JP3305995B2 - Graphite particles for lithium secondary battery negative electrode - Google Patents

Graphite particles for lithium secondary battery negative electrode

Info

Publication number
JP3305995B2
JP3305995B2 JP33100797A JP33100797A JP3305995B2 JP 3305995 B2 JP3305995 B2 JP 3305995B2 JP 33100797 A JP33100797 A JP 33100797A JP 33100797 A JP33100797 A JP 33100797A JP 3305995 B2 JP3305995 B2 JP 3305995B2
Authority
JP
Japan
Prior art keywords
graphite particles
secondary battery
lithium secondary
graphite
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33100797A
Other languages
Japanese (ja)
Other versions
JPH10236809A (en
Inventor
義人 石井
達也 西田
藤田  淳
和夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26573712&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3305995(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP33100797A priority Critical patent/JP3305995B2/en
Publication of JPH10236809A publication Critical patent/JPH10236809A/en
Application granted granted Critical
Publication of JP3305995B2 publication Critical patent/JP3305995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な黒鉛粒子及
びその製造法、黒鉛粒子を用いた黒鉛ペースト、リチウ
ム二次電池用負極及びその製造法並びにリチウム二次電
池に関する。さらに詳しくは、ポータブル機器、電気自
動車、電力貯蔵等に用いるのに好適な、急速充放電特
性、サイクル特性等に優れたリチウム二次電池とそれを
得るための黒鉛粒子及びその製造法、黒鉛粒子を用いた
黒鉛ペースト、リチウム二次電池用負極並びにリチウム
二次電池に関する。
The present invention relates to a novel graphite particle and a method for producing the same, a graphite paste using the graphite particle, a negative electrode for a lithium secondary battery, a method for producing the same, and a lithium secondary battery. More specifically, a lithium secondary battery excellent in rapid charge / discharge characteristics, cycle characteristics, etc., suitable for use in portable equipment, electric vehicles, power storage, etc., graphite particles for obtaining the same, a method for producing the same, and graphite particles The present invention relates to a graphite paste, a negative electrode for a lithium secondary battery, and a lithium secondary battery using the same.

【0002】[0002]

【従来の技術】従来の黒鉛粒子としては、例えば天然黒
鉛粒子、コークスを黒鉛化した人造黒鉛粒子、有機系高
分子材料、ピッチ等を黒鉛化した人造黒鉛粒子、これら
を粉砕した黒鉛粒子などがある。これらの黒鉛粒子は、
有機系結着剤及び有機溶剤と混合して黒鉛ペーストと
し、この黒鉛ペーストを銅箔の表面に塗布し、溶剤を乾
燥させてリチウム二次電池用負極として使用されてい
る。例えば、特公昭62−23433号公報に示される
ように、負極に黒鉛を使用することでリチウムのデンド
ライトによる内部短絡の問題を解消し、サイクル特性の
改良を図っている。
2. Description of the Related Art Conventional graphite particles include, for example, natural graphite particles, artificial graphite particles obtained by graphitizing coke, organic polymer materials, artificial graphite particles obtained by graphitizing pitch and the like, and graphite particles obtained by grinding these. is there. These graphite particles
It is used as a negative electrode for a lithium secondary battery by mixing an organic binder and an organic solvent to form a graphite paste, applying the graphite paste to the surface of a copper foil, and drying the solvent. For example, as shown in Japanese Patent Publication No. 23433/1987, the use of graphite for the negative electrode solves the problem of internal short circuit due to lithium dendrite, thereby improving cycle characteristics.

【0003】しかしながら、黒鉛結晶が発達している天
然黒鉛粒子及びコークスを黒鉛化した人造黒鉛粒子は、
c軸方向の結晶の層間の結合力が、結晶の面方向の結合
に比べて弱いため、粉砕により黒鉛層間の結合が切れ、
アスペクト比が大きい、いわゆる鱗状の黒鉛粒子とな
る。この鱗状の黒鉛粒子は、アスペクト比が大きいため
に、バインダと混練して集電体に塗布して電極を作製し
たときに、鱗状の黒鉛粒子が集電体の面方向に配向し、
その結果、黒鉛結晶へのリチウムの吸蔵・放出の繰り返
しによって発生するc軸方向の歪みにより電極内部の破
壊が生じ、サイクル特性が低下する問題がある。そこ
で、リチウム二次電池のサイクル特性が向上できる黒鉛
粒子が要求されている。
[0003] However, natural graphite particles in which graphite crystals are developed and artificial graphite particles obtained by graphitizing coke are:
Since the bonding force between the layers of the crystal in the c-axis direction is weaker than the bonding in the plane direction of the crystal, the bonding between the graphite layers is broken by pulverization,
So-called graphite particles having a large aspect ratio are obtained. Since the scale-like graphite particles have a large aspect ratio, when the electrode is produced by kneading with a binder and applying the mixture to the current collector, the scale-like graphite particles are oriented in the plane direction of the current collector,
As a result, there is a problem that the strain in the c-axis direction caused by the repeated insertion and extraction of lithium into and from the graphite crystal causes destruction of the inside of the electrode, and the cycle characteristics are degraded. Therefore, graphite particles capable of improving the cycle characteristics of a lithium secondary battery are required.

【0004】[0004]

【発明が解決しようとする課題】請求項1及び5に記載
の発明は、サイクル特性に優れたリチウム二次電池に好
適な黒鉛粒子を提供するものである。請求項2、3、6
及び7に記載の発明は、急速充放電特性及びサイクル特
性に優れたリチウム二次電池に好適な黒鉛粒子を提供す
るものである。請求項4及び8記載の発明は、急速充放
電特性及びサイクル特性に優れ、かつ第一サイクル目の
不可逆容量が小さく、リチウム二次電池に好適な黒鉛粒
子を提供するものである。
SUMMARY OF THE INVENTION The first and fifth aspects of the present invention provide graphite particles suitable for a lithium secondary battery having excellent cycle characteristics. Claims 2, 3, and 6
The inventions described in (7) and (7) provide graphite particles suitable for a lithium secondary battery having excellent rapid charge / discharge characteristics and cycle characteristics. The inventions according to claims 4 and 8 provide graphite particles which are excellent in rapid charge / discharge characteristics and cycle characteristics, have a small irreversible capacity in the first cycle, and are suitable for lithium secondary batteries.

【0005】請求項9記載の発明は、急速充放電特性及
びサイクル特性に優れ、かつ第一サイクル目の不可逆容
量が小さく、リチウム二次電池に好適な黒鉛粒子の製造
法を提供するものである。請求項10記載の発明は、急
速充放電特性及びサイクル特性に優れ、かつ第一サイク
ル目の不可逆容量が小さく、リチウム二次電池に好適な
黒鉛ペーストを提供するものである。請求項11記載の
発明は、急速充放電特性及びサイクル特性に優れ、かつ
第一サイクル目の不可逆容量が小さく、リチウム二次電
池に好適なリチウム二次電池用負極を提供するものであ
る。請求項12記載の発明は、急速充放電特性及びサイ
クル特性に優れ、かつ第一サイクル目の不可逆容量が小
さいリチウム二次電池を提供するものである。
The invention of claim 9 provides a method for producing graphite particles which is excellent in rapid charge / discharge characteristics and cycle characteristics, has a small irreversible capacity in the first cycle, and is suitable for a lithium secondary battery. . The invention according to claim 10 is to provide a graphite paste which is excellent in rapid charge / discharge characteristics and cycle characteristics, has a small irreversible capacity in the first cycle, and is suitable for a lithium secondary battery. The invention according to claim 11 is to provide a negative electrode for a lithium secondary battery which is excellent in rapid charge / discharge characteristics and cycle characteristics, has a small irreversible capacity in the first cycle, and is suitable for a lithium secondary battery. The twelfth aspect of the present invention provides a lithium secondary battery having excellent rapid charge / discharge characteristics and cycle characteristics, and having a small irreversible capacity in the first cycle.

