JP2004127913A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2004127913A
JP2004127913A JP2003160969A JP2003160969A JP2004127913A JP 2004127913 A JP2004127913 A JP 2004127913A JP 2003160969 A JP2003160969 A JP 2003160969A JP 2003160969 A JP2003160969 A JP 2003160969A JP 2004127913 A JP2004127913 A JP 2004127913A
Authority
JP
Japan
Prior art keywords
graphite particles
particles
negative electrode
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003160969A
Other languages
Japanese (ja)
Other versions
JP4252846B2 (en
Inventor
Fumio Kato
加藤 文生
Takafumi Oura
尾浦 孝文
Yusuke Fukumoto
福本 友祐
Norihiro Yamamoto
山本 典博
Shozo Fujiwara
藤原 昌三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003160969A priority Critical patent/JP4252846B2/en
Publication of JP2004127913A publication Critical patent/JP2004127913A/en
Application granted granted Critical
Publication of JP4252846B2 publication Critical patent/JP4252846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve charge and discharge cycle characteristics of a high energy-density lithium secondary battery, and improve or maintain discharge rate characteristics, low-temperature discharge characteristics, and safety (heat resistance). <P>SOLUTION: The lithium secondary battery is prepared by using a negative electrode wherein active material composed of a mixture consisting of an artificial graphite particle A that has been obtained by kneading and granulating the base material made by crushing a bulk mesophase pitch, a pitch, and/or a thermosetting resin in a softened state and by making it carbonized/graphitized, and a sherical graphite particle B of which circularity is large, is fixed on the copper core material. This enables to improve the charge and discharge cycle characteristics of the high energy-density lithium secondary battery, and at the same time to provide the battery that is superior in the discharge rate characteristics, the low-temperature discharge characteristics, and safety (heat resistance). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池、特に黒鉛からなる活物質を含む負極と、リチウム含有遷移金属酸化物からなる活物質を含む正極と、セパレータと、非水電解液とを具備するリチウムイオン二次電池に関する。
【0002】
【従来の技術】
電子機器のポータブル化およびコードレス化が進むにつれ、その駆動用電源として、小型かつ軽量で高エネルギー密度を有するリチウム二次電池が、有望視されている。例えばリチウムイオンの可逆的な吸蔵・放出が可能な炭素材を活物質とした負極と、リチウムを含む遷移金属複合酸化物を活物質とした正極と、セパレータと、非水電解液とから構成された、ロッキングチェア型のいわゆるリチウムイオン二次電池が、すでに実用化され、急速に普及している。
【0003】
ここで、負極に関しては、各種炭素材の中でも結晶性の高い黒鉛(グラファイト)の粒子が、最近では主流となっている。その理由として、黒鉛粒子は、(1)電子伝導性が高く大電流での放電性能に優れる、(2)放電に伴う電位変化が少なく定電力放電等の用途に適する、(3)真密度が大きいので嵩密度の大きい粒子として得られ、電池の高エネルギー密度化に適する、といった点が挙げられる。
【0004】
現在、リチウム二次電池の負極の黒鉛としては、
I.天然黒鉛粒子であって、原鉱からの粉砕工程等の過程で、鱗片状粒子に対して塊状化(球形化)を施した塊状化天然黒鉛、
II.人造黒鉛粒子であって、ある種のコークスまたはコークスと各種ピッチとの造粒粒子等を黒鉛化した材料、および
III.ピッチやタールの加熱時に生成するメソフェーズ炭素(液晶の一種)を活用した特殊人造黒鉛粒子、が中心となっている。
【0005】
特殊人造黒鉛粒子には、
(1)メソフェーズ小球体の分離抽出品を、炭素化および黒鉛化した材料(黒鉛化MCMB)、
(2)メソフェーズ小球体の重合成長により形成される溶融状メソフェーズピッチを紡糸し、表面酸化による不融化を行い、その上で炭素化し、さらに裁断・粉砕し、黒鉛化した材料(黒鉛繊維ミルド、ないしは黒鉛化ミルドMCF)、
(3)メソフェーズ小球体の重合成長により形成される溶融性の少ないバルクメソフェーズピッチの粉砕粒を、炭素化および黒鉛化した材料(黒鉛化バルクメソフェーズ)等がある。
【0006】
近年のリチウム二次電池の高エネルギー密度化に対応して、上記I〜IIIの黒鉛の高性能化が試みられている。
天然黒鉛粒子(I)は、ほぼ黒鉛の理論容量(372mAh/g)に近い可逆容量が得られていることから、電極への高密度充填等が検討されている。例えば、高密度充填に適するように、粒子形状を調整する技術の蓄積が活発である。また、黒鉛粒子表面に露出したエッジ面を、易黒鉛化性炭素に分類される非晶質炭素で被覆することが提案されている(特許文献1)。この提案によれば、初期充電時に起こる黒鉛粒子表面での電解液の分解反応を抑制し、分解反応に伴う不可逆容量を低減させることができる。
【0007】
人造黒鉛粒子(II)や特殊人造黒鉛粒子(III)は、現状、黒鉛の理論容量に近い可逆容量が得られていない(天然黒鉛に比べて可逆容量が劣る)。そのため、原料のコークス、ピッチもしくはタール類の純度を高める検討、材料に応じて黒鉛化条件を適正化する検討、黒鉛化を促進する触媒種を添加する検討等が行われている。すなわち、粒子の黒鉛化度を高めて、可逆容量を向上させる検討が積極的になされている。なお、このような人造黒鉛では、粒子表面に露出している黒鉛エッジ面の割合は少ないため、初期充電時の不可逆容量は、総じて天然黒鉛(I)より小さくなる。
【0008】
リチウム二次電池の負極の作製に際しては、活物質として、以上のような黒鉛種のうち、1種を単独で使用する場合もあるし、2種以上を混合して使用する場合もある。
【0009】
負極の作製工程は、一般に、黒鉛活物質粒子を含む水系ペーストや有機系ペーストの調製工程を含む。水系ペーストは、黒鉛活物質粒子と、結着剤としてのSBR(スチレン−ブタジエン共重合体ゴム)等と、造粘剤としてのCMC(カルボキシメチルセルロース)等と、適量の水とを混合したものである。また、有機系ペーストは、結着剤および造粘剤としてのPVDF(ポリフッ化ビニリデン)等と、分散媒としての適量のNMP(N―メチル−2−ピロリドン)等とを混合したものである。
【0010】
これらのペーストを、銅芯材上に塗布し、乾燥させた後に、所望の厚み・密度になるまで圧延し、裁断・加工し、集電体へのリード溶接等を行って、負極板とする。圧延に際して、負極合剤層の密度は、約1.6g/cm程度を上限にする場合が多い。これは、あまり高密度になるまで圧延すると、負極活物質粒子の破砕・崩壊、芯材上からの粒子の脱落・剥離等が起こるからである。
【0011】
ただし、前記のような上限を設けた場合でも、同様に高密度になるまで圧延を施したLiCoOを主活物質とする正極と、適度な機械的強度と空孔率を有する薄型ポリオレフィン製微多孔膜セパレータとを用いることにより、体積エネルギー密度が350Wh/Lを超える、高エネルギー密度のリチウム二次電池を得ることが可能となっている。
【0012】
近年では、ポータブル機器の小型化・薄型化を容易にする観点から、「薄型、軽量」という付加価値のある高エネルギー密度のリチウム二次電池に対する市場からのニーズが高くなってきている。これらの電池は、非水電解液とともに、極板群を、角型の金属ケースあるいはアルミニウム箔と樹脂膜とのラミネートシートからなるケースに収容したものである。極板群は、負極と正極とセパレータとを、概四角柱状ないしは楕円柱状に捲回したものを用いる場合が多い。
【0013】
以上のようなリチウム二次電池において、要求される性能は多い。
まず、電池のさらなる高エネルギー密度化を目指し、銅芯材上に固定された負極合剤層を、より一層高密度にする検討がなされている。具体的には、結着剤等も含めた負極合剤層の密度を1.6〜1.8g/cm程度にすることが望まれる。しかし、黒鉛材の真密度は、2.22〜2.24g/cmであるため、1.6g/cmを超える合剤密度は、極めて高い充填状態に相当する。従って、負極合剤層をロールプレス等で圧延する工程において、合剤層を所定の厚みにまで圧縮できなかったり、芯材上からの合剤層の剥離・脱落が顕在化したりする、といった製造上の問題が、発生しやすい。
【0014】
これらの問題は、主に負極活物質である黒鉛粒子の種類によって支配されるケースが多い。
本発明者等のこれまでの検討によれば、先述のメソフェーズ炭素に由来する特殊人造黒鉛粒子(III)では、前者の、合剤層を所定の厚みにまで圧縮できない、という問題が出やすい。
【0015】
この原因として、特殊人造黒鉛粒子(III)では、粒子間の滑り性が乏しい点があげられる。同材料では、製造工程である炭素化・黒鉛化工程において、粒子間の融着が起こるのを緩和する目的で、前処理として、メソフェーズ粒子表層の不融化(緩い酸化処理)を行なう必要がある。このため、得られた粒子表層は、黒鉛化があまり進行していない非晶質に近い状態になっている。つまり、同材を用いて作製した負極合剤層においては、活物質粒子同士の接触は、実質上、非晶質炭素同士の接触である。
【0016】
層状構造を持たない非晶質炭素は、黒鉛層状構造に特有な粒子間の静電反発(π電子の相互作用)が少ないため、滑り性に乏しい。従って、この材料を負極活物質に用いた場合には、高密度の圧延に際して、合剤層を所定の厚みにまで圧縮できない、という問題が発生しやすい。このような問題に対する対策として、例えば、塊状化天然黒鉛ないしは鱗片状天然黒鉛粒子を、黒鉛化MCMBに助材として添加して、負極合剤層を形成することが提案されている(特許文献2)。
【0017】
また、コークス等に由来する人造黒鉛粒子(II)では、後者の、芯材上からの合剤層の脱落・剥離といった問題が発生しやすい。
この原因として、コークス等に由来する人造黒鉛粒子(II)は、黒鉛化後に、粉砕・粒度調整を行うのが一般的であることから、嵩密度(ないしはタップ密度)の高い粒子や比表面積の小さい粒子を得ることが、困難であることが挙げられる。これが、高密度圧延に際して、合剤層の剥離・脱落が起こりやすくなる一因と考えられる。すなわち、粒子が嵩高いために、合剤層の高密度圧延に際して、粒子の破砕・崩壊が起こりやすい。また、粒子の比表面積が大きいために、合剤層中に添加した結着剤の大半が粒子表面に吸着してしまい、芯材・粒子間や粒子・粒子間の結着性を保持することが困難となる。このため、高密度の圧延に際して、合剤層の脱落・剥離が起こりやすいものと推察される。
【0018】
一方、これらに比較すると、天然黒鉛粒子(I)は、基本的に粒子表層まで黒鉛化が十分に進んでいる。そのため、粒子間の静電反発が強く、滑り性が非常に大きい。従って、合剤密度が1.6g/cmを超えるまでの高密度圧延も、比較的容易であり、製造上の問題は発生しにくい。
【0019】
しかし、鱗片状粒子に塊状化(球形化)処理を加えたとしても(特許文献3)、すべての粒子を完全に真球に近い形に形状制御することは非常に困難である。実際は、かなりアスペクト比の大きい紡錘状(扁平状)粒子も、多数混在した状態となっている。従って、形状制御の程度にもよるが、合剤層の密度が1.6g/cmを超えるような強い圧延を施した場合には、一部の粒子の変形を伴いながら、紡錘状粒子が芯材の面方向に配向する。この現象は、従来の鱗片状天然黒鉛粒子でよく知られた現象である。
【0020】
この現象が起こると、
▲1▼Liイオンを吸蔵・放出する黒鉛粒子のエッジ面が、電解液に露出しにくくなり、Liイオンの拡散性が低下し、高率放電特性が低下する、
▲2▼充放電の際に、黒鉛粒子のc軸方向の膨張・収縮が、合剤層の厚み変化として反映されやすく、電極の膨張・収縮度合いが大きくなる、といった特性上の問題が発生する。
【0021】
このように、天然黒鉛粒子では、高密度圧延に際して、粒子(換言すれば黒鉛結晶)の配向が起こり、電極性能が低下するという問題がある。
これをを踏まえて、黒鉛化可能な基材(主にコークス等)を、黒鉛化可能なバインダー(タール、ピッチ等)と混合した後に、炭素化し、これを粉砕した後に、黒鉛化することが提案されている(特許文献4、5)。この方法によれば、粒子内で黒鉛組織ないしは黒鉛結晶がランダムな方向に配向した人造黒鉛を作製することができる。
【0022】
また、類似技術として、製鉄プロセスから得られるキッシュ黒鉛(再結晶化黒鉛)を、バインダーを用いて造粒し、これを黒鉛化した材料を、負極に用いる技術がある(特許文献6)。
【0023】
これらの人造黒鉛粒子を用いると、先述した高密度圧延に際して、合剤層の脱落・剥離という工程上の問題は出やすいが、粒子が芯材の面方向に配向しても、粒子内にランダムに存在する黒鉛結晶は、そのような配向の影響を受けない。従って、上記▲1▼および▲2▼に記した問題は、比較的容易に回避することができる。
【0024】
また、最近の350Wh/Lを超える高エネルギー密度設計のリチウムイオン二次電池においては、所定容積の電池ケース内に、より多くの負極活物質と正極活物質とを充填する必要がある。そのため、電池内部の残空間(ここでは、電池ケースの内容積から、正極、負極、セパレータ等の構成部材の体積を差し引いた空間)が少なくなる。そして、電池設計容量に対する電解液量の割合(cc/mAh)が、極端に小さくなる傾向にある。この結果、従来の比較的電解液量が多い設計の電池では見られなかった、以下のような問題が発生する。
【0025】
まず、高密度に圧延した負極合剤層の内部にまで、電解液が十分に浸透もしくは含浸できないため、高率での充放電特性や低温での放電特性が低下する、といった問題が発生しやすい。この改善策としては、圧延後にも適度な粒子円形度(球形度)が維持できる黒鉛材を用いることが効果的である(特許文献7)。この黒鉛材は、特定の平均粒子径(10〜35μm)を有し、粒度分布が比較的シャープであり、4μm以下の微粉をあまり含まない。従って、先述の塊状化(球形化)処理を施した天然黒鉛粒子や黒鉛結晶がランダムな方向に配向した人造黒鉛粒子を、最適な粒度に調整して用いることが、高率での充放電特性や低温での放電特性の改善に有効であると考えられる。
【0026】
しかしながら、高エネルギー密度設計のリチウム二次電池には、充放電サイクルの進行に伴う容量劣化が従来の電池よりも大きい、という問題がある。この原因としては、充放電サイクルの進行に伴って、黒鉛活物質粒子の割れや崩壊が発生し、新規に形成された黒鉛エッジ面が電解液に露出することが挙げられる。これに伴って、はじめから絶対量が少ない電解液が、分解消費されて、電池の内部抵抗が増大する。また、電解液の分解生成物が、負極表面に皮膜として堆積し、負極の充放電効率を低下させることも主要因と考えられる。また、近年のリチウム二次電池に用いられている、角型の金属ケースあるいはアルミニウム箔と樹脂膜とのラミネートシートからなるケースは、一般にその強度が弱い。そのために、充放電サイクルの進行に伴って、電解液の分解反応が起こると、発生する分解ガスによって、電池内圧が上昇し、電池が厚み方向に変形する(膨れる)。さらに、このような電池に用いる概四角柱状ないしは楕円柱状に捲回された電極群は、円筒型電池で用いる円柱(スパイラル)状に構成した電極群よりも、負極合剤層の膨張・収縮に伴う変形が発生しやすい。これらの要因が合わさって、サイクル寿命特性が大幅に低下すると考えられる。
【0027】
従って、負極側からの改善策として、
▲1▼電解液の分解消費を抑制するために、充放電サイクルの進行に伴う粒子の割れ・崩壊が進行しにくい(充放電サイクルの過程において電解液との反応性に乏しい)黒鉛粒子を活物質に使用する、
▲2▼充放電に伴う膨張・収縮の程度が少ない黒鉛粒子を使用する、といった対策が容易に考えられる。
【0028】
本発明者等が、種々の黒鉛材に関して鋭意検討を行なった結果、塊状化天然黒鉛粒子(または表面改質、表面被覆等を施した塊状化天然黒鉛)を、負極の主活物質として使用した場合には、充放電サイクルの進行に伴う粒子の割れ・崩壊の程度が、総じて人造黒鉛粒子よりも大きかった。そして、現在知られている各種の負極保護皮膜形成用の添加材を電解液中に添加した場合であっても、満足なサイクル寿命特性を与えるには到らなかった。ここで、保護皮膜形成用の添加材は、初期充電時に負極黒鉛粒子上で保護皮膜を形成し、サイクルに伴う電解液の分解反応を抑制するものであり、代表的なものとしてビニレンカーボネート等が挙げられる。
【0029】
一方、先述のような、黒鉛結晶がランダムな方向に配向した人造黒鉛粒子は、充放電サイクルの進行に伴う粒子の割れ・崩壊の程度が小さく、充放電に伴う膨張・収縮の程度も比較的小さく、好適であることが判明した。
【0030】
しかし、一方で、特許文献4、5に開示されている方法で作製された人造黒鉛粒子は、その作製過程において、炭素化・黒鉛化に際して、粒子が強固に融着する。そのため黒鉛化後に強い粉砕を行なう必要がある。その結果、得られる黒鉛粒子の比表面積が大きくなってしまう。負極黒鉛粒子の比表面積は、負極の初期不可逆容量および熱安定性(充電状態負極の耐熱性等)と相関があることが知られている。粒子の比表面積が大きいと、初期の不可逆容量が大きくなり、熱安定性が低下する傾向にあるため、電池高容量化と安全性の両観点から好ましくない。
【0031】
以上の点から、人造黒鉛粒子の改善策として、黒鉛化可能な基材(コークス)を、黒鉛化可能なバインダー(タール、ピッチ等)と混合した後に、炭素化し、これに軽度の粉砕を行って、粉状で黒鉛化する人造黒鉛の製造法が提案されている(特許文献8)。つまり、ここでは、黒鉛化後には材料の粉砕が行われない。
【0032】
また、特許文献8では、
(1)炭素化の前にバインダーを酸化させて不融化する、
(2)バインダー中に熱硬化性樹脂を加えることで、炭素化に際しての融着を抑止する、
(3)基材とバインダーとの混合で得られた混合物を、熱硬化性樹脂で被覆することで、炭素化に際しての融着を抑止する、といった手段で、粒子の比表面積を1.0〜3.0m/gにまで低減させている。そして、実施例中には、平均粒子径(D50)が25〜30μmで、BET法による比表面積が1.8〜2.2m/gの人造黒鉛粒子が作製されている。
【0033】
しかし、特定の出発原料(特許文献8ではコークスとタール、ピッチ)を使用している限りにおいては、粒子の比表面積を小さくするには限界がある。例えば、負極合剤ペーストの沈降性を小さくして、製造工程上のペーストの扱いを容易にし、歩留まり等を上げるために、D50が20μm程度になるように粒度調整をすると、BET比表面積は3m/gを超えてしまう。その結果、負極の初期不可逆容量が増大し、負極の熱安定性(耐熱性)が悪化する。また、上記公報中に記載された黒鉛粒子は、嵩密度(ないしはタップ密度)が他の黒鉛粒子に比べると小さい。従って、高密度になるように電極を圧延すると、合剤層の脱落が起こりやすいという欠点を持ち合わせている。
【0034】
【特許文献1】
特開平11―54123号公報
【特許文献2】
特開2001−236950号公報
【特許文献3】
特開平11−263612号公報
【特許文献4】
特開2001−89118号
【特許文献5】
特開2002−50346号公報
【特許文献6】
特開2001−357849号公報
【特許文献7】
特開2000−90930号公報
【特許文献8】
特開平11−199213号公報
【0035】
【発明が解決しようとする課題】
以上の課題を鑑み、本発明は、高エネルギー密度のリチウム二次電池の充放電サイクル特性を大幅に改善すると同時に放電レート特性、低温放電特性および安全性(耐熱性)を向上もしくは維持させることを目的とする。
【0036】
【課題を解決するための手段】
本発明では、人造黒鉛粒子Aと円形度の大きい球状黒鉛粒子Bとの混合物からなる活物質を、銅芯材上に固定させた負極を用いる。
すなわち、本発明は、正極、負極および非水電解液からなるリチウム二次電池であって、前記負極は、銅芯材および前記芯材上に固定された負極合剤層からなり、前記負極合剤層は、人造黒鉛粒子Aと、球状黒鉛粒子Bとの混合物からなる活物質を含む。
【0037】
前記人造黒鉛粒子Aは、黒鉛組織(黒鉛結晶)が粒子内でランダムに配向した等方性人造黒鉛粒子であって、(1)粉末X線回折法で求められる(002)面の面間隔d002が3.362Å以下、(2)密度1.6g/cmにペレット成形してX線回折測定を行った場合の回折パターンにおける(002)面に帰属されるピーク強度I002と(110)面に帰属されるピーク強度I110との比:I002/I110が1000以下、(3)平均粒子円形度が0.85〜0.95、(4)レーザー回折式粒度分布計を用いて測定した体積分率50%時の粒子径D50が15〜30μmで、体積分率10%時の粒子径D10と体積分率90%時の粒子径D90との比:D10/D90が0.2〜0.5、(5)タップ密度が1g/cm以上、(6)BET法を用いて測定した比表面積が1m/g以下である。
【0038】
前記球状黒鉛粒子Bは、(1)平均粒子円形度が0.88〜1、(2)レーザー回折式粒度分布計を用いて測定した体積分率50%時の粒子径D50が5〜15μm、(3)粉末X線回折法で求められる(002)面の面間隔d002が3.357Å以下、(4)BET法を用いて測定した比表面積が8m/g以下である。
【0039】
前記人造黒鉛粒子Aは、バルクメソフェーズピッチを粉砕して作製した基材と、軟化状態にあるピッチおよび/または熱硬化性樹脂とを混練・造粒し、得られた造粒物を700〜1500℃で炭素化し、さらに2500〜3000℃で黒鉛化して得られる。
【0040】
前記球状黒鉛粒子Bの前記活物質全体に占める混合比率は、5〜45重量%であることが好ましい。
【0041】
前記正極と、前記負極とは、セパレータを介して捲回されて電極群を構成しており、角型の金属ケースあるいはアルミニウム箔と樹脂膜とのラミネートシートからなるケースに封入されていることが好ましい。
【0042】
前記負極合剤層は、さらに、ブタジエン単位を含むゴム状結着剤とセルロース系造粘剤とを含むことが好ましい。
【0043】
前記球状黒鉛粒子Bは、天然黒鉛粒子および/または部分的に表面だけを非晶質化する改質処理がなされた天然黒鉛粒子であることが好ましい。
【0044】
前記ゴム状結着剤の添加量は、前記活物質100重量部に対して3重量部以下であり、前記負極合剤層の密度は、1.6〜1.8g/cmであり、前記負極合剤層の厚みは、40〜100μmであることが好ましい。
【0045】
以上のように、本発明においては、負極の主黒鉛活物質として用いる人造黒鉛粒子Aに関して、メソフェーズ小球体の重合成長で形成した溶融性の少ないバルクメソフェーズピッチの粉砕粒を基材(黒鉛化可能な基材)として用いる。この点において、本発明は、先述の特許文献4、特許文献5および特許文献8で示されている人造黒鉛粒子とは、大きく異なる。
【0046】
なお、例えば特開2001−23635号公報に記載されているように、揮発分が低くなるように形成させたバルクメソフェーズピッチの粉砕粒を炭素化・黒鉛化すれば、炭素化に際して粒子の融着が起こらない。そのため、途中の粉砕工程を省くことができ、比表面積の小さい負極用黒鉛粒子を高収率で作製することができる。
【0047】
本発明のリチウム二次電池で用いる負極の人造黒鉛粒子Aは、基材として、このような溶融性の少ないバルクメソフェーズピッチの粉砕粒を用いる点に加え、混練・造粒のためのバインダーとしても、やはり後工程での溶融性が少ないピッチおよび/または熱硬化性樹脂を出発原料として用いる。この場合にも、炭化・黒鉛化に際して、粒子の強固な融着が起こらず、途中の粉砕工程を省くことが可能となる。
【0048】
従って、こうして得られる人造黒鉛粒子Aは、先述したような高エネルギー密度設計のリチウム二次電池のサイクル寿命特性の改善、ならびに安全性(負極耐熱性)の向上という観点から、最も好適と考えられる。すなわち、人造黒鉛粒子Aの粒子内では、黒鉛結晶がランダムな方向に配向しており、その粒子は、比表面積が小さく、充放電サイクルの進行に伴う粒子の割れ・崩壊の程度が少ない。また、基材のバルクメソフェーズピッチが、易黒鉛化性であり、コークスに比べると、黒鉛化を施した際の黒鉛層状構造の発達が進みやすい。このことは、特に黒鉛化が進みやすいとされている針状コークスとの比較においても同様である。従って、人造黒鉛粒子Aは、より高容量を実現し得る黒鉛活物質として用いることができる。
【0049】
このような人造黒鉛粒子Aは、嵩密度(ないしはタップ密度)が、先述のコークスを基材として作製した黒鉛粒子よりも、大きくなる傾向がある。そして、人造黒鉛粒子Aは、特に造粒によって、比較的大粒子化している。そこで、このような黒鉛粒子Aの空隙が埋まるように、適量の円形度の大きい球状黒鉛粒子Bを添加して、負極活物質を作製する。そして、これを含むペーストを、銅芯材上に塗布する。このようにすれば、粒子の最密充填が可能であり、黒鉛粒子Bによって粒子間の滑り性も向上する。従って、1.6g/cmを超えるまでの高密度に圧延しても、合剤層の脱落等が殆ど生じることがない。また、電解液の浸透(含浸)性という点においても、極めて良好な高密度負極を得ることができる。
【0050】
また、本発明で用いる人造黒鉛粒子Aは、コークスを基材として作製した黒鉛粒子や他の一般的なメソフェーズ炭素由来の特殊人造黒鉛粒子よりも、高率充電や低温充電時のLiイオンの受け入れ性能が高い傾向にある。そのため、本発明のリチウム二次電池には、例えば低温での高率充放電サイクル特性にも優れるといった、副次的な改善効果も期待することができる。
【0051】
次に、特に高密度に圧延可能な負極合剤を与える人造黒鉛粒子Aについて説明する。このような人造黒鉛粒子Aは、微小圧縮試験機により求められる所定の物性を満たす。その物性は以下の要領で求めることができる。
【0052】
まず、人造黒鉛粒子Aと、PVDFと、NMPとを、混合し、スラリを調製する。スラリにおける人造黒鉛粒子Aの含有率は40〜60重量%、PVDFの含有率は2〜12重量%、NMPの含有率は38〜58重量%とすることが好ましい。次に、スラリを所定の間隙を有するドクターブレードで基材上に塗工し、得られた合剤の塗膜に対して、微小圧縮試験機で圧縮する。その際の塗膜厚さの変位量が大きい場合ほど、黒鉛の圧延が容易であると言える。
