rpmとし、トルクの最大値が確認されるまで測定を実施し、測定開始から最大トルクを示す間の範囲で、最大トルクの70%のトルクを示した時の滴下油量から算出された値によって定義される。
In addition, the measurement of DBP oil absorption amount can be performed in the following procedures using a measurement material.
The measurement of DBP oil absorption is based on the viscosity of JIS K6217 standard, 40 g of measurement material is added, the dropping speed is 4 ml / min, the rotation speed is 125 rpm, and the measurement is performed until the maximum value of torque is confirmed. It is defined by a value calculated from the amount of dropped oil when a torque of 70% of the maximum torque is shown in a range in which the maximum torque is shown.
 (ii)BET比表面積
 本発明の炭素質物複合粒子(b)の比表面積は、BET法を用いて測定した比表面積の値であり、通常0.5m・g-1以上6.5m・g-1以下であり、好ましくは1.0m・g-1以上、更に好ましくは1.3m・g-1以上、特に好ましくは1.5m・g-1以上であり、また、通常6.5m・g-1以下に対して、好ましくは6.0m・g-1以下、更に好ましくは5.5m・g-1以下、特に好ましくは5.0m・g-1以下である。
 比表面積の値がこの範囲を下回ると、負極材料として用いた場合の充電時にリチウムイオンの受け入れ性が悪くなりやすく、リチウム金属が電極表面で析出しやすくなり、サイクル特性が悪化する傾向がある。一方、この範囲を上回ると、負極材料として用いた時に非水系電解液との反応性が増加し、初期充放電効率が低下しやすく、好ましい電池が得られ難い。
(Ii) BET specific surface area The specific surface area of the carbonaceous material composite particles (b) of the present invention is a value of the specific surface area measured using the BET method, and is usually 0.5 m 2 · g −1 or more and 6.5 m 2. g -1 or less, preferably 1.0 m 2 · g -1 or more, more preferably 1.3 m 2 · g -1 or more, particularly preferably 1.5 m 2 · g -1 or more, and usually 6.5m against 2 · g -1 or less, preferably 6.0 m 2 · g -1 or less, more preferably 5.5 m 2 · g -1 or less, particularly preferably 5.0 m 2 · g -1 or less It is.
When the value of the specific surface area is less than this range, the lithium ion acceptability tends to deteriorate during charging when used as a negative electrode material, lithium metal tends to precipitate on the electrode surface, and the cycle characteristics tend to deteriorate. On the other hand, if it exceeds this range, when used as a negative electrode material, the reactivity with the non-aqueous electrolyte increases, the initial charge / discharge efficiency tends to decrease, and a preferable battery is difficult to obtain.
 (iii)ラマンR値、ラマン半値幅
 本発明の炭素質物複合粒子(b)からなる粒子のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値であり、通常0.03以上0.19以下であり、好ましくは0.05以上、更に好ましくは0.07以上であり、また、通常0.19以下に対して、好ましくは0.18以下、更に好ましくは0.16以下、特に好ましくは0.14以下である。
(Iii) Raman R value, Raman half-value width The Raman R value of the particles composed of the carbonaceous material composite particle (b) of the present invention is a value measured using an argon ion laser Raman spectrum method, and is usually 0.03 or more and 0. .19 or less, preferably 0.05 or more, more preferably 0.07 or more, and usually 0.19 or less, preferably 0.18 or less, more preferably 0.16 or less, particularly Preferably it is 0.14 or less.
 ラマンR値が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってリチウムイオンが層間に入るサイトが少なくなる場合がある。即ち、充電受入性が低下しサイクル特性が悪化する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、初期効率の低下やガス発生の増加を招く場合がある。 When the Raman R value is lower than the above range, the crystallinity of the particle surface becomes too high, and there are cases where the number of sites where lithium ions enter between the layers becomes smaller along with charge / discharge. That is, the charge acceptance may be reduced and the cycle characteristics may be deteriorated. In addition, when the negative electrode is densified by applying it to the current collector and then pressing it, the crystals are likely to be oriented in a direction parallel to the electrode plate, which may lead to a decrease in load characteristics. On the other hand, when the above range is exceeded, the crystallinity of the particle surface is lowered, the reactivity with the non-aqueous electrolyte is increased, and the initial efficiency may be lowered and the gas generation may be increased.
 (iv)表面官能基量O/C
 本発明の炭素質物複合粒子(b)の表面官能基量O/Cは、下記式2で表されるO/Cの値が通常0.1%以上、好ましくは0.2%以上、更に好ましくは0.3%以上、特に好ましくは0.5以上であり、通常2.2%以下、好ましくは2.0%以下、更に好ましくは1.8%以下である。表面官能基量O/Cが小さすぎると、電解液との反応性に乏しく、安定なSEI形成ができずにサイクル特性が悪化する虞がある。一方、表面官能基量O/Cが大きすぎると、粒子表面の結晶が乱れ、電解液との反応性が増し、不可逆容量の増加やガス発生の増加を招く虞がある。
(Iv) Surface functional group amount O / C
As for the surface functional group amount O / C of the carbonaceous material composite particles (b) of the present invention, the value of O / C represented by the following formula 2 is usually 0.1% or more, preferably 0.2% or more, more preferably Is 0.3% or more, particularly preferably 0.5 or more, and is usually 2.2% or less, preferably 2.0% or less, and more preferably 1.8% or less. If the surface functional group amount O / C is too small, the reactivity with the electrolytic solution is poor, and stable SEI formation cannot be performed, and the cycle characteristics may be deteriorated. On the other hand, if the surface functional group amount O / C is too large, the crystal on the particle surface is disturbed, the reactivity with the electrolytic solution is increased, and there is a risk of increasing the irreversible capacity and increasing gas generation.
 式2
 O/C(%)={X線光電子分光法(XPS)分析におけるO1sのスペクトルのピーク面積に基づいて求めたO原子濃度/XPS分析におけるC1sのスペクトルのピーク面積に基づいて求めたC原子濃度}×100
Formula 2
O / C (%) = {O atom concentration determined based on the peak area of the O1s spectrum in X-ray photoelectron spectroscopy (XPS) analysis / C atom concentration determined based on the peak area of the C1s spectrum in XPS analysis } × 100
 本発明における表面官能基量O/CはX線光電子分光法(XPS)を用いて測定することができる。
 表面官能基量O/Cは、X線光電子分光法測定としてX線光電子分光器を用い、測定対象を表面が平坦になるように試料台に載せ、アルミニウムのKα線をX線源とし、マルチプレックス測定により、C1s(280~300eV)とO1s(525~545eV)のスペクトルを測定する。得られたC1sのピークトップを284.3eVとして帯電補正し、C1sとO1sのスペクトルのピーク面積を求め、更に装置感度係数を掛けて、CとOの表面原子濃度をそれぞれ算出する。得られたOとCの原子濃度比O/C(O原子濃度/C原子濃度)を負極材の表面官能基量O/Cと定義する。
The surface functional group amount O / C in the present invention can be measured using X-ray photoelectron spectroscopy (XPS).
The surface functional group amount O / C is measured by using an X-ray photoelectron spectrometer as an X-ray photoelectron spectroscopy measurement, placing the object to be measured on a sample stage so that the surface is flat, and using Kα rays of aluminum as an X-ray source. The spectra of C1s (280 to 300 eV) and O1s (525 to 545 eV) are measured by plex measurement. The obtained C1s peak top is corrected to be 284.3 eV, the peak areas of the C1s and O1s spectra are obtained, and the device sensitivity coefficient is multiplied to calculate the surface atomic concentrations of C and O, respectively. The obtained O / C atomic concentration ratio O / C (O atomic concentration / C atomic concentration) is defined as the surface functional group amount O / C of the negative electrode material.
 (v)タップ密度
 本発明の炭素質物複合粒子(b)のタップ密度は、通常0.7g・cm-3以上、好ましくは0.8g・cm-3以上、更に好ましくは0.9g・cm-3以上であり、また、通常1.25g・cm-3以下、好ましくは1.2g・cm-3以下、更に好ましくは1.18g・cm-3以下、特に好ましくは1.15g・cm-3以下である。
 中でも0.7g・cm-3以上1.2g・cm-3以下であることが好ましい。
 タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。
(V) Tap density The tap density of the carbonaceous material composite particles (b) of the present invention is usually 0.7 g · cm −3 or more, preferably 0.8 g · cm −3 or more, more preferably 0.9 g · cm −. 3 or more, usually 1.25 g · cm −3 or less, preferably 1.2 g · cm −3 or less, more preferably 1.18 g · cm −3 or less, particularly preferably 1.15 g · cm −3. It is as follows.
In particular, it is preferably 0.7 g · cm −3 or more and 1.2 g · cm −3 or less.
When the tap density is below the above range, the packing density is difficult to increase when used as a negative electrode, and a high-capacity battery may not be obtained. On the other hand, when the above range is exceeded, there are too few voids between particles in the electrode, it is difficult to ensure conductivity between the particles, and it may be difficult to obtain preferable battery characteristics.
 (vi)平均粒径d50
 本発明の炭素質物複合粒子(b)の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径d50(メジアン径)が、通常1μm以上、好ましくは3μm以上、更に好ましくは5μm以上、特に好ましくは7μm以上であり、また、通常100μm以下、好ましくは50μm以下、更に好ましくは40μm以下、特に好ましくは30μm以下である。
 平均粒径d50が小さすぎると、不可逆容量が増大して、初期の電池容量の損失を招くことになる場合がある。また、大きすぎると、塗布により電極を作製する際に、不均一な塗面になりやすく、電池作製工程上、望ましくない場合がある。
(Vi) Average particle diameter d50
The volume-based average particle diameter of the carbonaceous material composite particles (b) of the present invention is such that the volume-based average particle diameter d50 (median diameter) determined by the laser diffraction / scattering method is usually 1 μm or more, preferably 3 μm or more, more preferably. Is 5 μm or more, particularly preferably 7 μm or more, and is usually 100 μm or less, preferably 50 μm or less, more preferably 40 μm or less, particularly preferably 30 μm or less.
If the average particle size d50 is too small, the irreversible capacity may increase, leading to loss of initial battery capacity. On the other hand, if it is too large, it tends to be a non-uniform coating surface when an electrode is produced by coating, which may be undesirable in the battery production process.
