JP2010526409A - Anode material for secondary battery and secondary battery using the same - Google Patents

Anode material for secondary battery and secondary battery using the same Download PDF

Info

Publication number
JP2010526409A
JP2010526409A JP2010506019A JP2010506019A JP2010526409A JP 2010526409 A JP2010526409 A JP 2010526409A JP 2010506019 A JP2010506019 A JP 2010506019A JP 2010506019 A JP2010506019 A JP 2010506019A JP 2010526409 A JP2010526409 A JP 2010526409A
Authority
JP
Japan
Prior art keywords
negative electrode
carbon
secondary battery
core material
sphericity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010506019A
Other languages
Japanese (ja)
Inventor
キョン−ヒー ハン,
ジョン−ハン オー,
ジョン−サン キム,
チュル ユム,
ジョン−ミン ハン,
Original Assignee
エルエス エムトロン リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルエス エムトロン リミテッド filed Critical エルエス エムトロン リミテッド
Publication of JP2010526409A publication Critical patent/JP2010526409A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【構成】本発明は、二次電池用負極材及びこれを用いた二次電池に関する。本発明の二次電池用負極材は、球形化度が10超過100以下である第1芯材の炭素材料及び球形化度が0超過10以下である第2芯材の炭素材料の混合物であって、上記第1芯材の炭素材料と第2芯材の炭素材料との混合重量比が1:1ないし9:1であることを特徴とする。
【効果】本発明によれば、電極製造時に圧着工程中に負極材が割れる現象を緩和して、初期の高い容量を維持しながら、電池の効率及びサイクル特性を向上させることができる。
【選択図】なし
The present invention relates to a negative electrode material for a secondary battery and a secondary battery using the same. The negative electrode material for a secondary battery according to the present invention is a mixture of a carbon material of the first core material having a sphericity of more than 10 and less than 100 and a carbon material of a second core material having a sphericity of more than 0 and less than 10. The mixing weight ratio of the carbon material of the first core material and the carbon material of the second core material is 1: 1 to 9: 1.
According to the present invention, it is possible to alleviate the phenomenon that the negative electrode material breaks during the crimping process during electrode manufacturing, and to improve the efficiency and cycle characteristics of the battery while maintaining the initial high capacity.
[Selection figure] None

Description

本発明は、二次電池用負極材及びこれを用いた二次電池に関するものであって、より詳しくは、球形化度が10超過100以下である第1芯材の炭素材料及び球形化度が0超過10以下である第2芯材の炭素材料を混合して用いることで、電極製造時に圧着工程によって負極材が割れる現象を緩和して、初期の高い容量を維持しながら電池の効率及びサイクル特性を向上させることができる二次電池用負極材及びこれを用いた二次電池に関する。   The present invention relates to a negative electrode material for a secondary battery and a secondary battery using the same, and more specifically, the carbon material and the sphericity of the first core material having a sphericity of more than 10 and less than 100. By mixing and using a carbon material of the second core material that is greater than 0 and 10 or less, the phenomenon of the negative electrode material cracking by the crimping process during electrode production is alleviated, and the efficiency and cycle of the battery while maintaining the initial high capacity The present invention relates to a negative electrode material for a secondary battery capable of improving characteristics and a secondary battery using the same.

ビデオカメラ、無線電話機、携帯電話、ノートPCなど各種の携帯用電子機器が日常生活に急速に普及しつつ電源供給源として用いられる二次電池の需要が大きく増加している。その中でもリチウム二次電池は、容量が大きくてエネルギー密度の高い、優れた電池特性のため現在二次電池の中で最も広範囲に用いられている。
リチウム二次電池は基本的に正極と負極及び電解質からなり、したがってリチウム二次電池に対する研究開発は大きく、正極及び負極材料、電解質に関する研究に分けられる。
このうちリチウム二次電池の負極材料として用いられている天然黒鉛は、初期容量は優れているが、効率とサイクル容量とが劣るという特性がある。これは、高結晶性の天然黒鉛のエッジ部分で発生する電解液の分解反応によると知られている。
Various types of portable electronic devices such as video cameras, wireless telephones, cellular phones, and notebook PCs are rapidly spreading in daily life, and the demand for secondary batteries used as a power supply source is greatly increasing. Among them, lithium secondary batteries are currently used in the widest range of secondary batteries because of their excellent battery characteristics with large capacity and high energy density.
A lithium secondary battery basically includes a positive electrode, a negative electrode, and an electrolyte. Therefore, research and development on a lithium secondary battery is largely divided into research on a positive electrode, a negative electrode material, and an electrolyte.
Among these, natural graphite used as a negative electrode material for lithium secondary batteries has excellent initial capacity, but is inefficient in efficiency and cycle capacity. This is known to be due to the decomposition reaction of the electrolytic solution generated at the edge portion of highly crystalline natural graphite.

このような問題点を克服するため、日本特開第2002‐084836号公報(特許文献1)は、芯材の炭素材の結晶のエッジ部分の一部または全部を被覆形成用炭素材料で被覆した黒鉛の特性に対して開示している。上記特許は、負極材の製造時に特性向上のための被覆形成技術に対して開示している。しかし、上記特許は、球形化度が相違なる炭素材料を混合して特性を改善する技術に対する言及は全くない。   In order to overcome such problems, Japanese Patent Laid-Open No. 2002-084836 (Patent Document 1) coats a part or all of the edge portion of the carbon material crystal of the core material with a carbon material for coating formation. Disclosed for the properties of graphite. The above patent discloses a coating forming technique for improving characteristics during the production of a negative electrode material. However, in the above patent, there is no mention of a technique for improving characteristics by mixing carbon materials having different sphericity degrees.