【0053】
変位量の測定方法の一例をさらに詳述する。
まず、45重量部の人造黒鉛粒子Aと、5重量部のPVDFと、50重量部のNMPとを、混合し、スラリを調製する。次に、ガラス板上に広げた電解銅箔(厚さ10μm)の上に、このスラリを、間隙135μmのドクターブレードで塗工する。そして、塗膜を80℃の乾燥機内で乾燥させる。乾燥後の塗膜の厚さは、例えば約100μmとなる。続いて、微小圧縮試験機に直径500μmの圧子を取り付け、乾燥後の塗膜に200gfの荷重を加えて、塗膜厚さの変位量(圧縮量)を測定する。このような方法で測定される塗膜厚さの変位量が25μm以上となる人造黒鉛粒子Aは、特に高密度に圧延可能な負極合剤を与える。
なお、微小圧縮試験機としては、島津製作所(株)製のMCTM−500などを用いることができる。
【0054】
【発明の実施の形態】
本発明は、人造黒鉛粒子Aと、円形度の大きい球状黒鉛粒子Bとの混合物からなる活物質を銅芯材上に固定させた負極を用いたリチウム二次電池に関する。前記人造黒鉛粒子Aは、バルクメソフェーズピッチを粉砕して作製した基材と軟化状態にあるピッチおよび/または熱硬化性樹脂とを混練・造粒し、得られた造粒物を700〜1500℃で炭素化し、さらに2500〜3000℃で黒鉛化した粒子である。
【0055】
人造黒鉛粒子Aの製造法において、バルクメソフェーズピッチを粉砕して作製した基材の平均粒子径は、7〜20μmであることが好ましい。ピッチおよび/または熱硬化性樹脂の量は、基材100重量部あたり、8〜25重量部であることが好ましい。
【0056】
本発明によると、負極の主活物質である人造黒鉛粒子Aの黒鉛構造が十分に発達していること、黒鉛結晶がランダムな方向に配向していること、BET比表面積が小さく、充放電サイクルの進行に伴う粒子の割れ・崩壊の程度が少ないこと等に由来して、350Wh/Lを大きく超える高エネルギー密度のリチウム二次電池の設計が可能となる。同時に、充放電サイクルの進行に伴う負極上での電解液分解等に起因する電池容量の劣化が非常に少なく、安全性(耐熱性能等)も高いレベルに確保されたリチウム二次電池を提供することが可能になる。
【0057】
本発明のリチウム二次電池の好ましい形態としては、負極と、正極とを、セパレータを介して概四角柱状ないしは楕円柱状に捲回してなる電極群を、角型の金属ケースあるいはアルミニウム箔と樹脂膜とのラミネートシートからなるケースに封入し、非水電解液を注入した形態が挙げられる。このような形態のリチウム二次電池においても、人造黒鉛粒子Aの特徴に由来して、高エネルギー密度であるとともに充放電サイクルの進行に伴う電池容量の劣化が抑制される。また、このような形態の電池において特有の現象である、電解液分解で発生するガスによって電池ケースが厚み方向に変形する現象や、負極合剤層の膨張・収縮に伴う極板群の変形(群挫屈)についても、高いレベルで抑制することが可能である。同時に、電池としての安全性(耐熱性能等)も高い水準に確保することができる。
【0058】
本発明のリチウム二次電池においては、負極合剤の結着剤として、ブタジエン単位を含むゴム状結着剤を用いることが好ましい。また、負極合剤の練合時にセルロース系造粘剤を用いることが好ましい。すなわち、人造黒鉛粒子Aと円形度の大きい球状黒鉛粒子Bとの混合物からなる活物質を、ゴム状結着剤およびセルロース系造粘剤の作用により銅芯材上に固定させた負極を用いることが好ましい。
【0059】
前記セルロース系造粘剤には、セルロースまたは各種セルロース誘導体からなる高分子を用いることができる。なかでも少量で高い粘弾性を与えることができることから、カルボキシメチルセルロース(CMC)が好ましい。また、ブタジエン単位を含むゴム状結着剤には、スチレン−ブタジエン共重合体ゴム(SBR)等を用いることが好ましい。
【0060】
一般に、リチウム二次電池の負極の作製方法には、2通りの方法がある。1つは、黒鉛活物質粒子に、結着剤としてSBR等と造粘剤としてCMC等と適量の水とを加えた水系ペーストを、芯材に塗工する方法である。もう一つは、黒鉛活物質粒子に、結着剤・造粘剤としてポリフッ化ビニリデン(PVDF)等と分散媒として適量のN―メチル−2−ピロリドン(NMP)等とを加えた有機系ペーストを、芯材に塗工する方法である。
【0061】
前者の水系ペーストは、練合や塗工に際して、レオロジーの安定性が比較的乏しいものである。しかしながら、得られた負極を用いてリチウム二次電池を作製した場合、黒鉛活物質粒子上での電解液の還元分解反応が抑制されることが、多くの検討から明らかとなってきている。例えば、初期の負極の不可逆容量の低減に対して、水系ペーストを用いることが非常に効果的である。また、充電状態にある電池を高温下で保存した場合の負極上での電解液の還元分解(ガス発生)の抑制や、電池の充放電サイクルに伴うガス発生反応の抑制に対しても、水系ペーストを用いることが非常に効果的である。特開2001―076731号公報等にも、関連する記述が散見される。従って、生産性よりも電池特性を重視する場合、負極作製に水系ペーストを用いることが好ましい。
【0062】
次に、本発明で用いる人造黒鉛粒子Aと球状黒鉛粒子Bの物性について説明する。
まず、バルクメソフェーズピッチを粉砕して作製した基材と、軟化状態にあるピッチおよび/または熱硬化性樹脂とを、混練・造粒し、得られた造粒物を700〜1500℃で炭素化し、さらに2500〜3000℃で黒鉛化して得た人造黒鉛粒子Aについて説明する。
【0063】
人造黒鉛粒子Aは、黒鉛組織が粒子内でランダムに配向した、等方性人造黒鉛粒子である。そして、その物性は、
(1)粉末X線回折法で求められる(002)面の面間隔d002が3.362Å以下、
(2)密度1.6g/cmにペレット成形してX線回折測定を行った場合の回折パターンにおける(002)面に帰属されるピーク強度I002と(110)面に帰属されるピーク強度I110との比:I002/I110が1000以下、
(3)平均粒子円形度が0.85〜0.95、
(4)レーザー回折式粒度分布計を用いて測定した体積分率50%時の粒子径D50が15〜30μmで、体積分率10%時の粒子径D10と体積分率90%時の粒子径D90との比:D10/D90が0.2〜0.5、
(5)タップ密度が1g/cm以上、
(6)BET法を用いて測定した比表面積が1m/g以下、である。
【0064】
ここで、体積分率x%時の粒子径Dは、横軸aが粒子径を、縦軸bが粒子数を示すa−b座標系に表した体積基準の粒度分布から求められる。前記粒度分布において、a値の小さな粒子から体積を積算していく場合、累積体積が全体のx%となるときのa値が、粒子径Dとなる。
【0065】
造粒物に対して、(002)面の面間隔d002が3.362Å以下に達するまでの十分な黒鉛化を行なうことで、可逆容量が340mAh/gを超える高容量の黒鉛粒子にすることができる。
【0066】
また、基材の粒度、バインダー(ピッチおよび/または熱硬化性樹脂)の配合比率、混練・造粒条件等を調整して、黒鉛粒子Aの平均粒子円形度、粒子径D50および比:D10/D90を上記範囲に調整すれば、練合や塗工のハンドリング性に優れると共に、高密度電極にした際の電解液の浸透性(含浸性)に優れた負極合剤を与えることが可能となる。
【0067】
なお、粒子円形度は、粒子像を平面上に投影した場合において、粒子投影像と同一の面積を有する相当円の周囲長lと、粒子投影像の周囲長Lとの比:l/Lで与えられる。
【0068】
銅芯材上に、高密度に合剤塗膜を形成し、これに弱いプレス圧で圧延を施して、粒子にダメージを与えることなく高密度の負極を作製するという観点から、人造黒鉛粒子Aのタップ密度は、大きいことが好ましい。具体的には、タップ密度が1g/cm以上であるものを用いる。
【0069】
ここで、タップ密度は、900回のタッピングを行った場合に得られる値である。タップ密度は、タッピングの回数等、測定条件によって変化する。例えば、100回程度のタッピングでは不十分であるが、300〜500回のタッピングを行えば、ほぼ一定の値に到達する。従って、900回のタッピングを行えば、タップ密度が一定の値に到達するのに十分である。
【0070】
さらに、負極黒鉛粒子の比表面積と、初期の不可逆容量と、負極の熱安定性(充電状態負極の耐熱性等)との相関に照らして、本発明においては、BET法を用いて測定される人造黒鉛粒子Aの比表面積が、1m/g以下の非常に低いレベルに制御されている。
【0071】
ここで、黒鉛構造が十分に発達しているとともに黒鉛結晶がランダムな方向に配向しており、上記範囲の平均粒子径および粒度を有し、かつBET比表面積が1m/g以下にまで抑制された人造黒鉛粒子は、現状、上記製造法で得られるものしかないと考えられる。すなわち、本発明者等が検討した限りにおいては、バルクメソフェーズピッチを粉砕して作製した基材と、軟化状態にあるピッチおよび/または熱硬化性樹脂とを、混練・造粒し、得られた造粒物を700〜1500℃で炭素化し、さらに2500〜3000℃で黒鉛化して得た粒子だけが、上記物性を全て満たすという点は、特筆すべき点である。
【0072】
このような黒鉛粒子を主活物質に用いると、可逆容量が大きく、初期の不可逆容量が少なく、充放電レート特性に優れ、充放電に伴う膨張・収縮が少なく、サイクル寿命特性に優れ、かつ高い安全性も兼ね備えた、ほぼ理想的な負極とすることができる。
【0073】
次に、球状黒鉛粒子Bの物性は、
(1)平均粒子円形度が0.88〜1、
(2)レーザー回折式粒度分布計を用いて測定した体積分率50%時の粒子径D50が5〜15μm、
(3)粉末X線回折法で求められる(002)面の面間隔d002が3.357Å以下、
(4)BET法を用いて測定した比表面積が8m/g以下、である。
【0074】
このような黒鉛粒子は、例えば、ある種の塊状化天然黒鉛粒子ないしは人造黒鉛粒子の分級・粗粉除去等によって作製することが可能である。球状黒鉛粒子Bとして、(002)面の面間隔d002が3.357Å以下である黒鉛化構造が非常に発達したものを選定すれば、黒鉛の大きな可逆容量を期待することができる。同時に黒鉛に特有の、粒子間の静電反発(π電子の相互作用)も引き出せるため、球状黒鉛粒子Bを人造黒鉛粒子Aと組み合わせて負極活物質とすれば、負極合剤の高密度への圧延成形を容易にすることができる。
【0075】
本発明では、球状黒鉛粒子Bとして、鱗片状粒子ではなく、平均粒子円形度が0.88〜1と非常に高く、粒子径D50が5〜15μmの範囲にあるものを用いる点を大きな特徴とする。このような円形度の高い粒子を用いれば、高密度への圧延に際して、合剤の表面近傍で球状黒鉛粒子Bが配向することが抑制され、合剤内部にまで電解液が十分に浸透(含浸)しやすくなる。
【0076】
また、上記物性の球状黒鉛粒子Bは、活物質全体に対する混合比率で5〜45重量%の範囲となるように、人造黒鉛粒子Aと混合することが好ましい。このような範囲であれば、合剤層の形成(銅芯材上への合剤の塗工)に際して、主材である黒鉛粒子Aの粒子間の空隙を球状黒鉛粒子Bで埋めることが可能となる。そのため、球状黒鉛粒子Bを密に充填することが可能となり、特に高密度に圧延成形された合剤層を得ることが可能となる。
【0077】
球状黒鉛粒子BのBET比表面積は、低いほど好ましい。平均粒子径を上記範囲にまで微粒化する場合、BET比表面積は、ある程度大きな値となってしまうが、本発明の効果を得るためには、球状黒鉛粒子BのBET比表面積の上限を8m/gとすることが必要である。
【0078】
球状黒鉛粒子Bは、天然黒鉛粒子および/または表面改質がなされた天然黒鉛粒子であることが好ましい。球状黒鉛粒子Bとして、特に天然黒鉛に由来するものを用いれば、黒鉛粒子Bから最も大きな可逆容量を得ることが期待できる。また、原産地や不純物グレードの程度にもよるが、一般に、天然黒鉛は、黒鉛化工程が必要となる人造黒鉛に比べて安価である。そのため、球状黒鉛粒子Bとして、天然黒鉛由来のものを用いると、コスト的に有利である。
【0079】
黒鉛負極の安全性(耐熱性)という観点から、先述のように、球状黒鉛粒子BのBET比表面積は、できるだけ低いことが好ましい。従って、粒子表面を平滑化する改質処理(被覆処理等)が施された天然黒鉛粒子を用いることが最も好適である。粒子表面を平滑化する方法としては、タール、ピッチ等の有機物で粒子表面を被覆し、これを炭素化ないしは黒鉛化する方法が挙げられる。また、強い機械的衝撃・せん断力等を黒鉛粒子に加えて、メカノケミカル反応によって表面を非晶質化することにより、平滑化する方法も挙げられる。
【0080】
負極合剤(または水系ペースト)中において、ブタジエン単位を含むゴム状結着剤の最適な添加量は、活物質重量に対して3重量%以下である。ブタジエン単位を含むゴム状結着剤は、ゴム微粒子の水性ディスパージョンとしてペースト中に添加するケースが多い。結着剤の添加量は、通常、合剤層と銅芯材との結着強度等を考慮して決定される。しかし、ゴム微粒子は基本的に絶縁体であるため、過剰に添加すると、黒鉛活物質粒子の表層が絶縁体粒子で覆われることとなり、負極の充放電特性が損なわれる。使用する黒鉛活物質粒子の平均粒子径、粒度およびBET比表面積を考慮すると、本発明においては、ゴム状結着剤の添加量を3重量%以下に抑えることが望まれる。
【0081】
銅芯材上に形成させた負極合剤層の最適な様態は、負極合剤層の密度が1.6〜1.8g/cmであり、負極合剤層の厚みは40〜100μmである。負極合剤層の密度を1.6〜1.8g/cmと高く設定することで、350Wh/Lを大きく超える高エネルギー密度のリチウム二次電池の設計が可能となる。ここで、負極合剤層の厚みを40〜100μmとするのは、合剤層厚みが100μmを超えると、合剤内層の活物質粒子へのLiイオンの拡散が困難となって、充放電レート特性が低下するからである。逆に、合剤層厚みを40μm未満にしようとすると、黒鉛活物質粒子AのD90値を、30μm以下程度まで微粒子化する必要がある。本発明で主活物質として使用する、造粒プロセスを経て作製される人造黒鉛粒子Aでは、実質上、ここまでの粒度調整を行なうことは困難である。
【0082】
【実施例】
まず、本実施例中で用いる黒鉛活物質粒子(粉末)の物性測定法について説明する。
(1)(002)面の面間隔d002の測定
理学電機(株)製の粉末X線回折装置「RINT2000/PC」を用いた。高純度シリコンを内部標準として加えた炭素粉末に対して、単色のX線を照射して、黒鉛の(002)面に対応するピークを測定した。そして、そのピーク位置を内部標準のシリコンのピークに基づいて補正することにより、黒鉛層間隔に相当するd002を算出した。具体的な評価法は、日本学術振興会第117委員会にて規定されているものに準拠した。
【0083】
(2)ピーク強度比I002/I110の測定
黒鉛粉末を特定のホルダに入れ、平圧プレスを用いて、密度1.6g/cmのペレットに成形した。上記(1)と同じX線回折装置を用いて、ペレットにX線を照射して、回折パターンを測定した。そして、(002)面に対応するピーク強度と(110)面に対応するピーク強度との比:I002/I110を算出した。ここでは、ピーク強度としてピークの高さを用いた。
【0084】
(3)粒子円形度の測定
(株)日立製作所製の走査式電子顕微鏡「S−2500」を用いて、黒鉛粒子(粉末)の倍率1000倍の像を得た。そして、観察された粒子の投影像と同一面積を有する相当円の周囲長lを求めた。周囲長lと粒子投影像の周囲長Lとの比:l/Lを50個の粒子に対して求め、その平均値を平均粒子円形度とした。なお、このような測定は、フロー式粒子像分析装置を用いて実施することもできる。例えば、ホソカワミクロン(株)販売の粉体測定装置(FPIA−1000)等を用いて粒子円形度を測定しても、ほぼ同じ値が得られることを実験的に確認した。
【0085】
(4)体積分率50%時の粒子径(D50)、体積分率10%時の粒子径(D10)および体積分率90%時の粒子径(D90)の測定
界面活性剤として、ポリオキシエチレンソルビタンモノウレラートの2体積%水溶液を約1cc準備した。この界面活性剤を予め黒鉛粒子(粉末)に混合した。その後、イオン交換水を分散媒として用い、(株)堀場製作所製レーザー回折式粒度分布計「LA−700」を用いて、体積分率50%時の粒子径(すなわち平均粒子径)D50(メジアン)、体積分率10%時の粒子径D10および体積分率90%時の粒子径D90を得た。
【0086】
(5)タップ密度の測定
黒鉛粉末のタップ密度は、基本的にはJIS−K5101に準じて、以下の手順で測定した。
ホソカワミクロン(株)製「パウダテスタPT−R」を用い、サンプルが通過する篩には目開き200μmの篩を使用した。20ccのタッピングセルに黒鉛粉末を落下させ、セルが満杯に充填された後、1回/秒でストローク長18mmのタッピングを900回行なった。そして、その時のタップ密度を測定した。
【0087】
(6)BET比表面積の測定
大倉理研(株)製「AMS−8000」を用いた。予備乾燥として350℃に黒鉛粉末を加熱し、15分間窒素ガス流に曝した。その後、窒素ガス吸着による相対圧0.3におけるBET1点法によって比表面積を測定した。
【0088】
(負極黒鉛粒子の作製)
本実施例中では、以下の手順によって得られた負極黒鉛粒子に関して検討を行なった。
1.人造黒鉛粒子A1
減圧蒸留装置内にコールタールを入れ、減圧し、硝酸の存在下で350℃で加熱攪拌して、タールの高分子量化を促した。その後、これを500℃で加熱してメソフェーズ化し、揮発分の少ないバルクメソフェーズピッチを得た。
このバルクメソフェーズピッチを冷却後に装置内から取りだし、回転衝撃型粉砕機(ファインミル)で平均粒子径が13μmになるように粉砕して基材を得た。
【0089】
次に、85重量部の基材に、バインダーとしてコールタールピッチ(軟化点80℃)を15重量部混合し、200℃で120分間、Z型のニーダ内で混練した。このプロセスにおいて、混合物は、次第に粘度を増し、粒子状となった。
【0090】
得られた造粒物を冷却後にニーダー内から取り出して、解砕し、続いて黒鉛製の坩堝に入れて、リードハンマータイプの連続焼成炉中で、800℃の窒素雰囲気下で炭素化(焼成)を行なった。
【0091】
さらに、炭素化された粒子を黒鉛製の坩堝に入れて、アチソンタイプの黒鉛化炉中で、2950℃の窒素雰囲気下で黒鉛化した。その後、解砕と分級を行なって、体積分率50%時の粒子径D50が23μmの人造黒鉛粒子A1を得た。
【0092】
2.人造黒鉛粒子A2
バインダーとしてコールタールピッチの代わりにフェノール樹脂を用いたこと以外、すべて人造黒鉛粒子A1の場合と同じプロセスおよび条件で、体積分率50%時の粒子径D50が23μmの人造黒鉛粒子A2を得た。
【0093】
3.球状黒鉛粒子B1
中国産の鱗片状天然黒鉛を、カウンター式ジェットミルによって粉砕して、平均粒子径D50が20μmの鱗片状天然黒鉛とした。これを別のカウンター式のジェットミル内に導入して、操作条件を調整し、高速気流中で粒子同士を衝突させることによって、黒鉛粒子の形状制御(球形化)を行なった。そして、不純物(灰分)を除去するために、フッ酸水溶液による洗浄を施した後、黒鉛粒子を乾燥させ、さらに強度の空気分級を行なって、粗粉を除去し、D50が約10μmの球状黒鉛粒子B1を得た。
【0094】
4.球状黒鉛粒子B2
平均粒子径を20μmに調整した針状コークス(異方性コークス)粉末を、黒鉛製の坩堝に入れて、アチソンタイプの黒鉛化炉中で、2950℃で黒鉛化した。その後、黒鉛化された粒子を、球状黒鉛粒子B1の場合と同様のカウンター式のジェットミル内に導入して、操作条件を調整し、高速気流中で粒子同士を衝突させることによって、黒鉛粒子の形状制御(球形化)を行なった。そして、これに強度の空気分級を行なって粗粉を除去し、D50が約10μmの球状黒鉛粒子B2を得た。
【0095】
5.比較人造黒鉛粒子C1(結晶がランダムに配向した人造黒鉛)
平均粒子径を8μmに調整した針状コークス(異方性コークス)粉末の基材50重量部に、バインダーとしてタールピッチを20重量部、コールタールを15重量部混合して、ミキサー内で加熱混練して、造粒した。
【0096】
得られた造粒物を冷却後にミキサー内から取り出して、解砕した後、等方圧成形法によって、ブロック状にし、800℃の温度で炭素化(焼成)を行なった。さらに、これを黒鉛化炉中で、2950℃で黒鉛化した後、ミルで粉砕し、分級を行なうことで、体積分率50%時の粒子径D50が21μmの比較人造黒鉛粒子C1を得た。
【0097】
6.比較人造黒鉛粒子C2(結晶がランダムに配向した人造黒鉛の黒鉛化度を高めたもの)
平均粒子径を8μmに調整した針状コークス(異方性コークス)粉末の基材50重量部に、バインダーとしてタールピッチを20重量部、コールタールを15重量部、黒鉛化を促進させる触媒として炭化硼素(BC)を5重量部混合して、ミキサー内で加熱混練して、造粒した。
【0098】
得られた造粒物を冷却後にミキサー内から取り出して、解砕した後、等方圧成形法によって、ブロック状にし、800℃の温度で炭素化(焼成)を行なった。さらに、これをアルゴン雰囲気の黒鉛化炉中で、2800℃で黒鉛化した後、ピンミルで粉砕し、分級を行なうことで、体積分率50%時の粒子径D50が21μmの人造黒鉛粒子C2を得た。
【0099】
7.比較人造黒鉛粒子D(黒鉛化ミルドMCF)
360℃雰囲気下で溶融状態にあるバルクメソフェーズピッチ(石油ピッチ由来)を、メルトブロー法によって紡糸し、表面酸化による不融化を行った。次いで、800℃で炭素化(焼成)を行なって、マット状の炭化物を得た。これを、高速回転ミルで裁断・粉砕し、振動篩によって粗粉を除去して、平均粒子径18μmの炭素繊維ミルド(ミルドMCF:MCFは、メソカーボンピッチベースドファイバーの略)を得た。そして、この炭素繊維ミルドに、黒鉛化を促進させる触媒として炭化硼素(BC)5重量部を加えて、アルゴン雰囲気の黒鉛化炉中で、2800℃で黒鉛化して、比較人造黒鉛粒子Dを得た。
【0100】
8.比較人造黒鉛粒子E(黒鉛化MCMB)
コールタールを350℃で加熱してメソフェーズ小球体を生成させた。これに溶剤を添加した後、フィルタープレスを用いて小球体を分離抽出した。次いで、小球体を800℃で炭素化(焼成)した後、振動篩による分級を行なって、平均粒子径が26μmのメソカーボンマイクロビーズ(MCMB)を得た。そして、アチソンタイプの黒鉛化炉中で、2950℃でMCMBを黒鉛化した後、解砕と分級を行なって、比較人造黒鉛粒子Eを得た。
【0101】
9.比較人造黒鉛粒子F(黒鉛化バルクメソフェーズ)
人造黒鉛粒子A1の場合の前半に記したのと類似のプロセスで、バルクメソフェーズピッチを作製し、これをミルで粉砕し、体積分率50%時の粒子径D50が20μmとなるように調整した。その後、800℃で粒子の炭素化(焼成)を行なった。これを、黒鉛製の坩堝に入れて、アチソンタイプの黒鉛化炉中で、2950℃で黒鉛化した後、解砕と分級を行って、比較人造黒鉛粒子Fを得た。
【0102】
10.塊状化天然黒鉛粒子G
スリランカ産の鱗片状天然黒鉛を圧密成形した後、ミルによって粉砕して、体積分率50%時の粒子径D50が21μmの鱗片状天然黒鉛とした。この鱗片状天然黒鉛に不純物(灰分)を除去するためのフッ酸洗浄を施した後、これを乾燥させた。次いで、ハイブリダイゼーションシステムによって鱗片状天然黒鉛粒子の球形化と空気分級を行ない、塊状化天然黒鉛Gを得た。ここで、ハイブリダイゼーションシステムとは、チャンバー内に粒子を入れて、高速回転によって衝撃・せん断力を与えて形状を調整する手法をいう。
【0103】
11.表面被覆天然黒鉛粒子H
100重量部の塊状化天然黒鉛Gに、石油系ピッチを5重量部混合し、加熱したミキサー内で混練して、黒鉛Gの表面にピッチを付着させた。これを1300℃の焼成炉内で熱処理(アニール)して、黒鉛Gの表面に付着させたピッチを炭素化した。続いて解砕と分級を行って、表面被覆天然黒鉛Hを得た。
これら11種類の黒鉛粒子に関して測定した粉末物性データを、整理して表1に示す。
【0104】
【表1】

Figure 2004127913
【0105】
ここに示した黒鉛粒子を用いてリチウム二次電池の負極作製を行う場合、いずれか1種を単独で負極活物質に用いることもできるし、2種以上を所定の比率で混合して負極活物質に用いることもできる。
【0106】
本発明者等は、これまでに種々の黒鉛粒子に関して検討してきた。その経験則によれば、銅芯材上に塗布した黒鉛合剤層をロールプレス等で圧延して、合剤密度が1.6g/cmを超える高密度な負極を作製する場合、D、EおよびFのメソフェーズ炭素に由来する特殊人造黒鉛粒子を単独で活物質として用いた場合には、所定の密度にまで高密度化が出来ない場合が多い。これは、これらの材料はいずれも、製造工程の炭素化・黒鉛化工程の前段階で、実質上、メソフェーズ粒子表層が不融化(緩い酸化処理)を受けているためと考えられる。すなわち、粒子表層は、黒鉛化のあまり進行していない非晶質に近い状態となっている。層状構造を持たない非晶質炭素は、黒鉛層状構造に特有の粒子間の静電反発(π電子の相互作用)が少ないため、滑り性に乏しくなる。
【0107】
また、本発明で用いる黒鉛粒子A1およびA2の予備検討において、簡易的に銅芯材上に作製した塗膜に対して、圧縮試験を実施した。その結果、D、EおよびFほどではないが、比較的高密度化が困難であるというデータが得られた。従って、黒鉛粒子A1、A2、D、EおよびFを活物質として用いる場合には、これらに円形度の大きい球状黒鉛粒子B1ないしはB2を添加することが必須と考えられた。そこで、表2に示すような配合比率(重量比)の負極活物質a〜v(合計22種)に関して、検討を実施した。
【0108】
なお、黒鉛粒子A1またはA2のみを単独で用いた場合、仮に高密度な負極を作製できたとしても、充放電サイクルの繰り返しに伴う粒子の極板からの脱落が比較的起こりやすく、サイクル特性が劣化し易いと考えられる。なぜなら、粒子が比較的硬いため、充放電に伴う負極合剤層の膨張・収縮の際に、応力を分散させることができない、と予想されるからである。
一方、球状黒鉛粒子B1またはB2を単独で用いた場合には、充放電サイクルの繰り返しに伴う容量劣化や、表面積が大きいことに起因する安全性の問題が生じるものと考えられる。
【0109】
【表2】
Figure 2004127913
【0110】
(負極の作製)
100重量部の負極活物質aに、カルボキシメチルセルロース(CMC)の1重量%水溶液を100重量部および結着剤であるスチレンブタジエンゴム(SBR)の水性ディスパージョンを加え、十分に混練して、合剤スラリを作製した。ここで、SBRの添加量に関しては、負極活物質aの100重量部に対する固形分(ゴム成分)の比率が2重量部となるように、その添加量を調整した。
【0111】
こうして作製したスラリを、銅箔(厚み10μm)の両面に塗工機を用いて一定厚みに塗布し、100℃の熱風で乾燥させ、その後、ロールプレスを用いて圧延した。ここでは、合剤層の密度(CMC、SBRの重量も含めた値)が1.7g/cmで、その厚みが70μm(電極の厚みは約150μm)となるように調整した。そして、これを所定の大きさに裁断加工して、集電のためのニッケル製リードを取りつけて、負極aとした。また、負極活物質b〜vに関しても、すべて上記と同様の条件で、各負極活物質の符号に対応する負極b〜vを作製した。
【0112】
(正極の作製)
本検討においては、正極の活物質として、CoとLiCOとの混合物を大気雰囲気下950℃で焼成後、粉砕・粒度調整して作製したLiCoOを使用した。正極板の作製に際しては、100重量部の正極活物質に、導電材としてアセチレンブラック(AB)を3重量部加えて、乾式ミキサー内で十分に混合分散した後、結着剤としてのポリフッ化ビニリデン(PVDF)を5重量部添加し、溶剤のN−メチル−2−ピロリドン(NMP)を適宜加えながら混練して、合剤スラリを作製した。
【0113】
こうして作製したスラリを、アルミニウム箔(厚み20μm)の両面に塗工機を用いて一定厚みに塗布し、100℃のドライエアで乾燥させ、ロールプレスを用いて圧延した。ここでは、合剤層の密度(ABとPVDFの重量も含めた値)が3.7g/cmで、その厚みが70μm(電極の厚みは約160μm)となるように調整した。そして、これを所定の大きさに裁断加工して、集電のためのアルミニウム製リードを取りつけて正極とした。
【0114】
(リチウム二次電池の作製)