 (vii)X線パラメータ
 本発明の炭素質物複合粒子(b)の学振法によるX線回折で求めた炭素質材料のc軸方向の結晶子サイズ(Lc)、及びa軸方向の結晶子サイズ(La)は、30nm以上であることが好ましく、中でも100nm以上であることが更に好ましい。結晶子サイズがこの範囲であれば、負極材に充電可能なリチウム量が多くなり、高容量を得易いので好ましい。
(Vii) X-ray parameter The crystallite size (Lc) in the c-axis direction and the crystallite size in the a-axis direction of the carbonaceous material obtained by X-ray diffraction of the carbonaceous material composite particles (b) of the present invention by the Gakushin method. (La) is preferably 30 nm or more, and more preferably 100 nm or more. If the crystallite size is in this range, the amount of lithium that can be charged in the negative electrode material is increased, and a high capacity is easily obtained, which is preferable.
 (viii)配向比
 本発明の炭素質物複合粒子(b)の粉体の配向比は、通常0.005以上、好ましくは0.01以上、更に好ましくは0.015以上であり、また、通常0.67以下、好ましくは0.5以下、より好ましくは0.4以下である。
 配向比が上記範囲を下回ると、高密度充放電特性が低下する傾向が見られる場合がある。なお、上記範囲の通常の上限は、炭素質材料の配向比の理論上限値である。
(Viii) Orientation ratio The orientation ratio of the carbonaceous material composite particles (b) of the present invention is usually 0.005 or more, preferably 0.01 or more, more preferably 0.015 or more, and usually 0. .67 or less, preferably 0.5 or less, more preferably 0.4 or less.
When the orientation ratio is below the above range, the high-density charge / discharge characteristics tend to be reduced. In addition, the normal upper limit of the said range is a theoretical upper limit of the orientation ratio of a carbonaceous material.
 (2)炭素質物複合粒子(b)の形態及び構造
 本発明の炭素質物複合粒子(b)からなる粒子の形態は、特に限定はされないが、球状、楕円状、塊状、板状、多角形状などが挙げられ、中でも球状、楕円状、塊状、多角形状が負極とした時に粒子の充填性を向上することができるので好ましい。
(2) Form and structure of carbonaceous material composite particles (b) The form of the particles composed of the carbonaceous material composite particles (b) of the present invention is not particularly limited, but may be spherical, elliptical, massive, plate-like, polygonal, etc. Among them, a spherical shape, an elliptical shape, a lump shape, and a polygonal shape are preferable because the particle filling property can be improved when the negative electrode is used.
 また、炭素質物複合粒子(b)は上述した物性を満たし、炭素質物が複合化されていれば特に制限はないが、具体的には炭素層を備える黒鉛粒子が挙げられる。
 黒鉛粒子は、例えば鱗片状、塊状又は板状の天然に産出される黒鉛、並びに石油コークス、石炭ピッチコークス、石炭ニードルコークス及びメソフェーズピッチ等を2500℃以上に加熱して製造した人造黒鉛に、球形化処理を与えることで粒子状に形成された球形化黒鉛粒子を用いることができる。これらの中でも、球形化天然黒鉛が特に好ましい。
 また炭素層は、非晶質炭素又は黒鉛からなるものが挙げられる。炭素層を備える黒鉛粒子の形態としては、炭素質物が被覆されている黒鉛(炭素質物被覆黒鉛)の構造であることが好ましく、非晶質炭素が被覆された黒鉛粒子、黒鉛質物が被覆された黒鉛粒子がより好ましく、黒鉛質物で被覆された黒鉛粒子が、電解液との界面である粒子表面を効率的に改質できる点から特に好ましい。
 「炭素質物が被覆されている」とは、「表面の少なくとも一部に炭素層を備えた」とも表現でき、炭素層が黒鉛粒子の表面の一部又は全部を層状に覆う形態のみならず、炭素層が表面の一部又は全部に付着・添着する形態をも包含する。炭素層は、表面の全部を被覆するように備えていてもよく、一部を被覆あるいは付着・添着していてもよい。
Further, the carbonaceous material composite particles (b) satisfy the above-described physical properties, and are not particularly limited as long as the carbonaceous material is composited. Specific examples thereof include graphite particles having a carbon layer.
Graphite particles are, for example, naturally produced graphite in the form of scales, lumps or plates, and artificial graphite produced by heating petroleum coke, coal pitch coke, coal needle coke, mesophase pitch, etc. to 2500 ° C. or higher. It is possible to use spheroidized graphite particles formed into particles by applying a crystallization treatment. Among these, spheroidized natural graphite is particularly preferable.
Examples of the carbon layer include those made of amorphous carbon or graphite. The form of the graphite particles provided with the carbon layer is preferably a graphite (carbonaceous material-coated graphite) structure coated with a carbonaceous material, and is coated with amorphous carbon-coated graphite particles and graphite material. Graphite particles are more preferable, and graphite particles coated with a graphite material are particularly preferable from the viewpoint that the particle surface that is an interface with the electrolytic solution can be efficiently modified.
“Coated with a carbonaceous material” can be expressed as “a carbon layer is provided on at least a part of the surface”, and the carbon layer covers not only a part or all of the surface of the graphite particles in a layered manner, It includes a form in which the carbon layer adheres or adheres to part or all of the surface. The carbon layer may be provided so as to cover the entire surface, or a part of the carbon layer may be covered or attached / attached.
 (3)炭素質物複合粒子(b)の製造方法
 炭素質物複合粒子(b)は、上記性状を具備していれば、どのような製法で作製しても問題ないが、例えば、日本国特開2007-042611号公報や国際公開第2006-025377号等に記載の製造方法を参考にして製造することで得ることができる。
(3) Production method of carbonaceous material composite particles (b) The carbonaceous material composite particles (b) may be produced by any production method as long as they have the above properties. It can be obtained by referring to the production methods described in 2007-042611 and International Publication No. 2006-025377.
 具体的には、上述した天然黒鉛粒子(a)に記載した炭素材を原料として用いることができる。この中でも、例えば、鱗片状、鱗状、板状および塊状の天然で産出される黒鉛、並びに石油コークス、石炭ピッチコークス、石炭ニードルコークスおよびメソフェーズピッチなどを2500℃以上で加熱して製造した人造黒鉛に、前述のような力学的エネルギー処理を与えて製造した球形化黒鉛粒子を原料として用いることが好ましい。さらに当該球形化黒鉛粒子に力学的エネルギーを加えて表面を粗面化処理を施した(凹凸を形成した)黒鉛粒子を原料に用いることが、内部空隙を減らすことで粒子の充填密度が高くなり、電極内で配向しにくくなる点からさらに好ましい。 Specifically, the carbon material described in the natural graphite particles (a) described above can be used as a raw material. Among these, for example, naturally produced graphite in scale-like, scale-like, plate-like and massive shapes, and artificial graphite produced by heating petroleum coke, coal pitch coke, coal needle coke and mesophase pitch at 2500 ° C. or more. The spherical graphite particles produced by applying the mechanical energy treatment as described above are preferably used as raw materials. Furthermore, the use of graphite particles that have been roughened by applying mechanical energy to the spheroidized graphite particles (formed with irregularities) as raw materials increases the packing density of the particles by reducing internal voids. Further, it is more preferable in that it is difficult to align in the electrode.
 炭素質物複合粒子(b)が、黒鉛質物で被覆された黒鉛粒子である場合、炭素質物被覆黒鉛粒子は、前記球形化黒鉛粒子に、石油系および石炭系のタールおよびピッチ、並びにポリビニルアルコール、ポリアクリルニトリル、フェノール樹脂およびセルロース等の樹脂を、必要により溶媒等を使って混合し、非酸化性雰囲気で好ましくは1500℃以上、より好ましくは1800℃、特に好ましくは2000℃以上で焼成することで得られる。当該焼成後、必要により粉砕分級を行うこともある。 When the carbonaceous material composite particles (b) are graphite particles coated with a graphite material, the carbonaceous material-coated graphite particles are added to the spheroidized graphite particles, petroleum-based and coal-based tars and pitches, polyvinyl alcohol, By mixing a resin such as acrylonitrile, phenolic resin and cellulose with a solvent if necessary, and firing in a non-oxidizing atmosphere, preferably 1500 ° C. or higher, more preferably 1800 ° C., particularly preferably 2000 ° C. or higher. can get. After the firing, pulverization classification may be performed as necessary.
 球形化黒鉛粒子を被覆している黒鉛質炭素の量を示す被覆率は、0.1~50%の範囲であることが好ましく、0.5~30%の範囲であることがより好ましく、1~20%の範囲であることが特に好ましい。
 被覆率を0.1%以上とすることで、黒鉛質炭素で被覆したことによる不可逆容量の低減効果、すなわち核となる球形化黒鉛粒子の持つ不可逆容量を黒鉛質炭素で被覆することで生じる不可逆容量の低減効果を充分に生かすことができる。
 また、被覆率を50%以下とすることで、焼成後の被覆黒鉛質炭素による粒子同士の結着力が強くなりすぎることを防ぐことにより、当該焼成後に結着した粒子を元に戻すために行う粉砕工程において、粉砕回転数を高めたり、多段粉砕にする等の操作を不要とすることができる。また、被覆率を50%以下とすることで、前記被覆黒鉛質炭素による粒子同士の結着力が強くなることに伴い、黒鉛質炭素被覆黒鉛粒子のBET比表面積増加による不可逆容量の増加を防ぐことができる。
The coverage indicating the amount of graphitic carbon covering the spheroidized graphite particles is preferably in the range of 0.1 to 50%, more preferably in the range of 0.5 to 30%. A range of ˜20% is particularly preferred.
By reducing the coverage to 0.1% or more, the effect of reducing the irreversible capacity by coating with graphitic carbon, that is, the irreversible generated by coating the irreversible capacity of the spheroidized graphite particles as the core with graphite carbon The capacity reduction effect can be fully utilized.
Further, by setting the coverage to 50% or less, it is performed to restore the particles bound after the firing by preventing the binding force between the particles due to the coated graphitic carbon after firing becoming too strong. In the pulverization step, operations such as increasing the number of pulverization rotations or multistage pulverization can be eliminated. Further, by setting the coverage to 50% or less, the binding force between the particles of the coated graphitic carbon is strengthened, thereby preventing an increase in irreversible capacity due to an increase in the BET specific surface area of the graphite carbon-coated graphite particles. Can do.