また、上記天然黒鉛は、負極材そのもののエッジだけでなく、電極製造時に圧着工程で負極材が形状を維持できず、割れてエッジを増加させる。従って、上記陰極材料として天然黒鉛を用いた電池の効率とサイクル特性の劣化がより激しくなる。   Further, the natural graphite is not only the edge of the negative electrode material itself, but also the shape of the negative electrode material cannot be maintained in the pressure-bonding process at the time of electrode production, and cracks to increase the edge. Accordingly, the efficiency and cycle characteristics of the battery using natural graphite as the cathode material are further deteriorated.

したがって、上述した従来技術の問題点を解決するための努力が関連業界で持続してきており、このような技術的背景の下で本発明が案出された。   Therefore, efforts to solve the above-mentioned problems of the prior art have been sustained in related industries, and the present invention has been devised under such a technical background.

日本特開第2002‐084836号公報Japanese Unexamined Patent Publication No. 2002-084836

本発明が解決しようとする技術的課題は、陰極材料として天然黒鉛を用いる場合、電池の効率とサイクル特性とが低下する現象を解決することにあり、このような技術的課題が達成できる二次電池用負極材及びこれを用いた二次電池を提供することに本発明の目的がある。   The technical problem to be solved by the present invention is to solve the phenomenon in which the efficiency and cycle characteristics of the battery are lowered when natural graphite is used as the cathode material. It is an object of the present invention to provide a negative electrode material for a battery and a secondary battery using the same.

本発明が解決しようとする技術的課題を達成するための二次電池用負極材は、球形化度が10超過100以下である第1芯材の炭素材料及び球形化度が0超過10以下である第2芯材の炭素材料の混合物からなり、上記第1芯材の炭素材料と第2芯材の炭素材料との混合重量比は1:1ないし9:1であることを特徴とする。   The negative electrode material for a secondary battery for achieving the technical problem to be solved by the present invention includes a carbon material of the first core material having a sphericity of more than 10 and less than 100 and a sphericity of more than 0 and less than 10 It is made of a mixture of carbon materials of a second core material, and the mixing weight ratio of the carbon material of the first core material and the carbon material of the second core material is 1: 1 to 9: 1.

上記第1芯材の炭素材料は、球状の天然黒鉛であることが望ましい。
上記第2芯材の炭素材料は、板状の天然黒鉛であることが望ましい。
また、上記第1芯材の炭素材料または第2芯材の炭素材料は、それぞれの表面に低結晶性炭素を被覆することができる。
The carbon material of the first core material is preferably spherical natural graphite.
The carbon material of the second core material is preferably plate-like natural graphite.
Moreover, the carbon material of the said 1st core material or the carbon material of the 2nd core material can coat | cover low crystalline carbon on each surface.

本発明が解決しようとする技術的課題を達成するための二次電池は、上述した負極材で製造された負極を備えることを特徴とする。   A secondary battery for achieving the technical problem to be solved by the present invention is characterized by including a negative electrode made of the negative electrode material described above.

発明の実施のための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の望ましい実施例を詳しく説明する。これに先立って、本明細書及び請求範囲に使われた用語や単語は通常的や辞書的な意味に限定して解釈されてはならず、発明者は自らの発明を最善の方法で説明するために用語の概念を適切に定義することができるという原則に則して、本発明の技術的思想に符合する意味と概念とに解釈されなければならない。従って、本明細書に記載された実施例は本発明の最も望ましい一実施例に過ぎず、本発明の技術的思想の全てを代弁するものではないため、本出願時点においてこれらに代替できる多様な均等物と変形例があり得ることを理解しなければならない。   Hereinafter, preferred embodiments of the present invention will be described in detail. Prior to this, terms and words used in the specification and claims should not be construed to be limited to ordinary or lexicographic meanings, and the inventor will best explain his invention. Therefore, in accordance with the principle that the concept of a term can be appropriately defined, it should be interpreted as a meaning and a concept consistent with the technical idea of the present invention. Therefore, the embodiment described in the present specification is only the most preferred embodiment of the present invention, and does not represent all the technical ideas of the present invention. It should be understood that there can be equivalents and variations.

本発明においては、従来の天然黒鉛に低結晶性炭素を被覆する工程以外に、球形化度が相違なる芯材の炭素材料を混合することで、圧着工程で発生する負極材の割れ現象を緩和し、電池の充・放電テストを通じて電池の効率とサイクル特性とが向上することを確認した。   In the present invention, in addition to the conventional process of coating low-crystalline carbon on natural graphite, the cracking phenomenon of the negative electrode material that occurs in the crimping process is mitigated by mixing the core carbon material with a different degree of spheroidization. Through the battery charge / discharge test, it was confirmed that the battery efficiency and cycle characteristics were improved.

以下、本発明で説明する球形化度は、X線回折を用いて黒鉛材料の110面と004面の強度(intensity)を測定し下記数式1に従って求める。   Hereinafter, the degree of spheroidization described in the present invention is determined according to the following formula 1 by measuring the intensities of the 110 and 004 planes of the graphite material using X-ray diffraction.