【0006】[0006]

【発明を解決するための手段】本発明は、102〜106
Åの範囲の大きさの細孔の細孔体積が、黒鉛粒子重量当
たり0.4〜2.0cc/gである黒鉛粒子に関する。また
本発明は、1×102〜2×104Åの範囲の大きさの細
孔の細孔体積が、黒鉛粒子重量当たり0.08〜0.4
cc/gである黒鉛粒子に関する。また本発明は、扁平状の
粒子を複数、配向面が非平行となるように集合又は結合
させてなる前記黒鉛粒子に関する。また本発明は、前記
黒鉛粒子のアスペクト比が5以下である黒鉛粒子に関す
る。また本発明は、比表面積が8m2/g以下である前記黒
鉛粒子に関する。
SUMMARY OF THE INVENTION The present invention is 10 2 to 10 6
The present invention relates to graphite particles having a pore volume of 0.4 to 2.0 cc / g per weight of the graphite particles. In the present invention, the pore volume of pores having a size in the range of 1 × 10 2 to 2 × 10 4 ° is 0.08 to 0.4 per weight of graphite particles.
It relates to graphite particles of cc / g. Further, the present invention relates to the graphite particles obtained by assembling or bonding a plurality of flat particles so that the orientation planes are non-parallel. The present invention also relates to graphite particles having an aspect ratio of 5 or less. The present invention also relates to the graphite particles having a specific surface area of 8 m 2 / g or less.

【0007】また本発明は、黒鉛化可能な骨材又は黒鉛
と黒鉛化可能なバインダに黒鉛化触媒を1〜50重量%
添加して混合し、焼成した後粉砕することを特徴とする
前記黒鉛粒子の製造法に関する。また本発明は、前記黒
鉛粒子若しくは前記の方法で製造された黒鉛粒子のいず
れかに有機系結着剤及び溶剤を添加し、混合してなる黒
鉛ペーストに関する。また本発明は、前記の黒鉛ペース
トを集電体に塗布、一体化してなるリチウム二次電池用
負極に関する。さらに本発明は、前記のリチウム二次電
池用負極と正極とを有してなるリチウム二次電池に関す
る。
Further, the present invention provides a graphitizable aggregate or graphite and a graphitizable catalyst containing 1 to 50% by weight of a graphite and a binder.
The present invention relates to a method for producing the above graphite particles, which comprises adding, mixing, calcining and pulverizing. Further, the present invention relates to a graphite paste obtained by adding an organic binder and a solvent to either the graphite particles or the graphite particles produced by the above-described method and mixing them. The present invention also relates to a negative electrode for a lithium secondary battery obtained by applying the graphite paste to a current collector and integrating the same. Furthermore, the present invention relates to a lithium secondary battery having the above-described negative electrode for a lithium secondary battery and a positive electrode.

【0008】[0008]

【発明の実施の形態】本発明の黒鉛粒子は、2つの観点
からその細孔体積に特徴を有するものである。第1に
は、102〜106Åの範囲の細孔の細孔体積が、黒鉛粒
子重量当たり、0.4〜2.0cc/gであることを特徴と
する。該黒鉛粒子を負極に使用すると、充電・放電にと
もなう電極の膨張・収縮を黒鉛粒子の細孔が吸収するた
め、電極内部の破壊が抑えられ、その結果得られるリチ
ウム二次電池のサイクル特性を向上させることができ
る。102〜106Åの範囲の細孔の細孔体積は、0.4
〜1.5cc/gの範囲であることがより好ましく、0.6
〜1.2cc/gの範囲であることがさらに好ましい。全細
孔体積が、0.4cc/g未満ではサイクル特性が低下し、
2.0cc/gを超えると黒鉛粒子と集電体とを一体化する
際に使用する結着剤を多く必要となり、作成するリチウ
ム二次電池の容量が低下する問題がある。前記細孔体積
は、水銀圧入法による細孔径分布測定により求めること
ができる。細孔の大きさもまた水銀圧入法による細孔径
分布測定により知ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The graphite particles of the present invention are characterized by their pore volume from two viewpoints. First, the pore volume of pores in the range of 10 2 to 10 6 Å is 0.4 to 2.0 cc / g per weight of graphite particles. When the graphite particles are used as a negative electrode, the pores of the graphite particles absorb the expansion and contraction of the electrode due to charging and discharging, thereby suppressing the destruction of the inside of the electrode, thereby reducing the cycle characteristics of the resulting lithium secondary battery. Can be improved. Pore volume of the pores in the range of 10 2 to 10 6 Å is 0.4
~ 1.5 cc / g, more preferably 0.6 cc / g.
More preferably, it is in the range of 1.2 to 1.2 cc / g. If the total pore volume is less than 0.4 cc / g, the cycle characteristics deteriorate,
If it exceeds 2.0 cc / g, a large amount of a binder is required to be used when integrating the graphite particles and the current collector, and there is a problem that the capacity of the lithium secondary battery to be produced is reduced. The pore volume can be determined by measuring the pore size distribution by the mercury intrusion method. The size of the pores can also be determined by measuring the pore size distribution by the mercury intrusion method.

【0009】第2には、1×102〜2×104Åの範囲
の細孔の細孔体積が、黒鉛粒子重量当たり0.08〜
0.4cc/gであることを特徴とする。該黒鉛粒子を負極
に使用すると、充電・放電にともなう電極の膨張・収縮
を黒鉛粒子の細孔が吸収するため、電極内部の破壊が抑
えられ、その結果得られるリチウム二次電池のサイクル
特性を向上させることができる。1×102〜2×104
Åの範囲の細孔体積は、0.1〜0.3cc/gであること
がより好ましい。この大きさの範囲の細孔体積が、0.
08cc/g未満ではサイクル特性が低下し0.4cc/gを超
えると黒鉛粒子と集電体とを一体化する際に使用する結
着剤を多く必要となり、作成するリチウム二次電池の容
量が低下する問題がある。この範囲の細孔体積もまた水
銀圧入法による細孔径分布測定により求めることができ
る。
Second, the pore volume of the pores in the range of 1 × 10 2 to 2 × 10 4 、 is 0.08 to 0.08 per weight of graphite particles.
It is 0.4 cc / g. When the graphite particles are used as a negative electrode, the pores of the graphite particles absorb the expansion and contraction of the electrode due to charging and discharging, thereby suppressing the destruction of the inside of the electrode, thereby reducing the cycle characteristics of the resulting lithium secondary battery. Can be improved. 1 × 10 2 to 2 × 10 4
The pore volume in the range of Å is more preferably 0.1 to 0.3 cc / g. The pore volume in this size range is 0.
If it is less than 08 cc / g, the cycle characteristics deteriorate. If it exceeds 0.4 cc / g, a large amount of binder is required to be used when integrating the graphite particles and the current collector. There is a problem of decline. The pore volume in this range can also be determined by measuring the pore size distribution by the mercury intrusion method.

【0010】また、本発明の黒鉛粒子は、扁平状の粒子
を複数、配向面が非平行となるように集合又は結合させ
たものが好ましい。本発明において、扁平状の粒子と
は、長軸と短軸を有する形状の粒子のことであり、完全
な球状でないものをいう。例えば鱗状、鱗片状、一部の
塊状等の形状のものがこれに含まれる。黒鉛粒子におい
て、複数の扁平状の粒子の配向面が非平行とは、それぞ
れの粒子の形状において有する扁平した面、換言すれば
最も平らに近い面を配向面として、複数の扁平状の粒子
がそれぞれの配向面を一定の方向にそろうことなく集合
している状態をいう。
[0010] The graphite particles of the present invention are preferably formed by assembling or bonding a plurality of flat particles so that their orientation planes are non-parallel. In the present invention, flat particles are particles having a shape having a major axis and a minor axis, and are not perfectly spherical. For example, a shape such as a scaly shape, a scaly shape, or a partial lump shape is included in this. In the graphite particles, the orientation plane of the plurality of flat particles is non-parallel, and the flat surface having the shape of each particle, in other words, the plane closest to the plane is the orientation surface, and the plurality of flat particles are This refers to a state in which the respective alignment planes are gathered without being aligned in a certain direction.