 <非水系二次電池用炭素材>
 本発明に係る非水系二次電池用炭素材は、少なくとも天然黒鉛粒子(a)及び炭素質物複合粒子(b)を含有する混合物である。また、本発明の負極材は、製造方法によらず上述した特定条件の天然黒鉛粒子(a)及び炭素質物複合粒子(b)を適宜選択し、それらを混合することにより本発明の効果を発揮することができる。
<Carbon material for non-aqueous secondary batteries>
The carbon material for a non-aqueous secondary battery according to the present invention is a mixture containing at least natural graphite particles (a) and carbonaceous material composite particles (b). Moreover, the negative electrode material of the present invention exhibits the effects of the present invention by appropriately selecting the natural graphite particles (a) and the carbonaceous material composite particles (b) under the specific conditions described above, regardless of the production method, and mixing them. can do.
 (1)天然黒鉛粒子(a)及び炭素質物複合粒子(b)の混合方法
 天然黒鉛粒子(a)及び炭素質物複合粒子(b)との混合に用いる装置としては、特に制限はないが、例えば、回転型混合機の場合には円筒型混合機、双子円筒型混合機、二重円錐型混合機、正立方型混合機、鍬形混合機;固定型混合機の場合には螺旋型混合機、リボン型混合機、Muller型混合機、Helical Flight型混合機、Pugmill型混合機、流動化型混合機等を用いることができる。
(1) Method of mixing natural graphite particles (a) and carbonaceous material composite particles (b) The apparatus used for mixing with natural graphite particles (a) and carbonaceous material composite particles (b) is not particularly limited. In the case of a rotary mixer, a cylindrical mixer, a twin cylindrical mixer, a double cone mixer, a regular cubic mixer, a vertical mixer; in the case of a fixed mixer, a spiral mixer, Ribbon type mixers, Muller type mixers, Helical Flight type mixers, Pugmill type mixers, fluidized type mixers, and the like can be used.
 (2)天然黒鉛粒子(a)及び炭素質物複合粒子(b)の混合割合
 本発明の負極材は、上記の天然黒鉛粒子(a)及び炭素質物複合粒子(b)を含む混合炭素材である。本発明の負極材において、天然黒鉛粒子(a)及び炭素質物複合粒子(b)の総量に対する天然黒鉛粒子(a)の割合(質量比(a)/((a)+(b)))は、通常0.1以上0.9以下であり、好ましくは0.2以上、より好ましくは0.3以上、また、通常0.9以下に対して好ましくは0.8以下、より好ましくは0.7以下、更に好ましくは0.6以下である。
(2) Mixing ratio of natural graphite particles (a) and carbonaceous material composite particles (b) The negative electrode material of the present invention is a mixed carbon material containing the above natural graphite particles (a) and carbonaceous material composite particles (b). . In the negative electrode material of the present invention, the ratio of the natural graphite particles (a) to the total amount of the natural graphite particles (a) and the carbonaceous material composite particles (b) (mass ratio (a) / ((a) + (b))) is And usually 0.1 or more and 0.9 or less, preferably 0.2 or more, more preferably 0.3 or more, and usually 0.9 or less, preferably 0.8 or less, more preferably 0. 7 or less, more preferably 0.6 or less.
 天然黒鉛粒子(a)及び炭素質物複合粒子(b)の総量に対する天然黒鉛粒子(a)の割合が多すぎると、不可逆容量の増加を防ぎにくくなる傾向がある。また、天然黒鉛粒子(a)の割合が少なすぎると、天然黒鉛粒子(a)の特に優れた特性であるサイクル特性が充分に生かしきれない電極となる傾向があり、非水系二次電池用炭素材としてより良好なサイクル特性が得られにくい傾向がある。 When the ratio of the natural graphite particles (a) to the total amount of the natural graphite particles (a) and the carbonaceous material composite particles (b) is too large, it is difficult to prevent an increase in irreversible capacity. In addition, if the proportion of the natural graphite particles (a) is too small, there is a tendency that the cycle characteristics, which are particularly excellent characteristics of the natural graphite particles (a), cannot be fully utilized, and the carbon for non-aqueous secondary batteries is apt to be obtained. It tends to be difficult to obtain better cycle characteristics as a material.
 (3)非水系二次電池用炭素材の物性
 本発明に係る非水系二次電池用炭素材は、少なくとも天然黒鉛粒子(a)と炭素質物複合粒子(b)とを含んでいるものであるが、その代表的な物性値を以下に示す。
 (i)BET法による比表面積
 本発明の非水系二次電池用炭素材のBET法による比表面積は、通常10m/g以下であることが好ましく、7m/g以下であることがより好ましい。また、2m/g以上であることが好ましく、3m/g以上であることがより好ましい。
 本発明の非水系二次電池用炭素材の比表面積が大きすぎると、不可逆容量の増大による容量の低下を防ぎにくくなる傾向がある。また、比表面積が小さすぎると、電解液と負極材との接触面積が小さくなることから、十分な充放電負荷特性が得られない傾向がある。
(3) Physical properties of non-aqueous secondary battery carbon material The non-aqueous secondary battery carbon material according to the present invention includes at least natural graphite particles (a) and carbonaceous material composite particles (b). However, typical physical property values thereof are shown below.
(I) BET specific surface area of the non-aqueous secondary battery carbon material having a specific surface area of the present invention according to the BET method is preferably usually 10 m 2 / g or less, and more preferably less 7m 2 / g . Further, it is preferably 2m 2 / g or more, more preferably 3m 2 / g or more.
If the specific surface area of the carbon material for a non-aqueous secondary battery of the present invention is too large, it tends to be difficult to prevent a decrease in capacity due to an increase in irreversible capacity. On the other hand, if the specific surface area is too small, the contact area between the electrolytic solution and the negative electrode material becomes small, so that sufficient charge / discharge load characteristics tend not to be obtained.
 (ii)(002)面の面間隔(d002
 本発明の非水系二次電池用炭素材のX線広角回折法による(002)面の面間隔(d002)は、通常3.37Å以下、好ましくは3.36Å以下である。また結晶子サイズLcは、通常900Å以上、好ましくは950Å以上である。(002)面の面間隔(d002)が大きすぎると、炭素材料の粒子の表面を除くほとんどの部分の結晶性が低くなり、非晶質炭素材料に見られるような不可逆容量が大きいことによる容量低下が見られる傾向がある。また結晶子サイズLcが小さすぎると、結晶性が低くなる傾向がある。
(Ii) (002) plane spacing (d 002 )
The interplanar spacing (d 002 ) of the (002) plane of the carbon material for a non-aqueous secondary battery of the present invention by X-ray wide angle diffraction method is usually 3.37 mm or less, preferably 3.36 mm or less. The crystallite size Lc is usually 900 mm or more, preferably 950 mm or more. If the face spacing (d 002 ) of the (002) plane is too large, the crystallinity of most parts excluding the surface of the carbon material particles will be low, and the irreversible capacity as seen in the amorphous carbon material will be large. There is a tendency to see a decrease in capacity. If the crystallite size Lc is too small, the crystallinity tends to be low.
 (iii)タップ密度
 本発明の非水系二次電池用炭素材のタップ密度は、通常1.2g/cm以下、好ましくは1.1g/cm以下、より好ましくは1.0g/cm以下である。また0.8g/cm以上、好ましくは0.9g/cm以上である。
 負極材のタップ密度が大きすぎると、電極にした際に粒子間の接点が取りにくくなる傾向がある。また、タップ密度が小さすぎると電極を作製するときのスラリー特性が悪化し、電極の作製が難しくなる傾向がある。
(Iii) Tap density The tap density of the carbon material for a non-aqueous secondary battery of the present invention is usually 1.2 g / cm 3 or less, preferably 1.1 g / cm 3 or less, more preferably 1.0 g / cm 3 or less. It is. Moreover, it is 0.8 g / cm 3 or more, preferably 0.9 g / cm 3 or more.
When the tap density of the negative electrode material is too large, there is a tendency that it is difficult to take contact between particles when an electrode is formed. On the other hand, if the tap density is too small, the slurry characteristics when the electrode is produced deteriorates, and the production of the electrode tends to be difficult.
 (iv)ラマンR値
 本発明の非水系二次電池用炭素材のアルゴンイオンレーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比であるラマンR値は、通常0.001以上、好ましくは0.005以上であり、より好ましくは0.01以上であり、通常0.7以下、好ましくは0.6以下、より好ましくは0.5以下であることが好ましい。
 ラマンR値が小さすぎると、粒子表面の結晶性が高くなり過ぎて、高密度化した場合に電極板と平行方向に結晶が配向し易くなり、負荷特性の低下を招く虞がある。一方、ラマンR値が大きすぎると、粒子表面の結晶が乱れ、電解液との反応性が増し、充放電効率の低下やガス発生の増加を招く傾向がある。
(Iv) Raman R value is the peak intensity ratio in the vicinity of 1360 cm -1 to the peak intensity near 1580 cm -1 in the argon ion laser Raman spectrum of the non-aqueous secondary battery carbon material for the Raman R value present invention is usually 0. 001 or more, preferably 0.005 or more, more preferably 0.01 or more, and usually 0.7 or less, preferably 0.6 or less, more preferably 0.5 or less.
If the Raman R value is too small, the crystallinity of the particle surface becomes too high, and when the density is increased, the crystals are likely to be oriented in a direction parallel to the electrode plate, and the load characteristics may be deteriorated. On the other hand, if the Raman R value is too large, the crystal on the particle surface is disturbed, the reactivity with the electrolytic solution increases, and the charge / discharge efficiency tends to decrease and the gas generation tends to increase.
 (v)アスペクト比
 本発明の非水系二次電池用炭素材のアスペクト比は、通常15以下、好ましくは10以下、より好ましくは5以下である。アスペクト比が大きすぎると、電極にした際に、配向しやすい傾向がある。
(V) Aspect ratio The aspect ratio of the carbon material for a non-aqueous secondary battery of the present invention is usually 15 or less, preferably 10 or less, more preferably 5 or less. When the aspect ratio is too large, there is a tendency to be oriented when the electrode is formed.
 (vi)平均粒径
 本発明の非水系二次電池用炭素材の平均粒径(d50)は、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、通常35μm以下、好ましくは30μm以下、より好ましくは25μm以下である。平均粒径が小さすぎると、比表面積が大きくなり不可逆容量の増加を防ぎにくくなる傾向がある。また、平均粒径が大きすぎると、電解液と炭素質物複合粒子(b)との接触面積が減ることによる急速充放電性の低下を防ぎにくくなる。
(Vi) Average particle diameter The average particle diameter (d50) of the carbon material for non-aqueous secondary batteries of the present invention is usually 5 μm or more, preferably 10 μm or more, more preferably 15 μm or more, and usually 35 μm or less, preferably 30 μm. Hereinafter, it is more preferably 25 μm or less. If the average particle size is too small, the specific surface area tends to be large and it is difficult to prevent an increase in irreversible capacity. Moreover, when an average particle diameter is too large, it will become difficult to prevent the rapid charge / discharge property fall by the contact area of electrolyte solution and carbonaceous material composite particle (b) reducing.