Figure 2010526409
Figure 2010526409

本発明の二次電池用負極材は、球形化度が10超過100以下である第1芯材の炭素材料及び球形化度が0超過10以下である第2芯材の炭素材料の混合物であって、上記第1芯材の炭素材料と第2芯材の炭素材料との混合重量比は1:1ないし9:1であることを特徴とする。   The negative electrode material for a secondary battery according to the present invention is a mixture of a carbon material of the first core material having a sphericity of more than 10 and less than 100 and a carbon material of a second core material having a sphericity of more than 0 and less than 10. The mixing weight ratio of the carbon material of the first core material and the carbon material of the second core material is 1: 1 to 9: 1.

上記第1芯材の炭素材料は、球形の天然黒鉛であることが望ましい。上記第1芯材の炭素材料の球形化度が上記数値範囲を満たす場合には、陰極活物質と電解液との副反応が適正レベルに維持できて望ましい。また、上記第1芯材の炭素材料が球形の形状を有する天然黒鉛である場合には、電解液との副反応が適正レベルで発生して、陰極活物質の充填密度が適切であるので望ましい。   The carbon material of the first core material is preferably spherical natural graphite. When the spheroidization degree of the carbon material of the first core material satisfies the above numerical range, it is desirable that the side reaction between the cathode active material and the electrolytic solution can be maintained at an appropriate level. Further, when the carbon material of the first core material is natural graphite having a spherical shape, a side reaction with the electrolytic solution occurs at an appropriate level, and the filling density of the cathode active material is appropriate, which is desirable. .

上記第2芯材の炭素材料は、板状の天然黒鉛であることが望ましい。上記第2芯材の炭素材料の球形化度が上記数値範囲を満たす場合には、芯材の炭素材料の混合時に発生する特性向上の効果が十分であるので望ましい。また、上記第2芯材の炭素材料が板状の天然黒鉛である場合には、芯材の炭素材料の混合で得られる特性向上の効果、特に圧着特性の効果を適切に奏することができるので望ましい。   The carbon material of the second core material is preferably plate-like natural graphite. When the sphericity of the carbon material of the second core material satisfies the above numerical range, it is desirable because the effect of improving characteristics generated when the carbon material of the core material is mixed is sufficient. Further, when the carbon material of the second core material is a plate-like natural graphite, the effect of improving the characteristics obtained by mixing the carbon material of the core material, particularly the effect of the pressure-bonding characteristics can be appropriately achieved. desirable.

上記のような第1芯材の炭素材料と第2芯材の炭素材料とは1:1ないし9:1の重量比で混合して用いることが望ましい。上記球形化度が相違なる芯材の炭素材料の混合割合が上記範囲を満たす場合には、芯材の炭素材料の混合効果を充分に奏することができ、不要な電解液の副反応が発生しないので望ましい。   The carbon material of the first core material and the carbon material of the second core material as described above are desirably mixed and used at a weight ratio of 1: 1 to 9: 1. When the mixing ratio of the carbon material of the core material having a different degree of spheroidization satisfies the above range, the mixing effect of the carbon material of the core material can be sufficiently exerted, and unnecessary side reaction of the electrolyte does not occur. So desirable.

また、上記のような第1芯材の炭素材料と第2芯材の炭素材料とは、必要に応じて、ある一方または両方を低結晶性炭素で被覆できる。
上記低結晶性炭素材としては、ピッチ、タール、フェノール樹脂、フラン樹脂、フルフリルアルコールなどを用いることができる。このとき、電池の効率とサイクル特性は、低結晶性炭素と芯材の炭素材料との表面エネルギーの比に応じて異なる。従って、低結晶性炭素の種類を適切に選択することが好ましい。
In addition, one or both of the carbon material of the first core material and the carbon material of the second core material can be coated with low crystalline carbon as necessary.
As the low crystalline carbon material, pitch, tar, phenol resin, furan resin, furfuryl alcohol, or the like can be used. At this time, the efficiency and cycle characteristics of the battery differ depending on the ratio of the surface energy between the low crystalline carbon and the core carbon material. Therefore, it is preferable to appropriately select the kind of low crystalline carbon.

上記芯材の炭素材料は、以下のような方法により被覆できる。
まず、低結晶性炭素と芯材の炭素材料とを混合して乾式撹拌する。次いで、上記混合物を800ないし3,000℃の温度で1ないし5時間焼成し、分級して微粉を除去することで製造できる。このように表面が被覆された芯材の炭素材料は、芯材の炭素材料のエッジ部分の一部または全部が低結晶性炭素で被覆される。
The core carbon material can be coated by the following method.
First, the low crystalline carbon and the core carbon material are mixed and dry-stirred. Next, the mixture can be produced by baking at a temperature of 800 to 3,000 ° C. for 1 to 5 hours, and classification to remove fine powder. In the carbon material of the core material whose surface is coated in this way, part or all of the edge portion of the carbon material of the core material is coated with low crystalline carbon.

上記のように製造した負極材を含む極板製造用スラリーには、必要に応じて、選択的に導電材やバインダーを少量で添加することができる。
上記導電材やバインダーの使用含量は、当業界で通常用いられる程度に適切に調節して用いることができ、その範囲が本発明に影響を及ぼすことではない。
A conductive material and a binder can be selectively added in a small amount, if necessary, to the slurry for producing an electrode plate containing the negative electrode material produced as described above.
The use amount of the conductive material and the binder can be appropriately adjusted and used as much as is normally used in the art, and the range does not affect the present invention.

