JP4811699B2 - Negative electrode for lithium secondary battery - Google Patents

Negative electrode for lithium secondary battery Download PDF

Info

Publication number
JP4811699B2
JP4811699B2 JP2004358065A JP2004358065A JP4811699B2 JP 4811699 B2 JP4811699 B2 JP 4811699B2 JP 2004358065 A JP2004358065 A JP 2004358065A JP 2004358065 A JP2004358065 A JP 2004358065A JP 4811699 B2 JP4811699 B2 JP 4811699B2
Authority
JP
Japan
Prior art keywords
graphite
graphite particles
lithium secondary
secondary battery
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004358065A
Other languages
Japanese (ja)
Other versions
JP2005108858A (en
Inventor
義人 石井
達也 西田
藤田  淳
和夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004358065A priority Critical patent/JP4811699B2/en
Publication of JP2005108858A publication Critical patent/JP2005108858A/en
Application granted granted Critical
Publication of JP4811699B2 publication Critical patent/JP4811699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池負極用の新規な黒鉛粒子に関する。さらに詳しくは、ポータブル機器、電気自動車、電力貯蔵等に用いるのに好適な、急速充放電特性、サイクル特性等に優れたリチウム二次電池の負極用に適した黒鉛粒子に関する。   The present invention relates to a novel graphite particle for a lithium secondary battery negative electrode. More particularly, the present invention relates to a graphite particle suitable for use in a negative electrode of a lithium secondary battery excellent in rapid charge / discharge characteristics, cycle characteristics and the like, which is suitable for use in portable equipment, electric vehicles, power storage and the like.

従来の黒鉛粒子としては、例えば天然黒鉛粒子、コークスを黒鉛化した人造黒鉛粒子、有機系高分子材料、ピッチ等を黒鉛化した人造黒鉛粒子、これらを粉砕した黒鉛粒子などがある。これらの黒鉛粒子は、有機系結着剤及び有機溶剤と混合して黒鉛ペーストとし、この黒鉛ペーストを銅箔の表面に塗布し、溶剤を乾燥させてリチウム二次電池用負極として使用されている。例えば、特公昭62−23433号公報に示されるように、負極に黒鉛を使用することでリチウムのデンドライトによる内部短絡の問題を解消し、サイクル特性の改良を図っている。   Examples of conventional graphite particles include natural graphite particles, artificial graphite particles obtained by graphitizing coke, organic polymer materials, artificial graphite particles obtained by graphitizing pitch and the like, and graphite particles obtained by pulverizing these. These graphite particles are mixed with an organic binder and an organic solvent to form a graphite paste. The graphite paste is applied to the surface of a copper foil, and the solvent is dried to be used as a negative electrode for a lithium secondary battery. . For example, as disclosed in Japanese Examined Patent Publication No. 62-23433, the use of graphite for the negative electrode eliminates the problem of internal short circuit due to lithium dendrite and improves the cycle characteristics.

しかしながら、黒鉛結晶が発達している天然黒鉛粒子及びコークスを黒鉛化した人造黒鉛粒子は、c軸方向の結晶の層間の結合力が、結晶の面方向の結合に比べて弱いため、粉砕により黒鉛層間の結合が切れ、アスペクト比が大きい、いわゆる鱗状の黒鉛粒子となる。この鱗状の黒鉛粒子は、アスペクト比が大きいために、バインダと混練して集電体に塗布して電極を作製したときに、鱗状の黒鉛粒子が集電体の面方向に配向し、その結果、黒鉛結晶へのリチウムの吸蔵・放出の繰り返しによって発生するc軸方向の歪みにより電極内部の破壊が生じ、サイクル特性が低下する問題がある。そこで、リチウム二次電池のサイクル特性が向上できる黒鉛粒子が要求されている。
特公昭62−23433号公報
However, natural graphite particles in which graphite crystals are developed and artificial graphite particles graphitized from coke have a weaker bonding force between crystals in the c-axis direction than in the crystal plane direction. Bonds between layers are broken and so-called scaly graphite particles having a large aspect ratio are obtained. Since the scaly graphite particles have a large aspect ratio, when the electrodes are produced by kneading with a binder and applying to the current collector, the scaly graphite particles are oriented in the surface direction of the current collector, and as a result Further, there is a problem that the internal characteristics of the electrode are broken by the strain in the c-axis direction generated by repeated insertion and extraction of lithium into and from the graphite crystal, and the cycle characteristics are deteriorated. Therefore, there is a demand for graphite particles that can improve the cycle characteristics of lithium secondary batteries.
Japanese Examined Patent Publication No. 62-23433

請求項1、2及び5に記載の発明は、サイクル特性に優れたリチウム二次電池に好適な黒鉛粒子を提供するものである。   The inventions described in claims 1, 2 and 5 provide graphite particles suitable for a lithium secondary battery having excellent cycle characteristics.

請求項3に記載の発明は、急速充放電特性及びサイクル特性に優れたリチウム二次電池に好適な黒鉛粒子を提供するものである。
請求項4に記載の発明は、急速充放電特性及びサイクル特性に優れ、かつ第一サイクル目の不可逆容量が小さく、リチウム二次電池に好適な黒鉛粒子を提供するものである。
The invention according to claim 3 provides graphite particles suitable for a lithium secondary battery excellent in rapid charge / discharge characteristics and cycle characteristics.
The invention described in claim 4 provides graphite particles that are excellent in rapid charge / discharge characteristics and cycle characteristics, have a small irreversible capacity in the first cycle, and are suitable for lithium secondary batteries.

本発明は、102〜106Åの範囲の大きさの細孔の細孔体積が、黒鉛粒子重量当たり0.4〜2.0cc/gである黒鉛粒子に関する。
また本発明は、1×102〜2×104Åの範囲の大きさの細孔の細孔体積が、黒鉛粒子重量当たり0.08〜0.4cc/gである黒鉛粒子に間する。
また本発明は、扁平状の粒子を複数、配向面が非平行となるように集合又は結合させてなる前記黒鉛粒子に関する。
また本発明は、前記黒鉛粒子のアスペクト比が5以下である黒鉛粒子に関する。
また本発明は、比表面積が8m2/g以下である前記黒鉛粒子に関する。
The present invention relates to graphite particles in which the pore volume of pores having a size in the range of 10 2 to 10 6 Å is 0.4 to 2.0 cc / g per graphite particle weight.
In the present invention, the pore volume of pores having a size in the range of 1 × 10 2 to 2 × 10 4 Å is applied to graphite particles having a pore volume of 0.08 to 0.4 cc / g per graphite particle weight.
In addition, the present invention relates to the graphite particles obtained by collecting or combining a plurality of flat particles so that the orientation planes are non-parallel.
The present invention also relates to a graphite particle having an aspect ratio of 5 or less.
Moreover, this invention relates to the said graphite particle whose specific surface area is 8 m < 2 > / g or less.