【0011】この黒鉛粒子において扁平状の粒子は集合
又は結合しているが、結合とは互いの粒子が、タール、
ピッチ等のバインダーを炭素化した炭素質を介して、化
学的に結合している状態をいい、集合とは互いの粒子が
化学的に結合してはないが、その形状等に起因して、そ
の集合体としての形状を保っている状態をいう。機械的
な強度の面から、結合しているものが好ましい。1つの
黒鉛粒子において、扁平状の粒子の集合又は結合する数
としては、3個以上であることが好ましい。個々の扁平
状の粒子の大きさとしては、粒径で1〜100μmであ
ることが好ましく、これらが集合又は結合した黒鉛粒子
の平均粒径の2/3以下であることが好ましい。
In the graphite particles, the flat particles are aggregated or bonded, and the bonding means that the particles are tar,
Through a carbonaceous material obtained by carbonizing a binder such as a pitch, it refers to a state in which the particles are chemically bonded.Assembling means that the particles are not chemically bonded to each other, but due to its shape and the like, A state in which the shape of the aggregate is maintained. From the standpoint of mechanical strength, it is preferable to combine them. In one graphite particle, the number of flat particles aggregated or bonded is preferably three or more. The size of each flat particle is preferably 1 to 100 μm in particle size, and is preferably 2/3 or less of the average particle size of the graphite particles in which these are aggregated or bonded.

【0012】該黒鉛粒子を負極に使用すると、集電体上
に黒鉛粒子が配向し難く、かつ、電解液との濡れ性が向
上し、負極黒鉛にリチウムを吸蔵・放出し易くなるた
め、得られるリチウム二次電池の急速充放電特性及びサ
イクル特性を向上させることができる。なお、図1に上
記黒鉛粒子の一例の粒子構造の走査型電子顕微鏡写真を
示す。図1において、(a)は本発明になる黒鉛粒子の
外表面の走査型電子顕微鏡写真、(b)は黒鉛粒子の断
面の走査型電子顕微鏡写真である。(a)においては、
細かな鱗片状の黒鉛粒子が数多く、それらの粒子の配向
面を非平行にして結合し、黒鉛粒子を形成している様子
が観察できる。
When the graphite particles are used for the negative electrode, the graphite particles are hardly oriented on the current collector, the wettability with the electrolytic solution is improved, and lithium is easily inserted into and released from the negative electrode graphite. The rapid charge and discharge characteristics and the cycle characteristics of the obtained lithium secondary battery can be improved. FIG. 1 shows a scanning electron micrograph of the particle structure of one example of the graphite particles. In FIG. 1, (a) is a scanning electron micrograph of the outer surface of the graphite particles according to the present invention, and (b) is a scanning electron micrograph of a cross section of the graphite particles. In (a),
A large number of fine flake-like graphite particles can be observed in which the orientation planes of these particles are non-parallel and combined to form graphite particles.

【0013】またアスペクト比が5以下である黒鉛粒子
は、集電体上で粒子が配向し難い傾向があり、上記と同
様にリチウムを吸蔵・放出し易くなるので好ましい。ア
スペクト比は1.2〜5であることがより好ましい。ア
スペクト比が1.2未満では、粒子間の接触面積が減る
ことにより、導電性が低下する傾向にある。同様の理由
で、さらに好ましい範囲の下限は1.3以上である。ま
た、さらに好ましい範囲の上限は、3以下であり、アス
ペクト比がこれより大きくなると、急速充放電特性が低
下し易くなる傾向がある。従って、特に好ましいアスペ
クト比は1.3〜3である。
[0013] Graphite particles having an aspect ratio of 5 or less are preferable because the particles tend to be hardly oriented on the current collector and easily occlude and release lithium as described above. The aspect ratio is more preferably 1.2 to 5. If the aspect ratio is less than 1.2, the contact area between the particles tends to decrease, so that the conductivity tends to decrease. For the same reason, the lower limit of the more preferable range is 1.3 or more. Further, the upper limit of the more preferable range is 3 or less, and when the aspect ratio is larger than this, the rapid charge / discharge characteristics tend to be easily deteriorated. Therefore, a particularly preferable aspect ratio is 1.3 to 3.

【0014】なお、アスペクト比は、黒鉛粒子の長軸方
向の長さをA、短軸方向の長さをBとしたとき、A/B
で表される。本発明におけるアスペクト比は、顕微鏡で
黒鉛粒子を拡大し、任意に100個の黒鉛粒子を選択
し、A/Bを測定し、その平均値をとったものである。
また、アスペクト比が5以下である黒鉛粒子の構造とし
ては、より小さい黒鉛粒子の集合体又は結合体であるこ
とが好ましく、前記の、扁平状の粒子を複数、配向面が
非平行となるように集合又は結合させた黒鉛粒子を用い
ることがより好ましい。
The aspect ratio is defined as A / B where A is the length of the graphite particle in the major axis direction and B is the length of the graphite particle in the minor axis direction.
It is represented by The aspect ratio in the present invention is obtained by magnifying graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring A / B, and taking the average value.
In addition, the structure of the graphite particles having an aspect ratio of 5 or less is preferably an aggregate or a combination of smaller graphite particles, and a plurality of the flat particles, the orientation plane of which is non-parallel. It is more preferable to use graphite particles that are aggregated or bonded to the same.

【0015】また、本発明の黒鉛粒子は、比表面積が8
m2/g以下のものが好ましく、より好ましくは5m2/g以下
とされる。該黒鉛粒子を負極に使用すると、得られるリ
チウム二次電池の急速充放電特性及びサイクル特性を向
上させることができ、また、第一サイクル目の不可逆容
量を小さくすることができる。比表面積が、8m2/gを超
えると、得られるリチウム二次電池の第一サイクル目の
不可逆容量が大きくなる傾向にあり、エネルギー密度が
小さく、さらに負極を作製する際多くの結着剤が必要に
なる傾向にある。得られるリチウム二次電池の急速充放
電特性、サイクル特性等がさらに良好な点から、比表面
積は、1.5〜5m2/gであることがさらに好ましく、2
〜5m2/gであることが極めて好ましい。比表面積の測定
は、BET法(窒素ガス吸着法)などの既知の方法をと
ることができる。
The graphite particles of the present invention have a specific surface area of 8
It is preferably at most m 2 / g, more preferably at most 5 m 2 / g. When the graphite particles are used for a negative electrode, the obtained lithium secondary battery can have improved rapid charge / discharge characteristics and cycle characteristics, and can have a reduced irreversible capacity in the first cycle. When the specific surface area exceeds 8 m 2 / g, the irreversible capacity in the first cycle of the obtained lithium secondary battery tends to increase, the energy density is low, and many binders are used when producing a negative electrode. Tends to be needed. The specific surface area is more preferably 1.5 to 5 m 2 / g, from the viewpoint that the obtained lithium secondary battery has more favorable rapid charge / discharge characteristics and cycle characteristics.
It is very preferred that it is 55 m 2 / g. The specific surface area can be measured by a known method such as a BET method (nitrogen gas adsorption method).

【0016】さらに、本発明で用いる各黒鉛粒子のX線
広角回折における結晶の層間距離d(002)は3.3
8Å以下が好ましく、3.37〜3.35Åの範囲がよ
り好ましい。結晶の層間距離d(002)が3.38Å
を超えると放電容量が小さくなる傾向がある。c軸方向
の結晶子の大きさLc(002)は500Å以上が好ま
しく、1000〜100000Åであることがより好ま
しい。結晶の層間距離d(002)が小さくなるかc軸
方向の結晶子の大きさLc(002)が大きくなると、
放電容量が大きくなる傾向がある。
Further, the interlayer distance d (002) of crystals of the graphite particles used in the present invention in X-ray wide angle diffraction is 3.3.
8 ° or less is preferable, and the range of 3.37 to 3.35 ° is more preferable. Crystal interlayer distance d (002) is 3.38 °
If it exceeds, the discharge capacity tends to be small. The crystallite size Lc (002) in the c-axis direction is preferably 500 ° or more, and more preferably 1000 to 100000 °. When the interlayer distance d (002) of the crystal decreases or the crystallite size Lc (002) in the c-axis direction increases,
The discharge capacity tends to increase.