上記のような手順で作製した負極a、LiCoO正極、および両者を物理的に隔絶するためのポリエチレン製多孔膜セパレータ(厚み25μm)の真空乾燥を、余分な水分を除去する目的で、それぞれ実施した。負極と正極は100℃で8時間、セパレータは50℃で12時間の真空乾燥を行った。
【0115】
続いて、負極aと正極とを、セパレータを挟持して捲回し、図1中に示したような概四角柱状(横断面形状がおよそ長方形状)の極板群1を形成した。この概四角柱状の極板群1を、533048サイズ(厚さ5.3mm×幅30mm×高さ48mm)の角型アルミニウム合金製電池ケース4に挿入した。そして、上部の封口板5に正極リード2を溶接し、絶縁性ガスケットにより封口板とは電気的に隔絶された負極端子6に負極リード3を溶接した。その後、封口板5を、レーザー溶接によって電池ケース4に接合した。続いて、封口板5が具備する注入口から非水電解液を注入し、極板群1に真空含浸させた。
【0116】
そして、注入口が開いたままの状態で、初回の部分充電を施した。初回充電の初期段階に、負極上で皮膜形成に伴って電解液分解等が起こり、ガスが発生する。このガスは十分に拡散除去させた。その後、注入口を、アルミニウム合金製の封栓7で塞ぎ、これをレーザーで溶融し、次いで固化させて、注入口を封止した。こうして、負極aを用いたリチウム二次電池a(設計容量が800mAh)を得た。
【0117】
また、負極aの代わりに負極b〜vを用いること以外、すべて上記と同じ条件で、それぞれの負極に対応するリチウム二次電池b〜vを作製した。ここで、極板群の構成、正・負極リードの溶接、封口板のケースへの接合、電解液の注入・含浸、初回の部分充電、封栓による密閉化、の各工程は、すべて露点が−40℃以下のドライエア雰囲気下で実施した。
【0118】
また、非水電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジエチルカーボネート(DEC)とを、体積比1:2:1で混合した溶媒に、1.0M(M:モル/L)の濃度となるようにLiPFを溶解させた溶液を使用した。電解液の注液後、電池の初回の部分充電は、20℃雰囲気下で、充電レート0.1C(ここでは1C=800mAと仮定して80mA)で2時間実施した。
【0119】
(電池特性評価)
上記で作製したリチウム二次電池に対し、以下の電池特性の評価を実施した。▲1▼不可逆容量の測定
上記で作製した22種のリチウム二次電池に対して、以下のパターンで、充放電サイクルを3サイクル行なった。
・充電: 定電流方式 0.2C(160mA)、終止電圧4.1V
・放電: 定電流 0.2C(160mA)、放電カット電圧3.0V
・雰囲気温度: 20℃
そして、以下の計算によって、各電池の初期不可逆容量を算出した。
初期不可逆容量={(電池作製時の初回部分充電容量:160mAh)+(上記3サイクルの合計充電容量)−(上記3サイクルの合計放電容量)}/3
【0120】
▲2▼高率放電特性
不可逆容量の測定が終わった22種のリチウム二次電池に、以下に示す充放電試験を行って、放電容量の比率(2C放電容量Cと0.2C放電容量C0.2との比率:C/C0.2)を算出して、各電池の高率放電特性を評価した。ここで、試験に際しての雰囲気温度は20℃とした。
【0121】
第1サイクル(0.2C放電)
・充電: 定電流定電圧方式 0.7C(560mA)、充電制御電圧4.2V、合計充電時間2.5時間
・放電: 定電流 0.2C(160mA)、放電カット電圧3.0V
第2サイクル(2C放電)
・充電: 定電流定電圧方式 0.7C(560mA)、充電制御電圧4.2V、合計充電時間2.5時間
・放電: 定電流 2C(1600mA)、放電カット電圧3.0V
【0122】
▲3▼低温放電特性
不可逆容量の測定が終わった22種のリチウム二次電池に対して、▲2▼とは異なる以下に示す充放電試験を行って、放電容量の比率(−10℃下における1Cでの放電容量C−10と、20℃下における1Cでの放電容量C20との比率:C−10/C20)を算出することにより、低温放電特性を評価した。
【0123】
第1サイクル(20℃)
・充電: 定電流定電圧方式 0.7C(560mA)、充電制御電圧4.2V、合計充電時間2.5時間、雰囲気温度20℃
・放電: 定電流 1C(800mA)、放電カット電圧2.5V
(容量は3.0Vまでの放電量で算出)
雰囲気温度20℃
【0124】
第2サイクル(−10℃)
・充電: 定電流定電圧方式 0.7C(560mA)、充電制御電圧4.2V、合計充電時間2.5時間、雰囲気温度20℃
・放電: 定電流 1C(800mA)、放電カット電圧2.5V
(容量は3.0Vまでの放電量で算出)
雰囲気温度 −10℃
【0125】
▲4▼サイクル寿命特性
不可逆容量の測定が終わった22種のリチウム二次電池に対して、以下の充放電を500サイクル繰り返した。そして、500サイクル時の容量C500と初回サイクルの容量Ciniとを比較して、容量の維持率(C500/Cini)を求めた。また、上記のような角型リチウム二次電池に特有の現象として現れる、サイクルに伴う厚み方向への電池ケースの膨れ(膨張)についても、初期からのケースの膨れ量(mm)として測定した。
【0126】
・充電: 定電流定電圧方式 0.7C(560mA)、充電制御電圧4.2V、合計充電時間2.5時間
・充電後休止: 30分
・放電: 定電流 0.7C(560mA)、放電カット電圧3.0V
・放電後休止: 30分
・評価雰囲気温度: 20℃
【0127】
以上の電池評価の結果を表3にまとめて示す。表3では、電池aの評価結果の値を100として規格化し、各電池b〜vの性能を相対的に比較した。表3において、本発明における電池a〜dは、天然黒鉛を主体とした負極を用いた電池q〜vに比べると、すべての特性において明らかに優れている。また、人造黒鉛を主体とした負極を用いた電池e〜pと比較しても、若干不可逆容量が大きいという欠点はあるが、放電レート比率、低温放電特性、500サイクル時容量維持率といった他特性においては、電池a〜dが優れており、電池膨れも十分に抑制されている。
【0128】
【表3】
Figure 2004127913
【0129】
このように、本発明の電池a〜dが他より優れるという傾向が得られた理由は、負極の主活物質である人造黒鉛粒子Aの粉末物性に基づく部分が大きいと考えられる。
まず、高率放電特性が高い点については、人造黒鉛粒子A1およびA2が、その製造プロセスに依存して、十分に発達した黒鉛結晶がランダムな方向に配向した粒子になっているため(粉末物性値:I002/I110値が十分に小さいため)と考えられる。すなわち、本実施例のように合剤密度(CMC、SBRの重量も含めた値)が1.70g/cmに達するような高密度負極内においては、一部の黒鉛粒子が銅芯材の面方向に配向すると考えられる。しかしながら、粒子内のランダムに存在する黒鉛結晶子は、その配向の影響を受けず、黒鉛粒子と電解液との間で、Liイオンの吸蔵・放出が円滑に進行し得ると推察される。
【0130】
低温放電特性に関しては、負極合剤の電子伝導性(極板抵抗)が大きく影響していると推測される。
本発明の電池a〜dで用いた人造黒鉛粒子A1およびA2の基材であるバルクメソフェーズピッチは、針状コークスよりも易黒鉛化性であり、黒鉛化によって黒鉛結晶構造が十分に発達している。そのため、針状コークスを基材に用いた黒鉛粒子C1およびC2(電池e〜j)に比べると、粒子自体の電子伝導性が高い。
【0131】
また、電池kおよびlに用いたメソフェーズ炭素由来の他の人造黒鉛粒子D(黒鉛化ミルドMCF:細長い柱状)、電池mおよびnに用いた黒鉛粒子E(黒鉛化MCMB:真球形状)に比べると、粒子A1およびA2は形状が適度な塊状である。そのため、粒子A1およびA2は、黒鉛粒子B1およびB2と多数の接触点を確保でき、負極合剤全体の電子伝導性が高くなる。従って、低温放電に際しての放電電圧の低下の度合いが少なくなって、優れた低温放電特性を確保したと考えられる。また、人造黒鉛粒子F(黒鉛化バルクメソフェーズ)を用いた電池oおよびpとの低温放電特性の差に関しては、先述のように、負極黒鉛粒子A1およびA2内では黒鉛結晶がランダムな方向に配向して存在する点が影響したものと考えられる。
【0132】
ところで、表3から明らかなように、例えば比較人造黒鉛粒子C1だけを単独で用いた電池eと、比較人造黒鉛粒子C1および球状黒鉛粒子B1もしくはB2との混合物を用いた電池fおよびgとを比較すると、性能上、大きな差異は見られない。このことは、人造黒鉛粒子A1またはA2の代わりに比較人造黒鉛粒子C1を用いたとしても、本発明と同様の効果が得られないことを示している。つまり人造黒鉛粒子A1またはA2と、球状黒鉛粒子B1またはB2との組み合わせにおいて、特に優れた特性の負極や電池を得ることができると言える。
【0133】
なお、比較人造黒鉛粒子C1だけを単独で用いた電池eの負極では、圧延の際に、人造黒鉛の微粉を生成し、これが球状黒鉛粒子B1またはB2と同様の作用を担っていると考えられる。そのため、電池eと電池fおよびgとの間に特性上の差異が現れないものと推測される。負極eの圧延の際に人造黒鉛の微粉が生成すると考えられるのは、比較人造黒鉛粒子C1の製造工程が、黒鉛の粉砕工程を有するため、一次粒子の結合が弱くなっていると考えられるからである。
【0134】
本発明の電池a〜dでは、充放電サイクル特性が他より優れ、充放電に伴う電池膨れの程度も少ないという点に関しては、以下が主な要因と考えられる。
(1)本発明の電池で用いたような負極活物質粒子a〜dでは、人造黒鉛粒子A1ないしはA2の空隙を埋めるように、球状黒鉛粒子B1ないしはB2が、最適に配置している。そのため、合剤密度を1.70g/cmに達するほど高くしても、合剤層の表面付近にある黒鉛粒子が破砕・崩壊等を起こして銅芯材の面方向に配向することが防がれる。そして、合剤内への電解液の浸透性(含浸性)が妨げられることもない。つまり、合剤層内部においても、高い電解液の浸透性(含浸性)が確保されるので、長期のサイクルで電解液の分解・減少が部分的に起こっても、円滑な充放電反応は確保される。
【0135】
(2)主活物質の人造黒鉛粒子A1およびA2の黒鉛結晶子が、ランダムな方向に配向しているため、充放電サイクルの繰り返し(Liイオンの挿入・脱離)に伴う粒子の膨張・収縮の程度が少なく、負極の厚みの増加(膨潤)の程度が少ない。
【0136】
(3)前記(2)にも関連するが、人造黒鉛粒子A1およびA2は、充放電サイクルの繰り返しに伴う粒子の膨張・収縮の程度が少ないため、サイクルの進行に伴う黒鉛活物質粒子の割れが発生しにくい。従って、黒鉛活物質粒子の割れ(新規黒鉛エッジ面の露出)によって引き起こされる、ガス発生を伴った電解液の分解消費反応が抑制される。
【0137】
(4)メソフェーズ炭素由来の人造黒鉛粒子では、一般に、高率充電時のLiイオンの受け入れ性能が、低い傾向にある。しかしながら、人造黒鉛粒子A1ないしはA2の表面の濡れ性(表面官能基の種類や濃度に依存する)は、バルクメソフェーズピッチ粉砕粒とピッチないしは熱硬化性樹脂との造粒・黒鉛化によって、変化しており、比較的高い水準にまで改善されている。そのため、充放電サイクルの進行に伴う負極表面への金属リチウムの析出現象が抑制される。
特に、本発明の電池a〜dは、人造黒鉛粒子A1およびA2と製法的に類似した人造黒鉛粒子C1およびC2を用いた電池e〜jに比べて、充放電サイクル特性に優れている。その理由については、詳細なメカニズムは解明できないが、以下のような点が考えられる。
【0138】
(5)人造黒鉛粒子A1およびA2は、炭素化・黒鉛化の後に粉砕工程を行なわないため、円形度が大きくて、タップ密度の高い粒子となっている。従って、これを用いて作製した高密度負極中の粒子の破砕(崩壊)の程度は、人造黒鉛粒子C1およびC2を用いて作製した高密度負極e〜jに比較して少ない。
【0139】
(6)人造黒鉛粒子を作製する際に使用した基材炭素源の差、すなわちバルクメソフェーズピッチ粉砕粒と針状コークスとの差により影響されて、充放電サイクルによる黒鉛粒子の割れの進行度合いは、人造黒鉛粒子A1およびA2の方が、人造黒鉛粒子C1およびC2よりも少なくなる。ここで、初期10サイクルの充放電を繰り返した電池(放電状態)と、500サイクル後の電池(放電状態)とを、分解して、負極合剤を抽出・洗浄し、BET法によって活物質粒子の比表面積を測定した。その結果、電池a〜d(負極a〜d)の方が、電池e〜j(負極e〜j)よりも、初期から粒子の比表面積が小さく、また、サイクルに伴う粒子の比表面積の増加度合いも小さいことが実際に確認された。
【0140】
(安全性試験)
リチウム二次電池の黒鉛負極は、一般に、電池の熱安定性との相関が強いと考えられている。ここで、リチウム二次電池の熱安定性(熱暴露)の評価法・評価基準等に関しては、各種規格・ガイドラインが存在するが、統一されたものではない。そこで、本検討では、比較的厳しく、かつ負極種の違いがなるべく明確に反映される条件として、以下の条件を採用し、電池の耐熱試験を行なった。
【0141】
まず、上記の負極a〜vに対応する22種のリチウム二次電池を、20℃雰囲気下、充電レート0.1C(80mA)の定電流および2時間の定電圧保持で4.3Vまで充電した。そして、電池の表面温度をモニターできるように、電池に熱電対をとりつけて、20℃雰囲気の恒温槽内で宙づりとした。そして、恒温槽の温度を5℃/分で165℃まで昇温した後に、165℃で保持した。
【0142】
この試験においては、恒温槽の温度を165℃に保持しても、充電状態にある負極黒鉛活物質粒子の一部が電解液もしくは結着剤と反応したり、黒鉛表面の被膜が分解したりして、反応熱を発生する。従って、電池表面温度は165℃以上の温度にまで到達する。そして、この際の最高到達温度が極端に高いと、電池内部の正極(ないしは負極の)連鎖的な発熱反応(熱暴走)もしくは急激なセパレータ収縮に伴う内部短絡を引き起こしてしまう。電池の最高到達温度が低いものほど、電池の安全性が高いと言える。結果をまとめて表4に示す。
【0143】
【表4】
Figure 2004127913
【0144】
この結果から、耐熱試験での優劣は、負極を形成する黒鉛粒子のBET比表面積と非常に相関性が高いことが理解される。本発明の電池a〜dで用いた負極に関しては、主黒鉛活物質粒子A1およびA2のBET比表面積が、0.4〜0.5m/gと、いずれも1m/g以下の低い水準に抑制されている。このことが、耐熱性という観点では、非常に有利であることが解る。また、電池a〜dで用いている負極の球状黒鉛粒子B1およびB2のBET比表面積は、6.9〜7.2m/gと、かなり大きい値である。これに関しては、可能な限りBET比表面積を低減したものを用いることが、より一層好ましいと言える。
【0145】
以上の検討結果から、本発明の電池a〜dは、高い放電特性と優れたサイクル寿命特性を持ち合わせると同時に、高い安全性も確保していることが確認できる。
ここで、電池の形態に関して、実施例中では、概四角柱状の電極群を角型アルミニウム合金製電池ケースに挿入する形態(図1)としたが、本発明はこれに限定されるものではない。例えば、概四角柱状ないしは楕円柱状に捲回してなる電極群を、アルミニウム箔と樹脂膜とのラミネートシートからなるケースに封入し、非水電解液を注入した形態のリチウム二次電池としても、同様に放電特性、サイクル寿命特性および安全性に優れ、高エネルギー密度を有し、しかも薄型かつ軽量のリチウム二次電池を得ることができる。
【0146】
同様に、負極合剤層の密度を1.6〜1.8g/cmと高く設定した負極と、高密度に充填した正極と、セパレータとを組み合わせて、円柱(スパイラル)状に構成した電極群を作製し、ニッケルめっき鋼板製の円筒ケース内に収容し、非水電解液を注入した形態としても、やはり放電特性、サイクル寿命特性および安全性に優れた400Wh/Lレベルの高容量リチウム二次電池を得ることができる。
【0147】
また、人造黒鉛粒子A1ないしはA2の作製に際して、平均粒子径が13μmのバルクメソフェーズピッチ粉砕粒を基材として用いたが、これに限定されるものではない。平均粒子径が7〜20μm程度のものであれば、同様の人造黒鉛粒子を作製することができる。
【0148】
また、バインダーとして、コールタールピッチ(石炭ピッチ)およびフェノール樹脂を用いたが、石油ピッチ、ナフタレンピッチ等のピッチ、ポリイミド樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、フルフリルアルコール樹脂等の熱硬化性樹脂を用いることも可能である。
【0149】
また、混練・造粒において、基材とバインダーとの配合比を85:15(重量比)、温度を200℃、時間を120分、混練装置をZ型のニーダとしたが、これらの条件に限定されるものではない。得られる造粒物の円形度が0.85〜0.95、平均粒子径D50が15〜30μm、D10/D90の値が0.2〜0.5となるように各条件を調整すればよい。
【0150】
また、造粒物の炭素化(焼成)の温度を800℃としたが、700〜1500℃の非酸化性雰囲気であればよい。また、黒鉛化の温度を2950℃としたが、2500〜3000℃の非酸化性雰囲気で加熱して、十分に黒鉛化を進行させれば、同様の人造黒鉛粒子を得ることができる。
【0151】
また、球状黒鉛粒子として、粉砕した鱗片状天然黒鉛をカウンター式のジェットミル内で衝撃を与えて球形化・分級した粒子B1、ないしは針状コークス粉末を黒鉛化した後、同様の球形化・分級を行った粒子B2を用いたが、これに限定されるものではない。特に、天然黒鉛を原料とする方が、黒鉛粒子から最も大きな可逆容量を得ることができるとともに、黒鉛化工程が省けるため、安価な粒子とすることができる。
【0152】
この球形化手段としては、カウンター式のジェットミル内での衝撃法に限らず、原鉱からの粉砕設備・条件に、各種改善を加えること等によっても、同様にD50が5〜15μmで、円形度が0.88〜1と大きい球状黒鉛粒子を得ることができる。
【0153】
また、球状黒鉛粒子は、黒鉛負極の安全性(耐熱性)という観点から、BET比表面積をできるだけ低くしたものであることが好ましく、このための表面改質(被覆処理等)を行ったものが最も好適である。
【0154】
また、負極活物質の作製に際して、球状黒鉛粒子B1ないしはB2の活物質全体に対する配合比を25重量%としたが、5〜45重量%の範囲であれば同様の効果を得ることができる。
【0155】
また、負極合剤の作製に際して、ゴム状結着剤にスチレンブタジエンゴム(SBR)を用いたが、類似のブタジエン誘導体からなるゴム状結着剤として、ブタジエンと、芳香族ビニルモノマーと、エチレン性不飽和カルボン酸エステルモノマーとの共重合体からなるゴム状高分子を結着剤に用いても、同様の負極を作製することができる。ここで、芳香族ビニルモノマーには、スチレン、α−メチルスチレン等を用いることができ、エチレン性不飽和カルボン酸エステルモノマーには、アクリル酸エステル(アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル等)やメタクリル酸エステル(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル等)を用いることができる。
【0156】
また、ゴム状結着剤の添加量を、負極活物質重量に対して2重量%としたが、例えば3重量%以下であれば、負極特性を損なうことなく、電池を作製することができる。
【0157】
さらに、合剤層の密度が1.7g/cmで、その厚みが70μmとなるように圧延を調整して負極を作製したが、合剤密度が1.6〜1.8g/cmであり、合剤厚みが例えば40〜100μmであれば、同様の優れた特性を有するリチウム二次電池を作製することができる。
【0158】
さらに、非水電解液には、エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジエチルカーボネート(DEC)とを、体積比1:2:1で混合した溶媒に、1.0Mの濃度となるようにLiPFを溶解させた溶液を用いたが、これに限定されるものではない。
【0159】
【発明の効果】
以上のように、本発明によれば、高エネルギー密度のリチウム二次電池の充放電サイクル特性を大幅に改善することができ、同時に放電レート特性、低温放電特性および安全性(耐熱性)にも優れた電池を提供することが可能となる。従って、産業上の価値は非常に大きい。
【図面の簡単な説明】
【図1】実施例で作製したリチウム二次電池の一部を切り欠いた斜視図である。
【符号の説明】
1 極板群
2 正極リード
3 負極リード
4 電池ケース
5 封口板
6 負極端子
7 封栓[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lithium ion secondary battery including a lithium secondary battery, particularly a negative electrode including an active material including graphite, a positive electrode including an active material including a lithium-containing transition metal oxide, a separator, and a nonaqueous electrolyte. Battery.
[0002]
[Prior art]
2. Description of the Related Art As electronic devices become more portable and cordless, lithium secondary batteries having a small size, light weight, and high energy density are promising as power sources for driving them. For example, it is composed of a negative electrode using a carbon material capable of reversibly storing and releasing lithium ions as an active material, a positive electrode using a transition metal composite oxide containing lithium as an active material, a separator, and a non-aqueous electrolyte. In addition, a rocking chair type so-called lithium ion secondary battery has already been put into practical use and is rapidly spreading.
[0003]
Here, regarding the negative electrode, graphite (graphite) particles having high crystallinity among various carbon materials have recently become mainstream. The reasons are as follows. Graphite particles have (1) high electron conductivity and excellent discharge performance at large current, (2) small change in potential due to discharge, suitable for applications such as constant power discharge, and (3) true density. It is obtained as particles having a large bulk density because of its large size, and is suitable for increasing the energy density of a battery.
[0004]
At present, as graphite for the negative electrode of lithium secondary batteries,
I. Agglomerated natural graphite, which is a natural graphite particle obtained by subjecting flake-like particles to agglomeration (spheroidization) in the process of pulverizing raw ore,
II. Artificial graphite particles, a material obtained by graphitizing granulated particles of certain coke or coke and various pitches, and
III. Special artificial graphite particles utilizing mesophase carbon (a type of liquid crystal) generated when pitch and tar are heated are mainly used.
[0005]
Special artificial graphite particles include
(1) Carbonized and graphitized material (graphitized MCMB) of mesophase microspheres separated and extracted,
(2) A melted mesophase pitch formed by polymerization growth of mesophase spheres is spun, infusibilized by surface oxidation, then carbonized, further cut and crushed, and graphitized material (graphite fiber mill, Or graphitized milled MCF),
(3) Materials obtained by carbonizing and graphitizing pulverized particles of bulk mesophase pitch with low meltability formed by polymerization growth of mesophase small spheres (graphitized bulk mesophase).
[0006]
In response to the recent increase in energy density of lithium secondary batteries, attempts have been made to improve the performance of the above graphites I to III.
Since natural graphite particles (I) have a reversible capacity that is close to the theoretical capacity of graphite (372 mAh / g), high-density filling of electrodes is being studied. For example, accumulation of techniques for adjusting the particle shape so as to be suitable for high-density packing is active. Further, it has been proposed to coat an edge surface exposed on the surface of graphite particles with amorphous carbon classified as graphitizable carbon (Patent Document 1). According to this proposal, it is possible to suppress the decomposition reaction of the electrolytic solution on the surface of the graphite particles that occurs at the time of initial charging, and to reduce the irreversible capacity accompanying the decomposition reaction.