また本発明は、内部に層状構造を有する黒鉛粒子であって、粒子内部の層が一定方向にそろうことなく配列しているリチウム二次電池負極用黒鉛粒子に関する。
また本発明は、102〜106Åの範囲の大きさの細孔の細孔体積が、黒鉛粒子重量当たり0.4〜2.0cc/gである前記リチウム二次電池負極用黒鉛粒子に関する。
また本発明は、黒鉛粒子のアスペクト比が5以下である前記リチウム二次電池負極用黒鉛粒子に関する。
さらに本発明は、比表面積が8m2/g以下である前記リチウム二次電池負極用黒鉛粒子に関する。
さらに本発明は、1×102〜2×104Åの範囲の大きさの細孔の細孔体積が、黒鉛粒子重量当たり0.08〜0.4cc/gである前記リチウム二次電池負極用黒鉛粒子に関する。
The present invention also relates to a graphite particle for a lithium secondary battery negative electrode, which is a graphite particle having a layered structure therein and in which the layers inside the particle are arranged without being aligned in a certain direction.
The present invention also relates to the above-described graphite particles for lithium secondary battery negative electrodes, wherein the pore volume of pores having a size in the range of 10 2 to 10 6 Å is 0.4 to 2.0 cc / g per graphite particle weight. .
The present invention also relates to the graphite particle for a negative electrode of a lithium secondary battery, wherein the graphite particles have an aspect ratio of 5 or less.
Furthermore, this invention relates to the said graphite particle for lithium secondary battery negative electrodes whose specific surface area is 8 m < 2 > / g or less.
Furthermore, the present invention provides the negative electrode for a lithium secondary battery in which the pore volume of pores having a size in the range of 1 × 10 2 to 2 × 10 4 Å is 0.08 to 0.4 cc / g per graphite particle weight. It relates to graphite particles.

本発明の黒鉛粒子は、2つの観点からその細孔体に特徴を有するものである。
第1には、102〜106Åの範囲の細孔の細孔体積が、黒鉛粒子重量当たり、0.4〜2.0cc/gであることを特徴とする。該黒鉛粒子を負極に使用すると、充電・放電にともなう電極の膨張・収縮を黒鉛粒子の細孔が吸収するため、電極内部の破壊が抑えられ、その結果得られるリチウム二次電池のサイクル特性を向上させることができる。102〜106Åの範囲の細孔の細孔体積は、0.4〜1.5cc/gの範囲であることがより好ましく、0.6〜1.2cc/gの範囲であることがさらに好ましい。全細孔体積が、0.4cc/g未満ではサイクル特性が低下し、2.0cc/gを超えると黒鉛粒子と集電体とを一体化する際に使用する結着剤を多く必要となり、作成するリチウム二次電池の容量が低下する問題がある。前記細孔体積は、水銀圧入法による細孔径分布測定により求めることができる。細孔の大きさもまた水銀圧入法による細孔径分布測定により知ることができる。
The graphite particles of the present invention are characterized by their pores from two viewpoints.
First, the pore volume of pores in the range of 10 2 to 10 6 Å is 0.4 to 2.0 cc / g per graphite particle weight. When the graphite particles are used for the negative electrode, the pores of the graphite particles absorb the expansion and contraction of the electrode that accompanies charging and discharging, so that the destruction inside the electrode is suppressed, and the cycle characteristics of the resulting lithium secondary battery are improved. Can be improved. The pore volume of pores in the range of 10 2 to 10 6よ り is more preferably in the range of 0.4 to 1.5 cc / g, and in the range of 0.6 to 1.2 cc / g. Further preferred. If the total pore volume is less than 0.4 cc / g, the cycle characteristics deteriorate, and if it exceeds 2.0 cc / g, a large amount of binder used when integrating the graphite particles and the current collector is required, There is a problem that the capacity of the lithium secondary battery to be produced decreases. The pore volume can be determined by measuring the pore size distribution by mercury porosimetry. The pore size can also be determined by measuring the pore size distribution by mercury porosimetry.

第2には、1×102〜2×104Åの範囲の細孔の細孔体積が、黒鉛粒子重量当たり0.08〜0.4cc/gであることを特徴とする。該黒鉛粒子を負極に使用すると、充電・放電にともなう電極の膨張・収縮を黒鉛粒子の細孔が吸収するため、電極内部の破壊が抑えられ、その結果得られるリチウム二次電池のサイクル特性を向上させることができる。1×102〜2×104Åの範囲の細孔体積は、0.1〜0.3cc/gであることがより好ましい。この大きさの範囲の細孔体積が、0.08cc/g未満ではサイクル特性が低下0.4cc/gを超えると黒鉛粒子と集電体とを一体化する際に使用する結着剤を多く必要となり、作成するリチウム二次電池の容量が低下する問題がある。この範囲の細孔体積もまた水銀圧入法による細孔径分布測定により求めることができる。 Second, the pore volume of pores in the range of 1 × 10 2 to 2 × 10 4 Å is 0.08 to 0.4 cc / g per graphite particle weight. When the graphite particles are used for the negative electrode, the pores of the graphite particles absorb the expansion and contraction of the electrode that accompanies charging and discharging, so that the destruction inside the electrode is suppressed, and the cycle characteristics of the resulting lithium secondary battery are improved. Can be improved. The pore volume in the range of 1 × 10 2 to 2 × 10 4 Å is more preferably 0.1 to 0.3 cc / g. If the pore volume in this size range is less than 0.08 cc / g, the cycle characteristics decrease. If it exceeds 0.4 cc / g, many binders are used when integrating graphite particles and the current collector. There is a problem that the capacity of the lithium secondary battery to be produced is reduced. The pore volume in this range can also be determined by measuring the pore size distribution by mercury porosimetry.

また、本発明の黒鉛粒子は、扁平状の粒子を複数、配向面が非平行となるように集合又は結合させたものが好ましい。
本発明において、扁平状の粒子とは、長軸と短軸を有する形状の粒子のことであり、完全な球状でないものをいう。例えば鱗状、鱗片状、一部の塊状等の形状のものがこれに含まれる。
黒鉛粒子において、複数の扁平状の粒子の配向面が非平行とは、それぞれの粒子の形状において有する扁平した面、換言すれば最も平らに近い面を配向面として、複数の扁平状の粒子がそれぞれの配向面を一定の方向にそろうことなく集合している状態をいう。
Moreover, the graphite particles of the present invention are preferably those in which a plurality of flat particles are aggregated or bonded so that the orientation planes are non-parallel.
In the present invention, flat particles are particles having a major axis and a minor axis, and are not completely spherical. This includes, for example, those having a shape such as a scale shape, a scale shape, and a partial lump shape.
In graphite particles, the orientation planes of a plurality of flat particles are non-parallel. The flat surfaces in the shape of each particle, in other words, the plane that is closest to the plane is the orientation plane, and the plurality of flat particles are A state in which the orientation planes are gathered together in a certain direction.