上記導電材としては、構成された電池内で化学変化を起こさない電子伝導性材料であれば何れも使用可能である。例えば、上記導電材としては、アセチレンブラック、ケッチェンブラック、ファーネスブラック、サーマルブラックなどのようなカーボンブラック;天然黒鉛;人造黒鉛;導電性炭素繊維;などがあり、特にカーボンブラック、黒鉛粉末または炭素繊維を用いることが望ましい。   As the conductive material, any electronic conductive material that does not cause a chemical change in the battery constructed can be used. For example, examples of the conductive material include carbon black such as acetylene black, ketjen black, furnace black, and thermal black; natural graphite; artificial graphite; conductive carbon fiber; and particularly carbon black, graphite powder, or carbon. It is desirable to use fibers.

上記バインダーとしては、熱可塑性樹脂、熱硬化性樹脂またはこれらの混合物を用いることができる。上記バインダーは、特にポリフッ化ビニリデン(PVDF)またはポリテトラフルオロエチレン(PTFE)を用いることが望ましく、さらに望ましくは、ポリフッ化ビニリデンを用いることができる。   As the binder, a thermoplastic resin, a thermosetting resin, or a mixture thereof can be used. The binder is preferably polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE), and more preferably polyvinylidene fluoride.

上記のように負極材と、選択的に導電材及びバインダーのうち少なくとも何れか一つとを含む極板製造用スラリーを電極集電体に塗布した後乾燥させて溶媒や分散媒などを除去することで、集電体に負極材が結着されるとともに負極材間が結着される。   As described above, a slurry for producing an electrode plate containing a negative electrode material and optionally at least one of a conductive material and a binder is applied to an electrode current collector and then dried to remove a solvent, a dispersion medium, or the like. Thus, the negative electrode material is bound to the current collector and the negative electrode material is bound.

上記電極集電体としては、導電性材料からなったものであれば特に制限されないが、特に銅、金、ニッケル、銅合金またはこれらの組み合わせによって製造されたホイルを用いることが望ましい。   The electrode current collector is not particularly limited as long as it is made of a conductive material. In particular, it is desirable to use a foil manufactured from copper, gold, nickel, a copper alloy, or a combination thereof.

また本発明は、正極、負極、両電極間に介在された分離膜及び電解質を含む二次電池において、上述した製造方法に従って作られた負極材で製造された上記負極を備えることを特徴とする。   In addition, the present invention is a secondary battery including a positive electrode, a negative electrode, a separation membrane interposed between the two electrodes, and an electrolyte, comprising the negative electrode manufactured using the negative electrode material manufactured according to the manufacturing method described above. .

本発明の二次電池は、当技術分野に公知の常法に従って正極と負極との間に多孔性分離膜を入れ、電解質を注入して製造できる。
上記電解質は、リチウム塩と電解液化合物とを含む非水電解液であって、リチウム塩としては、LiClO、LiCFSO、LiPF、LiBF、LiAsF及びLiN(CFSOからなる群より選択された1種以上の化合物を用いることができる。また、電解液化合物としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ-ブチロラクトン(GBL)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)及びメチルプロピルカーボネート(MPC)からなる群より選択された1種以上の化合物を用いることができる。
The secondary battery of the present invention can be manufactured by inserting a porous separation membrane between a positive electrode and a negative electrode and injecting an electrolyte according to a conventional method known in the art.
The electrolyte is a non-aqueous electrolyte containing a lithium salt and an electrolyte solution compound. As the lithium salt, LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6 and LiN (CF 3 SO 2 ). One or more compounds selected from the group consisting of 2 can be used. Examples of the electrolyte compound include ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (GBL), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and methyl propyl carbonate ( One or more compounds selected from the group consisting of MPC) can be used.

本発明の電池分離膜は、多孔性分離膜であることが望ましく、その例としては、ポリプロピレン系、ポリエチレン系、ポリオレフイン系の多孔性分離膜などがある。
本発明の二次電池は、その外形に制限がなく多様な形態に製造でき、その例としては、缶を用いた円筒形、角形、ポーチ型、コイン形などがある。
[実施例]
以下、本発明の理解を助けるために、望ましい実施例とこれに対比する比較例とを挙げてより詳しく説明する。
The battery separation membrane of the present invention is preferably a porous separation membrane, and examples thereof include polypropylene-based, polyethylene-based, and polyolefin-based porous separation membranes.
The secondary battery of the present invention can be manufactured in various forms without limitation on the outer shape, and examples thereof include a cylindrical shape using a can, a square shape, a pouch shape, and a coin shape.
[Example]
Hereinafter, in order to help understanding of the present invention, preferred examples and comparative examples for comparison will be described in more detail.