 <負極>
 本発明の負極材を用いて負極を作製するためには、負極材に結着樹脂を配合したものを水性または有機系媒体でスラリーとし、必要によりこれに増粘材を加えて集電体に塗布し、乾燥すればよい。
 結着樹脂としては、非水電解液に対して安定で、かつ非水溶性のものを用いるのが好ましい。例えば、スチレン、ブタジエンゴム、イソプレンゴムおよびエチレン・プロピレンゴム等のゴム状高分子;ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートおよび芳香族ポリアミド等の合成樹脂;スチレン・ブタジエン・スチレンブロック共重合体やその水素添加物、スチレン・エチレン・ブタジエン、スチレン共重合体、スチレン・イソプレンおよびスチレンブロック共重合体並びにその水素化物等の熱可塑性エラストマー;シンジオタクチック-1,2-ポリブタジエン、エチレン・酢酸ビニル共重合体、およびエチレンと炭素数3~12のα-オレフィンとの共重合体等の軟質樹脂状高分子;ポリテトラフルオロエチレン・エチレン共重合体、ポリビニリデンフルオライド、ポリペンタフルオロプロピレンおよびポリヘキサフルオロプロピレン等のフッ素化高分子などを用いることができる。
 有機系媒体としては、例えば、N-メチルピロリドンおよびジメチルホルムアミドを挙げることができる。
<Negative electrode>
In order to produce a negative electrode using the negative electrode material of the present invention, a negative electrode material blended with a binder resin is made into a slurry with an aqueous or organic medium, and if necessary, a thickener is added to the current collector. What is necessary is just to apply | coat and dry.
As the binder resin, it is preferable to use a resin that is stable with respect to the non-aqueous electrolyte and water-insoluble. For example, rubbery polymers such as styrene, butadiene rubber, isoprene rubber and ethylene / propylene rubber; synthetic resins such as polyethylene, polypropylene, polyethylene terephthalate and aromatic polyamide; styrene / butadiene / styrene block copolymers and hydrogenated products thereof , Thermoplastic elastomers such as styrene / ethylene / butadiene, styrene copolymers, styrene / isoprene and styrene block copolymers and hydrides thereof; syndiotactic-1,2-polybutadiene, ethylene / vinyl acetate copolymers, and Soft resinous polymers such as copolymers of ethylene and α-olefins having 3 to 12 carbon atoms; polytetrafluoroethylene / ethylene copolymers, polyvinylidene fluoride, polypentafluoropropylene and polyhexene And fluorinated polymers such as hexafluoropropylene may be used.
Examples of the organic medium include N-methylpyrrolidone and dimethylformamide.
 結着樹脂によって負極材相互間や負極材と集電体との結着力が十分となり、負極から負極材が剥離することによる電池容量の減少およびリサイクル特性の悪化を防ぐことができることから、負極材100重量部に対して通常は0.1重量部以上、好ましくは0.2重量部以上用いることが好ましい。
 また、負極の容量減少を防ぎ、かつリチウムイオンの負極材への出入が妨げられるなどの問題を防ぐことができることから、結着樹脂は負極材100重量部に対して10重量部以下とするのが好ましく、7重量部以下とするのがより好ましい。
The binding resin provides sufficient binding force between the negative electrode materials and between the negative electrode material and the current collector, and can prevent the battery capacity from being reduced and the recycling characteristics from deteriorating due to the separation of the negative electrode material from the negative electrode. It is usually preferable to use 0.1 parts by weight or more, preferably 0.2 parts by weight or more with respect to 100 parts by weight.
In addition, since the capacity of the negative electrode can be prevented, and problems such as preventing lithium ions from entering and leaving the negative electrode material can be prevented, the binder resin should be 10 parts by weight or less with respect to 100 parts by weight of the negative electrode material. Is preferable, and it is more preferable to set it as 7 weight part or less.
 負極材と結着樹脂のスラリーに添加する増粘材としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロースおよびヒドロキシプロピルセルロース等の水溶性セルロース類、ポリビニルアルコール並びにポリエチレングリコール等を用いればよい。なかでも好ましいのはカルボキシメチルセルロースである。増粘材は負極材100重量部に対して、通常は0.1~10重量部、好ましくは0.2~7重量部となるように用いるのが好ましく、結着樹脂が少なすぎると電極の強度が維持できにくい傾向があり、結着樹脂が多すぎると電池容量の低下や抵抗の増大を招く。 As the thickener added to the slurry of the negative electrode material and the binder resin, for example, water-soluble celluloses such as carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose, polyvinyl alcohol, polyethylene glycol, and the like may be used. Of these, carboxymethylcellulose is preferred. The thickener is preferably used in an amount of usually 0.1 to 10 parts by weight, preferably 0.2 to 7 parts by weight, with respect to 100 parts by weight of the negative electrode material. The strength tends to be difficult to maintain, and too much binder resin leads to a decrease in battery capacity and an increase in resistance.
 負極集電体としては、従来からこの用途に用い得ることが知られている、例えば、銅、銅合金、ステンレス鋼、ニッケル、チタンおよび炭素などを用いればよい。集電体の形状は通常はシート状であり、その表面に凹凸を形成したものや、ネットおよびパンチングメタルなどを用いるものも好ましい。
 集電体に負極材と結着樹脂のスラリーを塗布・乾燥した後は、加圧して集電体上に形成された電極密度を大きくし、もって負極層単位体積当たりの電池容量を大きくすることが好ましい。電極の密度は通常1.2g/cm以上、好ましくは1.3g/cm以上であり、通常1.8g/cm以下、好ましくは1.6g/cm以下ある。
As the negative electrode current collector, for example, copper, copper alloy, stainless steel, nickel, titanium, and carbon that are conventionally known to be usable for this purpose may be used. The shape of the current collector is usually a sheet, and those having irregularities on the surface thereof, or those using a net, punching metal, or the like are preferable.
After applying and drying the slurry of the negative electrode material and the binder resin to the current collector, pressurize to increase the density of the electrode formed on the current collector, thereby increasing the battery capacity per unit volume of the negative electrode layer Is preferred. The density of the electrode is usually 1.2 g / cm 3 or more, preferably 1.3 g / cm 3 or more, and usually 1.8 g / cm 3 or less, preferably 1.6 g / cm 3 or less.
 電極の密度が小さすぎると、電極の厚みの増大に伴う電池の容量の低下を防ぎにくくなる傾向がある。また、電極密度が大きすぎると、電極内の粒子間空隙が減少に伴い空隙に保持される電解液量が減り、Liイオンの移動性が小さくなり急速充放電特性が低くなることを防ぎにくくなる傾向がある。 If the density of the electrode is too small, it tends to be difficult to prevent a decrease in battery capacity accompanying an increase in electrode thickness. Also, if the electrode density is too large, the amount of electrolyte solution retained in the voids decreases as the interparticle voids in the electrode decrease, and it becomes difficult to prevent the rapid charge / discharge characteristics from being lowered due to the low mobility of Li ions. Tend.
 [非水系二次電池]
 本発明に係る非水系二次電池は、上記の負極を用いる以外は、常法に従って作製することができる。
 正極材料としては、例えば、基本組成がLiCoOで表されるリチウムコバルト複合酸化物;LiNiOで表されるリチウムニッケル複合酸化物;LiMnOおよびLiMnで表されるリチウムマンガン複合酸化物等のリチウム遷移金属複合酸化物、二酸化マンガン等の遷移金属酸化物、並びにこれらの複合酸化物混合物等を用いればよい。
 さらにはTiS、FeS、Nb、Mo、CoS、V、CrO、V、FeO、GeOおよびLiNi0.33Mn0.33Co0.33等を用いることもできる。
[Non-aqueous secondary battery]
The non-aqueous secondary battery according to the present invention can be produced according to a conventional method except that the above negative electrode is used.
Examples of the positive electrode material include a lithium cobalt composite oxide having a basic composition represented by LiCoO 2 ; a lithium nickel composite oxide represented by LiNiO 2 ; a lithium manganese composite oxide represented by LiMnO 2 and LiMn 2 O 4 . Lithium transition metal composite oxides such as, transition metal oxides such as manganese dioxide, and composite oxide mixtures thereof may be used.
Furthermore, TiS 2 , FeS 2 , Nb 3 S 4 , Mo 3 S 4 , CoS 2 , V 2 O 5 , CrO 3 , V 3 O 3 , FeO 2 , GeO 2 and LiNi 0.33 Mn 0.33 Co 0 .33 O 2 or the like can also be used.
 前記正極材料に結着樹脂を配合したものを適当な溶媒でスラリー化して集電体に塗布・乾燥することにより正極を作製できる。なおスラリー中にはアセチレンブラックおよびケッチェンブラック等の導電材を含有させることが好ましい。また所望により増粘材を含有させてもよい。増粘材および結着樹脂としてはこの用途に周知のもの、例えば負極の作製に用いるものとして例示したものを用いればよい。 A positive electrode can be produced by slurrying a mixture of the positive electrode material and a binder resin with an appropriate solvent, and applying and drying to a current collector. The slurry preferably contains a conductive material such as acetylene black and ketjen black. Moreover, you may contain a thickener as desired. As the thickener and the binder resin, those well-known in this application, for example, those exemplified as those used for producing the negative electrode may be used.
 正極材料100重量部に対する導電剤の配合比率は通常0.2重量部以上、好ましくは0.5重量部以上、より好ましくは1重量部以上であり、通常20重量部以下、好ましくは15重量部以下、より好ましくは10重量部以下である。
 正極材料100重量部に対する結着樹脂の配合比率は、結着樹脂を水でスラリー化するときは0.2~10重量部が好ましく、特に0.5~7重量部が好ましい。結着樹脂をN-メチルピロリドンなどの結着樹脂を溶解する有機溶媒でスラリー化するときには0.5~20重量部、特に1~15重量部が好ましい。
The blending ratio of the conductive agent with respect to 100 parts by weight of the positive electrode material is usually 0.2 parts by weight or more, preferably 0.5 parts by weight or more, more preferably 1 part by weight or more, and usually 20 parts by weight or less, preferably 15 parts by weight. Below, more preferably 10 parts by weight or less.