この黒鉛粒子において扁平状の粒子は集合又は結合しているが、結合とは互いの粒子が、タール、ピッチ等のバインダーを炭素化した炭素質を介して、化学的に結合している状態をいい、集合とは互いに粒子が化学的に結合してはないが、その形状等に起因して、その集合としての形状を保っている状態をいう。機械的な強度の面から、結合しているものが好ましい。
1つの黒鉛粒子において、扁平状の粒子の集合又は結合する数としては、3個以上であることが好ましい。個々の扁平状の粒子の大きさとしては、粒径で1〜100μmであることが好ましく、これらが集合又は結合した黒鉛粒子の平均粒径の2/3以下であることが好ましい。
In this graphite particle, the flat particles are aggregated or bonded, but the bond is a state in which the particles are chemically bonded through carbonaceous carbonized binder such as tar and pitch. The term “aggregate” refers to a state in which the particles are not chemically bonded to each other, but the shape of the aggregate is maintained due to the shape and the like. From the viewpoint of mechanical strength, those bonded are preferable.
In one graphite particle, the number of flat particles aggregated or bonded is preferably 3 or more. The size of the individual flat particles is preferably 1 to 100 μm in particle size, and preferably 2/3 or less of the average particle size of the aggregated or bonded graphite particles.

該黒鉛粒子を負極に使用すると、集電体上に黒鉛粒子が配向し難く、かつ、電解液との濡れ性が向上し、負極黒鉛にリチウムを吸蔵・放出し易くなるため、得られるリチウム二次電池の急速充放電特性及びサイクル特性を向上させることができる。
なお、図1に上記黒鉛粒子の一例の粒子構造の走査型電子顕微鏡写真を示す。図1において、(a)は本発明になる黒鉛粒子の外表面の走査型電子顕微鏡写真、(b)は黒鉛粒子の断面の走査型電子顕微鏡写真である。(a)においては、細かな鱗片状の黒鉛粒子が数多く、それらの粒子の配向面を非平行にして結合し、黒鉛粒子を形成している様子が観察できる。
When the graphite particles are used for the negative electrode, the graphite particles are less likely to be oriented on the current collector, the wettability with the electrolyte is improved, and lithium is easily occluded / released into the negative electrode graphite. The rapid charge / discharge characteristics and cycle characteristics of the secondary battery can be improved.
FIG. 1 shows a scanning electron micrograph of the particle structure of an example of the graphite particles. In FIG. 1, (a) is a scanning electron micrograph of the outer surface of the graphite particles according to the present invention, and (b) is a scanning electron micrograph of the cross section of the graphite particles. In (a), it can be observed that there are many fine scaly graphite particles that are bonded with the orientation planes of these particles non-parallel to form graphite particles.

またアスペクト比が5以下である黒鉛粒子は、集電体上で粒子が配向し難い傾向があり、上記と同様にリチウムを吸蔵・放出し易くなるので好ましい。
アスペクト比は1.2〜5であることがより好ましい。アスペクト比が1.2未満では、粒子間の接触面積が減ることにより、導電性が低下する傾向にある。
同様の理由で、さらに好ましい範囲の下限は1.3以上である。また、さらに好ましい範囲の上限は、3以下であり、アスペクト比がこれより大きくなると、急速充放電特性が低下し易くなる傾向がある。従って、特に好ましいアスペクト比は1.3〜3である。
Further, graphite particles having an aspect ratio of 5 or less are preferred because the particles tend not to be oriented on the current collector, and lithium can be easily inserted and extracted as described above.
The aspect ratio is more preferably 1.2-5. If the aspect ratio is less than 1.2, the contact area between particles tends to decrease, and the conductivity tends to decrease.
For the same reason, the lower limit of the more preferable range is 1.3 or more. Further, the upper limit of the more preferable range is 3 or less, and when the aspect ratio is larger than this, the rapid charge / discharge characteristics tend to be deteriorated. Therefore, a particularly preferable aspect ratio is 1.3 to 3.

なお、アスペクト比は、黒鉛粒子の長軸方向の長さをA、短軸方向の長さをBとしたとき、A/Bで表される。本発明におけるアスペクト比は、顕微鏡で黒鉛粒子を拡大し、任意に100個の黒鉛粒子を選択し、A/Bを測定し、その平均値をとったものである。
また、アスペクト比が5以下である黒鉛粒子の構造としては、より小さい黒鉛粒子の集合体又は結合体であることが好ましく、前記の、扁平状の粒子を複数、配向面が非平行となるように集合又は結合させた黒鉛粒子を用いることがより好ましい。
The aspect ratio is represented by A / B, where A is the length in the major axis direction of the graphite particles and B is the length in the minor axis direction. The aspect ratio in the present invention is obtained by enlarging graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring A / B, and taking the average value.
Further, the structure of the graphite particles having an aspect ratio of 5 or less is preferably an aggregate or a combination of smaller graphite particles, and a plurality of the above-mentioned flat particles and the orientation planes are non-parallel. It is more preferable to use graphite particles aggregated or bonded to each other.

また、本発明の黒鉛粒子は、比表面積が8m2/g以下のものが好ましく、より好ましくは5m2/g以下とされる。該黒鉛粒子を負極に使用すると、得られるリチウム二次電池の急速充放電特性及びサイクル特性を向上させることができ、また、第一サイクル目の不可逆容量を小さくすることができる。比表面積が、8m2/gを超えると、得られるリチウム二次電池の第一サイクル目の不可逆容量が大きくなる傾向にあり、エネルギー密度が小さく、さらに負極を作製する際多くの結着剤が必要になる傾向がある。得られるリチウム二次電池の急速充放電特性、サイクル特性等がさらに良好な点から、比表面積は、1.5〜5m2/gであることがさらに好ましく、2〜5m2/gであることが極めて好ましい。比表面積の測定は、BET法(窒素ガス吸着法)などの既知の方法をとることができる。 The graphite particles of the present invention preferably have a specific surface area of 8 m 2 / g or less, more preferably 5 m 2 / g or less. When the graphite particles are used for the negative electrode, the rapid charge / discharge characteristics and cycle characteristics of the obtained lithium secondary battery can be improved, and the irreversible capacity in the first cycle can be reduced. When the specific surface area exceeds 8 m 2 / g, the irreversible capacity of the first cycle of the obtained lithium secondary battery tends to be large, the energy density is small, and many binders are used when producing a negative electrode. Tend to be needed. The specific surface area is more preferably 1.5 to 5 m 2 / g, more preferably 2 to 5 m 2 / g, from the viewpoint that the rapid charge / discharge characteristics, cycle characteristics, and the like of the obtained lithium secondary battery are further improved. Is very preferred. The specific surface area can be measured by a known method such as the BET method (nitrogen gas adsorption method).

さらに、本発明で用いる各黒鉛粒子のX線広角回析における結晶の層間距離d(002)は3.38Å以下が好ましく、3.37〜3.35Åの範囲がより好ましい。結晶の層間距離d(002)が3.38Åを超えると放電容量が小さくなる傾向がある。c軸方向の結晶子の大きさLc(002)は500Å以上が好ましく、1000〜100000Åであることがより好ましい。結晶の層間距離d(002)が小さくなるかc軸方向の結晶子の大きさLc(002)が大きくなると、放電容量が大きくなる傾向がある。   Further, the crystal interlayer distance d (002) in the X-ray wide-angle diffraction of each graphite particle used in the present invention is preferably 3.38 mm or less, and more preferably in the range of 3.37 to 3.35 mm. When the crystal interlayer distance d (002) exceeds 3.38 mm, the discharge capacity tends to decrease. The crystallite size Lc (002) in the c-axis direction is preferably 500 Å or more, and more preferably 1000 to 100,000 Å. When the crystal interlayer distance d (002) decreases or the crystallite size Lc (002) in the c-axis direction increases, the discharge capacity tends to increase.