【0017】本発明の黒鉛粒子の製造法に特に制限はな
いが、黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバイン
ダに黒鉛化触媒を1〜50重量%添加して混合し、焼成
した後粉砕することによりまず黒鉛粒子を得ることが好
ましい。ついで、該黒鉛粒子に有機系結着剤及び溶剤を
添加して混合し、粘度を調製した後、該混合物を集電体
に塗布し、乾燥して溶剤を除去した後、加圧して一体化
してリチウム二次電池用負極とすることができる。
Although there is no particular limitation on the method for producing the graphite particles of the present invention, 1 to 50% by weight of a graphitization catalyst is added to a graphitizable aggregate or graphite and a graphitizable binder, mixed and calcined. It is preferable to obtain graphite particles first by post-grinding. Then, an organic binder and a solvent are added to the graphite particles and mixed, and the viscosity is adjusted. The mixture is applied to a current collector, dried, and the solvent is removed. To form a negative electrode for a lithium secondary battery.

【0018】黒鉛化可能な骨材としては、例えば、コー
クス粉末、樹脂の炭化物等が使用できるが、黒鉛化でき
る粉末材料であれば特に制限はない。中でも、ニードル
コークス等の黒鉛化しやすいコークス粉末が好ましい。
また黒鉛としては、例えば天然黒鉛粉末、人造黒鉛粉末
等が使用できるが粉末状であれば特に制限はない。黒鉛
化可能な骨材又は黒鉛の粒径は、本発明で作製する黒鉛
粒子の粒径より小さいことが好ましい。
As the graphitizable aggregate, for example, coke powder, resin carbide and the like can be used, but there is no particular limitation as long as the material can be graphitized. Among them, coke powder such as needle coke which is easily graphitized is preferable.
As the graphite, for example, natural graphite powder, artificial graphite powder and the like can be used, but there is no particular limitation as long as the powder is in the form of powder. The particle size of the graphitizable aggregate or graphite is preferably smaller than the particle size of the graphite particles produced in the present invention.

【0019】さらに黒鉛化触媒としては、例えば鉄、ニ
ッケル、チタン、ケイ素、硼素等の金属、これらの炭化
物、酸化物などの黒鉛化触媒が使用できる。これらの中
で、ケイ素または硼素の炭化物または酸化物が好まし
い。これらの黒鉛化触媒の添加量は、得られる黒鉛粒子
に対して好ましくは1〜50重量%、より好ましくは5
〜40重量%の範囲、さらに好ましくは5〜30重量%
の範囲とされ、1重量%未満であると黒鉛粒子のアスペ
クト比及び比表面積が大きくなり黒鉛の結晶の発達が悪
くなる傾向にあり、一方50重量%を超えると均一に混
合することが困難で作業性が悪くなる傾向にある。
Further, as the graphitization catalyst, for example, metals such as iron, nickel, titanium, silicon and boron, and their graphitization catalysts such as carbides and oxides can be used. Of these, carbides or oxides of silicon or boron are preferred. The amount of the graphitization catalyst to be added is preferably 1 to 50% by weight, more preferably 5 to 50% by weight based on the obtained graphite particles.
-40% by weight, more preferably 5-30% by weight
If the content is less than 1% by weight, the aspect ratio and the specific surface area of the graphite particles tend to be large, and the development of graphite crystals tends to be poor. On the other hand, if it exceeds 50% by weight, it is difficult to mix them uniformly. Workability tends to deteriorate.

【0020】バインダとしては、例えば、タール、ピッ
チの他、熱硬化性樹脂、熱可塑性樹脂等の有機系材料が
好ましい。バインダの配合量は、扁平状の黒鉛化可能な
骨材又は黒鉛に対し、5〜80重量%添加することが好
ましく、10〜80重量%添加することがより好まし
く、15〜80重量%添加することがさらに好ましい。
バインダの量が多すぎたり少なすぎると、作製する黒鉛
粒子のアスペクト比及び比表面積が大きくなり易いとい
う傾向がある。黒鉛化可能な骨材又は黒鉛とバインダの
混合方法は、特に制限はなく、ニーダー等を用いて行わ
れるが、バインダの軟化点以上の温度で混合することが
好ましい。具体的にはバインダがピッチ、タール等の際
には、50〜300℃が好ましく、熱硬化性樹脂の場合
には、20〜100℃が好ましい。
As the binder, for example, organic materials such as thermosetting resin and thermoplastic resin are preferable in addition to tar and pitch. The binder is preferably added in an amount of 5 to 80% by weight, more preferably 10 to 80% by weight, and more preferably 15 to 80% by weight, based on the flat graphitizable aggregate or graphite. Is more preferable.
If the amount of the binder is too large or too small, the graphite particles to be produced tend to have an increased aspect ratio and specific surface area. The method of mixing the graphitizable aggregate or graphite and the binder is not particularly limited, and is performed using a kneader or the like, but it is preferable to mix at a temperature equal to or higher than the softening point of the binder. Specifically, when the binder is pitch, tar or the like, the temperature is preferably 50 to 300 ° C, and when the binder is a thermosetting resin, the temperature is preferably 20 to 100 ° C.

【0021】次に上記の混合物を焼成し、黒鉛化処理を
行う。なお、この処理の前に上記混合物を所定形状に成
形しても良い。さらに、成形後、黒鉛化前に粉砕し、粒
径を調整した後、黒鉛化を行っても良い。焼成は前記混
合物が酸化し難い条件で焼成することが好ましく、例え
ば窒素雰囲気中、アルゴンガス雰囲気中、真空中で焼成
する方法が挙げられる。黒鉛化の温度は、2000℃以
上が好ましく、2500℃以上であることがより好まし
く、2800℃〜3200℃であることがさらに好まし
い。黒鉛化の温度が低いと、黒鉛の結晶の発達が悪く、
放電容量が低くなる傾向があると共に添加した黒鉛化触
媒が作製する黒鉛粒子に残存し易くなる傾向がある。黒
鉛化触媒が、作製する黒鉛粒子中に残存すると、放電容
量が低下する。黒鉛化の温度が高すぎると、黒鉛が昇華
することがある。
Next, the above mixture is fired and graphitized. The mixture may be formed into a predetermined shape before this treatment. Further, after the molding, it may be pulverized before graphitization, and after adjusting the particle size, graphitization may be performed. The firing is preferably performed under conditions in which the mixture is unlikely to be oxidized. Examples of the firing include a method of firing in a nitrogen atmosphere, an argon gas atmosphere, or a vacuum. The temperature for graphitization is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, and further preferably 2800 ° C. to 3200 ° C. If the graphitization temperature is low, the development of graphite crystals is poor,
The discharge capacity tends to decrease and the added graphitization catalyst tends to remain in the produced graphite particles. If the graphitization catalyst remains in the graphite particles to be produced, the discharge capacity decreases. If the graphitization temperature is too high, the graphite may sublime.

【0022】次に、得られた黒鉛化物を粉砕することが
好ましい。黒鉛化物の粉砕方法は、特に制限はないが、
例えばジェットミル、振動ミル、ピンミル、ハンマーミ
ル等の既知の方法をとることができる。粉砕後の粒径
は、平均粒径が1〜100μmが好ましく、10〜50
μmであることがより好ましい。平均粒径が大きくなり
すぎる場合は作製する電極の表面に凹凸ができ易くなる
傾向がある。なお、本発明において平均粒径は、レーザ
ー回折粒度分布計により測定することができる。
Next, the obtained graphitized product is preferably pulverized. The method of pulverizing the graphitized material is not particularly limited,
For example, a known method such as a jet mill, a vibration mill, a pin mill, and a hammer mill can be used. The particle size after pulverization is preferably such that the average particle size is 1 to 100 μm,
More preferably, it is μm. If the average particle size is too large, the surface of the electrode to be produced tends to have irregularities. In the present invention, the average particle size can be measured by a laser diffraction particle size distribution meter.