以下、実施例と比較例の球形化度は、X線回折分析器を用いて測定した。このとき、スキャン範囲は20〜80゜であり、ステップサイズは0.02゜であり、スキャン速度は0.4s/stepにした。また、標準物質はSi粉末(−325mesh,99%)にした。各サンプルにSi粉末を約15〜20重量%で混合した後測定したデータのピーク位置を、Si粉末のみ測定したデータを用いて補正した。このような方法で測定したXRDデータを用いて、110面を示すピーク(77.6゜)と004面を示すピーク(53.2〜54.7゜)の強度値で球形化度を求めた。
実施例1
球状の天然黒鉛に20重量%のピッチを高速で約10分間乾式混合して混合物を製造した。この混合物を1,100℃と2,200℃でそれぞれ1時間1・2次焼成し、分級して微粉を除去して球形化度が37.1である負極材を製造した。このとき、上記球形化度は、XRD分析を通じて求めた。上記球形化度が37.1である負極材90重量%に、球形化度が5.3である天然黒鉛10重量%を低速で乾式混合した。
Hereinafter, the sphericity of Examples and Comparative Examples was measured using an X-ray diffraction analyzer. At this time, the scan range was 20 to 80 °, the step size was 0.02 °, and the scan speed was 0.4 s / step. The standard material was Si powder (-325 mesh, 99%). The peak position of data measured after mixing Si powder with each sample at about 15 to 20% by weight was corrected using data obtained by measuring only Si powder. Using the XRD data measured by such a method, the degree of spheroidization was determined by the intensity values of the peak indicating the 110 plane (77.6 °) and the peak indicating the 004 plane (53.2 to 54.7 °). .
Example 1
A spherical natural graphite was dry-mixed with a pitch of 20% by weight at high speed for about 10 minutes to produce a mixture. This mixture was subjected to primary and secondary firing for 1 hour at 1,100 ° C. and 2,200 ° C. for 1 hour, respectively, and fine powder was removed to produce a negative electrode material having a sphericity of 37.1. At this time, the sphericity was obtained through XRD analysis. 10% by weight of natural graphite having a sphericity of 5.3 was dry mixed at a low speed with 90% by weight of the negative electrode material having a sphericity of 37.1.

このように相違なる球形化度を有する炭素材料を混合した負極材100gを500mlの反応器に入れ、少量のN‐メチルピロリドン(NMP)と、バインダーとしてポリフッ化ビニリデン(PVDF)とを投入した。次いで、上記混合物をミキサーを用いて混練して極板製造用スラリーを製造した。次いで、上記製造した極板製造用スラリーを銅ホイル上に圧着・乾燥して電極として用いた。
実施例2
上記実施例1において、球形化度が37.1である天然黒鉛を80%で用い、球形化度が5.3である天然黒鉛を20重量%で用いたことを除いては、上記実施例1と同一の方法で製造した。
実施例3
上記実施例1において、球形化度が37.1である天然黒鉛を70%で用い、球形化度が5.3である天然黒鉛を30重量%で用いたことを除いては、上記実施例1と同一の方法で製造した。
実施例4
上記実施例1において、球形化度が37.1である天然黒鉛を60%で用い、球形化度が5.3である天然黒鉛を40重量%で用いたことを除いては、上記実施例1と同一の方法で製造した。
実施例5
上記実施例1において、球形化度が37.1である天然黒鉛を50%で用い、球形化度が5.3である天然黒鉛を50重量%で用いたことを除いては、上記実施例1と同一の方法で製造した。
実施例6
球状の天然黒鉛に10重量%のピッチを高速で約10分間乾式混合して混合物を製造した。この混合物を1,100℃と2,200℃でそれぞれ1時間1・2次焼成し、分級して微粉を除去して球形化度が37.1である負極材を製造した。このとき、上記球形化度はXRD分析を通じて求めた。
Thus, 100 g of the negative electrode material mixed with carbon materials having different spheroidization degrees was put into a 500 ml reactor, and a small amount of N-methylpyrrolidone (NMP) and polyvinylidene fluoride (PVDF) as a binder were added. Subsequently, the said mixture was knead | mixed using the mixer and the slurry for electrode plate manufacture was manufactured. Next, the prepared slurry for producing an electrode plate was pressure-bonded and dried on a copper foil and used as an electrode.
Example 2
In Example 1 above, natural graphite having a sphericity of 37.1 was used at 80%, and natural graphite having a sphericity of 5.3 was used at 20% by weight. 1 in the same manner.
Example 3
In Example 1 above, natural graphite having a sphericity of 37.1 was used at 70%, and natural graphite having a sphericity of 5.3 was used at 30% by weight. 1 in the same manner.
Example 4
In Example 1 above, natural graphite having a sphericity of 37.1 was used at 60%, and natural graphite having a sphericity of 5.3 was used at 40% by weight. 1 in the same manner.
Example 5
In Example 1 above, natural graphite having a sphericity of 37.1 was used at 50%, and natural graphite having a sphericity of 5.3 was used at 50% by weight. 1 in the same manner.
Example 6
A spherical natural graphite was dry-mixed with 10% by weight pitch at high speed for about 10 minutes to produce a mixture. This mixture was subjected to primary and secondary firing for 1 hour at 1,100 ° C. and 2,200 ° C. for 1 hour, respectively, and fine powder was removed to produce a negative electrode material having a sphericity of 37.1. At this time, the sphericity was determined through XRD analysis.

次いで、板状の天然黒鉛に5重量%のピッチを高速で約10分間乾式混合して混合物を製造した。この混合物を1,100℃で1時間1次焼成し、分級して微粉を除去して球形化度が8.9である負極材を製造した。   Next, a plate-like natural graphite was dry-mixed at a high speed with 5 wt% pitch for about 10 minutes to produce a mixture. This mixture was primarily fired at 1,100 ° C. for 1 hour, classified to remove fine powder, and a negative electrode material having a sphericity of 8.9 was produced.