本発明の黒鉛粒子の製造法に特に制限はないが、黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバインダに黒鉛化触媒を1〜50重量%添加して混合し、燃焼した後粉砕することによりまず黒鉛粒子を得ることが好ましい。
ついで、該黒鉛粒子に有機系結着剤及び溶剤を添加して混合し、粘度を調製した後、該混合物を集電体に塗布し、乾燥して溶剤を除去した後、加圧して一体化してリチウム二次電池用負極とすることができる。
The method for producing graphite particles of the present invention is not particularly limited, but 1 to 50% by weight of a graphitization catalyst is added to a graphitizable aggregate or graphite and a graphitizable binder, mixed, burned and then pulverized. It is preferable to obtain graphite particles first.
Next, an organic binder and a solvent are added to the graphite particles and mixed to adjust the viscosity. Then, the mixture is applied to a current collector, dried to remove the solvent, and then pressurized to be integrated. Thus, a negative electrode for a lithium secondary battery can be obtained.

黒鉛化可能な骨材としては、例えば、コークス粉末、樹脂の炭化物等が使用できるが、黒鉛化できる粉末材料であれば特に制限はない。中でも、ニードルコークス等の黒鉛化しやすいコークス粉末が好ましい。
また黒鉛としては、例えば天然黒鉛粉末、人造黒鉛粉末等が使用できるが粉末状であれば特に制限はない。黒鉛化可能な骨材又は黒鉛の粒径は、本発明で作製する黒鉛粒子の粒径より小さいことが好ましい。
Examples of the aggregate that can be graphitized include coke powder and resin carbide, but there is no particular limitation as long as it is a powder material that can be graphitized. Among these, coke powder that is easily graphitized such as needle coke is preferable.
Moreover, as graphite, natural graphite powder, artificial graphite powder, etc. can be used, for example, but there is no particular limitation as long as it is powdery. The particle size of the graphitizable aggregate or graphite is preferably smaller than the particle size of the graphite particles produced in the present invention.

さらに黒鉛化触媒としては、例えば鉄、ニッケル、チタン、ケイ素、硼素等の金属、これらの炭化物、酸化物などの黒鉛化触媒が使用できる。これらの中で、ケイ素または硼素の炭化物または酸化物が好ましい。
これらの黒鉛化触媒の添加量は、得られる黒鉛粒子に対して好ましくは1〜50重量%、より好ましくは5〜40重量%の範囲、さらに好ましくは5〜30重量%の範囲とされ、1重量%未満であること黒鉛粒子のアスペクト比及び比表面積が大きくなり黒鉛結晶の発達が悪くなる傾向にあり、一方50重量%を超えると均一に混合することが困難で作業性が悪くなる傾向にある。
Further, as the graphitization catalyst, for example, a graphitization catalyst such as a metal such as iron, nickel, titanium, silicon, or boron, or a carbide or oxide thereof can be used. Of these, silicon or boron carbides or oxides are preferred.
The addition amount of these graphitization catalysts is preferably 1 to 50% by weight, more preferably 5 to 40% by weight, and further preferably 5 to 30% by weight with respect to the obtained graphite particles. If the amount is less than wt%, the aspect ratio and specific surface area of the graphite particles tend to increase and the development of graphite crystals tends to deteriorate. On the other hand, if it exceeds 50 wt%, it is difficult to mix uniformly and workability tends to deteriorate. is there.

バインダとしては、例えば、タール、ピッチの他、熱硬化性樹脂、熱可塑性樹脂等の有機系材料が好ましい。バインダの配合量は、扁平状の黒鉛化可能な骨材又は黒鉛に対し、5〜80重量%添加することが好ましく、10〜80重量%添加することがより好ましく、15〜80重量%添加することがさらに好ましい。バインダの量が多すぎたり少なすぎたりすると、作製する黒鉛粒子のアスペクト比及び比表面積が大きくなり易いという傾向がある。
黒鉛化可能な骨材又は黒鉛とバインダの混合方法は、特に制限はなく、ニーダー等を用いて行われるが、バインダの軟化点以上の温度で混合することが好ましい。具体的にはバインダがピッチ、タール等の際には、50〜300℃が好ましく、熱硬化性樹脂の場合には、20〜100℃が好ましい。
As the binder, for example, an organic material such as a thermosetting resin and a thermoplastic resin is preferable in addition to tar and pitch. The blending amount of the binder is preferably 5 to 80% by weight, more preferably 10 to 80% by weight, and more preferably 15 to 80% by weight based on the flat graphitizable aggregate or graphite. More preferably. If the amount of the binder is too large or too small, the aspect ratio and specific surface area of the produced graphite particles tend to be large.
The method for mixing the graphitizable aggregate or graphite and the binder is not particularly limited and is performed using a kneader or the like, but it is preferable to mix at a temperature equal to or higher than the softening point of the binder. Specifically, when the binder is pitch, tar or the like, 50 to 300 ° C is preferable, and when the binder is a thermosetting resin, 20 to 100 ° C is preferable.

次に上記の混合物を焼成し、黒鉛化処理を行う。なお、この処理の前に上記混合物を所定形状に成形しても良い。さらに、成形後、黒鉛化前に粉砕し、粒径を調整した後、黒鉛化を行っても良い。焼成は前記混合物が酸化し難い条件で焼成することが好ましく、例えば窒素雰囲気中、アルゴンガス雰囲気中、真空中で焼成する方法が挙げられる。黒鉛化の温度は、2000℃以上が好ましく、2500℃以上であることがより好ましく、2800℃〜3200℃であることがさらに好ましい。
黒鉛化の温度が低いと、黒鉛の結晶の発達が悪く、放電容量が低くなる傾向があると共に添加した黒鉛化触媒が作製する黒鉛粒子に残存し易くなる傾向がある。黒鉛化触媒が、作製する黒鉛粒子中に残存すると、放電容量が低下する。黒鉛化の温度が高すぎると、黒鉛が昇華することがある。
Next, the above mixture is fired and graphitized. In addition, you may shape | mold the said mixture in a predetermined shape before this process. Furthermore, after forming and pulverizing before graphitization to adjust the particle size, graphitization may be performed. Firing is preferably performed under conditions where the mixture is not easily oxidized, and examples thereof include a method of baking in a nitrogen atmosphere, an argon gas atmosphere, and in a vacuum. The graphitization temperature is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, and further preferably 2800 ° C. to 3200 ° C.
When the graphitization temperature is low, the development of graphite crystals tends to be poor, the discharge capacity tends to be low, and the added graphitization catalyst tends to remain in the graphite particles produced. When the graphitization catalyst remains in the graphite particles to be produced, the discharge capacity decreases. If the graphitization temperature is too high, the graphite may sublime.