【0023】以上に示す工程を経ることにより、本発明
の黒鉛粒子を得ることができる。得られた前記黒鉛粒子
は、有機系結着剤及び溶剤を含む材料を混合して、シー
ト状、ペレット状等の形状に成形される。有機系結着剤
としては、例えば、ポリエチレン、ポリプロピレン、エ
チレンプロピレンターポリマー、ブタジエンゴム、スチ
レンブタジエンゴム、ブチルゴム、イオン伝導率の大き
な高分子化合物等が使用できる。本発明においてイオン
伝導率の大きな高分子化合物としては、ポリフッ化ビニ
リデン、ポリエチレンオキサイド、ポリエピクロルヒド
リン、ポリフォスファゼン、ポリアクリロニトリル等が
使用できる。これらの中では、イオン伝導率の大きな高
分子化合物が好ましく、ポリフッ化ビニリデンが特に好
ましい。
Through the steps described above, the graphite particles of the present invention can be obtained. The obtained graphite particles are formed into a sheet-like or pellet-like shape by mixing a material containing an organic binder and a solvent. As the organic binder, for example, polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, a polymer compound having a high ionic conductivity, and the like can be used. In the present invention, as the polymer compound having a large ionic conductivity, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, and the like can be used. Among these, a polymer compound having a large ionic conductivity is preferable, and polyvinylidene fluoride is particularly preferable.

【0024】有機系結着剤の含有量は、黒鉛粉末と有機
系結着剤との混合物に対して、3〜20重量%用いるこ
とが好ましい。溶剤としては特に制限はなく、N−メチ
ル2−ピロリドン、ジメチルホルムアミド、イソプロパ
ノール等が用いられる。溶剤の量に特に制限はなく、所
望の粘度に調整できればよいが、混合物に対して、30
〜70重量%用いられることが好ましい。
The content of the organic binder is preferably 3 to 20% by weight based on the mixture of the graphite powder and the organic binder. The solvent is not particularly limited, and N-methyl 2-pyrrolidone, dimethylformamide, isopropanol and the like are used. The amount of the solvent is not particularly limited as long as it can be adjusted to a desired viscosity.
It is preferably used in an amount of up to 70% by weight.

【0025】集電体としては、例えばニッケル、銅等の
箔、メッシュなどの金属集電体が使用できる。なお一体
化は、例えばロール、プレス等の成形法で行うことがで
き、またこれらを組み合わせて一体化してもよい。この
ようにして得られた負極はリチウムイオン二次電池やリ
チウムポリマ二次電池等のリチウム二次電池の負極とし
て用いられる。例えば、リチウムイオン二次電池におい
ては、セパレータを介して正極を対向して配置し、かつ
電解液を注入する。本発明によれば、従来の炭素材料を
負極に使用したリチウム二次電池に比較して、急速充放
電特性及びサイクル特性に優れ、かつ不可逆容量が小さ
いリチウム二次電池を作製することができる。
As the current collector, for example, a metal current collector such as a foil of nickel or copper, or a mesh can be used. In addition, the integration can be performed by a molding method such as a roll, a press, or the like, and these may be combined and integrated. The negative electrode thus obtained is used as a negative electrode of a lithium secondary battery such as a lithium ion secondary battery or a lithium polymer secondary battery. For example, in a lithium ion secondary battery, a positive electrode is arranged to face a separator, and an electrolyte is injected. ADVANTAGE OF THE INVENTION According to this invention, compared with the lithium secondary battery which used the conventional carbon material for the negative electrode, the lithium secondary battery which is excellent in a quick charge / discharge characteristic and a cycle characteristic, and whose irreversible capacity is small can be manufactured.

【0026】本発明におけるリチウム二次電池の正極に
用いられる材料については特に制限はなく、LiNiO
2、LiCoO2、LiMn24等を単独又は混合して使
用することができる。電解液としては、LiClO4
LiPF6、LiAsF6、LiBF4、LiSO3CF3
等のリチウム塩を例えばエチレンカーボネート、ジエチ
ルカーボネート、ジメトキシエタン、ジメチルカーボネ
ート、テトラヒドロフラン、プロピレンカーボネート等
の非水系溶剤に、ポリフッ化ビニリデン等の高分子固体
電解質に溶解又は含有させたいわゆる有機電解液を使用
することができる。
There is no particular limitation on the material used for the positive electrode of the lithium secondary battery in the present invention.
2 , LiCoO 2 , LiMn 2 O 4, etc. can be used alone or as a mixture. LiClO 4 ,
LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3
For example, a so-called organic electrolytic solution in which a lithium salt such as ethylene carbonate, diethyl carbonate, dimethoxyethane, dimethyl carbonate, tetrahydrofuran, or a non-aqueous solvent such as propylene carbonate is dissolved or contained in a polymer solid electrolyte such as polyvinylidene fluoride is used. can do.

【0027】液体の電解液を使用する場合に用いられる
セパレータとしては、例えばポリエチレン、ポリプロピ
レン等のポリオレフィンを主成分とした不織布、クロ
ス、微孔フィルム又はこれらを組み合わせたものを使用
することができる。なお、図2に円筒型リチウム二次電
池の一例の一部断面正面図を示す。図2に示す円筒型リ
チウム二次電池は、薄板状に加工された正極1と、同様
に加工された負極2が、ポリエチレン製微孔膜等のセパ
レータ3を介して重ね合わせたものを捲回し、これを金
属製等の電池缶7に挿入し、密閉化されている。正極1
は正極タブ4を介して正極蓋6に接合され、負極2は負
極タブ5を介して電池底部へ接合されている。正極蓋6
はガスケット8にて電池缶7へ固定されている。
As the separator used when a liquid electrolyte is used, for example, a nonwoven fabric, cloth, microporous film or the like in which a polyolefin such as polyethylene or polypropylene as a main component can be used. FIG. 2 shows a partial cross-sectional front view of an example of the cylindrical lithium secondary battery. The cylindrical lithium secondary battery shown in FIG. 2 is formed by winding a positive electrode 1 processed into a thin plate and a negative electrode 2 processed in the same manner with a separator 3 such as a polyethylene microporous membrane interposed therebetween. This is inserted into a battery can 7 made of metal or the like to be sealed. Positive electrode 1
Is connected to the positive electrode lid 6 via the positive electrode tab 4, and the negative electrode 2 is connected to the battery bottom via the negative electrode tab 5. Positive electrode cover 6
Is fixed to the battery can 7 by a gasket 8.

【0028】[0028]

【実施例】【Example】

実施例1 平均粒径が5μmのコークス粉末40重量部、タールピ
ッチ25重量部、平均粒径が48μmの炭化ケイ素5重
量部及びコールタール20重量部を混合し、200℃で
1時間撹拌した。次いで、窒素雰囲気中で2800℃で
焼成した後粉砕し、平均粒径が30μmの黒鉛粒子を作
製した。得られた黒鉛粒子を水銀圧入法による細孔径分
布測定(島津ポアサイザー9320形使用)を行った結
果、102〜106Åの範囲に細孔を有し、黒鉛粒子重量
当たりの全細孔体積は、0.6cc/gであった。また、1
×102〜2×104Åの範囲の細孔体積は、黒鉛粒子重
量当たり0.20cc/gであった。また得られた黒鉛粒子
を100個任意に選び出し、アスペクト比の平均値を測
定した結果、1.5であり、黒鉛粒子のBET法による
比表面積は、1.5m2/gであり、黒鉛粒子のX線広角回
折による結晶の層間距離d(002)は3.362Å及
び結晶子の大きさLc(002)は1000Å以上であ
った。さらに、得られた黒鉛粒子の走査型電子顕微鏡写
真(SEM写真)によれば、この黒鉛粒子は、扁平状の
粒子が複数配向面が非平行となるように集合又は結合し
た構造をしていた。
Example 1 40 parts by weight of coke powder having an average particle diameter of 5 μm, 25 parts by weight of tar pitch, 5 parts by weight of silicon carbide having an average particle diameter of 48 μm, and 20 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. Next, the powder was fired at 2800 ° C. in a nitrogen atmosphere and then pulverized to produce graphite particles having an average particle diameter of 30 μm. The obtained graphite particles were subjected to a pore size distribution measurement using a mercury intrusion method (using Shimadzu Pore Sizer 9320 type). As a result, the graphite particles had pores in the range of 10 2 to 10 6 Å, and the total pore volume per graphite particle weight was determined. Was 0.6 cc / g. Also, 1
The pore volume in the range of × 10 2 to 2 × 10 4 0.2 was 0.20 cc / g per weight of graphite particles. In addition, 100 obtained graphite particles were arbitrarily selected and the average value of the aspect ratio was measured. As a result, the specific surface area of the graphite particles determined by the BET method was 1.5 m 2 / g. The crystal interlayer distance d (002) by X-ray wide angle diffraction was 3.362 ° and the crystallite size Lc (002) was 1000 ° or more. Further, according to a scanning electron micrograph (SEM photograph) of the obtained graphite particles, the graphite particles had a structure in which flat particles were aggregated or bonded such that a plurality of orientation planes became non-parallel. .