[0007]
At present, the artificial graphite particles (II) and the special artificial graphite particles (III) do not have a reversible capacity close to the theoretical capacity of graphite (the reversible capacity is inferior to natural graphite). For this reason, studies have been made to increase the purity of coke, pitch or tar as a raw material, to optimize graphitization conditions according to the material, and to add a catalyst species for promoting graphitization. That is, studies to increase the degree of graphitization of the particles to improve the reversible capacity have been actively made. In such artificial graphite, since the proportion of the graphite edge surface exposed on the particle surface is small, the irreversible capacity at the time of initial charging is generally smaller than that of natural graphite (I).
[0008]
When producing the negative electrode of the lithium secondary battery, one of the above graphite types may be used alone or two or more types may be used as a mixture as the active material.
[0009]
The step of preparing the negative electrode generally includes a step of preparing an aqueous paste or an organic paste containing graphite active material particles. The aqueous paste is a mixture of graphite active material particles, SBR (styrene-butadiene copolymer rubber) as a binder, CMC (carboxymethylcellulose) as a thickener, and an appropriate amount of water. is there. The organic paste is a mixture of PVDF (polyvinylidene fluoride) or the like as a binder and a thickener, and an appropriate amount of NMP (N-methyl-2-pyrrolidone) or the like as a dispersion medium.
[0010]
These pastes are applied on a copper core material, dried and then rolled to a desired thickness and density, cut and processed, and lead welding to a current collector is performed to form a negative electrode plate. . During rolling, the density of the negative electrode mixture layer is about 1.6 g / cm. 3 In many cases, the upper limit is set. This is because when the rolling is performed to a very high density, the crushing and collapsing of the negative electrode active material particles, the falling off and separation of the particles from the core material, and the like occur.
[0011]
However, even in the case where the upper limit is set as described above, similarly, LiCoO rolled to a high density is used. 2 And a high-energy-density lithium secondary battery having a volume energy density exceeding 350 Wh / L by using a positive electrode mainly composed of, and a thin polyolefin microporous membrane separator having appropriate mechanical strength and porosity. It is possible to obtain batteries.
[0012]
In recent years, from the viewpoint of facilitating the miniaturization and thinning of portable devices, there is an increasing need from the market for high-energy-density lithium secondary batteries that are “thin and lightweight” and have added value. In these batteries, together with the nonaqueous electrolyte, the electrode group is housed in a square metal case or a case made of a laminate sheet of an aluminum foil and a resin film. The electrode plate group often uses a negative electrode, a positive electrode, and a separator wound in a substantially rectangular column shape or an elliptical column shape.
[0013]
In the above lithium secondary batteries, there are many required performances.
First, with the aim of further increasing the energy density of the battery, studies have been made to further increase the density of the negative electrode mixture layer fixed on the copper core material. Specifically, the density of the negative electrode mixture layer including the binder and the like is set to 1.6 to 1.8 g / cm. 3 It is desired to be on the order. However, the true density of the graphite material is 2.22 to 2.24 g / cm. 3 1.6 g / cm 3 Above corresponds to a very high packing state. Therefore, in the process of rolling the negative electrode mixture layer by a roll press or the like, the production of the mixture layer cannot be compressed to a predetermined thickness, or the separation and detachment of the mixture layer from the core material become apparent. The above problems are likely to occur.
[0014]
These problems are often governed mainly by the type of graphite particles that are the negative electrode active material.
According to the studies by the present inventors so far, the above-mentioned special artificial graphite particles (III) derived from mesophase carbon tend to cause the former problem that the mixture layer cannot be compressed to a predetermined thickness.
[0015]
This is because the special artificial graphite particles (III) have poor slipperiness between the particles. For the same material, it is necessary to make the surface layer of the mesophase particles infusible (loose oxidation treatment) as a pretreatment in order to alleviate the occurrence of fusion between particles in the carbonization / graphitization process, which is the manufacturing process. . For this reason, the obtained particle surface layer is in a state close to amorphous where graphitization has not progressed much. That is, in the negative electrode mixture layer manufactured using the same material, the contact between the active material particles is substantially the contact between the amorphous carbons.
[0016]
Amorphous carbon that does not have a layered structure is poor in slipperiness because there is little electrostatic repulsion (interaction of π electrons) between particles peculiar to the graphite layered structure. Therefore, when this material is used for the negative electrode active material, the problem that the mixture layer cannot be compressed to a predetermined thickness during high-density rolling tends to occur. As a countermeasure against such a problem, for example, it has been proposed to add agglomerated natural graphite or flaky natural graphite particles to graphitized MCMB as an auxiliary material to form a negative electrode mixture layer (Patent Document 2). ).
[0017]
Further, in the case of artificial graphite particles (II) derived from coke or the like, the latter problem such as falling off and peeling of the mixture layer from the core material tends to occur.
The reason for this is that artificial graphite particles (II) derived from coke and the like are generally subjected to pulverization and particle size adjustment after graphitization, so that particles having a high bulk density (or tap density) and specific surface area Obtaining small particles can be difficult. This is considered to be one of the causes that the mixture layer is likely to peel or fall off during high-density rolling. That is, since the particles are bulky, the particles are likely to be crushed or collapsed during high-density rolling of the mixture layer. In addition, since the specific surface area of the particles is large, most of the binder added to the mixture layer is adsorbed on the particle surface, and the binding property between the core material and the particles or between the particles is maintained. Becomes difficult. For this reason, it is presumed that the mixture layer easily falls off or peels off during high-density rolling.
[0018]
On the other hand, in comparison with these, the natural graphite particles (I) have been sufficiently graphitized to the surface of the particles. Therefore, the electrostatic repulsion between the particles is strong, and the sliding property is very large. Therefore, the mixture density is 1.6 g / cm 3 High-density rolling is relatively easy, and a problem in production hardly occurs.
[0019]
However, even if the squamous particles are subjected to agglomeration (spheronization) treatment (Patent Document 3), it is very difficult to control the shape of all the particles to a shape close to a perfect sphere. Actually, a large number of spindle-shaped (flat) particles having a considerably large aspect ratio are mixed. Therefore, depending on the degree of shape control, the density of the mixture layer is 1.6 g / cm. 3 When strong rolling is performed, the spindle-shaped particles are oriented in the plane direction of the core material with some deformation of the particles. This phenomenon is a well-known phenomenon with conventional flaky natural graphite particles.
[0020]
When this happens,
{Circle around (1)} The edge surfaces of the graphite particles that occlude and release Li ions are less likely to be exposed to the electrolytic solution, the diffusion of Li ions is reduced, and the high-rate discharge characteristics are reduced.
{Circle around (2)} During charge / discharge, expansion / contraction of graphite particles in the c-axis direction tends to be reflected as a change in the thickness of the mixture layer, and the degree of expansion / contraction of the electrode increases, resulting in a problem in characteristics. .
[0021]
As described above, the natural graphite particles have a problem that the orientation of the particles (in other words, graphite crystals) occurs at the time of high-density rolling, and the electrode performance is reduced.
Based on this, it is possible to mix a graphitizable substrate (mainly coke, etc.) with a graphitizable binder (tar, pitch, etc.), carbonize it, pulverize it, and then graphitize it. It has been proposed (Patent Documents 4 and 5). According to this method, it is possible to produce artificial graphite in which graphite structure or graphite crystals are oriented in random directions in the particles.
[0022]
Further, as a similar technique, there is a technique in which quiche graphite (recrystallized graphite) obtained from an iron making process is granulated using a binder, and a graphitized material is used for a negative electrode (Patent Document 6).
[0023]
When these artificial graphite particles are used, in the high-density rolling described above, a problem in the process of falling off and peeling of the mixture layer is likely to occur, but even if the particles are oriented in the plane direction of the core material, random particles are generated in the particles. Are not affected by such an orientation. Therefore, the problems described in (1) and (2) can be relatively easily avoided.
[0024]
Further, in a recent lithium ion secondary battery with a high energy density design exceeding 350 Wh / L, it is necessary to fill a battery case with a predetermined volume with more negative electrode active material and more positive electrode active material. Therefore, the remaining space inside the battery (in this case, the space obtained by subtracting the volumes of the components such as the positive electrode, the negative electrode, and the separator from the internal volume of the battery case) is reduced. Then, the ratio of the amount of the electrolyte to the battery design capacity (cc / mAh) tends to be extremely small. As a result, the following problems occur, which have not been observed in conventional batteries having a relatively large amount of electrolyte.
[0025]
First, since the electrolyte cannot sufficiently penetrate or impregnate into the inside of the negative electrode mixture layer that has been rolled at high density, problems such as deterioration in charge / discharge characteristics at high rates and discharge characteristics at low temperatures are likely to occur. . As an improvement measure, it is effective to use a graphite material capable of maintaining an appropriate degree of particle circularity (sphericity) even after rolling (Patent Document 7). This graphite material has a specific average particle size (10 to 35 μm), has a relatively sharp particle size distribution, and does not contain much fine powder of 4 μm or less. Therefore, it is necessary to use natural graphite particles or artificial graphite particles in which graphite crystals are oriented in random directions, which have been subjected to the above-mentioned agglomeration (spheronization) treatment, and adjust the particle size to an optimum size, and use the charge / discharge characteristics at a high rate. It is considered to be effective in improving the discharge characteristics at low and low temperatures.