次に、得られた黒鉛化物を粉砕することが好ましい。黒鉛化物の粉砕方法は、特に制限はないが、例えばジェットミル、振動ミル、ピンミル、ハンマーミル等の既知の方法をとることができる。粉砕後の粒径は、平均粒径が1〜100μmが好ましく、10〜50μmであることがより好ましい。平均粒径が大きくなりすぎる場合は作製する電極の表面に凹凸ができ易くなる傾向がある。なお、本発明において平均粒径は、レーザー回折粒度分布計により測定することができる。   Next, it is preferable to grind the obtained graphitized material. The method for pulverizing the graphitized material is not particularly limited, and known methods such as a jet mill, a vibration mill, a pin mill, a hammer mill and the like can be used. As for the particle size after pulverization, the average particle size is preferably 1 to 100 μm, and more preferably 10 to 50 μm. If the average particle size becomes too large, the surface of the electrode to be produced tends to be uneven. In the present invention, the average particle diameter can be measured with a laser diffraction particle size distribution meter.

以上に示す工程を経ることにより、本発明の黒鉛粒子を得ることができる。
得られた前記黒鉛粒子は、有機系結着材及び溶剤を含む材料を混合して、シート状、ペレット状等の形状に成形される。
有機系結着剤としては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、イオン伝導率の大きな高分子化合物等が使用できる。
本発明においてイオン伝導率の大きな高分子化合物としては、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル等が使用できる。
これらの中では、イオン伝導率の大きな高分子化合物が好ましく、ポリフッ化ビニリデンが特に好ましい。
By passing through the process shown above, the graphite particle of this invention can be obtained.
The obtained graphite particles are formed into a sheet shape, a pellet shape or the like by mixing an organic binder and a material containing a solvent.
As the organic binder, for example, polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, a high molecular compound having high ionic conductivity, and the like can be used.
In the present invention, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile and the like can be used as the polymer compound having a high ionic conductivity.
Among these, a polymer compound having a high ionic conductivity is preferable, and polyvinylidene fluoride is particularly preferable.

有機系結着剤の含有量は、黒鉛粉末と有機系結着剤との混合物に対して、3〜20重量%用いることが好ましい。
溶剤としては特に制限はなく、N−メチル2−ピロリドン、ジメチルホルムアミド、イソプロパノール等が用いられる。
溶剤の量に特に制限はなく、所望の粘度に調整できればよいが、混合物に対して、30〜70重量%用いられることが好ましい。
The content of the organic binder is preferably 3 to 20% by weight based on the mixture of the graphite powder and the organic binder.
There is no restriction | limiting in particular as a solvent, N-methyl 2-pyrrolidone, a dimethylformamide, isopropanol etc. are used.
There is no restriction | limiting in particular in the quantity of a solvent, Although it should just be able to adjust to a desired viscosity, It is preferable to use 30 to 70 weight% with respect to a mixture.

集電体としては、例えばニッケル、銅等の箔、メッシュなどの金属集電体が使用できる。
なお一体化は、例えばロール、プレス等の成形法で行うことができ、またこれらを組み合わせて一体化してもよい。
このようにして得られた負極はリチウムイオン二次電池やリチウムポリマ二次電池等のリチウム二次電池の負極として用いられる。例えば、リチウムイオン二次電池においては、セパレータを介して正極を対向して配置し、かつ電解液を注入する。本発明によれば、従来の炭素材料を負極に使用したリチウム二次電池に比較して、急速充放電特性及びサイクル特性に優れ、かつ不可逆容量が小さいリチウム二次電池を作製することができる。
As the current collector, for example, a metal current collector such as a foil or mesh of nickel, copper or the like can be used.
The integration can be performed by a molding method such as a roll or a press, or these may be combined and integrated.
The negative electrode thus obtained is used as a negative electrode for lithium secondary batteries such as lithium ion secondary batteries and lithium polymer secondary batteries. For example, in a lithium ion secondary battery, a positive electrode is disposed opposite to a separator, and an electrolytic solution is injected. According to the present invention, it is possible to produce a lithium secondary battery that is excellent in rapid charge / discharge characteristics and cycle characteristics and has a small irreversible capacity as compared with a lithium secondary battery that uses a conventional carbon material as a negative electrode.

本発明におけるリチウム二次電池の正極に用いられる材料については特に制限はなく、LiNiO2、LiCoO2、LiMn24等を単独又は混合して使用することができる。
電解液としては、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3等のリチウム塩を例えばエチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、ジメチルカーボネート、テトラヒドロフラン、プロピレンカーボネート等の非水系溶剤に、ポリフッ化ビニリデン等の高分子固体電解質に溶解又は含有させたいわゆる有機電解液を使用することができる。
There is no particular limitation on the material used for a cathode of a lithium secondary battery of the present invention may be used alone or as a mixture of LiNiO 2, LiCoO 2, LiMn 2 O 4 or the like.
As the electrolyte, lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 are used in non-aqueous solvents such as ethylene carbonate, diethyl carbonate, dimethoxyethane, dimethyl carbonate, tetrahydrofuran, propylene carbonate, A so-called organic electrolytic solution dissolved or contained in a polymer solid electrolyte such as polyvinylidene fluoride can be used.

液体の電解液を使用する場合に用いられるセパレータとしては、例えばポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はこれらを組み合わせたものを使用することができる。
なお、図2に円筒型リチウム二次電池の一例の一部断面正面図を示す。図2に示す円筒型リチウム二次電池は、薄板状に加工された正極1と、同様に加工された負極2が、ポリエチレン製微孔膜等のセパレータ3を介して重ね合わせたものを捲回し、これを金属製等の電池缶7に挿入し、密閉化されている。正極1は正極タブ4を介して正極蓋6に接合され、負極2は負極タブ5を介して電池底部へ接合されている。正極蓋6はガスケット8にて電池缶7へ固定されている。
As a separator used when using a liquid electrolytic solution, for example, a nonwoven fabric, a cloth, a microporous film, or a combination thereof, which is mainly composed of a polyolefin such as polyethylene or polypropylene, can be used.
FIG. 2 shows a partial cross-sectional front view of an example of a cylindrical lithium secondary battery. The cylindrical lithium secondary battery shown in FIG. 2 is formed by winding a thin plate-like positive electrode 1 and a similarly processed negative electrode 2 with a separator 3 such as a polyethylene microporous membrane overlaid. This is inserted into a battery can 7 made of metal or the like and sealed. The positive electrode 1 is bonded to the positive electrode lid 6 via the positive electrode tab 4, and the negative electrode 2 is bonded to the battery bottom via the negative electrode tab 5. The positive electrode lid 6 is fixed to the battery can 7 with a gasket 8.