上記球形化度が37.1である天然黒鉛90重量%と、球形化度が8.9である天然黒鉛10重量%を低速で乾式混合した。
このように相違なる球形化度を有する炭素材料を混合した負極材100gを500mlの反応器に入れ、少量のN‐メチルピロリドン(NMP)と、バインダーとしてポリフッ化ビニリデン(PVDF)とを投入した。次いで、上記混合物をミキサーを用いて混練して極板製造用スラリーを製造した。次いで、上記製造した極板製造用スラリーを銅ホイル上に圧着・乾燥して電極として用いた。
比較例1
球状の天然黒鉛に20重量%のピッチを高速で約10分間乾式混合して混合物を製造した。この混合物を1,100℃と2,200℃でそれぞれ1時間1・2次焼成し、分級して微粉を除去して球形化度が37.1である負極材を製造した。このとき、上記球形化度はXRD分析を通じて測定した。
90% by weight of natural graphite having a sphericity of 37.1 and 10% by weight of natural graphite having a sphericity of 8.9 were dry mixed at a low speed.
Thus, 100 g of the negative electrode material mixed with carbon materials having different spheroidization degrees was put into a 500 ml reactor, and a small amount of N-methylpyrrolidone (NMP) and polyvinylidene fluoride (PVDF) as a binder were added. Subsequently, the said mixture was knead | mixed using the mixer and the slurry for electrode plate manufacture was manufactured. Next, the prepared slurry for producing an electrode plate was pressure-bonded and dried on a copper foil and used as an electrode.
Comparative Example 1
A spherical natural graphite was dry-mixed with a pitch of 20% by weight at high speed for about 10 minutes to produce a mixture. This mixture was subjected to primary and secondary firing for 1 hour at 1,100 ° C. and 2,200 ° C. for 1 hour, respectively, and fine powder was removed to produce a negative electrode material having a sphericity of 37.1. At this time, the sphericity was measured through XRD analysis.

上記負極材100gを500mlの反応器に入れ、少量のN‐メチルピロリドン(NMP)と、バインダーとしてポリフッ化ビニリデン(PVDF)とを投入した。次いで、上記混合物をミキサーを用いて混練して極板製造用スラリーを製造した。次いで、上記製造した極板製造用スラリーを銅ホイル上に圧着・乾燥して電極として用いた。
比較例2
球状の天然黒鉛に15重量%のピッチを高速で約10分間乾式混合して混合物を製造したことを除いては、上記実施例1と同一の方法で製造した。
上記実施例1ないし6と比較例1及び2で製造した電極を用いてコインセルを製造した。次いで、以下のような方法で電池の充・放電特性を評価し、その結果を下記表1に示した。
100 g of the negative electrode material was placed in a 500 ml reactor, and a small amount of N-methylpyrrolidone (NMP) and polyvinylidene fluoride (PVDF) as a binder were added. Subsequently, the said mixture was knead | mixed using the mixer and the slurry for electrode plate manufacture was manufactured. Next, the prepared slurry for producing an electrode plate was pressure-bonded and dried on a copper foil and used as an electrode.
Comparative Example 2
A spherical natural graphite was produced in the same manner as in Example 1 except that 15 wt% pitch was dry-mixed at high speed for about 10 minutes to produce a mixture.
A coin cell was manufactured using the electrodes manufactured in Examples 1 to 6 and Comparative Examples 1 and 2. Next, the charge / discharge characteristics of the battery were evaluated by the following method, and the results are shown in Table 1 below.

まず、充・放電試験は、電位を0〜1.5Vの範囲で規制しながら充電電流0.5mA/cm2で0.01Vになるまで充電し、0.01Vの電圧を維持しながら充電電流が0.02mA/cm2になるまで充電し続けた。そして、放電電流は0.5mA/cm2で1.5Vまでの放電を行った。下記表1において、充・放電効率とは、充電した電気容量に対して放電した電気容量の比率を示したものである。 First, in the charge / discharge test, the electric potential is regulated in the range of 0 to 1.5 V, the charge current is charged at 0.5 mA / cm 2 until it reaches 0.01 V, and the charge current is maintained while maintaining the voltage of 0.01 V. The battery was continuously charged until 0.02 mA / cm 2 was obtained. A discharge current of 0.5 mA / cm 2 was discharged up to 1.5 V. In the following Table 1, the charge / discharge efficiency indicates the ratio of the discharged electric capacity to the charged electric capacity.

Figure 2010526409
Figure 2010526409

上記表1から、本発明による実施例1ないし6は、比較例1及び2と比較して天然黒鉛の長所である初期の高い容量を維持しながら、電池の効率とサイクル特性とが改善したことが分かる。   From Table 1 above, Examples 1 to 6 according to the present invention have improved battery efficiency and cycle characteristics while maintaining the initial high capacity, which is an advantage of natural graphite, as compared with Comparative Examples 1 and 2. I understand.