[0026]
However, the lithium secondary battery of the high energy density design has a problem that the capacity deterioration accompanying the progress of the charge / discharge cycle is larger than that of the conventional battery. This is because, as the charge / discharge cycle progresses, the graphite active material particles are cracked or collapsed, and the newly formed graphite edge surface is exposed to the electrolytic solution. Along with this, the electrolytic solution having a small absolute amount is decomposed and consumed from the beginning, and the internal resistance of the battery increases. It is also considered that the main factor is that the decomposition product of the electrolytic solution is deposited as a film on the surface of the negative electrode, thereby lowering the charge and discharge efficiency of the negative electrode. In addition, a rectangular metal case or a case formed of a laminate sheet of an aluminum foil and a resin film, which is used for a recent lithium secondary battery, generally has low strength. Therefore, when the decomposition reaction of the electrolytic solution occurs with the progress of the charge / discharge cycle, the generated decomposition gas increases the internal pressure of the battery and deforms (swells) the battery in the thickness direction. Furthermore, the electrode group wound into a substantially square column or an elliptical column used in such a battery has a larger expansion and contraction of the negative electrode mixture layer than the column (spiral) electrode group used in a cylindrical battery. Accompanying deformation is likely to occur. It is considered that these factors combine to significantly reduce the cycle life characteristics.
[0027]
Therefore, as an improvement measure from the negative electrode side,
{Circle around (1)} In order to suppress the decomposition and consumption of the electrolytic solution, graphite particles that are less likely to be cracked or disintegrated with the progress of the charge / discharge cycle (have low reactivity with the electrolyte during the charge / discharge cycle) are used. Used for substances,
{Circle around (2)} It is easy to take measures such as using graphite particles having a small degree of expansion and contraction due to charge and discharge.
[0028]
The present inventors have conducted intensive studies on various graphite materials and found that agglomerated natural graphite particles (or agglomerated natural graphite having been subjected to surface modification, surface coating, etc.) were used as the main active material of the negative electrode. In this case, the degree of cracking / collapse of the particles accompanying the progress of the charge / discharge cycle was generally larger than that of the artificial graphite particles. Even when various known additives for forming a negative electrode protective film are added to an electrolytic solution, satisfactory cycle life characteristics have not been obtained. Here, the additive for forming a protective film forms a protective film on the negative electrode graphite particles at the time of initial charging, and suppresses the decomposition reaction of the electrolytic solution accompanying the cycle, and typical examples thereof include vinylene carbonate. No.
[0029]
On the other hand, as described above, artificial graphite particles in which graphite crystals are oriented in random directions have a small degree of cracking / collapse of particles as the charge / discharge cycle proceeds, and a relatively small degree of expansion / shrinkage due to charge / discharge. It has been found to be small and suitable.
[0030]
However, on the other hand, in the artificial graphite particles produced by the methods disclosed in Patent Documents 4 and 5, the particles are firmly fused during carbonization and graphitization in the production process. Therefore, it is necessary to perform strong pulverization after graphitization. As a result, the specific surface area of the obtained graphite particles increases. It is known that the specific surface area of the negative graphite particles has a correlation with the initial irreversible capacity and thermal stability of the negative electrode (such as heat resistance of the charged negative electrode). If the specific surface area of the particles is large, the initial irreversible capacity becomes large and the thermal stability tends to decrease, which is not preferable from the viewpoints of both high battery capacity and safety.
[0031]
In view of the above, as a measure for improving artificial graphite particles, a graphitizable base material (coke) is mixed with a graphitizable binder (tar, pitch, etc.), then carbonized, and lightly pulverized. Thus, a method for producing artificial graphite which is graphitized in powder form has been proposed (Patent Document 8). That is, here, the material is not pulverized after the graphitization.
[0032]
In Patent Document 8,
(1) oxidize the binder to make it infusible before carbonization,
(2) By adding a thermosetting resin to a binder, fusion during carbonization is suppressed.
(3) By coating the mixture obtained by mixing the base material and the binder with a thermosetting resin to suppress fusion during carbonization, the specific surface area of the particles is reduced to 1.0 to 3.0m 2 / G. In the examples, the average particle diameter (D 50 ) Is 25 to 30 μm, and the specific surface area by the BET method is 1.8 to 2.2 m. 2 / G artificial graphite particles have been produced.
[0033]
However, as long as specific starting materials (coke, tar, and pitch in Patent Document 8) are used, there is a limit in reducing the specific surface area of the particles. For example, to reduce the sedimentation of the negative electrode mixture paste, to facilitate the handling of the paste in the manufacturing process, and to increase the yield, etc. 50 When the particle size is adjusted to be about 20 μm, the BET specific surface area is 3 m 2 / G. As a result, the initial irreversible capacity of the negative electrode increases, and the thermal stability (heat resistance) of the negative electrode deteriorates. Further, the graphite particles described in the above publication have a lower bulk density (or tap density) than other graphite particles. Therefore, when the electrode is rolled so as to have a high density, there is a disadvantage that the mixture layer is likely to fall off.
[0034]
[Patent Document 1]
JP-A-11-54123
[Patent Document 2]
JP 2001-236950 A
[Patent Document 3]
JP-A-11-263612
[Patent Document 4]
JP-A-2001-89118
[Patent Document 5]
JP-A-2002-50346
[Patent Document 6]
JP 2001-357849 A
[Patent Document 7]
JP 2000-90930 A
[Patent Document 8]
JP-A-11-199213
[0035]
[Problems to be solved by the invention]
In view of the above problems, the present invention is to improve or maintain discharge rate characteristics, low-temperature discharge characteristics, and safety (heat resistance) at the same time as significantly improving the charge / discharge cycle characteristics of a high energy density lithium secondary battery. Aim.
[0036]
[Means for Solving the Problems]
In the present invention, a negative electrode in which an active material composed of a mixture of artificial graphite particles A and spherical graphite particles B having a large circularity is fixed on a copper core material is used.
That is, the present invention is a lithium secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte, wherein the negative electrode comprises a copper core material and a negative electrode mixture layer fixed on the core material, The agent layer contains an active material composed of a mixture of artificial graphite particles A and spherical graphite particles B.
[0037]
The artificial graphite particles A are isotropic artificial graphite particles in which a graphite structure (graphite crystal) is randomly oriented in the particles, and (1) a plane distance d of (002) plane obtained by powder X-ray diffraction method. 002 Is 3.362% or less, and (2) density is 1.6 g / cm. 3 Intensity I attributed to the (002) plane in the diffraction pattern when pellets are formed and X-ray diffraction measurement is performed 002 And peak intensity I attributed to the (110) plane 110 Ratio with: I 002 / I 110 Is 1000 or less, (3) average particle circularity is 0.85 to 0.95, and (4) particle diameter D at a volume fraction of 50% measured using a laser diffraction particle size distribution analyzer. 50 Is 15 to 30 μm and the particle diameter D at a volume fraction of 10%. 10 And the particle diameter D at a volume fraction of 90% 90 Ratio with: D 10 / D 90 Is 0.2 to 0.5, and (5) tap density is 1 g / cm. 3 As described above, (6) the specific surface area measured by the BET method is 1 m 2 / G or less.
[0038]
The spherical graphite particles B have (1) an average particle circularity of 0.88 to 1, and (2) a particle diameter D at a volume fraction of 50% measured using a laser diffraction type particle size distribution analyzer. 50 Is 5 to 15 μm, and (3) the spacing d of the (002) plane determined by powder X-ray diffraction method 002 Is less than or equal to 3.357 ° and (4) the specific surface area measured by the BET method is 8 m 2 / G or less.
[0039]
The artificial graphite particles A are obtained by kneading and granulating a base material prepared by pulverizing a bulk mesophase pitch, and a pitch and / or thermosetting resin in a softened state, and obtaining the granulated product in a range of 700 to 1500. C. and carbonized at 2500-3000C.
[0040]
The mixing ratio of the spherical graphite particles B to the entire active material is preferably 5 to 45% by weight.
[0041]
The positive electrode and the negative electrode are wound around a separator to form an electrode group, and are sealed in a square metal case or a case made of a laminate sheet of an aluminum foil and a resin film. preferable.
[0042]
It is preferable that the negative electrode mixture layer further contains a rubbery binder containing a butadiene unit and a cellulose-based thickener.
[0043]
The spherical graphite particles B are preferably natural graphite particles and / or natural graphite particles that have been subjected to a modification treatment for partially amorphizing only the surface.
[0044]
The addition amount of the rubbery binder is 3 parts by weight or less based on 100 parts by weight of the active material, and the density of the negative electrode mixture layer is 1.6 to 1.8 g / cm. 3 And the thickness of the negative electrode mixture layer is preferably 40 to 100 μm.
[0045]
As described above, in the present invention, with respect to the artificial graphite particles A used as the main graphite active material of the negative electrode, the pulverized particles of the bulk mesophase pitch having low fusibility formed by the polymerization growth of mesophase spheres are used as the base material (graphitizable Base material). In this regard, the present invention is significantly different from the artificial graphite particles disclosed in the aforementioned Patent Documents 4, 5 and 8.
[0046]
As described in, for example, Japanese Patent Application Laid-Open No. 2001-23635, if pulverized particles of bulk mesophase pitch formed so as to have a low volatile content are carbonized and graphitized, the particles are fused at the time of carbonization. Does not occur. Therefore, a pulverizing step in the middle can be omitted, and graphite particles for a negative electrode having a small specific surface area can be produced with a high yield.
[0047]
The artificial graphite particles A of the negative electrode used in the lithium secondary battery of the present invention, in addition to the use of such fusible bulk mesophase pitch pulverized particles as a base material, as a binder for kneading and granulation. Also, a pitch and / or thermosetting resin having low meltability in the post-process is used as a starting material. Also in this case, during carbonization and graphitization, strong fusion of the particles does not occur, and it is possible to omit a pulverizing step in the middle.
[0048]
Therefore, the artificial graphite particles A thus obtained are considered to be the most suitable from the viewpoint of improving the cycle life characteristics of the lithium secondary battery of the high energy density design as described above and improving the safety (negative electrode heat resistance). . That is, in the particles of the artificial graphite particles A, the graphite crystals are oriented in random directions, the particles have a small specific surface area, and the degree of cracking / collapse of the particles accompanying the progress of the charge / discharge cycle is small. In addition, the bulk mesophase pitch of the base material is easily graphitizable, and the graphite layer structure is more easily developed when graphitized than coke. This is the same in comparison with needle coke, which is particularly likely to be graphitized. Therefore, the artificial graphite particles A can be used as a graphite active material capable of realizing higher capacity.
[0049]
Such artificial graphite particles A tend to have a higher bulk density (or tap density) than the graphite particles prepared using coke as a base material. The artificial graphite particles A are relatively large, particularly by granulation. Therefore, an appropriate amount of spherical graphite particles B having a large circularity is added so as to fill the voids of the graphite particles A, and a negative electrode active material is produced. And the paste containing this is apply | coated on a copper core material. In this way, the particles can be packed in the closest packing, and the graphite particles B also improve the slipperiness between the particles. Therefore, 1.6 g / cm 3 Even if the material is rolled to a high density up to the maximum value, the mixture layer hardly falls off. In addition, an extremely good high-density negative electrode can be obtained also in terms of permeation (impregnation) of the electrolyte.
[0050]
In addition, the artificial graphite particles A used in the present invention accept Li ions during high-rate charging or low-temperature charging, compared to graphite particles produced using coke as a base material and other general artificial graphite particles derived from mesophase carbon. Performance tends to be high. Therefore, the lithium secondary battery of the present invention can also be expected to have a secondary improvement effect such as excellent high-rate charge / discharge cycle characteristics at low temperatures.
[0051]
Next, the artificial graphite particles A that provide a negative electrode mixture that can be rolled with high density will be described. Such artificial graphite particles A satisfy predetermined physical properties required by a micro compression tester. Its physical properties can be determined as follows.
[0052]
First, artificial graphite particles A, PVDF, and NMP are mixed to prepare a slurry. It is preferable that the content of artificial graphite particles A in the slurry is 40 to 60% by weight, the content of PVDF is 2 to 12% by weight, and the content of NMP is 38 to 58% by weight. Next, the slurry is applied to the base material with a doctor blade having a predetermined gap, and the obtained coating film of the mixture is compressed by a micro compression tester. It can be said that the larger the amount of displacement of the coating thickness at that time, the easier the graphite can be rolled.
[0053]
An example of a method for measuring the amount of displacement will be described in more detail.
First, 45 parts by weight of artificial graphite particles A, 5 parts by weight of PVDF, and 50 parts by weight of NMP are mixed to prepare a slurry. Next, this slurry is applied on an electrolytic copper foil (thickness: 10 μm) spread on a glass plate with a doctor blade having a gap of 135 μm. Then, the coating film is dried in a dryer at 80 ° C. The thickness of the dried coating film is, for example, about 100 μm. Subsequently, an indenter having a diameter of 500 μm is attached to the micro compression tester, a load of 200 gf is applied to the dried coating film, and the displacement (compression amount) of the coating film thickness is measured. The artificial graphite particles A having a displacement of the coating film thickness measured by such a method of 25 μm or more give a negative electrode mixture which can be rolled particularly at high density.
In addition, as a micro compression tester, MCTM-500 made by Shimadzu Corporation can be used.
[0054]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a lithium secondary battery using a negative electrode in which an active material composed of a mixture of artificial graphite particles A and spherical graphite particles B having a large circularity is fixed on a copper core material. The artificial graphite particles A are obtained by kneading and granulating a base material prepared by pulverizing a bulk mesophase pitch and a pitch and / or thermosetting resin in a softened state, and obtaining the granulated material at 700 to 1500 ° C. And carbonized at 2,500-3000 ° C.
[0055]
In the method for producing the artificial graphite particles A, it is preferable that the average particle diameter of the base material produced by pulverizing the bulk mesophase pitch is 7 to 20 μm. The pitch and / or the amount of the thermosetting resin is preferably 8 to 25 parts by weight per 100 parts by weight of the base material.
[0056]
According to the present invention, the graphite structure of the artificial graphite particles A as the main active material of the negative electrode is sufficiently developed, the graphite crystals are oriented in random directions, the BET specific surface area is small, and the charge / discharge cycle is small. It is possible to design a lithium secondary battery having a high energy density that greatly exceeds 350 Wh / L due to the fact that the degree of cracking and collapsing of particles accompanying the progress of particles is small. At the same time, there is provided a lithium secondary battery in which the deterioration of the battery capacity due to the decomposition of the electrolytic solution on the negative electrode due to the progress of the charge / discharge cycle is very small, and the safety (heat resistance performance, etc.) is secured at a high level. It becomes possible.
[0057]
As a preferred embodiment of the lithium secondary battery of the present invention, a negative electrode, a positive electrode, an electrode group formed by winding a substantially square pillar or an elliptical pillar via a separator, a square metal case or aluminum foil and a resin film And a non-aqueous electrolyte injected into the case. Also in the lithium secondary battery of such a form, due to the characteristics of the artificial graphite particles A, the lithium secondary battery has a high energy density and suppresses the deterioration of the battery capacity due to the progress of the charge / discharge cycle. Further, a phenomenon that is specific to such a battery, such as a phenomenon in which a battery case is deformed in a thickness direction due to a gas generated by decomposition of an electrolytic solution, and a deformation of an electrode group caused by expansion and contraction of a negative electrode mixture layer ( Group buckling) can be suppressed at a high level. At the same time, the safety (heat resistance and the like) of the battery can be secured at a high level.
[0058]
In the lithium secondary battery of the present invention, it is preferable to use a rubbery binder containing a butadiene unit as the binder of the negative electrode mixture. In addition, it is preferable to use a cellulose-based thickener at the time of kneading the negative electrode mixture. That is, a negative electrode in which an active material composed of a mixture of artificial graphite particles A and spherical graphite particles B having a large circularity is fixed on a copper core material by the action of a rubbery binder and a cellulose-based thickener is used. Is preferred.
[0059]
As the cellulose-based thickener, a polymer composed of cellulose or various cellulose derivatives can be used. Among them, carboxymethylcellulose (CMC) is preferred because a small amount can give high viscoelasticity. Further, it is preferable to use styrene-butadiene copolymer rubber (SBR) or the like as the rubbery binder containing a butadiene unit.
[0060]
In general, there are two methods for manufacturing a negative electrode of a lithium secondary battery. One is a method in which an aqueous paste obtained by adding SBR or the like as a binder, CMC or the like as a thickener, and an appropriate amount of water to graphite active material particles is applied to a core material. The other is an organic paste in which graphite active material particles are added with polyvinylidene fluoride (PVDF) or the like as a binder or a thickener and an appropriate amount of N-methyl-2-pyrrolidone (NMP) or the like as a dispersion medium. Is applied to the core material.
[0061]
The former aqueous paste has relatively poor rheological stability during kneading and coating. However, many studies have revealed that when a lithium secondary battery is manufactured using the obtained negative electrode, the reductive decomposition reaction of the electrolytic solution on the graphite active material particles is suppressed. For example, it is very effective to use an aqueous paste to reduce the initial irreversible capacity of the negative electrode. In addition, when the battery in a charged state is stored at a high temperature, reductive decomposition (gas generation) of the electrolytic solution on the negative electrode and gas generation reaction accompanying the charge / discharge cycle of the battery are suppressed. It is very effective to use a paste. Related descriptions are also found in JP-A-2001-076731 and the like. Therefore, when the battery characteristics are more important than the productivity, it is preferable to use an aqueous paste for producing the negative electrode.
[0062]
Next, the physical properties of the artificial graphite particles A and the spherical graphite particles B used in the present invention will be described.
First, a substrate prepared by pulverizing bulk mesophase pitch and a pitch and / or thermosetting resin in a softened state are kneaded and granulated, and the obtained granulated material is carbonized at 700 to 1500 ° C. The artificial graphite particles A obtained by further graphitizing at 2500 to 3000 ° C. will be described.
[0063]
The artificial graphite particles A are isotropic artificial graphite particles in which a graphite structure is randomly oriented in the particles. And the physical properties are
(1) Interplanar spacing d of (002) plane obtained by powder X-ray diffraction method 002 Is less than 3.362Å,
(2) Density 1.6 g / cm 3 Intensity I attributed to the (002) plane in the diffraction pattern when pellets are formed and X-ray diffraction measurement is performed 002 And peak intensity I attributed to the (110) plane 110 Ratio with: I 002 / I 110 Is less than 1000,
(3) an average particle circularity of 0.85 to 0.95,
(4) Particle size D at a volume fraction of 50% measured using a laser diffraction type particle size distribution analyzer 50 Is 15 to 30 μm and the particle diameter D at a volume fraction of 10%. 10 And the particle diameter D at a volume fraction of 90% 90 Ratio with: D 10 / D 90 Is 0.2-0.5,
(5) Tap density is 1 g / cm 3 that's all,
(6) Specific surface area measured by BET method is 1 m 2 / G or less.
[0064]
Here, the particle diameter D when the volume fraction is x% x Is determined from a volume-based particle size distribution expressed in an ab coordinate system in which the horizontal axis a represents the particle diameter and the vertical axis b represents the number of particles. In the particle size distribution, when the volume is integrated from particles having a small value a, the value a at which the cumulative volume becomes x% of the total is the particle diameter D. x It becomes.
[0065]
For the granulated material, the spacing d of the (002) plane 002 By performing sufficient graphitization to reach 3.362 ° or less, high-capacity graphite particles having a reversible capacity exceeding 340 mAh / g can be obtained.
[0066]
The average particle circularity and particle diameter D of the graphite particles A are adjusted by adjusting the particle size of the base material, the mixing ratio of the binder (pitch and / or thermosetting resin), kneading and granulation conditions, and the like. 50 And ratio: D 10 / D 90 Is adjusted to the above range, it is possible to provide a negative electrode mixture which is excellent in handleability of kneading and coating and excellent in electrolyte permeability (impregnation) when a high-density electrode is formed.
[0067]
When the particle image is projected on a plane, the particle circularity is a ratio of a peripheral length 1 of an equivalent circle having the same area as the particle projected image to a peripheral length L of the particle projected image: 1 / L. Given.
[0068]
From the viewpoint of producing a high density negative electrode without damaging the particles by forming a mixture coating film at high density on a copper core material and rolling it with a weak press pressure, artificial graphite particles A Is preferably large. Specifically, the tap density is 1 g / cm 3 The above is used.
[0069]
Here, the tap density is a value obtained when 900 tappings are performed. The tap density changes depending on measurement conditions such as the number of tappings. For example, tapping about 100 times is not enough, but tapping 300 to 500 times reaches a substantially constant value. Therefore, tapping 900 times is enough for the tap density to reach a certain value.
[0070]
Further, in the present invention, the specific surface area, the initial irreversible capacity, and the correlation with the thermal stability of the negative electrode (such as the heat resistance of the charged negative electrode) are measured using the BET method in the present invention. The specific surface area of the artificial graphite particles A is 1 m 2 / G is controlled at a very low level.
[0071]
Here, the graphite structure is sufficiently developed, the graphite crystals are oriented in random directions, the average particle diameter and the particle diameter are in the above ranges, and the BET specific surface area is 1 m. 2 It is considered that the artificial graphite particles suppressed to not more than / g at present can only be obtained by the above production method. That is, as far as the present inventors have studied, the base material prepared by pulverizing the bulk mesophase pitch, and the pitch and / or thermosetting resin in a softened state were kneaded and granulated, and were obtained. It is noteworthy that only particles obtained by carbonizing the granulated material at 700 to 1500 ° C. and further graphitizing at 2500 to 3000 ° C. satisfy all of the above physical properties.
[0072]
When such graphite particles are used as the main active material, the reversible capacity is large, the initial irreversible capacity is small, the charge / discharge rate characteristics are excellent, the expansion / contraction accompanying charge / discharge is small, the cycle life characteristics are excellent, and the high An almost ideal negative electrode that also has safety can be obtained.
[0073]
Next, the physical properties of the spherical graphite particles B are as follows:
(1) an average particle circularity of 0.88 to 1,
(2) Particle diameter D at a volume fraction of 50% measured using a laser diffraction type particle size distribution analyzer 50 Is 5 to 15 μm,
(3) Plane spacing d of (002) plane obtained by powder X-ray diffraction method 002 Is less than 3.357Å
(4) The specific surface area measured using the BET method is 8 m 2 / G or less.