実施例1
平均粒径が5μmのコークス粉末40重量部、タールピッチ25重量部、平均粒径が48μmの炭化ケイ素5重量部及びコールタール20重量部を混合し、200℃で1時間撹拌した。次いで、窒素雰囲気中で2800℃で焼成した後粉砕し、平均粒径が30μmの黒鉛粒子を作製した。得られた黒鉛粒子を水銀圧入法による細孔径分布測定(島津ポアサイザー9320形使用)を行った結果、102〜106Åの範囲に細孔を有し、黒鉛粒子重量当たりの全細孔体積は、0.6cc/gであった。また、1×102〜2×104Åの範囲の細孔体積は、黒鉛粒子重量当たり0.20cc/gであった。また得られた黒鉛粒子を100個任意に選び出し、アクペクト比の平均値を測定した結果、1.5あたり、黒鉛粒子のBET法による比表面積は、1.5m2/gであり、黒鉛粒子のX線広角回析による結晶の層間距離d(002)は3.362Å及び結晶子の大きさLc(002)は1000Å以上であった。さらに、得られた黒鉛粒子の走査型電子顕微鏡(SEM写真)によれば、この黒鉛粒子は、扁平状の粒子が複数配向面が非平行となるように集合又は結合した構造をしていた。
Example 1
40 parts by weight of coke powder having an average particle diameter of 5 μm, 25 parts by weight of tar pitch, 5 parts by weight of silicon carbide having an average particle diameter of 48 μm, and 20 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. Subsequently, it was fired at 2800 ° C. in a nitrogen atmosphere and then pulverized to produce graphite particles having an average particle size of 30 μm. The obtained graphite particles were measured for pore size distribution by mercury porosimetry (using Shimadzu pore sizer 9320 type). As a result, the pores were in the range of 10 2 to 10 6 、, and the total pore volume per graphite particle weight Was 0.6 cc / g. The pore volume in the range of 1 × 10 2 to 2 × 10 4 10 was 0.20 cc / g per graphite particle weight. In addition, 100 graphite particles obtained were arbitrarily selected and the average value of the aspect ratio was measured. As a result, the specific surface area of the graphite particles by the BET method per 1.5 was 1.5 m 2 / g. The inter-layer distance d (002) of the crystal by X-ray wide-angle diffraction was 3.362 mm, and the crystallite size Lc (002) was 1000 mm or more. Furthermore, according to the scanning electron microscope (SEM photograph) of the obtained graphite particles, the graphite particles had a structure in which flat particles were assembled or bonded so that a plurality of orientation planes were non-parallel.

次いで得られた黒鉛粒子90重量%に、N−メチル−2−ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で10重量%を加えて混練して黒鉛ペーストを作製した。この黒鉛ペーストを厚さが10μmの圧延銅箔に塗布し、さらに乾燥して、面圧490MPa(0.5トン/cm2)の圧力で圧縮成形し、試料電極とした。黒鉛粒子層の厚さは90μm及び密度は1.6g/cm3とした。
作製した試料電極を3端子法による定電流充放電を行い、リチウム二次電池用負極としての評価を行った。図3はリチウム二次電池の概略図であり、試料電極の評価は図3に示すようにガラスセル9に、電解液10としてLiPF6をエチレンカーボネート(EC)及びジメチルカーボネート(DMC)(ECとDMCは体積比で1:1)の混合溶媒に1モル/リットルの濃度になるように溶解した溶液を入れ、試料電極11、セパレータ12及び対極13を積層して配置し、さらに参照極14を上部から吊るしてリチウム二次電池を作製して行った。なお、対極13及び参照極14には金属リチウムを使用し、セパレータ4にはポリエチレン微孔を使用した。得られたリチウム二次電池を用いて試料電極11と対極13の間に、試料電極の面積に対して、0.5mA/cm2の定電流で5mV(Vvs.Li/Li+)まで充電し、1V(Vvs.Li/Li+)まで放電する試験を繰り返した。表1にサイクル目の黒鉛粒子の単位重量当たりの充電容量、放電容量及び30サイクル目の黒鉛粒子の単位重量当たりの放電容量を示す。
Next, 10% by weight of polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added to 90% by weight of the obtained graphite particles in a solid content and kneaded to prepare a graphite paste. This graphite paste was applied to a rolled copper foil having a thickness of 10 μm, further dried, and compression molded at a surface pressure of 490 MPa (0.5 ton / cm 2 ) to obtain a sample electrode. The thickness of the graphite particle layer was 90 μm and the density was 1.6 g / cm 3 .
The prepared sample electrode was subjected to constant current charge / discharge by the three-terminal method, and evaluated as a negative electrode for a lithium secondary battery. FIG. 3 is a schematic diagram of a lithium secondary battery. Evaluation of the sample electrode was performed in a glass cell 9 as shown in FIG. 3, LiPF 6 as an electrolytic solution 10 with ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC and DMC is put in a mixed solvent of 1: 1) in a volume ratio so that a solution dissolved to a concentration of 1 mol / liter is placed, the sample electrode 11, the separator 12 and the counter electrode 13 are laminated and arranged, and the reference electrode 14 is further arranged. A lithium secondary battery was produced by hanging from the top. Note that metallic lithium was used for the counter electrode 13 and the reference electrode 14, and polyethylene micropores were used for the separator 4. Using the obtained lithium secondary battery, the sample electrode 11 and the counter electrode 13 were charged to 5 mV (Vvs. Li / Li + ) with a constant current of 0.5 mA / cm 2 with respect to the area of the sample electrode. The test of discharging to 1 V (Vvs. Li / Li + ) was repeated. Table 1 shows the charge capacity per unit weight of the graphite particles at the cycle, the discharge capacity, and the discharge capacity per unit weight of the graphite particles at the 30th cycle.

実施例2
平均粒径が20μmのコークス粉末50重量部、ピッチ20重量部、平均粒径が48μmの炭化ケイ素7重量部及びコールタール10重量部を混合し、200℃で1時間撹拌した。次いで、窒素雰囲気中で2800℃で焼成した後粉砕し、平均粒径が30μmの黒鉛粒子を得た。得られた黒鉛粒子を水銀圧入法による細孔径分布測定(島津ポアサイザー9320形使用)を行った結果、102〜106Åの範囲に細孔を有し、黒鉛粒子重量当たりの全細孔体積は、1.5cc/gであった。また、1×102〜2×104Åの範囲の細孔体積は、黒鉛粒子重量当たり0.13cc/gであった。また得られた黒鉛粒子を100個任意に選び出し、アスペクト比の平均値を測定した結果、2.3であり、黒鉛粒子のBET法による比表面積は、3.6m2/gであり、黒鉛粒子のX線広角回折による結晶の層間距離d(002)は3.361Å及び結晶子の大きさLc(002)は1000Å及び結晶子の大きさLc(002)は1000Å以上であった。さらに得られた黒鉛粒子は、扁平状の粒子が複数配向面が非平行となるように集合又は結合した構造をしていた。
以下実施例1と同様の工程を経てリチウム二次電池を作製し、実施例1と同様の試験を行った。表1に1サイクル目の黒鉛粒子の単位重量当たり充電容量、放電容量及び30サイクル目の黒鉛粒子の単位重量当たり放電容量を示す。
Example 2
50 parts by weight of coke powder having an average particle diameter of 20 μm, 20 parts by weight of pitch, 7 parts by weight of silicon carbide having an average particle diameter of 48 μm and 10 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. Subsequently, it was fired at 2800 ° C. in a nitrogen atmosphere and then pulverized to obtain graphite particles having an average particle size of 30 μm. The obtained graphite particles were measured for pore size distribution by mercury porosimetry (using Shimadzu pore sizer 9320 type). As a result, the pores were in the range of 10 2 to 10 6 、, and the total pore volume per graphite particle weight Was 1.5 cc / g. The pore volume in the range of 1 × 10 2 to 2 × 10 4 10 was 0.13 cc / g per graphite particle weight. Further, 100 graphite particles obtained were arbitrarily selected and the average value of the aspect ratio was measured. As a result, it was 2.3. The specific surface area of the graphite particles by the BET method was 3.6 m 2 / g. The crystal interlayer distance d (002) by X-ray wide angle diffraction was 3.36136, the crystallite size Lc (002) was 1000Å, and the crystallite size Lc (002) was 1000Å or more. Further, the obtained graphite particles had a structure in which flat particles were assembled or bonded so that the plurality of orientation planes were non-parallel.
A lithium secondary battery was produced through the same steps as in Example 1 and the same test as in Example 1 was performed. Table 1 shows the charge capacity per unit weight of the graphite particles in the first cycle, the discharge capacity, and the discharge capacity per unit weight of the graphite particles in the 30th cycle.