【0029】次いで得られた黒鉛粒子90重量%に、N
−メチル−2−ピロリドンに溶解したポリフッ化ビニリ
デン(PVDF)を固形分で10重量%加えて混練して
黒鉛ペーストを作製した。この黒鉛ペーストを厚さが1
0μmの圧延銅箔に塗布し、さらに乾燥して、面圧49
0MPa(0.5トン/cm2)の圧力で圧縮成形し、試料電
極とした。黒鉛粒子層の厚さは90μm及び密度は1.
6g/cm3とした。作製した試料電極を3端子法による定
電流充放電を行い、リチウム二次電池用負極としての評
価を行った。図3はリチウム二次電池の概略図であり、
試料電極の評価は図3に示すようにガラスセル9に、電
解液10としてLiPF6をエチレンカーボネート(E
C)及びジメチルカーボネート(DMC)(ECとDM
Cは体積比で1:1)の混合溶媒に1モル/リットルの
濃度になるように溶解した溶液を入れ、試料電極11、
セパレータ12及び対極13を積層して配置し、さらに
参照極14を上部から吊るしてリチウム二次電池を作製
して行った。なお、対極13及び参照極14には金属リ
チウムを使用し、セパレータ4にはポリエチレン微孔膜
を使用した。得られたリチウム二次電池を用いて試料電
極11と対極13の間に、試料電極の面積に対して、
0.5mA/cm2の定電流で5mV(Vvs.Li/L
+)まで充電し、1V(Vvs.Li/Li+)まで放
電する試験を繰り返した。表1にサイクル目の黒鉛粒子
の単位重量当りの充電容量、放電容量及び30サイクル
目の黒鉛粒子の単位重量当りの放電容量を示す。
Next, 90% by weight of the obtained graphite particles was added with N
Polyvinylidene fluoride (PVDF) dissolved in -methyl-2-pyrrolidone was added at a solid content of 10% by weight and kneaded to prepare a graphite paste. This graphite paste has a thickness of 1
0 μm rolled copper foil, and further dried to a contact pressure of 49 μm.
It was compression molded at a pressure of 0 MPa (0.5 ton / cm 2 ) to obtain a sample electrode. The graphite particle layer has a thickness of 90 μm and a density of 1.
It was 6 g / cm 3 . The prepared sample electrode was charged and discharged at a constant current by a three-terminal method, and evaluated as a negative electrode for a lithium secondary battery. FIG. 3 is a schematic diagram of a lithium secondary battery,
As shown in FIG. 3, the evaluation of the sample electrode was performed by adding LiPF 6 to the glass cell 9 as the electrolytic solution 10 using ethylene carbonate (E).
C) and dimethyl carbonate (DMC) (EC and DM
C is a solution prepared by dissolving a mixed solvent having a volume ratio of 1: 1) so as to have a concentration of 1 mol / liter.
The separator 12 and the counter electrode 13 were stacked and arranged, and the reference electrode 14 was suspended from above to produce a lithium secondary battery. Note that metallic lithium was used for the counter electrode 13 and the reference electrode 14, and a polyethylene microporous membrane was used for the separator 4. Using the obtained lithium secondary battery, between the sample electrode 11 and the counter electrode 13, with respect to the area of the sample electrode,
5 mV (V vs. Li / L) at a constant current of 0.5 mA / cm 2
i + ) and the test of discharging to 1 V (Vvs. Li / Li + ) was repeated. Table 1 shows the charge capacity and the discharge capacity per unit weight of the graphite particles in the cycle and the discharge capacity per unit weight of the graphite particles in the 30th cycle.

【0030】実施例2 平均粒径が20μmのコークス粉末50重量部、ピッチ
20重量部、平均粒径が48μmの炭化ケイ素7重量部
及びコールタール10重量部を混合し、200℃で1時
間撹拌した。次いで、窒素雰囲気中で2800℃で焼成
した後粉砕し、平均粒径が30μmの黒鉛粒子を得た。
得られた黒鉛粒子を水銀圧入法による細孔径分布測定
(島津ポアサイザー9320形使用)を行った結果、1
2〜106Åの範囲に細孔を有し、黒鉛粒子重量当りの
全細孔体積は、1.5cc/gであった。また、1×102
〜2×104Åの範囲の細孔体積は、黒鉛粒子重量当た
り0.13cc/gであった。また得られた黒鉛粒子を10
0個任意に選び出し、アスペクト比の平均値を測定した
結果、2.3であり、黒鉛粒子のBET法による比表面
積は、3.6m2/gであり、黒鉛粒子のX線広角回折によ
る結晶の層間距離d(002)は3.361Å及び結晶
子の大きさLc(002)は1000Å以上であった。
さらに得られた黒鉛粒子は、扁平状の粒子が複数配向面
が非平行となるように集合又は結合した構造をしてい
た。以下実施例1と同様の工程を経てリチウム二次電池
を作製し、実施例1と同様の試験を行った。表1に1サ
イクル目の黒鉛粒子の単位重量当りの充電容量、放電容
量及び30サイクル目の黒鉛粒子の単位重量当りの放電
容量を示す。
Example 2 50 parts by weight of coke powder having an average particle diameter of 20 μm, 20 parts by weight of pitch, 7 parts by weight of silicon carbide having an average particle diameter of 48 μm, and 10 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. did. Next, the powder was fired at 2800 ° C. in a nitrogen atmosphere and then pulverized to obtain graphite particles having an average particle diameter of 30 μm.
The obtained graphite particles were subjected to a pore size distribution measurement using a mercury intrusion method (using Shimadzu Pore Sizer 9320).
0 2-10 have pores in the range of 6 Å, the total pore volume per graphite particle weight was 1.5 cc / g. Also, 1 × 10 2
The pore volume in the range of 22 × 10 4 0.1 was 0.13 cc / g per graphite particle weight. Further, the obtained graphite particles were
The average value of the aspect ratio was 2.3 as determined by arbitrarily selecting zero particles. The specific surface area of the graphite particles determined by the BET method was 3.6 m 2 / g. The interlayer distance d (002) was 3.361 ° and the crystallite size Lc (002) was 1000 ° or more.
Further, the obtained graphite particles had a structure in which flat particles were aggregated or bonded so that a plurality of orientation planes became non-parallel. Hereinafter, a lithium secondary battery was manufactured through the same steps as in Example 1, and the same test as in Example 1 was performed. Table 1 shows the charge capacity and the discharge capacity per unit weight of the graphite particles in the first cycle and the discharge capacity per unit weight of the graphite particles in the 30th cycle.