[0074]
Such graphite particles can be produced, for example, by classifying certain types of agglomerated natural graphite particles or artificial graphite particles and removing coarse powder. As the spherical graphite particles B, the spacing d of the (002) plane 002 If the graphitized structure of which is not more than 3.357 ° is very developed, a large reversible capacity of graphite can be expected. At the same time, electrostatic repulsion (interaction of π electrons) between particles, which is unique to graphite, can also be drawn out. Therefore, if spherical graphite particles B are combined with artificial graphite particles A to form a negative electrode active material, the density of the negative electrode mixture increases. Roll forming can be facilitated.
[0075]
In the present invention, the spherical graphite particles B are not scaly particles, but have a very high average particle circularity of 0.88 to 1 and a particle diameter D. 50 Is characterized in that a material having a range of 5 to 15 μm is used. By using such particles having a high circularity, the orientation of the spherical graphite particles B in the vicinity of the surface of the mixture during rolling to a high density is suppressed, and the electrolyte is sufficiently penetrated (impregnated) into the inside of the mixture. )
[0076]
The spherical graphite particles B having the above physical properties are preferably mixed with the artificial graphite particles A so that the mixing ratio of the spherical graphite particles B to the entire active material is in the range of 5 to 45% by weight. Within such a range, it is possible to fill the voids between the graphite particles A as the main material with the spherical graphite particles B when forming the mixture layer (coating the mixture on the copper core material). It becomes. Therefore, it is possible to densely fill the spherical graphite particles B, and it is possible to obtain a mixture layer which is particularly rolled and formed at a high density.
[0077]
The lower the BET specific surface area of the spherical graphite particles B, the better. When the average particle diameter is reduced to the above range, the BET specific surface area has a somewhat large value. However, in order to obtain the effect of the present invention, the upper limit of the BET specific surface area of the spherical graphite particles B is set to 8 m. 2 / G.
[0078]
The spherical graphite particles B are preferably natural graphite particles and / or surface-modified natural graphite particles. Particularly when the spherical graphite particles B are those derived from natural graphite, the largest reversible capacity can be expected from the graphite particles B. Also, depending on the place of origin and the degree of the impurity grade, natural graphite is generally less expensive than artificial graphite which requires a graphitization step. Therefore, it is advantageous in terms of cost to use spherical graphite particles B derived from natural graphite.
[0079]
From the viewpoint of the safety (heat resistance) of the graphite negative electrode, as described above, the BET specific surface area of the spherical graphite particles B is preferably as low as possible. Therefore, it is most preferable to use natural graphite particles that have been subjected to a modification treatment (coating treatment or the like) for smoothing the particle surface. Examples of a method for smoothing the particle surface include a method in which the particle surface is coated with an organic substance such as tar or pitch and carbonized or graphitized. Further, a method of applying a strong mechanical impact / shear force or the like to the graphite particles and making the surface amorphous by a mechanochemical reaction to smooth the surface is also included.
[0080]
In the negative electrode mixture (or the aqueous paste), the optimal addition amount of the rubbery binder containing a butadiene unit is 3% by weight or less based on the weight of the active material. A rubbery binder containing a butadiene unit is often added to a paste as an aqueous dispersion of rubber fine particles. The amount of the binder to be added is usually determined in consideration of the binding strength between the mixture layer and the copper core. However, since the rubber fine particles are basically an insulator, if added in excess, the surface layer of the graphite active material particles will be covered with the insulator particles, and the charge / discharge characteristics of the negative electrode will be impaired. In consideration of the average particle size, particle size, and BET specific surface area of the graphite active material particles to be used, in the present invention, it is desired to suppress the addition amount of the rubbery binder to 3% by weight or less.
[0081]
The optimal mode of the negative electrode mixture layer formed on the copper core material is that the density of the negative electrode mixture layer is 1.6 to 1.8 g / cm. 3 And the thickness of the negative electrode mixture layer is 40 to 100 μm. The density of the negative electrode mixture layer is 1.6 to 1.8 g / cm. 3 By setting as high as possible, it is possible to design a lithium secondary battery with a high energy density that greatly exceeds 350 Wh / L. Here, the reason why the thickness of the negative electrode mixture layer is set to 40 to 100 μm is that when the thickness of the mixture layer exceeds 100 μm, diffusion of Li ions into the active material particles of the inner layer of the mixture becomes difficult, and the charge / discharge rate is increased. This is because the characteristics are deteriorated. Conversely, if the thickness of the mixture layer is reduced to less than 40 μm, the D of the graphite active material particles A 90 The value needs to be reduced to about 30 μm or less. In the artificial graphite particles A used through the granulation process and used as the main active material in the present invention, it is practically difficult to adjust the particle size so far.
[0082]
【Example】
First, a method for measuring the physical properties of the graphite active material particles (powder) used in this example will be described.
(1) Spacing d of (002) plane 002 Measurement
A powder X-ray diffractometer “RINT2000 / PC” manufactured by Rigaku Corporation was used. The carbon powder to which high-purity silicon was added as an internal standard was irradiated with monochromatic X-rays, and the peak corresponding to the (002) plane of graphite was measured. Then, by correcting the peak position based on the silicon peak of the internal standard, d corresponding to the graphite layer interval is obtained. 002 Was calculated. The specific evaluation method was based on the method prescribed by the 117th Committee of the Japan Society for the Promotion of Science.
[0083]
(2) Peak intensity ratio I 002 / I 110 Measurement
The graphite powder is placed in a specific holder, and the density is 1.6 g / cm using a flat pressure press. 3 Into pellets. The pellet was irradiated with X-rays using the same X-ray diffractometer as in (1) above, and the diffraction pattern was measured. Then, the ratio of the peak intensity corresponding to the (002) plane to the peak intensity corresponding to the (110) plane: I 002 / I 110 Was calculated. Here, the peak height was used as the peak intensity.
[0084]
(3) Measurement of particle circularity
Using a scanning electron microscope “S-2500” manufactured by Hitachi, Ltd., an image of the graphite particles (powder) at a magnification of 1000 was obtained. Then, the perimeter l of the equivalent circle having the same area as the projected image of the observed particle was obtained. The ratio of the perimeter l to the perimeter L of the projected particle image: l / L was determined for 50 particles, and the average value was defined as the average particle circularity. In addition, such a measurement can also be implemented using a flow-type particle image analyzer. For example, it was experimentally confirmed that even when the particle circularity was measured using a powder measuring device (FPIA-1000) sold by Hosokawa Micron Corporation, almost the same value was obtained.
[0085]
(4) Particle size at 50% volume fraction (D 50 ), Particle size at a volume fraction of 10% (D 10 ) And the particle size at 90% volume fraction (D 90 ) Measurement
About 1 cc of a 2% by volume aqueous solution of polyoxyethylene sorbitan monoureate was prepared as a surfactant. This surfactant was previously mixed with graphite particles (powder). Then, using ion-exchanged water as a dispersion medium, and using a laser diffraction type particle size distribution analyzer “LA-700” manufactured by Horiba, Ltd., the particle diameter (that is, the average particle diameter) at a volume fraction of 50% D 50 (Median), particle diameter D at a volume fraction of 10% 10 And the particle diameter D at a volume fraction of 90% 90 Got.
[0086]
(5) Measurement of tap density
The tap density of the graphite powder was basically measured according to the following procedure according to JIS-K5101.
Using "Powder Tester PT-R" manufactured by Hosokawa Micron Co., Ltd., a sieve having openings of 200 μm was used as a sieve through which the sample passed. The graphite powder was dropped into a 20 cc tapping cell, and after the cell was completely filled, tapping with a stroke length of 18 mm was performed 900 times once / second. And the tap density at that time was measured.
[0087]
(6) Measurement of BET specific surface area
"AMS-8000" manufactured by Okura Riken Co., Ltd. was used. As preliminary drying, the graphite powder was heated to 350 ° C. and exposed to a nitrogen gas flow for 15 minutes. Then, the specific surface area was measured by the BET one-point method at a relative pressure of 0.3 by nitrogen gas adsorption.
[0088]
(Production of negative graphite particles)
In this example, the negative graphite particles obtained by the following procedure were examined.
1. Artificial graphite particles A1
Coal tar was placed in a vacuum distillation apparatus, the pressure was reduced, and the mixture was heated and stirred at 350 ° C. in the presence of nitric acid to promote the increase in tar molecular weight. Thereafter, this was heated at 500 ° C. to form a mesophase, thereby obtaining a bulk mesophase pitch having a small volatile content.
The bulk mesophase pitch was taken out of the apparatus after cooling, and pulverized by a rotary impact type pulverizer (fine mill) so as to have an average particle diameter of 13 μm to obtain a substrate.
[0089]
Next, 15 parts by weight of coal tar pitch (softening point: 80 ° C.) as a binder was mixed with 85 parts by weight of the base material, and kneaded at 200 ° C. for 120 minutes in a Z-type kneader. In this process, the mixture gradually increased in viscosity and became particulate.
[0090]
The obtained granules are taken out of the kneader after cooling, crushed, and then put into a graphite crucible, and carbonized (fired) in a lead hammer type continuous firing furnace at 800 ° C. in a nitrogen atmosphere. ).
[0091]
Further, the carbonized particles were placed in a graphite crucible and were graphitized in an Acheson type graphitization furnace at 2950 ° C. in a nitrogen atmosphere. Thereafter, crushing and classification are performed to obtain a particle diameter D at a volume fraction of 50% 50 Was 23 μm.
[0092]
2. Artificial graphite particles A2
Except for using a phenol resin instead of coal tar pitch as a binder, the particle diameter D at a volume fraction of 50% was obtained under the same process and conditions as in the case of the artificial graphite particles A1. 50 Was 23 μm.
[0093]
3. Spherical graphite particles B1
Chinese scale-like natural graphite is crushed by a counter-type jet mill to obtain an average particle diameter D. 50 Was 20 μm scaly natural graphite. This was introduced into another counter-type jet mill, the operating conditions were adjusted, and the particles were collided in a high-speed air flow to control the shape (sphericalization) of the graphite particles. Then, in order to remove impurities (ash), after washing with a hydrofluoric acid aqueous solution, the graphite particles are dried, and further subjected to strong air classification to remove coarse powder. 50 Was obtained about 10 μm in spherical graphite particles B1.
[0094]
4. Spherical graphite particles B2
The acicular coke (anisotropic coke) powder whose average particle diameter was adjusted to 20 μm was put in a graphite crucible and was graphitized at 2950 ° C. in an Acheson type graphitization furnace. Thereafter, the graphitized particles are introduced into the same counter-type jet mill as in the case of the spherical graphite particles B1, and the operating conditions are adjusted. Shape control (sphericalization) was performed. Then, strong air classification is performed on this to remove coarse powder, and D 50 Was obtained about 10 μm in spherical graphite particles B2.
[0095]
5. Comparative artificial graphite particles C1 (artificial graphite with randomly oriented crystals)
20 parts by weight of tar pitch and 15 parts by weight of coal tar as a binder were mixed with 50 parts by weight of a base material of acicular coke (anisotropic coke) powder whose average particle diameter was adjusted to 8 μm, and heated and kneaded in a mixer. And granulated.
[0096]
The obtained granules were taken out of the mixer after cooling, crushed, made into blocks by isotropic pressure molding, and carbonized (fired) at a temperature of 800 ° C. Further, it is graphitized in a graphitization furnace at 2950 ° C., then pulverized by a mill and classified to obtain a particle diameter D at a volume fraction of 50%. 50 Was 21 μm.
[0097]
6. Comparative artificial graphite particles C2 (increased degree of graphitization of artificial graphite in which crystals are randomly oriented)
20 parts by weight of tar pitch as a binder, 15 parts by weight of coal tar, and carbonization as a catalyst for promoting graphitization were added to 50 parts by weight of a base material of acicular coke (anisotropic coke) powder whose average particle diameter was adjusted to 8 μm. Boron (B 4 C) was mixed in an amount of 5 parts by weight, heated and kneaded in a mixer, and granulated.
[0098]
The obtained granules were taken out of the mixer after cooling, crushed, made into blocks by isotropic pressure molding, and carbonized (fired) at a temperature of 800 ° C. Further, this was graphitized at 2800 ° C. in a graphitization furnace in an argon atmosphere, then pulverized by a pin mill and classified to obtain a particle diameter D at a volume fraction of 50%. 50 Was 21 μm.
[0099]
7. Comparative artificial graphite particles D (graphitized milled MCF)
A bulk mesophase pitch (derived from petroleum pitch) in a molten state under a 360 ° C. atmosphere was spun by a melt blow method, and infusibilized by surface oxidation. Next, carbonization (firing) was performed at 800 ° C. to obtain a mat-like carbide. This was cut and pulverized by a high-speed rotating mill, and coarse powder was removed by a vibrating sieve to obtain a carbon fiber mill having an average particle diameter of 18 μm (milled MCF: MCF stands for mesocarbon pitch-based fiber). Then, as a catalyst for promoting graphitization, boron carbide (B 4 C) 5 parts by weight were added and graphitized at 2800 ° C. in a graphitization furnace in an argon atmosphere to obtain comparative artificial graphite particles D.
[0100]
8. Comparative artificial graphite particles E (graphitized MCMB)
The coal tar was heated at 350 ° C. to produce mesophase spherules. After adding a solvent thereto, small spheres were separated and extracted using a filter press. Next, the small spheres were carbonized (fired) at 800 ° C., and then classified by a vibrating sieve to obtain mesocarbon microbeads (MCMB) having an average particle diameter of 26 μm. Then, MCMB was graphitized at 2950 ° C. in an Acheson type graphitization furnace, and then crushed and classified to obtain comparative artificial graphite particles E.
[0101]
9. Comparative artificial graphite particles F (graphitized bulk mesophase)
A bulk mesophase pitch is produced by a process similar to that described in the first half of the case of the artificial graphite particles A1, and this is crushed by a mill to obtain a particle diameter D at a volume fraction of 50%. 50 Was adjusted to 20 μm. Thereafter, the particles were carbonized (fired) at 800 ° C. This was placed in a graphite crucible and graphitized in an Acheson type graphitization furnace at 2950 ° C., and then crushed and classified to obtain comparative artificial graphite particles F.
[0102]
10. Agglomerated natural graphite particles G
The flake natural graphite from Sri Lanka is compacted and then pulverized by a mill to obtain a particle diameter D at a volume fraction of 50%. 50 Was 21 μm scaly natural graphite. The scaly natural graphite was washed with hydrofluoric acid to remove impurities (ash), and then dried. Next, the flake-like natural graphite particles were subjected to spheroidization and air classification by a hybridization system to obtain agglomerated natural graphite G. Here, the term “hybridization system” refers to a method in which particles are placed in a chamber and the shape is adjusted by applying an impact / shear force by high-speed rotation.
[0103]
11. Surface-coated natural graphite particles H
5 parts by weight of petroleum pitch was mixed with 100 parts by weight of the agglomerated natural graphite G and kneaded in a heated mixer to attach the pitch to the surface of the graphite G. This was heat-treated (annealed) in a firing furnace at 1300 ° C. to carbonize the pitch attached to the surface of graphite G. Subsequently, crushing and classification were performed to obtain surface-coated natural graphite H.
Table 1 summarizes powder physical property data measured for these 11 types of graphite particles.
[0104]
[Table 1]
Figure 2004127913
[0105]
When a negative electrode of a lithium secondary battery is manufactured using the graphite particles shown here, any one of them can be used alone as a negative electrode active material, or two or more thereof can be mixed at a predetermined ratio to prepare a negative electrode active material. It can also be used for substances.
[0106]
The present inventors have studied various graphite particles so far. According to the empirical rule, the graphite mixture layer applied on the copper core material is rolled by a roll press or the like, and the mixture density is 1.6 g / cm. 3 In the case of producing a high-density negative electrode exceeding the above, when the special artificial graphite particles derived from the mesophase carbon of D, E and F are used alone as an active material, the density cannot be increased to a predetermined density. There are many. This is considered to be because the surface layer of the mesophase particles was substantially infusible (loose oxidation treatment) at a stage prior to the carbonization / graphitization step in the manufacturing process for each of these materials. That is, the particle surface layer is in a state close to amorphous where graphitization has not progressed much. Amorphous carbon that does not have a layered structure is poor in slipperiness because there is little electrostatic repulsion (interaction of π electrons) between particles peculiar to the graphite layered structure.
[0107]
In a preliminary study of the graphite particles A1 and A2 used in the present invention, a compression test was performed on a coating film simply formed on a copper core material. As a result, although not as high as D, E, and F, data was obtained that it was relatively difficult to increase the density. Therefore, when the graphite particles A1, A2, D, E and F are used as an active material, it is considered essential to add spherical graphite particles B1 or B2 having a large circularity to these. Therefore, the negative electrode active materials a to v (total 22 types) having the mixing ratio (weight ratio) shown in Table 2 were examined.
[0108]
When only the graphite particles A1 or A2 are used alone, even if a high-density negative electrode can be produced, the particles are relatively likely to fall off the electrode plate due to the repetition of the charge / discharge cycle, and the cycle characteristics are poor. It is considered that it easily deteriorates. This is because it is expected that since the particles are relatively hard, stress cannot be dispersed when the negative electrode mixture layer expands and contracts due to charge and discharge.
On the other hand, when the spherical graphite particles B1 or B2 are used alone, it is considered that a capacity deterioration due to repetition of charge / discharge cycles and a safety problem due to a large surface area occur.
[0109]
[Table 2]
Figure 2004127913
[0110]
(Preparation of negative electrode)
To 100 parts by weight of the negative electrode active material a, 100 parts by weight of a 1% by weight aqueous solution of carboxymethyl cellulose (CMC) and an aqueous dispersion of styrene butadiene rubber (SBR) as a binder are added, and the mixture is sufficiently kneaded. An agent slurry was prepared. Here, the addition amount of SBR was adjusted such that the ratio of the solid content (rubber component) to 100 parts by weight of the negative electrode active material a was 2 parts by weight.
[0111]
The slurry thus prepared was applied to both surfaces of a copper foil (thickness: 10 μm) to a constant thickness using a coating machine, dried with hot air at 100 ° C., and then rolled using a roll press. Here, the density of the mixture layer (value including the weight of CMC and SBR) is 1.7 g / cm. 3 Then, the thickness was adjusted to be 70 μm (the thickness of the electrode was about 150 μm). Then, this was cut into a predetermined size, and a nickel lead for current collection was attached to obtain a negative electrode a. Also for the negative electrode active materials b to v, negative electrodes b to v corresponding to the signs of the respective negative electrode active materials were produced under the same conditions as above.
[0112]
(Preparation of positive electrode)
In this study, Co was used as the positive electrode active material. 3 O 4 And Li 2 CO 3 LiCoO produced by baking the mixture at 950 ° C. in the air atmosphere and then pulverizing and adjusting the particle size 2 It was used. In preparing a positive electrode plate, 3 parts by weight of acetylene black (AB) as a conductive material is added to 100 parts by weight of a positive electrode active material, and the mixture is sufficiently mixed and dispersed in a dry mixer, and then polyvinylidene fluoride as a binder is added. (PVDF) was added in an amount of 5 parts by weight, and kneaded while appropriately adding N-methyl-2-pyrrolidone (NMP) as a solvent to prepare a mixture slurry.
[0113]
The slurry thus prepared was applied to both sides of an aluminum foil (thickness: 20 μm) to a constant thickness using a coating machine, dried with dry air at 100 ° C., and rolled using a roll press. Here, the density of the mixture layer (value including the weight of AB and PVDF) is 3.7 g / cm. 3 The thickness was adjusted so as to be 70 μm (the thickness of the electrode was about 160 μm). Then, this was cut into a predetermined size, and an aluminum lead for current collection was attached to obtain a positive electrode.
[0114]
(Production of lithium secondary battery)
Negative electrode a, LiCoO prepared by the above procedure 2 Vacuum drying of the positive electrode and a polyethylene porous membrane separator (thickness: 25 μm) for physically separating the two was performed for the purpose of removing excess water. The negative electrode and the positive electrode were vacuum-dried at 100 ° C. for 8 hours, and the separator was vacuum-dried at 50 ° C. for 12 hours.
[0115]
Subsequently, the negative electrode a and the positive electrode were wound with a separator interposed therebetween, to form an electrode group 1 having a substantially quadrangular prism shape (having a substantially rectangular cross section) as shown in FIG. The electrode group 1 having a substantially square pole shape was inserted into a battery case 4 made of a rectangular aluminum alloy having a size of 533048 (thickness 5.3 mm × width 30 mm × height 48 mm). Then, the positive electrode lead 2 was welded to the upper sealing plate 5, and the negative electrode lead 3 was welded to the negative electrode terminal 6 electrically separated from the sealing plate by an insulating gasket. Thereafter, the sealing plate 5 was joined to the battery case 4 by laser welding. Subsequently, a non-aqueous electrolyte was injected from an injection port provided in the sealing plate 5, and the electrode group 1 was impregnated in vacuum.
[0116]
Then, partial charging was performed for the first time while the injection port was kept open. In the initial stage of the first charge, decomposition of the electrolytic solution or the like occurs with the formation of the film on the negative electrode, and gas is generated. This gas was sufficiently diffused and removed. Thereafter, the injection port was closed with a plug 7 made of an aluminum alloy, which was melted with a laser and then solidified to seal the injection port. Thus, a lithium secondary battery a (design capacity: 800 mAh) using the negative electrode a was obtained.
[0117]
Also, lithium secondary batteries b to v corresponding to the respective negative electrodes were manufactured under the same conditions as above except that the negative electrodes a to b were used instead of the negative electrodes a. Here, the dew point of each process of the configuration of the electrode plate group, welding of the positive and negative electrode leads, joining of the sealing plate to the case, injection and impregnation of electrolyte, initial partial charging, and sealing by plugging The test was performed in a dry air atmosphere at -40 ° C or lower.
[0118]
The non-aqueous electrolytic solution contains 1.0 M (M: mol) in a solvent obtained by mixing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) at a volume ratio of 1: 2: 1. / L) so that the concentration of LiPF 6 Was used. After the injection of the electrolytic solution, the first partial charging of the battery was performed in a 20 ° C. atmosphere for 2 hours at a charging rate of 0.1 C (here, 80 mA assuming that 1 C = 800 mA).
[0119]
(Evaluation of battery characteristics)
The following battery characteristics were evaluated for the lithium secondary battery prepared above. (1) Measurement of irreversible capacity
Three charge / discharge cycles were performed on the 22 types of lithium secondary batteries prepared above in the following pattern.
・ Charging: Constant current method 0.2C (160mA), final voltage 4.1V
-Discharge: constant current 0.2C (160mA), discharge cut voltage 3.0V
・ Ambient temperature: 20 ℃
Then, the initial irreversible capacity of each battery was calculated by the following calculation.