比較例1
メソカーボンマイクロビーズ(川崎製鉄(株)製、商品名KMFC)を窒素雰囲気中で2800℃で焼成し、平均粒径が25μmの黒鉛粒子を得た。得られた黒鉛粒子を水銀圧入法による細孔径分布測定(島津ポアサイザー9320形使用)を行った結果、102〜106Åの範囲に細孔を有し、黒鉛粒子重量当たりの全細孔体積は、0.35cc/gであった。また、1×102〜2×104Åの範囲の細孔体積は、黒鉛粒子重量当たり0.06cc/gであった。また得られた黒鉛粒子を100個任意に選び出し、アスペクト比の平均値を測定した結果、1であり、黒鉛粒子のBET法による比表面積は、1.4m2/gであり、黒鉛粒子のX線広角回折による結晶の層間距離d(002)は3.37Å及び結晶子の大きさLc(002)は500Åであった。
以下実施例1と同様の工程を経て、リチウム二次電池を作製し、実施例1と同様の試験を行った。表1に1サイクル目の黒鉛粒子の単位重量当たりの充電容量、放電容量及び30サイクル目の黒鉛粒子の単位重量当たりの放電容量を示す。
Comparative Example 1
Mesocarbon microbeads (manufactured by Kawasaki Steel Corporation, trade name KMFC) were fired at 2800 ° C. in a nitrogen atmosphere to obtain graphite particles having an average particle diameter of 25 μm. The obtained graphite particles were measured for pore size distribution by mercury porosimetry (using Shimadzu pore sizer 9320 type). As a result, the pores were in the range of 10 2 to 10 6 、, and the total pore volume per graphite particle weight Was 0.35 cc / g. The pore volume in the range of 1 × 10 2 to 2 × 10 4 10 was 0.06 cc / g per graphite particle weight. Further, 100 graphite particles obtained were arbitrarily selected and the average value of the aspect ratio was measured. As a result, the specific surface area of the graphite particles according to the BET method was 1.4 m 2 / g. The crystal interlayer distance d (002) by line wide angle diffraction was 3.37 cm, and the crystallite size Lc (002) was 500 mm.
Thereafter, a lithium secondary battery was manufactured through the same process as in Example 1, and the same test as in Example 1 was performed. Table 1 shows the charge capacity per unit weight of the first cycle graphite particles, the discharge capacity, and the discharge capacity per unit weight of the 30th cycle graphite particles.

比較例2
平均粒径が5μmのコークス粉末50重量部、ピッチ10重量部、平均粒径が65μmの酸化鉄30重量部及びコールタール20重量部を混合し、200℃で1時間撹拌した。次いで、窒素雰囲気中で2800℃で焼成した後粉砕し、平均粒径が15μmの黒鉛粒子を得た。得られた黒鉛粒子を水銀圧入法による細孔径分布測定(島津ポアサイザー9320形使用)を行った結果、102〜106Åの範囲に細孔を有し、黒鉛粒子重量当たりの全細孔体積は、2.1cc/gであった。また、1×102〜2×104Åの範囲の細孔体積は、黒鉛粒子重量当たり0.42cc/gであった。また得られた黒鉛粒子を100個任意に選び出し、アスペクト比の平均値を測定した結果、2.8であり、黒鉛粒子のBET法による比表面積は、8.3m2/gであり、黒鉛粒子のX線広角回折による結晶の層間距離d(002)は3.365Å及び結晶子の大きさLc(002)は1000Å以上であった。
以下、実施例1と同様の工程を経て、リチウム二次電池を作製し、実施例1と同様の試験を行った。表1に1サイクル目の黒鉛粒子の単位重量当たりの充電容量、放電容量及び30サイクル目の黒鉛粒子の単位重量当たりの放電容量を示す。
Comparative Example 2
50 parts by weight of coke powder having an average particle diameter of 5 μm, 10 parts by weight of pitch, 30 parts by weight of iron oxide having an average particle diameter of 65 μm and 20 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. Subsequently, it was fired in a nitrogen atmosphere at 2800 ° C. and then pulverized to obtain graphite particles having an average particle diameter of 15 μm. The obtained graphite particles were measured for pore size distribution by mercury porosimetry (using Shimadzu pore sizer 9320 type). As a result, the pores were in the range of 10 2 to 10 6 、, and the total pore volume per graphite particle weight Was 2.1 cc / g. The pore volume in the range of 1 × 10 2 to 2 × 10 4 10 was 0.42 cc / g per graphite particle weight. Further, 100 graphite particles obtained were arbitrarily selected and the average value of the aspect ratio was measured. As a result, the specific surface area of the graphite particles by the BET method was 8.3 m 2 / g. The X-ray wide angle diffraction revealed that the crystal interlayer distance d (002) was 3.365Å and the crystallite size Lc (002) was 1000Å or more.
Thereafter, through the same steps as in Example 1, a lithium secondary battery was produced, and the same test as in Example 1 was performed. Table 1 shows the charge capacity per unit weight of the first cycle graphite particles, the discharge capacity, and the discharge capacity per unit weight of the 30th cycle graphite particles.

Figure 0004811699
Figure 0004811699

表1に示されるように、本発明の黒鉛粒子を用いて得られたリチウム二次電池は、高容量でサイクル特性に優れることが明らかである。   As shown in Table 1, it is clear that the lithium secondary battery obtained using the graphite particles of the present invention has a high capacity and excellent cycle characteristics.

請求項1、2及び5に記載の黒鉛粒子は、サイクル特性に優れたリチウム二次電池に好適なものである。   The graphite particles according to claims 1, 2, and 5 are suitable for a lithium secondary battery having excellent cycle characteristics.