【0031】比較例1 メソカーボンマイクロビーズ(川崎製鉄(株)製、商品名
KMFC)を窒素雰囲気中で2800℃で焼成し、平均
粒径が25μmの黒鉛粒子を得た。得られた黒鉛粒子を
水銀圧入法による細孔径分布測定(島津ポアサイザー9
320形使用)を行った結果、102〜106Åの範囲に
細孔を有し、黒鉛粒子重量当りの全細孔体積は、0.3
5cc/gであった。また、1×102〜2×104Åの範囲
の細孔体積は、黒鉛粒子重量当たり0.06cc/gであっ
た。また得られた黒鉛粒子を100個任意に選び出し、
アスペクト比の平均値を測定した結果、1であり、黒鉛
粒子のBET法による比表面積は、1.4m2/gであり、
黒鉛粒子のX線広角回折による結晶の層間距離d(00
2)は3.378Å及び結晶子の大きさLc(002)
は500Åであった。以下実施例1と同様の工程を経
て、リチウム二次電池を作製し、実施例1と同様の試験
を行った。表1に1サイクル目の黒鉛粒子の単位重量当
りの充電容量、放電容量及び30サイクル目の黒鉛粒子
の単位重量当りの放電容量を示す。
Comparative Example 1 Mesocarbon microbeads (KMFC, manufactured by Kawasaki Steel Corporation) were fired at 2800 ° C. in a nitrogen atmosphere to obtain graphite particles having an average particle size of 25 μm. The obtained graphite particles are measured for pore size distribution by mercury intrusion method (Shimadzu Pore Sizer 9).
As a result, the fine particles had pores in the range of 10 2 to 10 6 °, and the total pore volume per graphite particle weight was 0.3%.
It was 5 cc / g. Further, the pore volume in the range of 1 × 10 2 to 2 × 10 4 0.0 was 0.06 cc / g per weight of graphite particles. In addition, arbitrarily select 100 obtained graphite particles,
As a result of measuring the average value of the aspect ratio, it was 1, and the specific surface area of the graphite particles by the BET method was 1.4 m 2 / g.
The interlayer distance d (00) of the crystal by X-ray wide angle diffraction of graphite particles
2) is 3.378 ° and the crystallite size Lc (002)
Was 500 °. Hereinafter, a lithium secondary battery was manufactured through the same steps as in Example 1, and the same test as in Example 1 was performed. Table 1 shows the charge capacity and the discharge capacity per unit weight of the graphite particles in the first cycle and the discharge capacity per unit weight of the graphite particles in the 30th cycle.

【0032】比較例2 平均粒径が5μmのコークス粉末50重量部、ピッチ1
0重量部、平均粒径が65μmの酸化鉄30重量部及び
コールタール20重量部を混合し、200℃で1時間撹
拌した。次いで、窒素雰囲気中で2800℃で焼成した
後粉砕し、平均粒径が15μmの黒鉛粒子を得た。得ら
れた黒鉛粒子を水銀圧入法による細孔径分布測定(島津
ポアサイザー9320形使用)を行った結果、102
106Åの範囲に細孔を有し、黒鉛粒子重量当りの全細
孔体積は、2.1cc/gであった。また、1×102〜2
×104Åの範囲の細孔体積は、黒鉛粒子重量当たり
0.42cc/gであった。また得られた黒鉛粒子を100
個任意に選び出し、アスペクト比の平均値を測定した結
果、2.8であり、黒鉛粒子のBET法による比表面積
は、8.3m2/gであり、黒鉛粒子のX線広角回折による
結晶の層間距離d(002)は3.365Å及び結晶子
の大きさLc(002)は1000Å以上であった。以
下、実施例1と同様の工程を経て、リチウム二次電池を
作製し、実施例1と同様の試験を行った。表1に1サイ
クル目の黒鉛粒子の単位重量当りの充電容量、放電容量
及び30サイクル目の黒鉛粒子の単位重量当りの放電容
量を示す。
Comparative Example 2 50 parts by weight of coke powder having an average particle size of 5 μm, pitch 1
0 parts by weight, 30 parts by weight of iron oxide having an average particle size of 65 μm, and 20 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. Next, the powder was fired at 2800 ° C. in a nitrogen atmosphere and then pulverized to obtain graphite particles having an average particle size of 15 μm. The resulting pore size distribution measurement of graphite particles by mercury porosimetry (Shimadzu Poasaiza 9320 form used) the result of 10 2 -
It had pores in the range of 10 6 %, and the total pore volume per graphite particle weight was 2.1 cc / g. Also, 1 × 10 2 to 2
The pore volume in the range of × 10 4 0.4 was 0.42 cc / g per graphite particle weight. The obtained graphite particles were
The average value of the aspect ratio was 2.8, and the specific surface area of the graphite particles by the BET method was 8.3 m 2 / g. The interlayer distance d (002) was 3.365 ° and the crystallite size Lc (002) was 1000 ° or more. Hereinafter, a lithium secondary battery was manufactured through the same steps as in Example 1, and the same test as in Example 1 was performed. Table 1 shows the charge capacity and the discharge capacity per unit weight of the graphite particles in the first cycle and the discharge capacity per unit weight of the graphite particles in the 30th cycle.

【0033】[0033]

【表1】 [Table 1]

【0034】表1に示されるように、本発明の黒鉛粒子
を用いて得られたリチウム二次電池は、高容量でサイク
ル特性に優れることが明らかである。
As shown in Table 1, it is clear that the lithium secondary battery obtained by using the graphite particles of the present invention has high capacity and excellent cycle characteristics.

【0035】[0035]

【発明の効果】請求項1及び5に記載の黒鉛粒子は、サ
イクル特性に優れたリチウム二次電池に好適なものであ
る。請求項2、3、6及び7に記載の黒鉛粒子は、急速
充放電特性及びサイクル特性に優れたリチウム二次電池
に好適なものである。請求項4及び8記載の黒鉛粒子
は、急速充放電特性及びサイクル特性に優れ、かつ第一
サイクル目の不可逆容量が小さく、リチウム二次電池に
好適なものである。
The graphite particles according to the first and fifth aspects are suitable for a lithium secondary battery having excellent cycle characteristics. The graphite particles according to the second, third, sixth and seventh aspects are suitable for a lithium secondary battery having excellent rapid charge / discharge characteristics and cycle characteristics. The graphite particles according to claims 4 and 8 are excellent in rapid charge / discharge characteristics and cycle characteristics, and have a small irreversible capacity in the first cycle, and are suitable for lithium secondary batteries.

【0036】請求項9記載の黒鉛粒子の製造法によれ
ば、急速充放電特性及びサイクル特性に優れ、かつ第一
サイクル目の不可逆容量が小さく、リチウム二次電池に
好適なものである。請求項10記載の黒鉛ペーストは、
急速充放電特性及びサイクル特性に優れ、かつ第一サイ
クル目の不可逆容量が小さく、リチウム二次電池に好適
なものである。請求項11記載のリチウム二次電池用負
極は、急速充放電特性及びサイクル特性に優れ、かつ第
一サイクル目の不可逆容量が小さく、リチウム二次電池
に好適なものである。請求項12記載のリチウム二次電
池は、急速充放電特性及びサイクル特性に優れ、かつ第
一サイクル目の不可逆容量が小さいものである。
According to the method for producing graphite particles of the ninth aspect, the graphite particles are excellent in rapid charge / discharge characteristics and cycle characteristics, and have a small irreversible capacity in the first cycle, and are suitable for lithium secondary batteries. The graphite paste according to claim 10,
It is excellent in rapid charge / discharge characteristics and cycle characteristics, and has a small irreversible capacity in the first cycle, and is suitable for a lithium secondary battery. The negative electrode for a lithium secondary battery according to the eleventh aspect has excellent rapid charge / discharge characteristics and cycle characteristics, has a small irreversible capacity in the first cycle, and is suitable for a lithium secondary battery. The lithium secondary battery according to the twelfth aspect has excellent rapid charge / discharge characteristics and cycle characteristics, and has a small irreversible capacity in the first cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる黒鉛粒子の走査型電子顕微鏡写
真であり、(a)は粒子の外表面の写真、(b)は粒子
の断面の写真である。
FIG. 1 is a scanning electron micrograph of graphite particles used in the present invention, wherein (a) is a photograph of the outer surface of the particles and (b) is a photograph of a cross section of the particles.

【図2】円筒型リチウム二次電池の一部断面正面図であ
る。
FIG. 2 is a partial cross-sectional front view of a cylindrical lithium secondary battery.