以上のように、本発明は、たとえ限定された実施例によって説明されたが、本発明はこれによって限定されず、本発明が属する技術分野において通常の知識を持つ者により本発明の技術思想の下で、特許請求範囲の均等範囲内で多様な修正及び変形が可能なのは言うまでもない。   As described above, the present invention has been described by way of a limited embodiment, but the present invention is not limited thereto, and the technical idea of the present invention can be obtained by a person having ordinary knowledge in the technical field to which the present invention belongs. Needless to say, various modifications and variations are possible within the scope of the claims.

本発明によれば、電極製造時に圧着工程中に負極材が割れる現象を緩和して、初期の高い容量を維持しながら、電池の効率及びサイクル特性を向上させることができる。   According to the present invention, it is possible to alleviate the phenomenon that the negative electrode material breaks during the crimping process during electrode production, and to improve the efficiency and cycle characteristics of the battery while maintaining the initial high capacity.

Claims (7)

二次電池用負極材において、上記負極材は、
球形化度が10超過100以下である第1芯材の炭素材料;及び
球形化度が0超過10以下である第2芯材の炭素材料;の混合物からなり、上記第1芯材の炭素材料と第2芯材の炭素材料との混合重量比が1:1ないし9:1であることを特徴とする二次電池用負極材。
In the negative electrode material for secondary batteries, the negative electrode material is
A carbon material of a first core material having a sphericity of more than 10 and less than or equal to 100; and a carbon material of a second core material having a sphericity of more than 0 and less than 10; A negative electrode material for a secondary battery, wherein a mixing weight ratio of the second core material to the carbon material of the second core material is 1: 1 to 9: 1.
上記第1芯材の炭素材料は、球状の天然黒鉛であることを特徴とする請求項1に記載の二次電池用負極材。   2. The negative electrode material for a secondary battery according to claim 1, wherein the carbon material of the first core material is spherical natural graphite. 上記第2芯材の炭素材料は、板状の天然黒鉛であることを特徴とする請求項1に記載の二次電池用負極材。   2. The negative electrode material for a secondary battery according to claim 1, wherein the carbon material of the second core material is plate-like natural graphite. 上記第1芯材の炭素材料は、低結晶性炭素で被覆されることを特徴とする請求項1に記載の二次電池用負極材。   The negative electrode material for a secondary battery according to claim 1, wherein the carbon material of the first core material is coated with low crystalline carbon. 上記第2芯材の炭素材料は、低結晶性炭素で被覆されることを特徴とする請求項1に記載の二次電池用負極材。   2. The negative electrode material for a secondary battery according to claim 1, wherein the carbon material of the second core material is coated with low crystalline carbon. 上記低結晶性炭素は、ピッチ、タール、フェノール樹脂、フラン樹脂及びフルフリルアルコールからなる群より選択された単一物または2つ以上の混合物であることを特徴とする請求項4または請求項5に記載の二次電池用負極材。   6. The low crystalline carbon is a single substance or a mixture of two or more selected from the group consisting of pitch, tar, phenol resin, furan resin and furfuryl alcohol. The negative electrode material for secondary batteries as described in 2. 請求項1ないし請求項6のうち選択された何れか1項による負極材で製造された負極を備えることを特徴とする二次電池。   A secondary battery comprising a negative electrode made of a negative electrode material according to any one of claims 1 to 6.
JP2010506019A 2007-05-03 2007-10-31 Anode material for secondary battery and secondary battery using the same Pending JP2010526409A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070043264A KR100817977B1 (en) 2007-05-03 2007-05-03 Anode material of secondary battery and secondary battery using the same
PCT/KR2007/005433 WO2008136561A1 (en) 2007-05-03 2007-10-31 Anode material of secondary battery and secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2010526409A true JP2010526409A (en) 2010-07-29

Family

ID=39412106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010506019A Pending JP2010526409A (en) 2007-05-03 2007-10-31 Anode material for secondary battery and secondary battery using the same

Country Status (3)