請求項3に記載の黒鉛粒子は、急速充放電特性及びサイクル特性に優れたリチウム二次電池に好適なものである。
請求項4に記載の黒鉛粒子は、急速充放電特性及びサイクル特性に優れ、かつ第一サイクル目の不可逆容量が小さく、リチウム二次電池に好適なものである。
The graphite particles according to claim 3 are suitable for a lithium secondary battery excellent in rapid charge / discharge characteristics and cycle characteristics.
The graphite particles according to claim 4 are excellent in rapid charge / discharge characteristics and cycle characteristics, have a small irreversible capacity in the first cycle, and are suitable for lithium secondary batteries.

本発明に用いる黒鉛粒子の走査型電子顕微鏡写真であり、(a)は粒子の外表面の写真、(b)は粒子の断面の写真である。It is a scanning electron micrograph of the graphite particle used for this invention, (a) is a photograph of the outer surface of particle | grains, (b) is a photograph of the cross section of particle | grains. 円筒型リチウム二次電池の一部断面正面図である。It is a partial cross section front view of a cylindrical lithium secondary battery. 本発明の実施例で、充放電特性及び不可逆容量の測定に用いたリチウム二次電池の概略図である。In the Example of this invention, it is the schematic of the lithium secondary battery used for the measurement of a charging / discharging characteristic and an irreversible capacity | capacitance.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 正極タブ
5 負極タブ
6 正極蓋
7 電池缶
8 ガスケット
9 ガラスセル
10 電解液
11 試料電極(負極)
12 セパレータ
13 対極(正極)
14 参照極
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode tab 5 Negative electrode tab 6 Positive electrode cover 7 Battery can 8 Gasket 9 Glass cell 10 Electrolytic solution 11 Sample electrode (negative electrode)
12 Separator 13 Counter electrode (positive electrode)
14 Reference pole

Claims (4)

c軸方向の結晶子の大きさLc(002)が1000〜100000Åであり、内部に鱗片状の黒鉛結晶の層状構造を数多く有する黒鉛粒子であって、10 2 〜10 6 Åの範囲の大きさの細孔の細孔体積が、黒鉛粒子重量当たり0.4〜2.0cc/gであり、該黒鉛粒子内部の鱗片状の黒鉛結晶の層状構造が一定方向にそろうことなく配列しているリチウム二次電池負極用黒鉛粒子。 c-axis direction crystallite size Lc (002) is 1000 to 100000Å, and graphite particles having a large number of scaly graphite crystal layered structures therein, and a size in the range of 10 2 to 10 6 6 the pore volume of the pores is a graphite particle weight per 0.4~2.0cc / g, the layer-like structure of the scale-like graphite crystals inside the graphite particles are arranged without being aligned in a predetermined direction Graphite particles for lithium secondary battery negative electrode. 黒鉛粒子のアスペクト比が5以下である請求項1記載のリチウム二次電池負極用黒鉛粒子。The graphite particles for a lithium secondary battery negative electrode according to claim 1, wherein the graphite particles have an aspect ratio of 5 or less. 比表面積が8mSpecific surface area is 8m 22 /g以下である請求項1又は2記載のリチウム二次電池負極用黒鉛粒子。The graphite particles for a lithium secondary battery negative electrode according to claim 1 or 2, wherein the graphite particle is / g or less. 1×101 × 10 22 〜2×10~ 2x10 4Four Åの範囲の大きさの細孔の細孔体積が、黒鉛粒子重量当たり0.08〜0.4cc/gである請求項1〜3のいずれか一項に記載のリチウム二次電池負極用黒鉛粒子。The graphite for negative electrodes of lithium secondary batteries according to any one of claims 1 to 3, wherein the pore volume of pores having a size in the range of soot is 0.08 to 0.4 cc / g per graphite particle weight. particle.
JP2004358065A 1996-12-26 2004-12-10 Negative electrode for lithium secondary battery Expired - Lifetime JP4811699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004358065A JP4811699B2 (en) 1996-12-26 2004-12-10 Negative electrode for lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34840696 1996-12-26
JP1996348406 1996-12-26
JP2004358065A JP4811699B2 (en) 1996-12-26 2004-12-10 Negative electrode for lithium secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002092084A Division JP2002343341A (en) 1996-12-26 2002-03-28 Negative electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2005108858A JP2005108858A (en) 2005-04-21
JP4811699B2 true JP4811699B2 (en) 2011-11-09

Family

ID=34553909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004358065A Expired - Lifetime JP4811699B2 (en) 1996-12-26 2004-12-10 Negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4811699B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797577B2 (en) 2005-10-31 2011-10-19 ソニー株式会社 battery
DE102010005954B4 (en) * 2010-01-27 2020-11-19 Heraeus Quarzglas Gmbh & Co. Kg Porous carbon product
JP5177211B2 (en) * 2010-12-09 2013-04-03 ソニー株式会社 Negative electrode active material, negative electrode and battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684515A (en) * 1992-09-03 1994-03-25 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary cell
JP3529802B2 (en) * 1992-11-10 2004-05-24 株式会社リコー Negative electrode for secondary battery
JPH07192722A (en) * 1993-12-24 1995-07-28 Sanyo Electric Co Ltd Lithium secondary battery
JP3617550B2 (en) * 1994-04-01 2005-02-09 株式会社東芝 Negative electrode for lithium secondary battery, lithium secondary battery including the negative electrode, and method for producing the negative electrode for lithium secondary battery
JPH0831422A (en) * 1994-07-19 1996-02-02 Nippon Steel Corp Carbon material for negative electrode of lithium secondary battery and manufacture thereof
JPH0845548A (en) * 1994-08-03 1996-02-16 Matsushita Electric Ind Co Ltd Manufacture of lithium secondary battery and its negative electrode
JP2002343341A (en) * 1996-12-26 2002-11-29 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery

Also Published As

Publication number Publication date
JP2005108858A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
US10651458B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP3285520B2 (en) Graphite particles, method for producing graphite particles, graphite paste using graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP3305995B2 (en) Graphite particles for lithium secondary battery negative electrode
JP3361510B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3213575B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JP3321782B2 (en) Graphite particles for lithium secondary battery negative electrode
JPH11217266A (en) Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
JP3951219B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4811699B2 (en) Negative electrode for lithium secondary battery
JP4483560B2 (en) Negative electrode for lithium secondary battery
JP3892957B2 (en) Method for producing graphite particles
JP4828118B2 (en) Negative electrode for lithium secondary battery
JP2002343341A (en) Negative electrode for lithium secondary battery
JP5853293B2 (en) Negative electrode for lithium secondary battery
JP4135162B2 (en) Negative electrode for lithium secondary battery
JP4066699B2 (en) Negative electrode for lithium secondary battery
JP3325021B2 (en) Graphite particles for negative electrode of lithium secondary battery and graphite paste for negative electrode of lithium secondary battery
JP5704473B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4985611B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2005289803A (en) Graphite grain, graphite paste using graphite grain, negative electrode for lithium secondary battery, and lithium secondary battery
JP2017033945A (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4687661B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2017157575A (en) Negative electrode for lithium secondary battery and lithium secondary battery
JPH10223231A (en) Anode for lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110324

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term