【図3】本発明の実施例で、充放電特性及び不可逆容量
の測定に用いたリチウム二次電池の概略図である。
FIG. 3 is a schematic view of a lithium secondary battery used for measurement of charge / discharge characteristics and irreversible capacity in Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極タブ 5 負極タブ 6 正極蓋 7 電池缶 8 ガスケット 9 ガラスセル 10 電解液 11 試料電極(負極) 12 セパレータ 13 対極(正極) 14 参照極 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode tab 5 Negative electrode tab 6 Positive electrode cover 7 Battery can 8 Gasket 9 Glass cell 10 Electrolyte 11 Sample electrode (negative electrode) 12 Separator 13 Counter electrode (positive electrode) 14 Reference electrode

フロントページの続き (72)発明者 山田 和夫 茨城県日立市鮎川町三丁目3番1号 日 立化成工業株式会社 山崎工場内 (56)参考文献 特開 平10−158005(JP,A) 特開 平8−31422(JP,A) 国際公開97/42671(WO,A1) 国際公開95/28011(WO,A1) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 C01B 31/04 101 H01M 4/02 H01M 4/04 H01M 10/40 Continuation of the front page (72) Inventor Kazuo Yamada 3-1-1, Ayukawa-cho, Hitachi-shi, Ibaraki Pref. Hitachi Chemical Co., Ltd. Yamazaki Plant (56) References JP-A-10-158005 (JP, A) JP Hei 8-31422 (JP, A) WO 97/42671 (WO, A1) WO 95/28011 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 C01B 31/04 101 H01M 4/02 H01M 4/04 H01M 10/40

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 102〜106Åの範囲の大きさの細孔の
細孔体積が、黒鉛粒子重量当たり0.4〜2.0cc/
gであるリチウム二次電池負極用黒鉛粒子。
1. The pore volume of pores having a size in the range of 10 2 to 10 6 ° is 0.4 to 2.0 cc / weight per graphite particle weight.
g of graphite particles for a negative electrode of a lithium secondary battery.
【請求項2】 黒鉛粒子のアスペクト比が5以下である
請求項1記載のリチウム二次電池負極用黒鉛粒子。
2. The graphite particles for a negative electrode of a lithium secondary battery according to claim 1, wherein the graphite particles have an aspect ratio of 5 or less.
【請求項3】 比表面積が8m2/g以下である請求項
1又は2記載のリチウム二次電池負極用黒鉛粒子。
3. The graphite particles for a negative electrode of a lithium secondary battery according to claim 1, having a specific surface area of 8 m 2 / g or less.
【請求項4】 1×102〜2×104Åの範囲の大きさ
の細孔の細孔体積が、黒鉛粒子重量当たり0.08〜
0.4cc/gであるリチウム二次電池負極用黒鉛粒
子。
4. The pore volume of pores having a size in the range of 1 × 10 2 to 2 × 10 4 、 is 0.08 to 0.08 per weight of graphite particles.
0.4 cc / g of graphite particles for a negative electrode of a lithium secondary battery.
【請求項5】 黒鉛粒子のアスペクト比が5以下である
請求項4記載のリチウム二次電池負極用黒鉛粒子。
5. The graphite particles for a negative electrode of a lithium secondary battery according to claim 4, wherein the graphite particles have an aspect ratio of 5 or less.
【請求項6】 比表面積が8m2/g以下である請求項
4又は5記載のリチウム二次電池負極用黒鉛粒子。
6. The graphite particles for a negative electrode of a lithium secondary battery according to claim 4, having a specific surface area of 8 m 2 / g or less.
JP33100797A 1996-12-26 1997-11-14 Graphite particles for lithium secondary battery negative electrode Expired - Lifetime JP3305995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33100797A JP3305995B2 (en) 1996-12-26 1997-11-14 Graphite particles for lithium secondary battery negative electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34840696 1996-12-26
JP8-348406 1996-12-26
JP33100797A JP3305995B2 (en) 1996-12-26 1997-11-14 Graphite particles for lithium secondary battery negative electrode

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2001208318A Division JP3321782B2 (en) 1996-12-26 2001-07-09 Graphite particles for lithium secondary battery negative electrode
JP2002092084A Division JP2002343341A (en) 1996-12-26 2002-03-28 Negative electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH10236809A JPH10236809A (en) 1998-09-08
JP3305995B2 true JP3305995B2 (en) 2002-07-24

Family

ID=26573712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33100797A Expired - Lifetime JP3305995B2 (en) 1996-12-26 1997-11-14 Graphite particles for lithium secondary battery negative electrode

Country Status (1)

Country Link
JP (1) JP3305995B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8808919B2 (en) 2008-12-01 2014-08-19 Samsung Sdi Co., Ltd. Negative electrode active material, negative electrode having the same and lithium secondary battery
JP2015128073A (en) * 1996-12-26 2015-07-09 日立化成株式会社 Negative electrode for lithium secondary battery
US9508980B2 (en) 1996-08-08 2016-11-29 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003280702A1 (en) * 2003-06-24 2005-01-04 Electric Power Development Co., Ltd. Negative electrode material, negative electrode, nonaqueous secondary cell composed of the negative electrode and positive electrode
WO2005024980A1 (en) * 2003-09-05 2005-03-17 Hitachi Chemical Co., Ltd. Non-aqueous electrolyte secondary battery-use cathode material, production method therefor, non-aqueous electrolyte secondary battery-use cathode and non-aqueous electrolyte secondary battery using the cathode material
JP4530845B2 (en) * 2004-12-28 2010-08-25 三洋電機株式会社 Nonaqueous electrolyte secondary battery and charging method thereof
JP2007294374A (en) * 2006-03-31 2007-11-08 Hitachi Chem Co Ltd Negative electrode material for nonaqueous electrolytic liquid secondary battery, negative electrode for nonaqueous electrolytic liquid secondary battery using negative electrode material, and nonaqueous electrolytic liquid secondary battery
JP5118877B2 (en) 2007-04-27 2013-01-16 トヨタ自動車株式会社 Secondary battery
WO2010090343A1 (en) * 2009-02-05 2010-08-12 帝人株式会社 Fluid dispersion of graphitized carbon fragments and method of manufacturing the same
JP5669070B2 (en) * 2009-06-25 2015-02-12 国立大学法人 長崎大学 Macroporous graphite electrode material, method for producing the same, and lithium ion secondary battery
KR101845369B1 (en) * 2009-10-27 2018-04-04 히타치가세이가부시끼가이샤 Carbon particles for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5147892B2 (en) * 2010-04-16 2013-02-20 三洋電機株式会社 Nonaqueous electrolyte secondary battery and charging method thereof
JP5799500B2 (en) * 2010-12-10 2015-10-28 日立化成株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
TWI536646B (en) 2010-12-10 2016-06-01 日立化成股份有限公司 Negative electrode material for lithium-ion secondary battery and method of producing the same, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP5682276B2 (en) * 2010-12-10 2015-03-11 日立化成株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN102299307B (en) * 2011-09-03 2014-01-01 深圳市贝特瑞新能源材料股份有限公司 Electrode anode material and preparation method thereof
JP6755311B2 (en) * 2016-06-08 2020-09-16 株式会社エンビジョンAescジャパン Non-aqueous electrolyte secondary battery
CN112292772A (en) 2018-06-15 2021-01-29 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9508980B2 (en) 1996-08-08 2016-11-29 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative
JP2015128073A (en) * 1996-12-26 2015-07-09 日立化成株式会社 Negative electrode for lithium secondary battery
US8808919B2 (en) 2008-12-01 2014-08-19 Samsung Sdi Co., Ltd. Negative electrode active material, negative electrode having the same and lithium secondary battery

Also Published As

Publication number Publication date
JPH10236809A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
KR100442178B1 (en) Graphite particles and lithium secondary battery using them as negative electrode
US10651458B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP3285520B2 (en) Graphite particles, method for producing graphite particles, graphite paste using graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP3305995B2 (en) Graphite particles for lithium secondary battery negative electrode
JP3361510B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3213575B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3321782B2 (en) Graphite particles for lithium secondary battery negative electrode
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JP4232404B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JPH11217266A (en) Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
JP3951219B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3892957B2 (en) Method for producing graphite particles
JP2002343341A (en) Negative electrode for lithium secondary battery
JP4811699B2 (en) Negative electrode for lithium secondary battery
JP4483560B2 (en) Negative electrode for lithium secondary battery
JP4828118B2 (en) Negative electrode for lithium secondary battery
JP3325021B2 (en) Graphite particles for negative electrode of lithium secondary battery and graphite paste for negative electrode of lithium secondary battery
JP4135162B2 (en) Negative electrode for lithium secondary battery
JP4066699B2 (en) Negative electrode for lithium secondary battery
JP5853293B2 (en) Negative electrode for lithium secondary battery
JP5704473B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4687661B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JPH10223231A (en) Anode for lithium secondary battery and lithium secondary battery
JP2008016455A (en) Negative electrode for lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

EXPY Cancellation because of completion of term