Initial irreversible capacity = {(initial partial charge capacity at the time of battery production: 160 mAh) + (total charge capacity of the above three cycles) − (total discharge capacity of the above three cycles)} / 3
[0120]
(2) High rate discharge characteristics
The 22 types of lithium secondary batteries for which the measurement of the irreversible capacity was completed were subjected to the following charge / discharge test, and the discharge capacity ratio (2C discharge capacity C 2 And 0.2C discharge capacity C 0.2 Ratio with: C 2 / C 0.2 ) Was calculated to evaluate the high rate discharge characteristics of each battery. Here, the ambient temperature at the time of the test was 20 ° C.
[0121]
1st cycle (0.2C discharge)
・ Charging: Constant current constant voltage method 0.7C (560mA), charge control voltage 4.2V, total charge time 2.5 hours
-Discharge: constant current 0.2C (160mA), discharge cut voltage 3.0V
2nd cycle (2C discharge)
・ Charging: Constant current constant voltage method 0.7C (560mA), charge control voltage 4.2V, total charge time 2.5 hours
-Discharge: constant current 2C (1600mA), discharge cut voltage 3.0V
[0122]
(3) Low temperature discharge characteristics
For the 22 types of lithium secondary batteries for which the measurement of the irreversible capacity was completed, the following charge / discharge test different from (2) was performed, and the ratio of the discharge capacity (discharge capacity C at 1 C at -10 ° C.) -10 And discharge capacity C at 1 C under 20 ° C. 20 Ratio with: C -10 / C 20 ) Was calculated to evaluate low-temperature discharge characteristics.
[0123]
1st cycle (20 ° C)
・ Charging: Constant current constant voltage method 0.7 C (560 mA), charge control voltage 4.2 V, total charge time 2.5 hours, ambient temperature 20 ° C.
-Discharge: constant current 1C (800mA), discharge cut voltage 2.5V
(The capacity is calculated based on the amount of discharge up to 3.0 V)
Atmospheric temperature 20 ° C
[0124]
2nd cycle (-10 ° C)
・ Charging: Constant current constant voltage method 0.7 C (560 mA), charge control voltage 4.2 V, total charge time 2.5 hours, ambient temperature 20 ° C.
-Discharge: constant current 1C (800mA), discharge cut voltage 2.5V
(The capacity is calculated based on the amount of discharge up to 3.0 V)
Ambient temperature -10 ° C
[0125]
(4) Cycle life characteristics
The following charge / discharge was repeated for 500 cycles for the 22 lithium secondary batteries for which the measurement of the irreversible capacity was completed. And the capacity C at the time of 500 cycles 500 And capacity C of the first cycle ini And the capacity maintenance rate (C 500 / C ini ). In addition, the swelling (expansion) of the battery case in the thickness direction due to the cycle, which appears as a phenomenon peculiar to the rectangular lithium secondary battery as described above, was also measured as the swelling amount (mm) of the case from the beginning.
[0126]
・ Charging: Constant current constant voltage method 0.7C (560mA), charge control voltage 4.2V, total charge time 2.5 hours
・ Pause after charging: 30 minutes
-Discharge: constant current 0.7C (560mA), discharge cut voltage 3.0V
・ Pause after discharge: 30 minutes
・ Evaluation atmosphere temperature: 20 ℃
[0127]
Table 3 summarizes the results of the above battery evaluation. In Table 3, the value of the evaluation result of the battery a was standardized as 100, and the performances of the batteries b to v were relatively compared. In Table 3, the batteries a to d according to the present invention are clearly superior in all characteristics as compared with the batteries q to v using the negative electrode mainly composed of natural graphite. In addition, there is a disadvantage that the irreversible capacity is slightly larger than batteries ep using an anode mainly composed of artificial graphite, but other characteristics such as a discharge rate ratio, a low-temperature discharge characteristic, and a capacity retention rate at 500 cycles. In the above, the batteries a to d are excellent, and the battery swelling is sufficiently suppressed.
[0128]
[Table 3]
Figure 2004127913
[0129]
As described above, it is considered that the reason that the batteries a to d of the present invention tend to be superior to the others is that a portion based on the powder properties of the artificial graphite particles A as the main active material of the negative electrode is large.
First, regarding the high-rate discharge characteristics, the artificial graphite particles A1 and A2 are particles in which fully developed graphite crystals are oriented in random directions depending on the manufacturing process (powder physical properties). Value: I 002 / I 110 Value is small enough). That is, as in this example, the mixture density (value including the weight of CMC and SBR) is 1.70 g / cm. 3 It is considered that some of the graphite particles are oriented in the plane direction of the copper core material in the high-density negative electrode having a temperature of up to. However, it is presumed that graphite crystallites present randomly in the particles are not affected by the orientation, and that the occlusion and release of Li ions can smoothly proceed between the graphite particles and the electrolyte.
[0130]
Regarding the low-temperature discharge characteristics, it is presumed that the electron conductivity (electrode plate resistance) of the negative electrode mixture has a great influence.
The bulk mesophase pitch, which is the base material of the artificial graphite particles A1 and A2 used in the batteries a to d of the present invention, is more graphitizable than acicular coke, and the graphite crystal structure is sufficiently developed by graphitization. I have. Therefore, compared with the graphite particles C1 and C2 (batteries e to j) using acicular coke as a base material, the particles themselves have higher electron conductivity.
[0131]
In addition, it is compared with other artificial graphite particles D (graphitized milled MCF: elongated columnar shape) derived from mesophase carbon used in batteries k and l, and graphite particles E (graphitized MCMB: true spherical shape) used in batteries m and n. And, the particles A1 and A2 are a lump having an appropriate shape. Therefore, the particles A1 and A2 can secure many contact points with the graphite particles B1 and B2, and the electron conductivity of the whole negative electrode mixture increases. Therefore, it is considered that the degree of reduction in discharge voltage during low-temperature discharge was reduced, and excellent low-temperature discharge characteristics were secured. Regarding the difference in low-temperature discharge characteristics between batteries o and p using artificial graphite particles F (graphitized bulk mesophase), as described above, graphite crystals are oriented in random directions in anode graphite particles A1 and A2. It is considered that the existing point has influenced.
[0132]
Incidentally, as is clear from Table 3, for example, the battery e using only the comparative artificial graphite particles C1 alone and the batteries f and g using the mixture of the comparative artificial graphite particles C1 and the spherical graphite particles B1 or B2 were used. In comparison, there is no significant difference in performance. This indicates that the same effect as in the present invention cannot be obtained even when the comparative artificial graphite particles C1 are used instead of the artificial graphite particles A1 or A2. In other words, it can be said that a combination of the artificial graphite particles A1 or A2 and the spherical graphite particles B1 or B2 makes it possible to obtain a negative electrode or a battery having particularly excellent characteristics.
[0133]
In the negative electrode of the battery e using only the comparative artificial graphite particles C1 alone, during the rolling, fine powder of artificial graphite is generated, which is considered to have the same effect as the spherical graphite particles B1 or B2. . Therefore, it is assumed that there is no difference in characteristics between the battery e and the batteries f and g. It is considered that fine powder of artificial graphite is generated during the rolling of the negative electrode e because the manufacturing process of the comparative artificial graphite particles C1 includes a pulverizing process of graphite, so that the bonding of the primary particles is considered to be weak. It is.
[0134]
Regarding the batteries a to d of the present invention, the following are considered to be the main factors in that the charge / discharge cycle characteristics are superior to others and the degree of battery swelling due to charge / discharge is small.
(1) In the negative electrode active material particles a to d used in the battery of the present invention, the spherical graphite particles B1 or B2 are optimally arranged so as to fill the voids of the artificial graphite particles A1 or A2. Therefore, the mixture density is 1.70 g / cm 3 , The graphite particles in the vicinity of the surface of the mixture layer can be prevented from crushing or collapsing and orienting in the plane direction of the copper core material. In addition, the permeability (impregnation) of the electrolytic solution into the mixture is not hindered. In other words, high permeability (impregnation) of the electrolyte is ensured even in the mixture layer, so that even if the decomposition or reduction of the electrolyte partially occurs in a long-term cycle, a smooth charge / discharge reaction is ensured. Is done.
[0135]
(2) Since the graphite crystallites of the artificial graphite particles A1 and A2, which are the main active materials, are oriented in random directions, the particles expand and contract with repeated charge / discharge cycles (insertion / desorption of Li ions). And the degree of increase (swelling) in the thickness of the negative electrode is small.
[0136]
(3) Although it is related to the above (2), the artificial graphite particles A1 and A2 have a small degree of expansion and contraction of the particles due to repetition of the charge / discharge cycle, so that the graphite active material particles crack as the cycle progresses. Is less likely to occur. Therefore, the decomposition and consumption reaction of the electrolytic solution accompanied by gas generation caused by the cracking of the graphite active material particles (exposure of the new graphite edge surface) is suppressed.
[0137]
(4) In general, artificial graphite particles derived from mesophase carbon tend to have low Li ion acceptability during high-rate charging. However, the wettability of the surface of the artificial graphite particles A1 or A2 (depending on the type and concentration of the surface functional group) changes due to the granulation and graphitization of the bulk mesophase pitch pulverized particles and the pitch or thermosetting resin. And improved to relatively high levels. Therefore, the phenomenon of deposition of metallic lithium on the negative electrode surface accompanying the progress of the charge / discharge cycle is suppressed.
In particular, the batteries a to d of the present invention are more excellent in charge / discharge cycle characteristics than the batteries e to j using the artificial graphite particles C1 and C2 whose production methods are similar to the artificial graphite particles A1 and A2. Although the detailed mechanism cannot be elucidated for the reason, the following points can be considered.
[0138]
(5) Since the artificial graphite particles A1 and A2 do not undergo a pulverizing step after carbonization and graphitization, they have high circularity and high tap density. Therefore, the degree of crushing (disintegration) of the particles in the high-density negative electrode produced using the same is smaller than that of the high-density negative electrodes e to j produced using the artificial graphite particles C1 and C2.
[0139]
(6) The degree of progress of the cracking of the graphite particles due to the charge / discharge cycle is affected by the difference in the base carbon source used in producing the artificial graphite particles, that is, the difference between the bulk mesophase pitch ground particles and the acicular coke. The artificial graphite particles A1 and A2 are smaller than the artificial graphite particles C1 and C2. Here, the battery (discharged state) repeatedly charged and discharged in the initial 10 cycles and the battery (discharged state) after 500 cycles are disassembled, the negative electrode mixture is extracted and washed, and the active material particles are subjected to the BET method. Was measured. As a result, the batteries a to d (negative electrodes a to d) have a smaller specific surface area of the particles from the beginning than the batteries e to j (negative electrodes e to j), and the specific surface area of the particles increases with the cycle. It was actually confirmed that the degree was small.
[0140]
(Safety test)
It is generally considered that the graphite negative electrode of a lithium secondary battery has a strong correlation with the thermal stability of the battery. Here, there are various standards and guidelines on the evaluation method and evaluation criteria of the thermal stability (heat exposure) of the lithium secondary battery, but they are not unified. Therefore, in this study, the following conditions were adopted as conditions that are relatively strict and that the difference in the type of the negative electrode is reflected as clearly as possible, and a heat resistance test of the battery was performed.
[0141]
First, 22 kinds of lithium secondary batteries corresponding to the above negative electrodes a to v were charged to 4.3 V in a 20 ° C. atmosphere at a constant current of 0.1 C (80 mA) and a constant voltage of 2 hours. . Then, a thermocouple was attached to the battery so that the surface temperature of the battery could be monitored, and the battery was suspended in a thermostat at 20 ° C. Then, the temperature of the thermostat was raised to 165 ° C. at a rate of 5 ° C./min, and then maintained at 165 ° C.
[0142]
In this test, even when the temperature of the thermostat was maintained at 165 ° C., a part of the charged negative electrode graphite active material particles reacted with the electrolyte solution or the binder, or the coating on the graphite surface was decomposed. As a result, heat of reaction is generated. Therefore, the battery surface temperature reaches a temperature of 165 ° C. or higher. If the maximum temperature at this time is extremely high, an internal short circuit due to a chain of exothermic reactions (thermal runaway) of the positive electrode (or the negative electrode) inside the battery or rapid separator shrinkage is caused. The lower the maximum temperature of the battery, the higher the safety of the battery. Table 4 summarizes the results.
[0143]
[Table 4]
Figure 2004127913
[0144]
From these results, it is understood that the superiority in the heat resistance test has a very high correlation with the BET specific surface area of the graphite particles forming the negative electrode. Regarding the negative electrodes used in the batteries a to d of the present invention, the BET specific surface area of the main graphite active material particles A1 and A2 was 0.4 to 0.5 m. 2 / G and 1m each 2 / G or less. It turns out that this is very advantageous from the viewpoint of heat resistance. The BET specific surface areas of the spherical graphite particles B1 and B2 of the negative electrode used in the batteries a to d were 6.9 to 7.2 m. 2 / G, which is a considerably large value. In this regard, it can be said that it is more preferable to use a material having a reduced BET specific surface area as much as possible.
[0145]
From the above examination results, it can be confirmed that the batteries a to d of the present invention have high discharge characteristics and excellent cycle life characteristics, and also ensure high safety.
Here, as to the form of the battery, in the examples, a form in which a substantially quadrangular prismatic electrode group is inserted into a battery case made of a square aluminum alloy (FIG. 1) was used, but the present invention is not limited to this. . For example, the same applies to a lithium secondary battery in a form in which an electrode group formed by winding into a substantially square column or an elliptic column is enclosed in a case made of a laminate sheet of an aluminum foil and a resin film, and a non-aqueous electrolyte is injected. In addition, a thin and lightweight lithium secondary battery having excellent discharge characteristics, cycle life characteristics, and safety, high energy density, and low weight can be obtained.
[0146]
Similarly, the density of the negative electrode mixture layer is set to 1.6 to 1.8 g / cm. 3 A negative electrode set at a high level, a positive electrode filled at a high density, and a separator are combined to form a columnar (spiral) electrode group, which is housed in a cylindrical case made of nickel-plated steel sheet, Even when the liquid is injected, a 400 Wh / L high-capacity lithium secondary battery having excellent discharge characteristics, cycle life characteristics and safety can be obtained.
[0147]
Further, in producing the artificial graphite particles A1 or A2, pulverized bulk mesophase pitch particles having an average particle diameter of 13 μm were used as a base material, but the invention is not limited thereto. If the average particle diameter is about 7 to 20 μm, similar artificial graphite particles can be produced.
[0148]
In addition, coal tar pitch (coal pitch) and phenol resin were used as binders, but pitches such as petroleum pitch and naphthalene pitch, and thermosetting resins such as polyimide resin, polyvinyl chloride resin, cellulose resin, and furfuryl alcohol resin. Can also be used.
[0149]
In the kneading and granulation, the mixing ratio of the base material and the binder was 85:15 (weight ratio), the temperature was 200 ° C., the time was 120 minutes, and the kneading apparatus was a Z-type kneader. It is not limited. The circularity of the obtained granules is 0.85 to 0.95, and the average particle diameter D 50 Is 15 to 30 μm, D 10 / D 90 May be adjusted so that the value of is 0.2 to 0.5.
[0150]
In addition, the temperature of carbonization (firing) of the granulated material was set to 800 ° C, but it may be a non-oxidizing atmosphere of 700 to 1500 ° C. Although the graphitization temperature was set at 2950 ° C., similar artificial graphite particles can be obtained by heating in a non-oxidizing atmosphere at 2500 to 3000 ° C. to sufficiently advance graphitization.
[0151]
In addition, as spherical graphite particles, particles B1 obtained by subjecting crushed flaky natural graphite to impact in a counter-type jet mill to form spheroidized and classified particles B1 or acicular coke powder are graphitized, and then similar spheroidized and classified. Was used, but the present invention is not limited to this. In particular, when natural graphite is used as a raw material, the largest reversible capacity can be obtained from graphite particles, and the graphitization step can be omitted, so that inexpensive particles can be obtained.
[0152]
This sphering means is not limited to the impact method in a counter-type jet mill, but can also be obtained by adding various improvements to the crushing equipment and conditions from the raw ore. 50 Is 5 to 15 μm, and spherical graphite particles having a large circularity of 0.88 to 1 can be obtained.
[0153]
In addition, the spherical graphite particles preferably have a BET specific surface area as low as possible from the viewpoint of safety (heat resistance) of the graphite negative electrode. Most preferred.
[0154]
In addition, in preparing the negative electrode active material, the mixing ratio of the spherical graphite particles B1 or B2 to the entire active material was set to 25% by weight. However, the same effect can be obtained if it is within the range of 5 to 45% by weight.
[0155]
In preparing the negative electrode mixture, styrene-butadiene rubber (SBR) was used as the rubbery binder. Butadiene, an aromatic vinyl monomer, and ethylenic rubber were used as rubbery binders composed of similar butadiene derivatives. A similar negative electrode can be prepared by using a rubbery polymer made of a copolymer with an unsaturated carboxylic acid ester monomer as a binder. Here, styrene, α-methylstyrene, etc. can be used as the aromatic vinyl monomer, and acrylates (eg, methyl acrylate, ethyl acrylate, propyl acrylate, etc.) are used as the ethylenically unsaturated carboxylic acid ester monomers. ) And methacrylates (eg, methyl methacrylate, ethyl methacrylate, propyl methacrylate).
[0156]
In addition, the addition amount of the rubber-like binder is set to 2% by weight based on the weight of the negative electrode active material. However, if the addition amount is, for example, 3% by weight or less, the battery can be manufactured without impairing the negative electrode characteristics.
[0157]
Further, the density of the mixture layer is 1.7 g / cm. 3 The negative electrode was produced by adjusting the rolling so that the thickness became 70 μm, but the mixture density was 1.6 to 1.8 g / cm. 3 When the thickness of the mixture is, for example, 40 to 100 μm, a lithium secondary battery having the same excellent characteristics can be manufactured.
[0158]
Further, the non-aqueous electrolytic solution has a concentration of 1.0 M in a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 2: 1. LiPF 6 Was used, but the present invention is not limited to this.
[0159]
【The invention's effect】
As described above, according to the present invention, the charge-discharge cycle characteristics of a high energy density lithium secondary battery can be significantly improved, and at the same time, the discharge rate characteristics, low-temperature discharge characteristics, and safety (heat resistance) can be improved. An excellent battery can be provided. Therefore, the industrial value is very large.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view of a lithium secondary battery manufactured in an example.
[Explanation of symbols]
1 Electrode group
2 Positive electrode lead
3 Negative electrode lead
4 Battery case
5 sealing plate
6 Negative electrode terminal
7 Sealing

Claims (7)

正極、負極および非水電解液からなるリチウム二次電池であって、
前記負極が、銅芯材および前記芯材上に固定された負極合剤層からなり、
前記負極合剤層が、人造黒鉛粒子Aと、球状黒鉛粒子Bとの混合物からなる活物質を含み、
前記人造黒鉛粒子Aは、黒鉛組織が粒子内でランダムに配向した等方性人造黒鉛粒子であって、
(1)粉末X線回折法で求められる(002)面の面間隔d002が3.362Å以下、
(2)密度1.6g/cmにペレット成形してX線回折測定を行った場合の回折パターンにおける(002)面に帰属されるピーク強度I002と(110)面に帰属されるピーク強度I110との比:I002/I110が1000以下、
(3)平均粒子円形度が0.85〜0.95、
(4)レーザー回折式粒度分布計を用いて測定した体積分率50%時の粒子径D50が15〜30μmで、体積分率10%時の粒子径D10と体積分率90%時の粒子径D90との比:D10/D90が0.2〜0.5、
(5)タップ密度が1g/cm以上、
(6)BET法を用いて測定した比表面積が1m/g以下であり、
前記球状黒鉛粒子Bは、
(1)平均粒子円形度が0.88〜1、
(2)レーザー回折式粒度分布計を用いて測定した体積分率50%時の粒子径D50が5〜15μm、
(3)粉末X線回折法で求められる(002)面の面間隔d002が3.357Å以下、
(4)BET法を用いて測定した比表面積が8m/g以下である
リチウム二次電池。
A lithium secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte,
The negative electrode comprises a copper core material and a negative electrode mixture layer fixed on the core material,
The negative electrode mixture layer includes an active material formed of a mixture of artificial graphite particles A and spherical graphite particles B,
The artificial graphite particles A are isotropic artificial graphite particles in which the graphite structure is randomly oriented in the particles,
(1) The plane distance d 002 of the (002) plane determined by the powder X-ray diffraction method is 3.362 ° or less.
(2) The peak intensity I 002 attributed to the (002) plane and the peak intensity attributed to the (110) plane in the diffraction pattern when a pellet is formed to a density of 1.6 g / cm 3 and subjected to X-ray diffraction measurement. Ratio to I 110 : I 002 / I 110 is 1000 or less,
(3) an average particle circularity of 0.85 to 0.95,
(4) a laser diffraction particle size distribution analyzer particle size D 50 when the volume fraction of 50% was measured using the in 15 to 30 [mu] m, the particle diameter D 10 when the volume fraction of 10% and the volume fraction of the time 90% the ratio of the particle diameter D 90: D 10 / D 90 is 0.2 to 0.5,
(5) Tap density is 1 g / cm 3 or more,
(6) The specific surface area measured by using the BET method is 1 m 2 / g or less,
The spherical graphite particles B are:
(1) an average particle circularity of 0.88 to 1,
(2) a particle diameter D50 at a volume fraction of 50% measured using a laser diffraction type particle size distribution analyzer of 5 to 15 μm,
(3) The plane distance d 002 of the (002) plane determined by the powder X-ray diffraction method is 3.357 ° or less.
(4) A lithium secondary battery having a specific surface area of not more than 8 m 2 / g measured using the BET method.