Country Link
JP (1) JP2010526409A (en)
KR (1) KR100817977B1 (en)
WO (1) WO2008136561A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092649A (en) * 2008-10-06 2010-04-22 Nippon Carbon Co Ltd Anode active material for lithium-ion secondary battery and anode
JP2013008526A (en) * 2011-06-23 2013-01-10 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013030355A (en) * 2011-07-28 2013-02-07 Hitachi Vehicle Energy Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO2013171985A1 (en) * 2012-05-14 2013-11-21 Jfeケミカル株式会社 Composite graphite material, method for producing same, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100936571B1 (en) * 2008-04-10 2010-01-13 엘에스엠트론 주식회사 Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same
KR100978422B1 (en) * 2008-04-11 2010-08-26 엘에스엠트론 주식회사 Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same
KR101249349B1 (en) * 2009-10-20 2013-04-01 주식회사 엘지화학 Negative active material for lithium secondary battery and lithium secondary battery using same
WO2018007919A1 (en) 2016-07-05 2018-01-11 Novartis Ag New process for early sacubitril intermediates
US10774036B2 (en) 2016-12-23 2020-09-15 Novartis Ag Process for early sacubitril intermediates
JP7271598B2 (en) * 2021-04-15 2023-05-11 プライムプラネットエナジー&ソリューションズ株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147862A (en) * 1995-11-22 1997-06-06 Hitachi Maxell Ltd Organic electrolyte secondary battery
JPH1154123A (en) * 1997-05-30 1999-02-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000138061A (en) * 1998-08-27 2000-05-16 Nec Corp Nonaqueous electrolyte secondary battery, and its manufacture and carbon material composition
JP2000226206A (en) * 1999-02-04 2000-08-15 Kansai Coke & Chem Co Ltd Graphite particle composition and production of coated body using the same
JP2002175810A (en) * 2000-09-26 2002-06-21 Mitsubishi Chemicals Corp Lithium secondary battery and anode
JP2004095529A (en) * 2002-07-08 2004-03-25 Matsushita Electric Ind Co Ltd Cathode and lithium-ion secondary battery using it
JP2004111109A (en) * 2002-09-13 2004-04-08 Kansai Coke & Chem Co Ltd Electrode material for secondary battery, electrode for secondary battery containing the electrode material, and lithium ion secondary battery using the electrode
JP2004127913A (en) * 2002-07-31 2004-04-22 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2005044775A (en) * 2003-01-22 2005-02-17 Hitachi Maxell Ltd Negative electrode for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ID21480A (en) 1997-05-30 1999-06-17 Matsushita Electric Ind Co Ltd SECONDARY ELECTROLITE CELLS NOT WATER
KR100303538B1 (en) 1998-12-01 2001-11-30 김순택 Cathode active material for lithium secondary battery and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147862A (en) * 1995-11-22 1997-06-06 Hitachi Maxell Ltd Organic electrolyte secondary battery
JPH1154123A (en) * 1997-05-30 1999-02-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000138061A (en) * 1998-08-27 2000-05-16 Nec Corp Nonaqueous electrolyte secondary battery, and its manufacture and carbon material composition
JP2000226206A (en) * 1999-02-04 2000-08-15 Kansai Coke & Chem Co Ltd Graphite particle composition and production of coated body using the same
JP2002175810A (en) * 2000-09-26 2002-06-21 Mitsubishi Chemicals Corp Lithium secondary battery and anode
JP2004095529A (en) * 2002-07-08 2004-03-25 Matsushita Electric Ind Co Ltd Cathode and lithium-ion secondary battery using it
JP2004127913A (en) * 2002-07-31 2004-04-22 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2004111109A (en) * 2002-09-13 2004-04-08 Kansai Coke & Chem Co Ltd Electrode material for secondary battery, electrode for secondary battery containing the electrode material, and lithium ion secondary battery using the electrode
JP2005044775A (en) * 2003-01-22 2005-02-17 Hitachi Maxell Ltd Negative electrode for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092649A (en) * 2008-10-06 2010-04-22 Nippon Carbon Co Ltd Anode active material for lithium-ion secondary battery and anode
JP2013008526A (en) * 2011-06-23 2013-01-10 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013030355A (en) * 2011-07-28 2013-02-07 Hitachi Vehicle Energy Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO2013171985A1 (en) * 2012-05-14 2013-11-21 Jfeケミカル株式会社 Composite graphite material, method for producing same, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Also Published As

Publication number Publication date
WO2008136561A1 (en) 2008-11-13
KR100817977B1 (en) 2008-03-31

Similar Documents

Publication Publication Date Title
JP7157252B2 (en) Positive electrode additive for lithium secondary battery, manufacturing method thereof, positive electrode for lithium secondary battery containing same, and lithium secondary battery containing same
JP2010526409A (en) Anode material for secondary battery and secondary battery using the same
KR100934612B1 (en) Cathode active material for nonaqueous electrolyte secondary battery, preparation method thereof, method for manufacturing nonaqueous electrolyte secondary battery, and positive electrode
KR20150079603A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20110094023A (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
CN107078292B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
KR20130052926A (en) Zno-mno composite anode active material for lithium secondary battery and synthesis method thereof
EP3483951B1 (en) Method for manufacturing electrode for secondary battery suitable for long life
JP2010272380A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
KR100978422B1 (en) Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same
JP2010522969A (en) Negative electrode active material for secondary battery, electrode for secondary battery including the same, and secondary battery
KR101632358B1 (en) ZnO-MnO-C COMPOSITE, MANUFACTURING METHOD OF COMPOSITE CONTAINING ZINC OXIDE AND MANGANESE OXIDE AND ANODE ACTIVE MATERIAL CONTAINING THE SAME
JP2009129820A (en) Lithium-nickel composite oxide, lithium-ion secondary battery using it, and manufacturing method of lithium-nickel composite oxide
KR20100118809A (en) Anode active material for lithium secondary battery and lithium secondary battery comprising the same
KR101224618B1 (en) Positive active material for rechargeable lithium battery, cathod for rechargeable lithium battery, rechargeable lithium battery and method for manufacturing thereof
KR101091546B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR101853149B1 (en) Anode active material for lithium secondary battery having core-shell structure, lithium secondary battery comprising the material, and method of preparing the material
KR101853836B1 (en) Positive electrode active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same
JP2009533835A (en) Anode material for secondary battery and secondary battery using the same
KR100853888B1 (en) Anode material of secondary battery and secondary battery using the same
JP4585229B2 (en) Nonaqueous electrolyte secondary battery
JP2010527132A (en) Anode material for secondary battery and secondary battery using the same
JP7264792B2 (en) Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium-ion battery, all-solid lithium-ion battery, and method for producing positive electrode active material for all-solid-state lithium ion battery
KR100886529B1 (en) Anode material of secondary battery and secondary battery using the same
JP4876414B2 (en) Method for producing active material and lithium secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023