The blending ratio of the binder resin to 100 parts by weight of the positive electrode material is preferably 0.2 to 10 parts by weight, particularly preferably 0.5 to 7 parts by weight when the binder resin is slurried with water. When the binder resin is slurried with an organic solvent that dissolves the binder resin such as N-methylpyrrolidone, the amount is preferably 0.5 to 20 parts by weight, particularly 1 to 15 parts by weight.
 正極集電体としては、例えば、アルミニウム、チタン、ジルコニウム、ハフニウム、ニオブおよびタンタル等並びにこれらの合金が挙げられる。なかでもアルミニウム、チタンおよびタンタル並びにその合金が好ましく、アルミニウムおよびその合金が最も好ましい。 Examples of the positive electrode current collector include aluminum, titanium, zirconium, hafnium, niobium and tantalum, and alloys thereof. Of these, aluminum, titanium and tantalum and alloys thereof are preferred, and aluminum and alloys thereof are most preferred.
 電解液も従来周知の非水溶媒に種々のリチウム塩を溶解させたものを用いることができる。
 非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートおよびビニレンカーボネート等の環状カーボネート;ジメチルカーボネート、エチルメチルカーボネートおよびジエチルカーボネート等の鎖状カーボネート;γ-ブチロラクトンなどの環状エステル;クラウンエーテル、2-メチルテトラヒドロフラン、テトラヒドロフラン、1,2-ジメチルテトラヒドロフランおよび1,3-ジオキソラン等の環状エーテル;1,2-ジメトキシエタン等の鎖状エーテルなどを用いればよい。
 通常はこれらをいくつか併用する。なかでも環状カーボネート及び鎖状カーボネート、又はこれに更に他の溶媒を併用することが好ましい。
As the electrolytic solution, a solution in which various lithium salts are dissolved in a conventionally known non-aqueous solvent can be used.
Examples of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate; chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate; cyclic esters such as γ-butyrolactone; Cyclic ethers such as 2-methyltetrahydrofuran, tetrahydrofuran, 1,2-dimethyltetrahydrofuran and 1,3-dioxolane; chain ethers such as 1,2-dimethoxyethane may be used.
Usually some of these are used together. Among these, it is preferable to use a cyclic carbonate and a chain carbonate, or another solvent in combination with this.
 また電解液にはビニレンカーボネート、ビニルエチレンカーボネート、無水コハク酸、無水マレイン酸、プロパンスルトンおよびジエチルスルホン等の化合物やジフルオロリン酸リチウムのようなジフルオロリン酸塩等が添加されていても良い。更に、ジフェニルエーテルおよびシクロヘキシルベンゼン等の過充電防止剤が添加されていても良い。 Further, vinylene carbonate, vinyl ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone, diethylsulfone, and other compounds such as difluorophosphate such as lithium difluorophosphate may be added to the electrolytic solution. Furthermore, an overcharge inhibitor such as diphenyl ether and cyclohexylbenzene may be added.
 非水溶媒に溶解させる電解質としては、例えば、LiClO、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)およびLiC(CFSOなどを用いることができる。電解液中の電解質の濃度は通常は0.5~2mol/L、好ましくは0.6~1.5mol/Lである。 Examples of the electrolyte dissolved in the non-aqueous solvent include LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 and the like can be used. The concentration of the electrolyte in the electrolytic solution is usually 0.5 to 2 mol / L, preferably 0.6 to 1.5 mol / L.
 正極と負極との間に介在させるセパレーターには、ポリエチレンやポリプロピレン等のポリオレフィンの多孔性シートや不織布を用いることが好ましい。
 本発明に係る非水系二次電池は、負極/正極の容量比を1.01~1.5に設計することが好ましく1.2~1.4に設計することが電池の劣化を抑制できる点からより好ましい。
For the separator interposed between the positive electrode and the negative electrode, it is preferable to use a porous sheet or non-woven fabric of polyolefin such as polyethylene or polypropylene.
In the non-aqueous secondary battery according to the present invention, the capacity ratio of the negative electrode / positive electrode is preferably designed to be 1.01 to 1.5, and designing to 1.2 to 1.4 can suppress deterioration of the battery. To more preferable.
 以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
 [負極炭素材(炭素材)の物性評価]
 (1)内部空隙率
 Hgポロシメトリー解析により天然黒鉛粒子(a)の内部空隙率を算出した。まず、Hgポロシメトリーの測定方法は粉体を正確に秤量し、真空下(50μm/Hgx10分)で前処理した後、マイクロメリッテクス社製オートポアIV9520型を用いて、水銀圧入法により細孔分布を測定した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
[Physical property evaluation of negative electrode carbon material (carbon material)]
(1) Internal porosity The internal porosity of the natural graphite particles (a) was calculated by Hg porosimetry analysis. First, the measurement method of Hg porosimetry accurately weighs the powder, pretreats it under vacuum (50 μm / Hg × 10 minutes), and then uses a micromeritics autopore IV9520 type and pore distribution by mercury porosimetry. Was measured.
 内部空隙率の算出方法は、得られた細孔分布(積分曲線)(L)を元に、傾きの最小値に対して接線(M)を引き、接線と積分曲線の分岐点(P)を求め、それよりも小さい細孔容積を粒子内細孔量(V)として定義する(図2)。得られた粒子内細孔量と黒鉛の真密度から内部空隙率を算出した。算出に用いた黒鉛の真密度は一般的な黒鉛の真密度の2.26g/cmを用いた。算出式を式1に示す。 Based on the obtained pore distribution (integral curve) (L), the internal porosity is calculated by drawing a tangent line (M) with respect to the minimum value of the slope and calculating a branch point (P) between the tangent line and the integral curve. The pore volume smaller than that is determined and defined as the pore volume (V) in the particle (FIG. 2). The internal porosity was calculated from the amount of pores in the obtained particles and the true density of graphite. The true density of graphite used for the calculation was 2.26 g / cm 3, which is the true density of general graphite. The calculation formula is shown in Formula 1.
 式1
 内部空隙率(%)=[粒子内細孔量/{粒子内細孔量+(1/黒鉛の真密度)}]×100
Formula 1
Internal porosity (%) = [intraparticle pore volume / {intraparticle pore volume + (1 / true graphite density)}] × 100
 (2)凹部分の直径D/d50
 SEM画像と断面SEM画像から天然黒鉛粒子(a)の表面の凹凸のうち、凹部分の近似円における直径(D)を求めた。SEM画像の測定方法は株式会社キーエンス社製VE-7800を用い、加速電圧5kVで測定した。得られた天然黒鉛粒子(a)のSEM画像の凹部分を円であると仮定して円近似をし、当該近似円の直径を天然黒鉛粒子(a)の凹部分の直径(D)とした。例として実施例1、比較例3に用いた天然黒鉛粒子(a)のSEM画像と近似した円を図1に示した。
 天然黒鉛粒子(a)の平均粒径(d50)は、界面活性剤であるポリオキシエチレンソルビタンモノラウレート(例として、Tween20(登録商標))の0.2質量%水溶液10mLに、サンプル0.01gを懸濁させ、市販のレーザー回折/散乱式粒度分布測定装置「HORIBA製LA-920」に導入し、28kHzの超音波を出力60Wで1分間照射した後、測定装置における体積基準のメジアン径として測定したものを、平均粒径(d50)とした。
(2) Diameter D / d50 for the recess
Of the irregularities on the surface of the natural graphite particles (a), the diameter (D) in the approximate circle for the concave portion was determined from the SEM image and the cross-sectional SEM image. The SEM image was measured using VE-7800 manufactured by Keyence Corporation at an acceleration voltage of 5 kV. Assuming that the concave portion of the SEM image of the obtained natural graphite particles (a) is a circle, a circle approximation is performed, and the diameter of the approximate circle is the diameter (D) of the concave portion of the natural graphite particles (a). . As an example, a circle approximate to the SEM image of the natural graphite particles (a) used in Example 1 and Comparative Example 3 is shown in FIG.
The average particle size (d50) of the natural graphite particles (a) was adjusted to 10 mL of a 0.2% by weight aqueous solution of polyoxyethylene sorbitan monolaurate (for example, Tween 20 (registered trademark)) as a surfactant. 01 g was suspended, introduced into a commercially available laser diffraction / scattering particle size distribution analyzer “LA-920 manufactured by HORIBA”, irradiated with 28 kHz ultrasonic waves at an output of 60 W for 1 minute, and then the volume-based median diameter in the measuring device Was measured as an average particle diameter (d50).
 (3)フタル酸ジブチル(DBP)吸油量
 本発明の炭素質物複合粒子(b)のうち、炭素質物被覆黒鉛粒子の物性の一つとして、DBP吸油量を測定した。
(3) Dibutyl phthalate (DBP) oil absorption The DBP oil absorption was measured as one of the physical properties of carbonaceous material-coated graphite particles in the carbonaceous material composite particles (b) of the present invention.
 DBP吸油量の測定は、負極材を用いて以下の手順で行なった。
 DBP吸油量の測定はJIS K6217規格の粘度に準拠し、測定材料を40g投入し、滴下速度4ml/min、回転数125rpmとし、トルクの最大値が確認されるまで測定を実施し、測定開始から最大トルクを示す間の範囲で、最大トルクの70%のトルクを示した時の滴下油量から算出された値によって定義した。
The DBP oil absorption was measured using the negative electrode material according to the following procedure.
The measurement of DBP oil absorption is based on the viscosity of JIS K6217 standard, 40 g of measurement material is added, the dropping speed is 4 ml / min, the rotation speed is 125 rpm, and the measurement is performed until the maximum value of torque is confirmed. It was defined by a value calculated from the amount of dropped oil when a torque of 70% of the maximum torque was shown in the range between showing the maximum torque.
 (4)BET比表面積(SA)
 炭素質物複合粒子(b)の比表面積を、比表面積測定装置(AMS8000、大倉理研社製)を用いて、窒素ガス吸着流通法によりBET1点法にて測定した。サンプル0.4gをセルに充填し、350℃に加熱して前処理を行った後、液体窒素温度まで冷却して、窒素30%、He70%のガスを飽和吸着させ、その後室温まで加熱して脱着したガス量を計測し、得られた結果から、通常のBET法により比表面積を算出した。
(4) BET specific surface area (SA)
The specific surface area of the carbonaceous material composite particles (b) was measured by a BET one-point method using a specific surface area measuring device (AMS8000, manufactured by Okura Riken Co., Ltd.) by a nitrogen gas adsorption flow method. After filling the cell with 0.4 g of sample and heating to 350 ° C., pre-treatment, cooling to liquid nitrogen temperature, saturated adsorption of 30% nitrogen and 70% He gas, then heating to room temperature The amount of desorbed gas was measured, and the specific surface area was calculated from the obtained results by the usual BET method.
 (5)タップ密度
 炭素質物複合粒子(b)のタップ密度は、粉体密度測定器(タップデンサーKYT-4000、(株)セイシン企業社製)を用い、直径1.6cm、体積容量20cmの円筒状タップセルに、目開き300μmの篩を通して、サンプルを落下させ、セルに満杯に充填した後、ストローク長10mmのタップを1000回行なった後の体積と試料の重量から求めた。
(5) Tap density The tap density of the carbonaceous material composite particles (b) is 1.6 cm in diameter and 20 cm 3 in volume capacity using a powder density measuring device (Tap Denser KYT-4000, manufactured by Seishin Enterprise Co., Ltd.). The sample was dropped into a cylindrical tap cell through a sieve having an opening of 300 μm, and the cell was fully filled, and then the volume and the weight of the sample after 1000 taps with a stroke length of 10 mm were obtained.
 (6)ラマンR値
 レーザーラマン分光光度計(NR-1800、日本分光社製)を用い、サンプルを測定セル内へ自然落下させることで試料充填し、測定セル内にアルゴンイオンレーザー光を照射しながら、測定セルをアルゴンイオンレーザー光と垂直な面内で回転させながら以下の条件により炭素質物複合粒子(b)を測定した。
(6) Raman R value Using a laser Raman spectrophotometer (NR-1800, manufactured by JASCO Corp.), the sample is naturally dropped into the measurement cell to fill the sample, and the measurement cell is irradiated with argon ion laser light. The carbonaceous material composite particles (b) were measured under the following conditions while rotating the measurement cell in a plane perpendicular to the argon ion laser beam.
 アルゴンイオンレーザー光の波長 :514.5nm
 試料上のレーザーパワー     :25mW
 分解能             :4cm-1
 測定範囲            :1100cm-1~1730cm-1
 ピーク強度測定、ピーク半値幅測定:バックグラウンド処理、スムージング処理(単純平均によるコンボリューション5ポイント)
 ラマンR値は、1580cm-1付近の最大ピークP(Gバンド)と1358cm-1付近の最大ピークP(Dバンド)とのピーク強度Iの比、すなわちI/Iで定義した(F.Tuinstra,J.L.Koenig,J.Chem.Phys,53,1126[1970])。
Argon ion laser light wavelength: 514.5 nm
Laser power on sample: 25 mW
Resolution: 4cm -1
Measurement range: 1100 cm −1 to 1730 cm −1
Peak intensity measurement, peak half-width measurement: background processing, smoothing processing (convolution 5 points by simple averaging)
The Raman R value is the maximum peak P A (G band) and 1358cm -1 near the maximum peak P B (D band) and the ratio of the peak intensity I of around 1580 cm -1, ie defined in I B / I A ( F. Tuinstra, JL Koenig, J. Chem. Phys, 53, 1126 [1970]).
 [負極シートの作製]
 得られた天然黒鉛粒子(a)と炭素質物複合粒子(b)を含む負極炭素材を用い、活物質層密度1.75±0.03g/cmである活物質層を有する極板を作製した。
 具体的には、上記負極炭素材20.00±0.02gに、1質量%カルボキシメチルセルロースNa塩(セロゲン4H、第一工業製薬社製)水溶液を20.00±0.02g(固形分換算で0.200g)、および重量平均分子量27万のスチレン・ブタジエンゴム水性ディスパージョン(BM400B、日本ゼオン社製)0.5±0.02g(固形分換算で0.1g)を、キーエンス製ハイブリッドミキサーで5分間撹拌し、30秒脱泡してスラリーを得た。
 前記スラリーを、集電体である厚さ18μmの銅箔上に、負極材が12.8±0.2mg/cm付着するように、ドクターブレード法で、幅5cmに塗布し、室温で風乾を行った。更に110℃で30分乾燥後、直径20cmのローラを用いてロールプレスして、活物質層の密度が1.75g/cmになるよう調整し負極シートを得た。
[Preparation of negative electrode sheet]
Using the obtained negative electrode carbon material containing natural graphite particles (a) and carbonaceous material composite particles (b), an electrode plate having an active material layer having an active material layer density of 1.75 ± 0.03 g / cm 3 is produced. did.
Specifically, 20.00 ± 0.02 g (in terms of solid content) of a 1% by mass carboxymethylcellulose Na salt (Serogen 4H, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was added to 20.00 ± 0.02 g of the negative electrode carbon material. 0.200 g), and 0.5 ± 0.02 g (0.1 g in terms of solid content) of a styrene-butadiene rubber aqueous dispersion (BM400B, manufactured by Nippon Zeon Co., Ltd.) having a weight average molecular weight of 270,000, using a hybrid mixer manufactured by Keyence. The mixture was stirred for 5 minutes and defoamed for 30 seconds to obtain a slurry.
The slurry is applied to a width of 5 cm by a doctor blade method so that the negative electrode material adheres to 12.8 ± 0.2 mg / cm 2 on a 18 μm-thick copper foil as a current collector, and air-dried at room temperature. Went. Furthermore, after drying at 110 degreeC for 30 minutes, it roll-pressed using the roller with a diameter of 20 cm, and it adjusted so that the density of an active material layer might be 1.75 g / cm < 3 >, and obtained the negative electrode sheet.
 [負極シートの評価]
 前記の方法で作製した負極シートの初期容量、サイクル維持率を下記方法により測定した。その結果を表1に示す。
[Evaluation of negative electrode sheet]
The initial capacity and cycle retention of the negative electrode sheet produced by the above method were measured by the following methods. The results are shown in Table 1.
 (1)ラミネート型電池の作製方法
 上記方法で作製した負極シートを6cm×4cmの長方形に切り出して負極とし、LiCoOからなる正極を同面積で切り出して、組み合わせた。負極と正極の間には、エチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートの混合溶媒に、LiPFを1.2mol/Lになるように溶解させ、更に添加剤としてビニレンカーボネートを2体積%添加した電解液を含浸させたセパレータ(多孔性ポリエチレンフィルム製)を置き、ラミネート型電池を作製した。セルの作製は、水分値を20ppm以下に調整したドライボックス内で行った。
(1) Method for Producing Laminate Battery The negative electrode sheet produced by the above method was cut into a 6 cm × 4 cm rectangle to form a negative electrode, and a positive electrode made of LiCoO 2 was cut out with the same area and combined. Electrolysis in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate so as to be 1.2 mol / L between the negative electrode and the positive electrode, and 2% by volume of vinylene carbonate was further added as an additive. A separator (made of a porous polyethylene film) impregnated with the liquid was placed to prepare a laminate type battery. The cell was produced in a dry box adjusted to a moisture value of 20 ppm or less.
 上記の方法で作製したラミネート型電池を、12時間放置した後、電流密度0.2CmA/cmで、両電極間の電位差が4.1Vになるまで充電を行い、その後3Vになるまで0.2CmA/cmで放電を行った。これを2回繰り返し、更に同電流値で、両電極間の電位差が4.2Vになるまで充電し、3.0Vまで放電しコンディショニングを実施した。 The laminate type battery produced by the above method was left for 12 hours, and then charged at a current density of 0.2 CmA / cm 3 until the potential difference between both electrodes reached 4.1 V, and then until the voltage became 3 V. Discharge was performed at 2 CmA / cm 3 . This was repeated twice and further charged with the same current value until the potential difference between both electrodes reached 4.2 V, discharged to 3.0 V, and conditioned.
 (2)サイクル維持率の測定方法
 後述の方法で作製したラミネート型電池を、0.8Cで4.2Vまで充電、0.5Cで3.0Vまでの放電を繰り返した。1サイクル目の放電容量を初期容量とした。また初期容量に対する200サイクル目の放電容量×100をサイクル維持率(%)とした。
(2) Measuring method of cycle maintenance rate The laminate type battery produced by the method described later was repeatedly charged to 4.2V at 0.8C and discharged to 3.0V at 0.5C. The discharge capacity at the first cycle was set as the initial capacity. The discharge capacity at the 200th cycle with respect to the initial capacity × 100 was defined as the cycle maintenance ratio (%).
 (3)レート特性の測定方法
 1C/0.2C放電レート(%)はサイクルの開始前の電池で0.5Cで4.2Vまで充電、続いて0.2Cで3.0Vまで放電した時の放電容量に対する、0.5Cで4.2Vまで充電、続いて1Cで3.0Vまで放電した時の放電容量の比率から算出した。
(3) Rate characteristic measurement method 1C / 0.2C discharge rate (%) is the battery before the start of the cycle when charged to 4.2V at 0.5C and subsequently discharged to 3.0V at 0.2C. It calculated from the ratio of the discharge capacity when charging to 4.2 V at 0.5 C and then discharging to 3.0 V at 1 C with respect to the discharge capacity.
 ・天然黒鉛粒子(a)の調製方法
 球形化黒鉛を日本研究開発工業株式会社製の静水圧粉末成型装置を用いて処理を行なった。球形化黒鉛をゴム容器に充填しオイルによる加圧処理を行った。条件は加圧圧力を1000または300kgf/cm、加圧時間を5分間とし、成型物を得た。得られた成型物をハンマーミルにて、粒径が元の球形化黒鉛と同等になるまで解砕し、天然黒鉛粒子(a)を得た。
-Preparation method of natural graphite particles (a) Spherical graphite was processed using a hydrostatic pressure powder molding apparatus manufactured by Nippon R & D Co., Ltd. Spherical graphite was filled in a rubber container and pressurized with oil. The conditions were a pressure of 1000 or 300 kgf / cm 2 and a pressure time of 5 minutes to obtain a molded product. The obtained molded product was pulverized with a hammer mill until the particle size became equal to the original spheroidized graphite to obtain natural graphite particles (a).
 得られた天然黒鉛粒子(a)の内部空隙率、凹部分の直径(D)は上記方法により測定をおこなった。内部空隙率、凹部分の直径(D)/d50の値を表1にまとめた。 The internal porosity and the diameter (D) of the concave portion of the obtained natural graphite particles (a) were measured by the above methods. Table 1 summarizes the values of the internal porosity and the diameter (D) / d50 of the concave portion.
 ・炭素質物複合粒子(b)の調製方法
 原料黒鉛として体積基準平均粒径が17μmの球状天然黒鉛を用いた。粗面化工程として、アーステクニカ社製のクリプトロンオーブにて回転数6900rpmで原料黒鉛を粉砕し、粗面化黒鉛100重量部に対して原料有機物のピッチを30重量部の割合でニーダーを用いて混合した。得られた混合物を成形した後、不活性雰囲気1000℃で焼成、炭素化し、更に3000℃で黒鉛化した。得られた黒鉛質物被覆黒鉛を粗砕、微粉砕処理し、炭素質物複合粒子(b)の粉末サンプルを得た。得られた炭素質物被覆黒鉛の物性評価の結果(吸油量、比表面積、ラマンR値、及びタップ密度)を表1にまとめた。
-Preparation method of carbonaceous material composite particles (b) Spherical natural graphite having a volume-based average particle diameter of 17 μm was used as the raw material graphite. As a roughening step, raw material graphite was pulverized with a kryptron orb manufactured by Earth Technica Co., Ltd. at a rotational speed of 6900 rpm, and a kneader was used at a ratio of 30 parts by weight of the organic material pitch to 100 parts by weight of roughened graphite. And mixed. After the resulting mixture was molded, it was fired and carbonized at 1000 ° C. in an inert atmosphere, and further graphitized at 3000 ° C. The obtained graphite-coated graphite was roughly crushed and pulverized to obtain a powder sample of carbonaceous material composite particles (b). Table 1 summarizes the results of physical property evaluation (oil absorption amount, specific surface area, Raman R value, and tap density) of the obtained carbonaceous material-coated graphite.
 (実施例1~4)
 天然黒鉛粒子(a)と炭素質物複合粒子(b)である炭素質物被覆黒鉛として粗面化した黒鉛質物被覆黒鉛とを、表1に記載の質量比(a)/(a+b)で混合した。得られた炭素材料を用いて負極を作製し、上記方法によりラミネート型電池を作製して、初期放電容量と200サイクル目の放電容量から、200サイクル維持率を算出した。
 また、0.5Cで4.2Vまで充電した後に放電レート0.2Cにおける放電容量に対する0.5Cで4.2Vまで充電した後に放電レート1Cにおける放電容量の比により、放電レート特性の検討を行なった。
 結果を表1に示した。
(Examples 1 to 4)
Natural graphite particles (a) and graphitic material-coated graphite roughened as carbonaceous material-coated graphite as carbonaceous material composite particles (b) were mixed at a mass ratio (a) / (a + b) shown in Table 1. A negative electrode was produced using the obtained carbon material, a laminate type battery was produced by the above method, and a 200 cycle maintenance factor was calculated from the initial discharge capacity and the discharge capacity at the 200th cycle.
In addition, after charging to 4.2 V at 0.5 C, the discharge rate characteristics were examined by the ratio of the discharge capacity at 1 C to 0.5 C after charging to 4.2 V at 0.5 C to the discharge capacity at 0.2 C discharge rate. It was.
The results are shown in Table 1.
 (比較例1~4)
 表1に記載の特性を有する天然黒鉛粒子(a)と炭素質物複合粒子(b)とを表1に記載の質量比で混合して炭素材を得た以外は、実施例1と同様の手法で電極を作製し各種測定を行った(比較例1~3)。また、炭素質物複合粒子(b)を単独で用いて、実施例1と同様の手法で電極を作製し各種測定を行った(比較例4)。その結果を表1に示した。
(Comparative Examples 1 to 4)
The same method as in Example 1, except that the natural graphite particles (a) having the characteristics described in Table 1 and the carbonaceous material composite particles (b) were mixed at a mass ratio described in Table 1 to obtain a carbon material. Electrodes were prepared and various measurements were performed (Comparative Examples 1 to 3). In addition, using the carbonaceous material composite particles (b) alone, electrodes were prepared in the same manner as in Example 1 and various measurements were performed (Comparative Example 4). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
 
Figure JPOXMLDOC01-appb-T000001
 
 
 以上の実施例と比較例とから分かるように、実施例1~4において天然黒鉛粒子(a)と炭素質物複合粒子(b)を混合することにより初期容量を維持したまま、サイクル維持率の向上が顕著に見られた。
 特に実施例1~3及び比較例4では、天然黒鉛粒子(a)と炭素質物複合粒子(b)との混合物であれば、(a)と(b)の質量比に関わらず、非常に高いサイクル特性を得られることが分かった。
 また、実施例1、4及び比較例1の結果から、天然黒鉛粒子(a)に加圧処理を施して内部空隙率を下げることにより、サイクル特性の著しい向上が見られた。加圧処理時に負荷する圧力によって、当該内部空隙率は制御することができるが、未処理時の内部空隙率25%から20%に低減しただけでも、サイクル特性は向上した。
 以上より、本発明に係る非水系二次電池用炭素材を電極に用いたリチウムイオン二次電池は、高い初期放電容量と放電レート特性を維持したまま、サイクル特性を向上し、これら3つの電池特性をバランスよく満たすことができる。これらの特性は、本発明における天然黒鉛粒子(a)と炭素質物複合粒子(b)とを混合することによって初めて達成されるものである。
As can be seen from the above Examples and Comparative Examples, the cycle retention rate is improved while maintaining the initial capacity by mixing the natural graphite particles (a) and the carbonaceous material composite particles (b) in Examples 1 to 4. Was noticeable.
Particularly in Examples 1 to 3 and Comparative Example 4, the mixture of natural graphite particles (a) and carbonaceous material composite particles (b) is very high regardless of the mass ratio of (a) and (b). It was found that cycle characteristics can be obtained.
Moreover, from the results of Examples 1 and 4 and Comparative Example 1, the cycle characteristics were significantly improved by subjecting the natural graphite particles (a) to pressure treatment to lower the internal porosity. The internal porosity can be controlled by the pressure applied during the pressure treatment, but the cycle characteristics improved even when the internal porosity was reduced from 25% to 20% when not treated.
As described above, the lithium ion secondary battery using the carbon material for a non-aqueous secondary battery according to the present invention as an electrode improves the cycle characteristics while maintaining high initial discharge capacity and discharge rate characteristics. The properties can be balanced. These characteristics are achieved for the first time by mixing the natural graphite particles (a) and the carbonaceous material composite particles (b) in the present invention.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は2011年3月30日出願の日本特許出願(特願2011-075483)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on March 30, 2011 (Japanese Patent Application No. 2011-075483), the contents of which are incorporated herein by reference.
 本発明に係る炭素材は、非水系二次電池用炭素材として用いることにより、高い初期容量と高いレート特性を維持したまま、サイクル特性に優れた非水系二次電池、中でもリチウムイオン二次電池を提供することができる。 The carbon material according to the present invention is used as a carbon material for a non-aqueous secondary battery, thereby maintaining a high initial capacity and a high rate characteristic, and a non-aqueous secondary battery excellent in cycle characteristics, particularly a lithium ion secondary battery. Can be provided.
 D:天然黒鉛粒子(a)の表面に形成された凹凸の凹部分における近似円の直径
 L:Hgポロシメトリー測定における細孔分布(積分曲線)
 M:Hgポロシメトリー測定における積分曲線の傾きの最小値部分に対する接線
 P:Hgポロシメトリー測定における積分曲線と接線の分岐点
 V:Hgポロシメトリー測定における粒子内細孔量
D: Diameter of approximate circle in concave and convex portions formed on the surface of natural graphite particles (a) L: Pore distribution (integral curve) in Hg porosimetry measurement
M: tangent to the minimum value portion of the slope of the integral curve in the Hg porosimetry measurement P: branch point of the integral curve and the tangent line in the Hg porosimetry measurement V: amount of pores in the particle in the Hg porosimetry measurement

Claims (7)

  1.  内部空隙率が1%以上20%以下である天然黒鉛粒子(a)とフタル酸ジブチル吸油量が0.31mL/g以上、0.85mL/g以下である炭素質物複合粒子(b)とを含有する非水系二次電池用炭素材。 Contains natural graphite particles (a) having an internal porosity of 1% or more and 20% or less and carbonaceous material composite particles (b) having a dibutyl phthalate oil absorption of 0.31 mL / g or more and 0.85 mL / g or less. Carbon material for non-aqueous secondary batteries.
  2.  前記炭素質物複合粒子(b)が炭素質物被覆黒鉛粒子である、請求項1に記載の非水系二次電池用炭素材。 The carbon material for a non-aqueous secondary battery according to claim 1, wherein the carbonaceous material composite particles (b) are carbonaceous material-coated graphite particles.
  3.  前記天然黒鉛粒子(a)は、表面に凹凸を有しており、前記凹凸の凹部分の直径(D)が前記天然黒鉛粒子(a)の平均粒径(d50)に対して0.15倍以上、7倍以下である請求項1または2に記載の非水系二次電池用炭素材。 The natural graphite particles (a) have irregularities on the surface, and the diameter (D) of the irregularities of the irregularities is 0.15 times the average particle diameter (d50) of the natural graphite particles (a). The carbon material for a non-aqueous secondary battery according to claim 1 or 2, wherein the carbon material is 7 times or less.
  4.  前記炭素質物複合粒子(b)の比表面積が0.5m/g以上、6.5m/g以下、ラマンR値が0.03以上、0.19以下、及びタップ密度が0.7g/cm以上、1.2g/cm以下である請求項1~3のいずれか1項に記載の非水系二次電池用炭素材料。 The carbonaceous material composite particles (b) have a specific surface area of 0.5 m 2 / g or more and 6.5 m 2 / g or less, a Raman R value of 0.03 or more and 0.19 or less, and a tap density of 0.7 g / The carbon material for a non-aqueous secondary battery according to any one of claims 1 to 3, wherein the carbon material is cm 3 or more and 1.2 g / cm 3 or less.
  5.  前記天然黒鉛粒子(a)と前記炭素質物複合粒子(b)の質量比((a)/{(a)+(b)})が、0.1以上0.9以下である請求項1~4のいずれか1項に記載の非水系二次電池用炭素材。 The mass ratio ((a) / {(a) + (b)}) of the natural graphite particles (a) and the carbonaceous material composite particles (b) is 0.1 or more and 0.9 or less. 5. The carbon material for a non-aqueous secondary battery according to any one of 4 above.
  6.  集電体と、前記集電体上に形成された活物質層とを備える非水系二次電池用負極であって、前記活物質層が、請求項1~5のいずれか1項に記載の非水系二次電池用炭素材を含有する、非水系二次電池用負極。 6. A negative electrode for a non-aqueous secondary battery comprising a current collector and an active material layer formed on the current collector, wherein the active material layer is according to any one of claims 1 to 5. A negative electrode for a non-aqueous secondary battery, comprising a carbon material for a non-aqueous secondary battery.
  7.  正極及び負極、並びに、電解質を備える非水系二次電池であって、前記負極が、請求項6に記載の非水系二次電池用負極である、非水系二次電池。 A non-aqueous secondary battery comprising a positive electrode and a negative electrode, and an electrolyte, wherein the negative electrode is a negative electrode for a non-aqueous secondary battery according to claim 6.
PCT/JP2012/058473 2011-03-30 2012-03-29 Carbon material and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery WO2012133700A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280015656.XA CN103460459B (en) 2011-03-30 2012-03-29 Non-aqueous secondary battery material with carbon element and negative pole and non-aqueous secondary battery
KR1020137024877A KR101952464B1 (en) 2011-03-30 2012-03-29 Carbon material and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-075483 2011-03-30
JP2011075483 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133700A1 true WO2012133700A1 (en) 2012-10-04

Family

ID=46931402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058473 WO2012133700A1 (en) 2011-03-30 2012-03-29 Carbon material and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery

Country Status (4)

Country Link
JP (1) JP2012216537A (en)
KR (1) KR101952464B1 (en)
CN (1) CN103460459B (en)
WO (1) WO2012133700A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078089A (en) * 2012-12-03 2013-05-01 湖州创亚动力电池材料有限公司 Composite graphite cathode material for high-capacity lithium ion battery, and its preparation method
CN112292772A (en) * 2018-06-15 2021-01-29 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011076A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP6201425B2 (en) * 2013-05-23 2017-09-27 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20150065041A (en) * 2013-12-04 2015-06-12 (주)포스코켐텍 Negative electrode active material for rechargeable lithium battery, method for preparing the same and rechargeable lithium battery using the same
KR101428621B1 (en) 2014-01-07 2014-09-23 국방과학연구소 Electrode containing heterocyclic compounds or salt comprising nitrogen or oxygen groups for lithium secondary batteries, and lithium secondary batteries containing the same
US10122018B2 (en) * 2014-03-25 2018-11-06 Hitachi Chemical Company, Ltd. Negative electrode material for lithium-ion secondary battery,method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
CN115504465A (en) * 2014-07-07 2022-12-23 三菱化学株式会社 Carbon material, method for producing carbon material, and nonaqueous secondary battery using carbon material
JP6412520B2 (en) * 2015-06-01 2018-10-24 Jfeケミカル株式会社 Carbonaceous coated graphite particles for lithium ion secondary battery anode material, lithium ion secondary battery anode and lithium ion secondary battery
WO2019031543A1 (en) * 2017-08-08 2019-02-14 昭和電工株式会社 Negative electrode active material for secondary battery, and secondary battery
WO2019239652A1 (en) * 2018-06-15 2019-12-19 三洋電機株式会社 Non-aqueous electrolyte secondary cell
CN112368307B (en) * 2018-07-20 2022-11-01 株式会社吴羽 Particulate vinylidene fluoride polymer and process for producing particulate vinylidene fluoride polymer
KR102323423B1 (en) * 2018-09-07 2021-11-05 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method for preparing same, negative electrode including the same and rechargeable lithium battery including the same
CN109888284B (en) * 2018-12-29 2020-05-01 湖南晋烨高科股份有限公司 Lithium ion battery cathode material, lithium ion battery cathode, lithium ion battery, battery pack and battery power vehicle
CN113728460A (en) * 2019-04-24 2021-11-30 三洋电机株式会社 Nonaqueous electrolyte secondary battery
JP7247064B2 (en) * 2019-09-13 2023-03-28 株式会社東芝 Electrodes, secondary batteries, battery packs, and vehicles
KR20210111569A (en) 2020-03-03 2021-09-13 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
WO2023021958A1 (en) * 2021-08-17 2023-02-23 Jfeケミカル株式会社 Coated spheroidized graphite, negative electrode for lithium ion secondary batteries and lithium ion secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265716A (en) * 1998-03-16 1999-09-28 Denso Corp Negative electrode active material for lithium secondary battery and its manufacture
JP2000294243A (en) * 1999-04-12 2000-10-20 Hitachi Chem Co Ltd Carbon powder for lithium secondary battery negative electrode, manufacture therefor, negative electrode for lithium secondary battery and lithium secondary battery
JP2005050807A (en) * 2003-07-16 2005-02-24 Kansai Coke & Chem Co Ltd Negative electrode material for lithium ion secondary battery and its manufacturing method, as well as negative electrode for lithium ion secondary battery and lithium ion secondary battery using negative electrode material
WO2007086603A1 (en) * 2006-01-30 2007-08-02 Tokai Carbon Co., Ltd. Negative electrode material for lithium ion secondary battery and process for producing the same
JP2010092649A (en) * 2008-10-06 2010-04-22 Nippon Carbon Co Ltd Anode active material for lithium-ion secondary battery and anode

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3285520B2 (en) 1996-08-08 2002-05-27 日立化成工業株式会社 Graphite particles, method for producing graphite particles, graphite paste using graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP3534391B2 (en) 1998-11-27 2004-06-07 三菱化学株式会社 Carbon material for electrode and non-aqueous secondary battery using the same
US7563543B2 (en) * 2003-07-16 2009-07-21 The Kansai Coke And Chemicals Co., Ltd. Negative electrode of lithium ion secondary battery obtained by isostatically pressing a spherical graphite to eliminate voids therein
CN100347887C (en) * 2005-04-20 2007-11-07 深圳市贝特瑞电子材料有限公司 Composite graphite negative electrode material for lithium ion secondary cell and its preparation method
JP5064728B2 (en) 2005-06-27 2012-10-31 三菱化学株式会社 Graphite composite particles for non-aqueous secondary battery, negative electrode active material containing the same, negative electrode and non-aqueous secondary battery
EP2043182B1 (en) * 2006-07-19 2017-05-31 Nippon Carbon Co., Ltd. Negative electrode active material and negative electrode for lithium ion rechargeable battery
US8431270B2 (en) * 2006-12-26 2013-04-30 Mitsubishi Chemical Corporation Composite graphite particles for nonaqueous secondary battery, negative-electrode material containing the same, negative electrode, and nonaqueous secondary battery
KR100981909B1 (en) * 2008-04-15 2010-09-13 애경유화 주식회사 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
CN101499530B (en) * 2009-03-04 2011-05-04 深圳市崧鼎实业有限公司 Multi-multiplying power charging-discharging lithium ion battery and method for producing the same
CN101916847A (en) * 2010-08-19 2010-12-15 深圳市贝特瑞新能源材料股份有限公司 Anode material for lithium ion power battery and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265716A (en) * 1998-03-16 1999-09-28 Denso Corp Negative electrode active material for lithium secondary battery and its manufacture
JP2000294243A (en) * 1999-04-12 2000-10-20 Hitachi Chem Co Ltd Carbon powder for lithium secondary battery negative electrode, manufacture therefor, negative electrode for lithium secondary battery and lithium secondary battery
JP2005050807A (en) * 2003-07-16 2005-02-24 Kansai Coke & Chem Co Ltd Negative electrode material for lithium ion secondary battery and its manufacturing method, as well as negative electrode for lithium ion secondary battery and lithium ion secondary battery using negative electrode material
WO2007086603A1 (en) * 2006-01-30 2007-08-02 Tokai Carbon Co., Ltd. Negative electrode material for lithium ion secondary battery and process for producing the same
JP2010092649A (en) * 2008-10-06 2010-04-22 Nippon Carbon Co Ltd Anode active material for lithium-ion secondary battery and anode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078089A (en) * 2012-12-03 2013-05-01 湖州创亚动力电池材料有限公司 Composite graphite cathode material for high-capacity lithium ion battery, and its preparation method
CN112292772A (en) * 2018-06-15 2021-01-29 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
KR20140010406A (en) 2014-01-24
CN103460459B (en) 2016-01-20
KR101952464B1 (en) 2019-02-26
CN103460459A (en) 2013-12-18
JP2012216537A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
WO2012133700A1 (en) Carbon material and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP5943052B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5589489B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6102074B2 (en) Non-aqueous secondary battery negative electrode carbon material, negative electrode, and non-aqueous secondary battery
JP5268018B2 (en) Non-aqueous secondary battery composite graphite particles, negative electrode material containing the same, negative electrode and non-aqueous secondary battery
WO2012133788A1 (en) Graphite particles for nonaqueous secondary battery and method for producing same, negative electrode and nonaqueous secondary battery
JP2014067638A (en) Carbon material for nonaqueous secondary battery, negative electrode, and nonaqueous secondary battery
JP6127426B2 (en) Non-aqueous secondary battery carbon material, negative electrode, and non-aqueous secondary battery
JP6120626B2 (en) Method for producing composite carbon material for non-aqueous secondary battery
JP2014060124A (en) Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2014067680A (en) Graphite particle for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery using the same, and nonaqueous secondary battery
JP2014067639A (en) Carbon material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP5724199B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2017174739A (en) Negative electrode material for nonaqueous secondary battery, and lithium ion secondary battery
JP7248019B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP6127427B2 (en) Non-aqueous secondary battery carbon material, negative electrode, and non-aqueous secondary battery
JP6379565B2 (en) Non-aqueous secondary battery negative electrode carbon material and non-aqueous secondary battery
JP2014067636A (en) Composite carbon material for nonaqueous secondary battery negative electrode, negative electrode, and nonaqueous secondary battery
JP2014067644A (en) Carbon material for nonaqueous secondary battery, negative electrode, and nonaqueous secondary battery
JP6070016B2 (en) Non-aqueous secondary battery composite carbon material and method for producing the same, negative electrode, and non-aqueous secondary battery
JP7388109B2 (en) Negative electrode materials for non-aqueous secondary batteries, negative electrodes for non-aqueous secondary batteries, and non-aqueous secondary batteries
JP7099005B2 (en) Negative electrode material for non-aqueous secondary batteries and its manufacturing method, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
JP2015185444A (en) Carbon material for nonaqueous secondary battery negative electrode and nonaqueous secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137024877

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765866

Country of ref document: EP

Kind code of ref document: A1