前記人造黒鉛粒子Aが、バルクメソフェーズピッチを粉砕して作製した基材と、軟化状態にあるピッチおよび/または熱硬化性樹脂とを、混練・造粒し、得られた造粒物を700〜1500℃で炭素化し、さらに2500〜3000℃で黒鉛化して得た粒子である請求項1記載のリチウム二次電池。The artificial graphite particles A are obtained by kneading and granulating a base material produced by pulverizing a bulk mesophase pitch and a pitch and / or thermosetting resin in a softened state. The lithium secondary battery according to claim 1, wherein the particles are obtained by carbonizing at 1500 ° C and further graphitizing at 2500 to 3000 ° C. 前記球状黒鉛粒子Bの前記活物質全体に占める混合比率が、5〜45重量%である請求項1または2記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein a mixing ratio of the spherical graphite particles B to the entire active material is 5 to 45% by weight. 前記正極と、前記負極とが、セパレータを介して捲回されて電極群を構成しており、角型の金属ケースあるいはアルミニウム箔と樹脂膜とのラミネートシートからなるケースに封入されている請求項1〜3のいずれかに記載のリチウム二次電池。The positive electrode and the negative electrode are wound around a separator to form an electrode group, and are enclosed in a square metal case or a case made of a laminate sheet of an aluminum foil and a resin film. The lithium secondary battery according to any one of claims 1 to 3. 前記負極合剤層が、さらに、ブタジエン単位を含むゴム状結着剤とセルロース系造粘剤とを含む請求項1〜4のいずれかに記載のリチウム二次電池。The lithium secondary battery according to any one of claims 1 to 4, wherein the negative electrode mixture layer further includes a rubbery binder containing a butadiene unit and a cellulosic thickener. 前記球状黒鉛粒子Bが、天然黒鉛粒子および/または部分的に表面だけを非晶質化する改質処理がなされた天然黒鉛粒子である請求項1〜5のいずれかに記載のリチウム二次電池。The lithium secondary battery according to any one of claims 1 to 5, wherein the spherical graphite particles B are natural graphite particles and / or natural graphite particles that have been modified to partially amorphize only the surface. . 前記ゴム状結着剤の添加量が、前記活物質100重量部に対して3重量部以下であり、前記負極合剤層の密度が、1.6〜1.8g/cmであり、前記負極合剤層の厚みが、40〜100μmである請求項5記載のリチウム二次電池。The amount of the rubbery binder is 3 parts by weight or less based on 100 parts by weight of the active material, the density of the negative electrode mixture layer is 1.6 to 1.8 g / cm 3 , The lithium secondary battery according to claim 5, wherein the thickness of the negative electrode mixture layer is 40 to 100 m.
JP2003160969A 2002-07-31 2003-06-05 Lithium secondary battery Expired - Fee Related JP4252846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003160969A JP4252846B2 (en) 2002-07-31 2003-06-05 Lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002223862 2002-07-31
JP2003160969A JP4252846B2 (en) 2002-07-31 2003-06-05 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004127913A true JP2004127913A (en) 2004-04-22
JP4252846B2 JP4252846B2 (en) 2009-04-08

Family

ID=32300710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003160969A Expired - Fee Related JP4252846B2 (en) 2002-07-31 2003-06-05 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4252846B2 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032688A (en) * 2003-07-11 2005-02-03 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2005149763A (en) * 2003-11-11 2005-06-09 Toshiba Corp Rectangular nonaqueous electrolyte secondary battery
WO2005078829A1 (en) * 2004-02-12 2005-08-25 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
JP2006059690A (en) * 2004-08-20 2006-03-02 Toshiba Corp Non-aqueous electrolyte secondary battery
WO2006025377A1 (en) * 2004-08-30 2006-03-09 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
JP2006221935A (en) * 2005-02-09 2006-08-24 Sony Corp Negative electrode and battery using it
JP2007018926A (en) * 2005-07-08 2007-01-25 Sony Corp Battery
JP2007042611A (en) * 2005-06-27 2007-02-15 Mitsubishi Chemicals Corp Graphite composite particle for non-aqueous secondary battery, negative electrode active material containing it, negative electrode, and non-aqueous secondary battery
JP2007134276A (en) * 2005-11-14 2007-05-31 Jfe Chemical Corp Negative electrode for lithium-ion secondary battery, method of manufacturing same, and lithium-ion secondary battery
JP2007157538A (en) * 2005-12-06 2007-06-21 Sony Corp Battery
JP2007173222A (en) * 2005-11-25 2007-07-05 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2009026514A (en) * 2007-07-18 2009-02-05 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2009238584A (en) * 2008-03-27 2009-10-15 Hitachi Chem Co Ltd Carbon particle for lithium-ion secondary battery anode, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2010526409A (en) * 2007-05-03 2010-07-29 エルエス エムトロン リミテッド Anode material for secondary battery and secondary battery using the same
JP2010527132A (en) * 2007-05-16 2010-08-05 エルエス エムトロン リミテッド Anode material for secondary battery and secondary battery using the same
WO2010110441A1 (en) * 2009-03-27 2010-09-30 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
WO2010110443A1 (en) * 2009-03-27 2010-09-30 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
JP2011175842A (en) * 2010-02-24 2011-09-08 Hitachi Chem Co Ltd Negative electrode material for lithium battery, negative electrode for lithium secondary battery, and lithium battery
US8034483B2 (en) 2007-03-29 2011-10-11 Tdk Corporation Anode and lithium-ion secondary battery
US8216718B2 (en) 2007-03-29 2012-07-10 Tdk Corporation Anode and lithium-ion secondary battery
JP2012146676A (en) * 2005-06-27 2012-08-02 Mitsubishi Chemicals Corp Graphite composite particle for nonaqueous secondary battery, negative electrode active material containing the same, negative electrode, and nonaqueous secondary battery
JP2012252841A (en) * 2011-06-01 2012-12-20 Nippon Steel & Sumikin Chemical Co Ltd Negative electrode for secondary battery, and secondary battery comprising the same
JP2013008654A (en) * 2011-05-26 2013-01-10 Shin Etsu Chem Co Ltd Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
JP2013211256A (en) * 2012-02-29 2013-10-10 Sony Corp Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2013225501A (en) * 2012-03-22 2013-10-31 Mitsubishi Chemicals Corp Composite carbon material for nonaqueous secondary battery, negative electrode, and nonaqueous secondary battery
JP2014017363A (en) * 2012-07-09 2014-01-30 Daido Metal Co Ltd Active material sheet, electrode using the same
JP2014035924A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
CN104577193A (en) * 2015-01-09 2015-04-29 潘珊 Method for improving energy density of lithium-ion power battery and lithium-ion power battery
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2015110507A (en) * 2013-11-07 2015-06-18 Jfeケミカル株式会社 Carbonaceous material-coated graphite particle production method, lithium ion secondary battery negative electrode, and lithium ion secondary battery
WO2015152113A1 (en) * 2014-03-31 2015-10-08 Necエナジーデバイス株式会社 Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery
JP2016509336A (en) * 2012-12-23 2016-03-24 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Graphite-containing electrode and related method
KR101618386B1 (en) * 2008-06-25 2016-05-18 미쓰비시 가가꾸 가부시키가이샤 Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
JP2016143448A (en) * 2015-01-29 2016-08-08 三菱化学株式会社 Carbon material for nonaqueous type secondary battery, negative electrode for nonaqueous type secondary battery, nonaqueous type secondary battery and method of manufacturing carbon material for nonaqueous secondary battery
US9525192B2 (en) 2012-07-24 2016-12-20 Toyota Jidosha Kabushiki Kaisha All solid state battery
JP2017062898A (en) * 2015-09-24 2017-03-30 三菱化学株式会社 Carbon material, and nonaqueous secondary battery
US9627682B2 (en) 2012-12-26 2017-04-18 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery including the same
CN107039654A (en) * 2017-03-24 2017-08-11 上海杉杉科技有限公司 A kind of preparation method of high power capacity long circulating artificial plumbago negative pole material
WO2018179934A1 (en) * 2017-03-30 2018-10-04 パナソニックIpマネジメント株式会社 Negative electrode material and nonaqueous electrolyte secondary battery
KR20190049585A (en) * 2017-10-30 2019-05-09 주식회사 엘지화학 An active material for an anode, an anode comprising the same and an electrochemical device comprising the same
WO2021019726A1 (en) * 2019-07-31 2021-02-04 昭和電工マテリアルズ株式会社 Method for producing negative electrode material for lithium ion secondary batteries and method for producing lithium ion secondary battery
JPWO2021019728A1 (en) * 2019-07-31 2021-02-04
CN113097474A (en) * 2021-03-30 2021-07-09 宁德新能源科技有限公司 Electrochemical device and electronic device
JP2021518042A (en) * 2018-12-17 2021-07-29 エルジー・ケム・リミテッド Negative electrode active material for secondary batteries, negative electrode containing it and its manufacturing method
WO2021112516A3 (en) * 2019-12-06 2021-07-29 주식회사 엘지에너지솔루션 Negative electrode active material, method for producing same, and negative electrode and secondary battery including same
CN113207314A (en) * 2019-12-03 2021-08-03 宁德时代新能源科技股份有限公司 Secondary battery, device, artificial graphite and preparation method
CN113226986A (en) * 2018-12-19 2021-08-06 株式会社Posco Method for preparing negative active material of lithium secondary battery
CN113690406A (en) * 2016-11-08 2021-11-23 株式会社Lg化学 Negative electrode and method for producing a negative electrode
JP2021536104A (en) * 2019-03-21 2021-12-23 寧徳新能源科技有限公司Ningde Amperex Technology Limited Negative electrode material, a negative electrode containing the negative electrode material, and an electrochemical device.
CN114132923A (en) * 2021-11-26 2022-03-04 中钢热能金灿新能源科技(湖州)有限公司 Preparation method of fast-charging graphite cathode material, product and application thereof
CN114171739A (en) * 2020-11-24 2022-03-11 宁德新能源科技有限公司 Electrochemical device and electronic device
CN114188626A (en) * 2021-11-05 2022-03-15 华中科技大学 Method for comprehensively separating and recycling materials in retired battery
EP4075544A1 (en) * 2021-04-15 2022-10-19 Prime Planet Energy & Solutions, Inc. Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032688A (en) * 2003-07-11 2005-02-03 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2005149763A (en) * 2003-11-11 2005-06-09 Toshiba Corp Rectangular nonaqueous electrolyte secondary battery
JP4599051B2 (en) * 2003-11-11 2010-12-15 株式会社東芝 Square non-aqueous electrolyte secondary battery
WO2005078829A1 (en) * 2004-02-12 2005-08-25 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
JP2006059690A (en) * 2004-08-20 2006-03-02 Toshiba Corp Non-aqueous electrolyte secondary battery
US8404383B2 (en) 2004-08-30 2013-03-26 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
JP2011238622A (en) * 2004-08-30 2011-11-24 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
KR101106966B1 (en) 2004-08-30 2012-01-20 도까이 카본 가부시끼가이샤 Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
WO2006025377A1 (en) * 2004-08-30 2006-03-09 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
JP4992425B2 (en) * 2004-08-30 2012-08-08 三菱化学株式会社 Non-aqueous secondary battery negative electrode material, non-aqueous secondary battery negative electrode, and non-aqueous secondary battery
JP4992426B2 (en) * 2004-08-30 2012-08-08 三菱化学株式会社 Non-aqueous secondary battery negative electrode material, non-aqueous secondary battery negative electrode, and non-aqueous secondary battery
WO2006025376A1 (en) * 2004-08-30 2006-03-09 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
JPWO2006025376A1 (en) * 2004-08-30 2008-05-08 三菱化学株式会社 Non-aqueous secondary battery negative electrode material, non-aqueous secondary battery negative electrode, and non-aqueous secondary battery
JPWO2006025377A1 (en) * 2004-08-30 2008-05-08 三菱化学株式会社 Non-aqueous secondary battery negative electrode material, non-aqueous secondary battery negative electrode, and non-aqueous secondary battery
US8673501B2 (en) 2005-02-09 2014-03-18 Sony Corporation Anode and battery using same
JP2006221935A (en) * 2005-02-09 2006-08-24 Sony Corp Negative electrode and battery using it
JP2012146676A (en) * 2005-06-27 2012-08-02 Mitsubishi Chemicals Corp Graphite composite particle for nonaqueous secondary battery, negative electrode active material containing the same, negative electrode, and nonaqueous secondary battery
JP2007042611A (en) * 2005-06-27 2007-02-15 Mitsubishi Chemicals Corp Graphite composite particle for non-aqueous secondary battery, negative electrode active material containing it, negative electrode, and non-aqueous secondary battery
JP2007018926A (en) * 2005-07-08 2007-01-25 Sony Corp Battery
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2007134276A (en) * 2005-11-14 2007-05-31 Jfe Chemical Corp Negative electrode for lithium-ion secondary battery, method of manufacturing same, and lithium-ion secondary battery
JP2007173222A (en) * 2005-11-25 2007-07-05 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007157538A (en) * 2005-12-06 2007-06-21 Sony Corp Battery
US8034483B2 (en) 2007-03-29 2011-10-11 Tdk Corporation Anode and lithium-ion secondary battery
US8216718B2 (en) 2007-03-29 2012-07-10 Tdk Corporation Anode and lithium-ion secondary battery
JP2010526409A (en) * 2007-05-03 2010-07-29 エルエス エムトロン リミテッド Anode material for secondary battery and secondary battery using the same
JP2010527132A (en) * 2007-05-16 2010-08-05 エルエス エムトロン リミテッド Anode material for secondary battery and secondary battery using the same
JP2009026514A (en) * 2007-07-18 2009-02-05 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2009238584A (en) * 2008-03-27 2009-10-15 Hitachi Chem Co Ltd Carbon particle for lithium-ion secondary battery anode, anode for lithium-ion secondary battery, and lithium-ion secondary battery
KR101618386B1 (en) * 2008-06-25 2016-05-18 미쓰비시 가가꾸 가부시키가이샤 Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
US8920977B2 (en) 2009-03-27 2014-12-30 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
WO2010110441A1 (en) * 2009-03-27 2010-09-30 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
WO2010110443A1 (en) * 2009-03-27 2010-09-30 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
JP2010251315A (en) * 2009-03-27 2010-11-04 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte battery using the same
JP2010251314A (en) * 2009-03-27 2010-11-04 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US8974969B2 (en) 2009-03-27 2015-03-10 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2014241302A (en) * 2009-03-27 2014-12-25 三菱化学株式会社 Negative electrode material for nonaqueous electrolytic secondary batteries, and nonaqueous electrolytic secondary battery arranged by use thereof
JP2011175842A (en) * 2010-02-24 2011-09-08 Hitachi Chem Co Ltd Negative electrode material for lithium battery, negative electrode for lithium secondary battery, and lithium battery
JP2013008654A (en) * 2011-05-26 2013-01-10 Shin Etsu Chem Co Ltd Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
JP2012252841A (en) * 2011-06-01 2012-12-20 Nippon Steel & Sumikin Chemical Co Ltd Negative electrode for secondary battery, and secondary battery comprising the same
JP2013211256A (en) * 2012-02-29 2013-10-10 Sony Corp Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2013225501A (en) * 2012-03-22 2013-10-31 Mitsubishi Chemicals Corp Composite carbon material for nonaqueous secondary battery, negative electrode, and nonaqueous secondary battery
JP2014017363A (en) * 2012-07-09 2014-01-30 Daido Metal Co Ltd Active material sheet, electrode using the same
US9525192B2 (en) 2012-07-24 2016-12-20 Toyota Jidosha Kabushiki Kaisha All solid state battery
JP2014035924A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US10944108B2 (en) 2012-12-23 2021-03-09 Raytheon Technologies Corporation Graphite-containing electrode and method related thereto
JP2016509336A (en) * 2012-12-23 2016-03-24 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Graphite-containing electrode and related method
US9627682B2 (en) 2012-12-26 2017-04-18 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery including the same
JP2015110507A (en) * 2013-11-07 2015-06-18 Jfeケミカル株式会社 Carbonaceous material-coated graphite particle production method, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JPWO2015152113A1 (en) * 2014-03-31 2017-04-13 Necエナジーデバイス株式会社 Graphite negative electrode active material, negative electrode and lithium ion secondary battery
WO2015152113A1 (en) * 2014-03-31 2015-10-08 Necエナジーデバイス株式会社 Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery
US10749179B2 (en) 2014-03-31 2020-08-18 Envision Aesc Energy Devices Ltd. Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery
CN104577193A (en) * 2015-01-09 2015-04-29 潘珊 Method for improving energy density of lithium-ion power battery and lithium-ion power battery
JP2016143448A (en) * 2015-01-29 2016-08-08 三菱化学株式会社 Carbon material for nonaqueous type secondary battery, negative electrode for nonaqueous type secondary battery, nonaqueous type secondary battery and method of manufacturing carbon material for nonaqueous secondary battery
JP2017062898A (en) * 2015-09-24 2017-03-30 三菱化学株式会社 Carbon material, and nonaqueous secondary battery
CN113690406A (en) * 2016-11-08 2021-11-23 株式会社Lg化学 Negative electrode and method for producing a negative electrode
CN113690406B (en) * 2016-11-08 2024-04-26 株式会社Lg新能源 Negative electrode and method for producing a negative electrode
CN107039654A (en) * 2017-03-24 2017-08-11 上海杉杉科技有限公司 A kind of preparation method of high power capacity long circulating artificial plumbago negative pole material
JPWO2018179934A1 (en) * 2017-03-30 2020-02-06 パナソニックIpマネジメント株式会社 Anode material and non-aqueous electrolyte secondary battery
JP7029680B2 (en) 2017-03-30 2022-03-04 パナソニックIpマネジメント株式会社 Negative electrode material and non-aqueous electrolyte secondary battery
US11362321B2 (en) 2017-03-30 2022-06-14 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material and non-aqueous electrolyte secondary battery
WO2018179934A1 (en) * 2017-03-30 2018-10-04 パナソニックIpマネジメント株式会社 Negative electrode material and nonaqueous electrolyte secondary battery
KR20190049585A (en) * 2017-10-30 2019-05-09 주식회사 엘지화학 An active material for an anode, an anode comprising the same and an electrochemical device comprising the same
KR102201335B1 (en) 2017-10-30 2021-01-11 주식회사 엘지화학 An active material for an anode, an anode comprising the same and an electrochemical device comprising the same
JP2021518042A (en) * 2018-12-17 2021-07-29 エルジー・ケム・リミテッド Negative electrode active material for secondary batteries, negative electrode containing it and its manufacturing method
JP7105910B2 (en) 2018-12-17 2022-07-25 エルジー エナジー ソリューション リミテッド Negative electrode active material for secondary battery, negative electrode containing the same, and method for producing the same
CN113226986B (en) * 2018-12-19 2023-11-17 浦项控股股份有限公司 Preparation method of lithium secondary battery negative electrode active material
CN113226986A (en) * 2018-12-19 2021-08-06 株式会社Posco Method for preparing negative active material of lithium secondary battery
JP7280942B2 (en) 2019-03-21 2023-05-24 寧徳新能源科技有限公司 Negative electrode materials and negative electrodes containing said negative electrode materials, and electrochemical devices
JP2021536104A (en) * 2019-03-21 2021-12-23 寧徳新能源科技有限公司Ningde Amperex Technology Limited Negative electrode material, a negative electrode containing the negative electrode material, and an electrochemical device.
WO2021019726A1 (en) * 2019-07-31 2021-02-04 昭和電工マテリアルズ株式会社 Method for producing negative electrode material for lithium ion secondary batteries and method for producing lithium ion secondary battery
JP7226559B2 (en) 2019-07-31 2023-02-21 株式会社レゾナック Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
JPWO2021019728A1 (en) * 2019-07-31 2021-02-04
JPWO2021019726A1 (en) * 2019-07-31 2021-02-04
WO2021019728A1 (en) * 2019-07-31 2021-02-04 昭和電工マテリアルズ株式会社 Method for manufacturing negative electrode material for lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP7226558B2 (en) 2019-07-31 2023-02-21 株式会社レゾナック Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
CN113207314A (en) * 2019-12-03 2021-08-03 宁德时代新能源科技股份有限公司 Secondary battery, device, artificial graphite and preparation method
WO2021112516A3 (en) * 2019-12-06 2021-07-29 주식회사 엘지에너지솔루션 Negative electrode active material, method for producing same, and negative electrode and secondary battery including same
EP4033570A4 (en) * 2019-12-06 2022-11-23 Lg Energy Solution, Ltd. Negative electrode active material, method for producing same, and negative electrode and secondary battery including same
CN114171739A (en) * 2020-11-24 2022-03-11 宁德新能源科技有限公司 Electrochemical device and electronic device
CN113097474A (en) * 2021-03-30 2021-07-09 宁德新能源科技有限公司 Electrochemical device and electronic device
JP2022163915A (en) * 2021-04-15 2022-10-27 プライムプラネットエナジー&ソリューションズ株式会社 Negative electrode for non-aqueous electrolyte solution secondary battery and non-aqueous electrolyte solution secondary battery
EP4075544A1 (en) * 2021-04-15 2022-10-19 Prime Planet Energy & Solutions, Inc. Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7271598B2 (en) 2021-04-15 2023-05-11 プライムプラネットエナジー&ソリューションズ株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN114188626B (en) * 2021-11-05 2023-03-10 华中科技大学 Method for comprehensively separating and recycling materials in retired battery
CN114188626A (en) * 2021-11-05 2022-03-15 华中科技大学 Method for comprehensively separating and recycling materials in retired battery
CN114132923A (en) * 2021-11-26 2022-03-04 中钢热能金灿新能源科技(湖州)有限公司 Preparation method of fast-charging graphite cathode material, product and application thereof

Also Published As

Publication number Publication date
JP4252846B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP4252846B2 (en) Lithium secondary battery
KR100567113B1 (en) Lithium secondary battery
JP6683213B2 (en) Anode material for lithium-ion secondary battery, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP4161376B2 (en) Non-aqueous electrolyte secondary battery
JP3191394B2 (en) Manufacturing method of non-aqueous secondary battery and its negative electrode plate
JP4446510B2 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery
US8394530B2 (en) Carbon material and a process for its manufacture
JP7147732B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5346962B2 (en) Graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6256346B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20130094853A (en) Anode material for lithium ion rechargeable battery, anode for lithium ion rechargeable battery, and lithium ion rechargeable battery
WO2013118757A1 (en) Carbonaceous material for non-aqueous electrolyte secondary battery
WO2013084506A1 (en) Composite graphite particles and use of same
WO2008026380A1 (en) Carbon material for negative electrode for lithium ion rechargeable battery, carbon material for negative electrode for low crystalline carbon-impregnated lithium ion rechargeable battery, negative electrode plate, and lithium ion rechargeable battery
JPH10189044A (en) Nonaqueous electrolytic secondary battery
JP2022550820A (en) Spherical carbon-based negative electrode active material, manufacturing method thereof, negative electrode containing same, and lithium secondary battery
JP2007141677A (en) Compound graphite and lithium secondary cell using same
JP2019175851A (en) Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor
JP5061718B2 (en) Carbon material powder and method for producing the same
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011060467A (en) Negative electrode material for lithium ion secondary battery and method for manufacturing the same
JP2004196609A (en) Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
JPH10294111A (en) Graphite carbon material coated with graphite for lithium secondary battery negative electrode material and its manufacture
JP3716830B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP2000003708A (en) Coated carbon material, manufacture thereof and lithium secondary battery using the material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees