JP2010527132A - Anode material for secondary battery and secondary battery using the same - Google Patents

Anode material for secondary battery and secondary battery using the same Download PDF

Info

Publication number
JP2010527132A
JP2010527132A JP2010508278A JP2010508278A JP2010527132A JP 2010527132 A JP2010527132 A JP 2010527132A JP 2010508278 A JP2010508278 A JP 2010508278A JP 2010508278 A JP2010508278 A JP 2010508278A JP 2010527132 A JP2010527132 A JP 2010527132A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrode material
present
compression density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010508278A
Other languages
Japanese (ja)
Inventor
チュル ユム,
ジョン−ハン オー,
ジョン−サン キム,
キョン−ヒー ハン,
ジョン−ミン ハン,
Original Assignee
エルエス エムトロン リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルエス エムトロン リミテッド filed Critical エルエス エムトロン リミテッド
Publication of JP2010527132A publication Critical patent/JP2010527132A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【構成】本発明は、二次電池用負極材及びこれを用いた二次電池に関する。本発明の二次電池用負極材は、芯材の炭素材に低結晶性炭素材が被覆された後焼成されたものであって、その圧縮密度の比が0.9以上であることを特徴とする。
【効果】本発明によれば、負極材表面での電解液との反応に対する保護機能を向上させ、二次電池の効率及びサイクル容量を向上させることができる。
The present invention relates to a negative electrode material for a secondary battery and a secondary battery using the same. The negative electrode material for a secondary battery of the present invention is obtained by firing a core material carbon material coated with a low crystalline carbon material, and having a compression density ratio of 0.9 or more. And
According to the present invention, the protection function against the reaction with the electrolytic solution on the negative electrode material surface can be improved, and the efficiency and cycle capacity of the secondary battery can be improved.

Description

本発明は、二次電池用負極材及びこれを用いた二次電池に関するものであって、より詳しくは、負極材の圧縮密度の比を0.9以上に調節することで、負極材表面での電解液との反応に対する保護機能を向上させ、二次電池の効率及びサイクル容量を向上させることができる二次電池用負極材及びこれを用いた二次電池に関する。   The present invention relates to a negative electrode material for a secondary battery and a secondary battery using the same, and more specifically, by adjusting the ratio of the compression density of the negative electrode material to 0.9 or more, The present invention relates to a secondary battery negative electrode material and a secondary battery using the same, which can improve the protection function against the reaction with the electrolyte and improve the efficiency and cycle capacity of the secondary battery.

ビデオカメラ、無線電話機、携帯電話、ノートPCなど各種の携帯用電子機器が日常生活に急速に普及しつつ電源供給源として用いられる二次電池の需要が大きく増加している。その中でもリチウム二次電池は、容量が大きくてエネルギー密度の高い、優れた電池特性のため現在二次電池の中で最も広範囲に用いられている。   Various types of portable electronic devices such as video cameras, wireless telephones, cellular phones, and notebook PCs are rapidly spreading in daily life, and the demand for secondary batteries used as a power supply source is greatly increasing. Among them, lithium secondary batteries are currently used in the widest range of secondary batteries because of their excellent battery characteristics with large capacity and high energy density.

リチウム二次電池は基本的に正極と負極及び電解質からなり、したがってリチウム二次電池に対する研究開発は大きく、正極及び負極材料、電解質に関する研究に分けられる。
このうちリチウム二次電池の負極材料として用いられている天然黒鉛は、初期容量は優れているが、効率とサイクル容量とが劣るという特性がある。これは、高結晶性の天然黒鉛のエッジ部分で発生する電解液の分解反応によると知られている。
A lithium secondary battery basically includes a positive electrode, a negative electrode, and an electrolyte. Therefore, research and development on a lithium secondary battery is largely divided into research on a positive electrode, a negative electrode material, and an electrolyte.
Among these, natural graphite used as a negative electrode material for lithium secondary batteries has excellent initial capacity, but is inefficient in efficiency and cycle capacity. This is known to be due to the decomposition reaction of the electrolytic solution generated at the edge portion of highly crystalline natural graphite.

このような特性を克服するため、天然黒鉛に低結晶性炭素材を表面処理(被覆)し、これを1,000℃以上で熱処理して天然黒鉛の表面に結晶性の低い炭化物を被覆する方法がある。この方法によれば、電池の初期容量は少量減少するが、効率とサイクル容量特性とが改善した負極活物質を得ることができる。しかし、上記負極活物質を電極として用いるため、銅ホイルのような電極集電体にコートした後圧着する工程で被覆された炭化物が割れる問題がある。また、上記炭化物が割れた部分を通じて高結晶性の天然黒鉛のエッジ部分が電解液と反応してしまい、実際の炭化物の被覆効果が低下する問題があった。   In order to overcome such characteristics, surface treatment (coating) of a low crystalline carbon material on natural graphite and heat treatment at 1,000 ° C. or more to coat the surface of natural graphite with low crystalline carbide There is. According to this method, although the initial capacity of the battery is reduced by a small amount, a negative electrode active material with improved efficiency and cycle capacity characteristics can be obtained. However, since the negative electrode active material is used as an electrode, there is a problem that the carbide coated in the step of applying pressure to the electrode current collector such as a copper foil and then pressing is cracked. Moreover, the edge part of highly crystalline natural graphite reacts with electrolyte solution through the part which the said carbide | carbonized_material cracked, and there existed a problem that the coating effect of actual carbide fell.

特開第2002‐084836号(特許文献1)は、芯材の炭素材の結晶のエッジ部分の一部または全部を被覆形成用炭素材料で被覆した黒鉛の特性に対して開示している。
上記日本特許には、天然黒鉛に被覆する被覆形成用炭素材料の量と熱処理温度、そして被覆形成用炭素材料が被覆された天然黒鉛のX線回折、ラーマン分析などの内容が記載されている。しかし、実際に電極に適用するとき圧着工程中に被覆された炭化物が割れることによる影響に対する記載は全くなかった。
Japanese Patent Laid-Open No. 2002-084836 (Patent Document 1) discloses the characteristics of graphite in which part or all of the edge portion of the crystal of the carbon material of the core is coated with a carbon material for coating formation.
The above-mentioned Japanese patent describes the amount of coating-forming carbon material to be coated on natural graphite, the heat treatment temperature, and the contents of natural graphite coated with the coating-forming carbon material, such as X-ray diffraction and Raman analysis. However, there was no description of the effect of cracking of the carbide coated during the crimping process when actually applied to an electrode.

また、黒鉛はリチウム二次電池の活物質として用いられる場合、充電と放電を繰り返す過程で体積変化により活物質が割れる現象が発生するが、上記特許文献1は、このような現象による影響も言及していない。   In addition, when graphite is used as an active material for a lithium secondary battery, a phenomenon occurs in which the active material breaks due to a volume change in the process of repeated charging and discharging. However, Patent Document 1 also mentions the effect of such a phenomenon. Not done.

したがって、上述した従来技術の問題点を解決するための努力が関連業界で持続してきており、このような技術的背景の下で本発明が案出された。   Therefore, efforts to solve the above-mentioned problems of the prior art have been sustained in related industries, and the present invention has been devised under such a technical background.

特開第2002‐084836号(特許文献1)JP 2002-084836 A (Patent Document 1)

本発明が解決しようとする技術的課題は、実際に電極に適用するとき、圧着工程中に被覆された炭化物が割れる問題点と、リチウム二次電池の活物質として用いられる場合、充・放電を繰り返す過程で体積変化により活物質が割れる問題点とを解決することにあり、このような技術的課題が達成できる二次電池用負極材及びこれを用いた二次電池を提供することに本発明の目的がある。   The technical problem to be solved by the present invention is that, when actually applied to an electrode, the problem is that the coated carbide cracks during the crimping process, and when used as an active material of a lithium secondary battery, charging / discharging is performed. The present invention is to provide a negative electrode material for a secondary battery and a secondary battery using the same that can achieve such a technical problem. There is a purpose.

本発明が解決しようとする技術的課題を達成するための二次電池用負極材は、芯材の炭素材に低結晶性炭素材が被覆された後焼成されたものであって、その圧縮密度の比が0.9以上であることを特徴とする。   A negative electrode material for a secondary battery for achieving the technical problem to be solved by the present invention is a core material made of a carbon material coated with a low crystalline carbon material and fired, and its compression density The ratio is 0.9 or more.

本発明が解決しようとする技術的課題を達成するための二次電池は、上述した負極材で製造された負極を備えることを特徴とする。   A secondary battery for achieving the technical problem to be solved by the present invention is characterized by including a negative electrode made of the negative electrode material described above.

以下、本発明の望ましい実施例を詳しく説明する。これに先立って、本明細書及び請求範囲に使われた用語や単語は通常的や辞書的な意味に限定して解釈されてはいけず、発明者は自らの発明を最善の方法で説明するために用語の概念を適切に定義することができるという原則に則して、本発明の技術的思想に符合する意味と概念とに解釈されなければならない。従って、本明細書に記載された実施例の構成は本発明の最も望ましい一実施例に過ぎず、本発明の技術的思想の全てを代弁するものではないため、本出願時点においてこれらに代替できる多様な均等物と変形例があり得ることを理解されるべきである。   Hereinafter, preferred embodiments of the present invention will be described in detail. Prior to this, the terms and words used in the specification and claims should not be construed in a normal or lexicographic sense, and the inventor will explain his invention in the best possible way. Therefore, in accordance with the principle that the concept of a term can be appropriately defined, it should be interpreted as a meaning and a concept consistent with the technical idea of the present invention. Therefore, the configuration of the embodiment described in this specification is only the most preferred embodiment of the present invention, and does not represent all of the technical idea of the present invention, and can be substituted at the time of the present application. It should be understood that various equivalents and variations are possible.

本発明は、天然黒鉛と電解質との分解反応を防止するため、負極材表面での電解質との反応に対する保護機能を向上させることにその特徴がある。
本発明は、特定の加圧状態で被覆された天然黒鉛の圧縮密度(Pressed density, P.D.)を測定して求めた圧縮密度の比(P.D.[被覆された天然黒鉛]/P.D.[天然黒鉛])に応じて実際に電池に適用される電極活物質の被覆性が電極状態まで維持される程度が異なり、これによって電池の充・放電特性が異なることから案出された。
The present invention is characterized by improving the protection function against the reaction with the electrolyte on the surface of the negative electrode material in order to prevent the decomposition reaction between the natural graphite and the electrolyte.
The present invention relates to a ratio of compression density (P.D. [coated natural graphite] / determined by measuring the compressed density (PD) of natural graphite coated under a specific pressure. Depending on the PD (natural graphite)), the degree to which the coverage of the electrode active material actually applied to the battery is maintained up to the electrode state varies, and the charge / discharge characteristics of the battery differ accordingly. It was done.

本発明は、二次電池用負極材において、上記負極材は、芯材の炭素材に低結晶性炭素材が被覆された後焼成されたものであって、その圧縮密度の比は0.9以上であることを特徴とする。   The present invention relates to a negative electrode material for a secondary battery, wherein the negative electrode material is fired after a core carbon material is coated with a low crystalline carbon material, and a compression density ratio thereof is 0.9. It is the above.

上記負極材の圧縮密度の比は、特定の加圧状態で低結晶性炭素材で被覆された天然黒鉛の圧縮密度を測定して求める。このとき、圧縮密度の測定のための加圧条件は、20ないし130MPaの範囲であることが望ましい。上記加圧条件の数値範囲を満たす場合には、極板の接着力と電池容量とが十分になり、電解液との副反応が効率よく防止でき、含浸性が十分であるので望ましい。   The ratio of the compression density of the negative electrode material is determined by measuring the compression density of natural graphite coated with a low crystalline carbon material in a specific pressure state. At this time, the pressurizing condition for measuring the compression density is desirably in the range of 20 to 130 MPa. In the case where the numerical range of the pressurizing condition is satisfied, it is desirable that the adhesive strength of the electrode plate and the battery capacity are sufficient, the side reaction with the electrolytic solution can be efficiently prevented, and the impregnation property is sufficient.

上記圧縮密度は下記数式1に従って求められ、圧縮密度の比は下記数式2に従って求められる。   The compression density is obtained according to the following equation 1, and the ratio of the compression densities is obtained according to the following equation 2.

Figure 2010527132
Figure 2010527132

上記数式1において、mは、特定の加圧状態で被覆されたまたは被覆されていない天然黒鉛の重さ(g)であり、Vは、特定の加圧状態で被覆されたまたは被覆されていない天然黒鉛の体積(cm2)である。 In the above Equation 1, m is the weight (g) of natural graphite coated or uncoated in a specific pressure state, and V is coated or uncoated in a specific pressure state. The volume of natural graphite (cm 2 ).

Figure 2010527132
Figure 2010527132

上記数式2において、PDcは、被覆された天然黒鉛の圧縮密度であり、PDnは、天然黒鉛の圧縮密度である。
上記のように求めた負極材の圧縮密度の比は0.9以上であることが望ましい。上記圧縮密度の比の数値範囲に関しては、圧縮密度の比が0.9以上である場合には初期効率が93.5%以上であり、30回目サイクルでの放電容量(保持容量)が95%以上であるため望ましい。しかし、上記圧縮密度の比が0.9未満である場合には初期効率が93.5%未満であり、30回目サイクルでの放電容量が95未満であるため望ましくない。
In Equation 2, PDc is the compression density of the coated natural graphite, and PDn is the compression density of the natural graphite.
The ratio of the compression density of the negative electrode material determined as described above is desirably 0.9 or more. Regarding the numerical range of the compression density ratio, when the compression density ratio is 0.9 or more, the initial efficiency is 93.5% or more, and the discharge capacity (holding capacity) at the 30th cycle is 95%. This is desirable. However, when the compression density ratio is less than 0.9, the initial efficiency is less than 93.5%, and the discharge capacity at the 30th cycle is less than 95, which is not desirable.

また、本発明の二次電池用負極材は、当業界で実施する常法に従って芯材の炭素材に低結晶性炭素材を被覆し焼成して製造できる。
上記芯材の炭素材としては、天然黒鉛、人造黒鉛またはこれらの混合物を用いることができ、特に天然黒鉛を用いることが望ましい。
In addition, the negative electrode material for a secondary battery of the present invention can be produced by coating a carbon material as a core material with a low crystalline carbon material and firing it according to a conventional method practiced in the art.
As the carbon material of the core material, natural graphite, artificial graphite or a mixture thereof can be used, and it is particularly preferable to use natural graphite.

上記低結晶性炭素材としては、ピッチ、タール、フェノール樹脂、フラン樹脂などを用いることができる。
すなわち、本発明は、上記芯材炭素材のエッジ部分の一部または全部を低結晶性炭素材で被覆して製造する負極材の圧縮密度の比を0.9以上になるように、低結晶性炭素材の種類と工程条件を選択し被覆することで、効率及びサイクル特性に優れた負極材が製造できる。
As the low crystalline carbon material, pitch, tar, phenol resin, furan resin, or the like can be used.
That is, the present invention provides a low-crystalline material in which the ratio of the compression density of the negative electrode material produced by coating part or all of the edge portion of the core carbon material with a low-crystalline carbon material is 0.9 or more. A negative electrode material excellent in efficiency and cycle characteristics can be produced by selecting and covering the type and process conditions of the carbonaceous material.

上記のように製造した負極材を含む極板製造用スラリーには、必要に応じて、選択的に導電材やバインダーを少量で添加することができる。
上記導電材やバインダーの使用含量は、当業界で通常用いられる程度に適切に調節して用いることができ、その範囲が本発明に影響を及ぼすことではない。
A conductive material and a binder can be selectively added in a small amount, if necessary, to the slurry for producing an electrode plate containing the negative electrode material produced as described above.
The use amount of the conductive material and the binder can be appropriately adjusted and used as much as is normally used in the art, and the range does not affect the present invention.

上記導電材としては、構成された電池内で化学変化を起こさない電子伝導性材料であれば何れも使用可能である。例えば、上記導電材としては、アセチレンブラック、ケッチェンブラック、ファーネスブラック、サーマルブラックなどのようなカーボンブラック;天然黒鉛;人造黒鉛;導電性炭素繊維;などがあり、特にカーボンブラック、黒鉛粉末または炭素繊維を用いることが望ましい。   As the conductive material, any electronic conductive material that does not cause a chemical change in the battery constructed can be used. For example, examples of the conductive material include carbon black such as acetylene black, ketjen black, furnace black, and thermal black; natural graphite; artificial graphite; conductive carbon fiber; and particularly carbon black, graphite powder, or carbon. It is desirable to use fibers.

上記バインダーとしては、熱可塑性樹脂、熱硬化性樹脂またはこれらの混合物を用いることができる。上記バインダーは、特にポリフッ化ビニリデン(PVDF)またはポリテトラフルオロエチレン(PTFE)を用いることが望ましく、さらに望ましくは、ポリフッ化ビニリデンを用いることができる。   As the binder, a thermoplastic resin, a thermosetting resin, or a mixture thereof can be used. The binder is preferably polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE), and more preferably polyvinylidene fluoride.

上記のように負極活物質と、選択的に導電材及びバインダーのうち少なくとも何れか一つとを含む極板製造用スラリーを電極集電体に塗布した後乾燥させて溶媒や分散媒などを除去することで、集電体に活物質が結着されるとともに活物質間が結着される。   As described above, a slurry for producing an electrode plate containing a negative electrode active material and optionally at least one of a conductive material and a binder is applied to the electrode current collector and then dried to remove the solvent, the dispersion medium, and the like. Thus, the active material is bound to the current collector and the active material is bound.

上記電極集電体としては、導電性材料からなるものであれば特に制限されないが、特に銅、金、ニッケル、銅合金またはこれらの組み合わせによって製造されたホイルを用いることが望ましい。   The electrode current collector is not particularly limited as long as it is made of a conductive material, but it is particularly desirable to use a foil manufactured from copper, gold, nickel, a copper alloy, or a combination thereof.

また本発明は、正極、負極、両電極間に介在された分離膜及び電解質を含む二次電池において、上述した製造方法に従って作られた負極材で製造された上記負極を備えることを特徴とする。   In addition, the present invention is a secondary battery including a positive electrode, a negative electrode, a separation membrane interposed between the two electrodes, and an electrolyte, comprising the negative electrode manufactured using the negative electrode material manufactured according to the manufacturing method described above. .

本発明の二次電池は、当技術分野に公知の常法に従って正極と負極との間に多孔性分離膜を入れ、電解質を注入して製造できる。
上記電解質は、リチウム塩と電解液化合物とを含む非水電解液であって、リチウム塩としては、LiClO、LiCFSO、LiPF、LiBF、LiAsF及びLiN(CFSOからなる群より選択された1種以上の化合物を用いることができる。また、電解液化合物としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ-ブチロラクトン(GBL)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)及びメチルプロピルカーボネート(MPC)からなる群より選択された1種以上の化合物を用いることができる。
The secondary battery of the present invention can be manufactured by inserting a porous separation membrane between a positive electrode and a negative electrode and injecting an electrolyte according to a conventional method known in the art.
The electrolyte is a non-aqueous electrolyte containing a lithium salt and an electrolyte solution compound. As the lithium salt, LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6 and LiN (CF 3 SO 2 ). One or more compounds selected from the group consisting of 2 can be used. Examples of the electrolyte compound include ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (GBL), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and methyl propyl carbonate ( One or more compounds selected from the group consisting of MPC) can be used.

本発明の電池分離膜は、多孔性分離膜であることが望ましく、その例としては、ポリプロピレン系、ポリエチレン系、ポリオレフイン系の多孔性分離膜などがある。
本発明の二次電池は、その外形に制限がなく多様な形態に製造でき、その例としては、缶を用いた円筒形、角形、ポーチ型、コイン形などがある。
The battery separation membrane of the present invention is preferably a porous separation membrane, and examples thereof include polypropylene-based, polyethylene-based, and polyolefin-based porous separation membranes.
The secondary battery of the present invention can be manufactured in various forms without limitation on the outer shape, and examples thereof include a cylindrical shape using a can, a square shape, a pouch shape, and a coin shape.

上記のような本発明の二次電池は、充・放電効率が93.5%以上であり、30回目サイクルでの放電容量が95%以上である。
[実施例]
以下、本発明の理解を助けるために、望ましい実施例とこれに対比する比較例とを挙げてより詳しく説明する。
The secondary battery of the present invention as described above has a charge / discharge efficiency of 93.5% or more and a discharge capacity of 95% or more in the 30th cycle.
[Example]
Hereinafter, in order to help understanding of the present invention, preferred examples and comparative examples for comparison will be described in more detail.

実施例1
球状の天然黒鉛質の炭素材料とピッチを用意した。
まず、球状の天然黒鉛に、テトラヒドロフランで溶かしたピッチを5重量%で混ぜた。上記混合物を常圧で2時間以上湿式撹拌して混合した後乾燥して混合物を製造した。上記混合物を1,100℃と1,500℃でそれぞれ1時間1・2次焼成し、分級して微粉を除去して圧縮密度の比が0.9である負極材を製造した。
Example 1
Spherical natural graphite carbon material and pitch were prepared.
First, pitch dissolved in tetrahydrofuran was mixed with spherical natural graphite at 5% by weight. The above mixture was wet-stirred for 2 hours or more at normal pressure, mixed and then dried to produce a mixture. The mixture was subjected to primary and secondary firing for 1 hour at 1,100 ° C. and 1,500 ° C. for 1 hour, respectively, and fine powders were removed to produce a negative electrode material having a compression density ratio of 0.9.

実施例2
上記実施例1において、ピッチ含量を3重量%に、熱処理温度を1,000℃に、昇温速度を0.14℃/分に調節して圧縮密度の比が0.98である負極材を製造した。
Example 2
In Example 1, the negative electrode material having a compression density ratio of 0.98 by adjusting the pitch content to 3% by weight, the heat treatment temperature to 1,000 ° C., and the heating rate to 0.14 ° C./min. Manufactured.

実施例3
上記実施例1において、ピッチ含量を1重量%に、熱処理温度を1,000℃に、昇温速度を0.14℃/分に調節して圧縮密度の比が1.12である負極材を製造した。
Example 3
In Example 1, the negative electrode material having a compression density ratio of 1.12 by adjusting the pitch content to 1 wt%, the heat treatment temperature to 1,000 ° C., and the heating rate to 0.14 ° C./min. Manufactured.

比較例1
上記実施例1において、熱処理温度を1,000℃に、昇温速度を10℃/分に調節して圧縮密度の比が0.71である負極材を製造した。
Comparative Example 1
In Example 1 above, a negative electrode material having a compression density ratio of 0.71 was manufactured by adjusting the heat treatment temperature to 1,000 ° C. and the heating rate to 10 ° C./min.

比較例2
上記実施例1において、熱処理温度を1,000℃に、昇温速度を10℃/分に調節して圧縮密度の比が0.82である負極材を製造した。
Comparative Example 2
In Example 1 above, a negative electrode material having a compression density ratio of 0.82 was manufactured by adjusting the heat treatment temperature to 1,000 ° C. and the temperature increase rate to 10 ° C./min.

上記実施例1ないし3と比較例1及び2で製造した負極材に対して、以下のような方法で電池特性を評価した。
まず、天然黒鉛2gをφ1.4cmホールに入れ、プレス機を用いて0.5tの力をφ1.4cm面積に2秒間加えた(すなわち、31,852KPaの圧力で2秒間加圧した)。上記加圧状態でホールの高さをマイクロゲージ(micro gauge)で測定して圧縮密度を求めた。
The battery characteristics were evaluated by the following methods for the negative electrode materials manufactured in Examples 1 to 3 and Comparative Examples 1 and 2.
First, 2 g of natural graphite was put into a φ1.4 cm hole, and a force of 0.5 t was applied to the φ1.4 cm area for 2 seconds using a press machine (that is, pressurized for 2 seconds at a pressure of 31,852 KPa). The compression height was determined by measuring the height of the hole with a micro gauge in the pressurized state.

上記と同一の方法により上記実施例1ないし3と比較例1及び2で製造した被覆された天然黒鉛に対する圧縮密度をそれぞれ求めた。次いで、上記数式2に従って上記実施例1ないし3と比較例1及び2で製造した負極材それぞれの圧縮密度の比を求めた。上記求められた圧縮密度と圧縮密度の比は、下記表1に示した。   The compression density for the coated natural graphite produced in Examples 1 to 3 and Comparative Examples 1 and 2 was determined by the same method as above. Subsequently, the ratio of the compression density of each of the negative electrode materials manufactured in Examples 1 to 3 and Comparative Examples 1 and 2 was determined according to Formula 2 above. The ratio of the compression density to the compression density obtained is shown in Table 1 below.

Figure 2010527132
Figure 2010527132

上記実施例1ないし3と比較例1及び2で製造した負極材100gを500mlの反応器に入れ、少量のN‐メチルピロリドン(NMP)と、バインダーとしてポリフッ化ビニリデン(PVDF)とを投入した。次いで、上記混合物をミキサーを用いて混練し、銅ホイル上に圧着・乾燥して電極として用いた。このとき、電極圧着後の密度は1.65g/cm2に均一化した。この電極の充・放電効率はコインセルを用いて評価した。 100 g of the negative electrode materials produced in Examples 1 to 3 and Comparative Examples 1 and 2 were placed in a 500 ml reactor, and a small amount of N-methylpyrrolidone (NMP) and polyvinylidene fluoride (PVDF) as a binder were added. Next, the above mixture was kneaded using a mixer, and pressed and dried on a copper foil to be used as an electrode. At this time, the density after electrode crimping was uniformed to 1.65 g / cm 2 . The charge / discharge efficiency of this electrode was evaluated using a coin cell.

充・放電試験は、 電位を0〜1.5Vの範囲で規制しながら充電電流0.5mA/cm2で0.01Vになるまで充電し、0.01Vの電圧を維持しながら充電電流が0.02mA/cm2になるまで充電し続けた。そして、放電電流は0.5mA/cm2で1.5Vまでの放電を行った。試験結果を下記表2に示す。下記表2において、充・放電効率とは、充電した電気容量に対する放電した電気容量の比率を示したものである。 Charging and discharging test was charged to a 0.01V at a charging current 0.5 mA / cm 2 while restricting the potential range of 0 to 1.5 V, the charging current while maintaining the voltage of 0.01V 0 It continued to charge until the .02mA / cm 2. A discharge current of 0.5 mA / cm 2 was discharged up to 1.5 V. The test results are shown in Table 2 below. In Table 2 below, the charge / discharge efficiency indicates the ratio of the discharged electric capacity to the charged electric capacity.

Figure 2010527132
Figure 2010527132

上記表2からわかるように、本発明によって負極材の圧縮密度の比を0.9以上に調節して製造した実施例1ないし3は、初期効率(1stサイクルの効率)が93.5以上であり、保持容量(30thサイクルでの放電容量)が95%以上であった。一方、比較例1及び2は、初期効率がそれぞれ90.8%、92.1%であり、保持容量が83.3%、90.9%であって低いことが確認できた。 As it can be seen from Table 2, to Examples 1 was prepared by adjusting the 0.9 or the ratio of the compression density of the negative electrode material according to the present invention 3, (efficiency of 1 st cycle) Initial efficiency is 93.5 or more The retention capacity (discharge capacity at 30 th cycle) was 95% or more. On the other hand, in Comparative Examples 1 and 2, the initial efficiencies were 90.8% and 92.1%, respectively, and the retention capacities were 83.3% and 90.9%, respectively, which were confirmed to be low.

上記表1及び表2から、圧縮密度の比と初期効率との相関関係はないが、圧縮密度の比が小さいほど電池の効率とサイクル性能とが劣化することが確認できた。
このような結果から、圧縮密度の比が小くなるほど、ピッチで被覆された天然黒鉛の表面が、電極密度を合わせるための圧着工程中に塗布・熱処理された炭素層が割れることによって電解液に露出し、分解反応を起こしたと考えられる。
From Table 1 and Table 2 above, there was no correlation between the compression density ratio and the initial efficiency, but it was confirmed that the smaller the compression density ratio, the more the battery efficiency and cycle performance deteriorated.
From these results, the smaller the compression density ratio, the more the surface of the natural graphite coated with the pitch breaks into the electrolyte solution by cracking the carbon layer applied and heat treated during the crimping process to match the electrode density. It is thought that it was exposed and caused a decomposition reaction.

以上のように、本発明は、たとえ限定された実施例によって説明されたが、本発明はこれによって限定されず、本発明が属する技術分野において通常の知識を持つ者により本発明の技術思想と特許請求範囲の均等範囲内で多様な修正及び変形が可能なのは言うまでもない。   As described above, the present invention has been described with reference to the limited embodiments. However, the present invention is not limited thereto, and the technical idea of the present invention can be determined by those who have ordinary knowledge in the technical field to which the present invention belongs. It goes without saying that various modifications and variations are possible within the equivalent scope of the claims.

本発明によれば、実際に電極に適用するとき、圧着工程中に被覆された炭化物が割れる問題点と、リチウム二次電池の活物質として用いられる場合、充・放電を繰り返す過程で体積変化により活物質が割れる現象による天然黒鉛と電解質との分解反応を防止して、 負極材表面での電解液との反応に対する保護機能を向上させ、二次電池の効率及びサイクル容量を向上させることができる。   According to the present invention, when actually applied to an electrode, the problem is that the coated carbide breaks during the crimping process, and when used as an active material for a lithium secondary battery, due to volume change in the process of repeated charge and discharge. It can prevent the decomposition reaction between natural graphite and electrolyte due to the phenomenon of cracking of the active material, improve the protection function against the reaction with the electrolyte on the negative electrode material surface, and improve the efficiency and cycle capacity of the secondary battery .

Claims (5)

二次電池用負極材において、
上記負極材は、芯材の炭素材に低結晶性炭素材が被覆された後焼成されたものであって、その圧縮密度の比が0.9以上であることを特徴とする二次電池用負極材。
In the negative electrode material for secondary batteries,
The negative electrode material is obtained by firing a low carbon material coated on a core carbon material, and the compression density ratio is 0.9 or more. Negative electrode material.
上記芯材の炭素材は、天然黒鉛及び人造黒鉛からなる群より選択された単一物またはこれらの混合物からなることを特徴とする請求項1に記載の二次電池用負極材。   2. The negative electrode material for a secondary battery according to claim 1, wherein the carbon material of the core material is a single material selected from the group consisting of natural graphite and artificial graphite or a mixture thereof. 上記低結晶性炭素材は、ピッチ、タール、フェノール樹脂及びフラン樹脂からなる群より選択される単一物または2つ以上の混合物からなることを特徴とする請求項1に記載の二次電池用負極材。   2. The secondary battery according to claim 1, wherein the low crystalline carbon material is a single material or a mixture of two or more selected from the group consisting of pitch, tar, phenol resin, and furan resin. Negative electrode material. 請求項1〜3の何れか1項による負極材で製造された負極を備えることを特徴とする二次電池。   A secondary battery comprising a negative electrode made of the negative electrode material according to claim 1. 上記二次電池は、初期効率が93.5%以上であり、30回目サイクルでの放電容量が95%以上であることを特徴とする請求項4に記載の二次電池。   5. The secondary battery according to claim 4, wherein the secondary battery has an initial efficiency of 93.5% or more and a discharge capacity in the 30th cycle of 95% or more.
JP2010508278A 2007-05-16 2007-10-31 Anode material for secondary battery and secondary battery using the same Pending JP2010527132A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070047453A KR100855802B1 (en) 2007-05-16 2007-05-16 Anode material of secondary battery and secondary battery using the same
PCT/KR2007/005434 WO2008140160A1 (en) 2007-05-16 2007-10-31 Anode material of secondary battery and secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2010527132A true JP2010527132A (en) 2010-08-05

Family

ID=40002337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010508278A Pending JP2010527132A (en) 2007-05-16 2007-10-31 Anode material for secondary battery and secondary battery using the same

Country Status (3)

Country Link
JP (1) JP2010527132A (en)
KR (1) KR100855802B1 (en)
WO (1) WO2008140160A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101035099B1 (en) * 2008-04-08 2011-05-19 (주)포스코켐텍 Carbon anode material for secondary battery, and secondary battery using the same
CN103996827B (en) * 2014-04-29 2016-01-20 同济大学 A kind of preparation method of lithium ion battery negative material GeC nanosphere

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201357A (en) * 1994-01-06 1995-08-04 Asahi Chem Ind Co Ltd Lighium battery
JPH09213328A (en) * 1996-02-02 1997-08-15 Mitsubishi Chem Corp Electrode material for non-aqueous solvent secondary battery and manufacture of the electrode material
JP2000228193A (en) * 1999-02-04 2000-08-15 Mitsubishi Chemicals Corp Carbonaceous negative electrode active material for nonaqueous secondary battery and nonaqueous secondary battery
JP2002348109A (en) * 1995-11-14 2002-12-04 Osaka Gas Co Ltd Anode material for lithium secondary battery, method for producing the same and secondary battery using the same
JP2003115293A (en) * 2001-07-31 2003-04-18 Nec Corp Negative electrode for secondary battery, secondary battery using it, and method of manufacturing negative electrode
JP2004031038A (en) * 2002-06-25 2004-01-29 Nippon Carbon Co Ltd Negative electrode material for high-performance lithium ion secondary battery using natural graphite, its manufacturing method and lithium ion secondary battery using it
JP2004071580A (en) * 1995-11-14 2004-03-04 Osaka Gas Co Ltd Negative electrode material for lithium secondary battery and secondary battery using the same
JP2004127913A (en) * 2002-07-31 2004-04-22 Matsushita Electric Ind Co Ltd Lithium secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100409210B1 (en) * 1998-05-20 2003-12-12 오사까 가스 가부시키가이샤 Nonaqueous secondary cell and method for controlling the same
JP3152226B2 (en) * 1998-08-27 2001-04-03 日本電気株式会社 Non-aqueous electrolyte secondary battery, method for producing the same, and carbon material composition
US7179565B2 (en) * 2001-12-06 2007-02-20 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201357A (en) * 1994-01-06 1995-08-04 Asahi Chem Ind Co Ltd Lighium battery
JP2002348109A (en) * 1995-11-14 2002-12-04 Osaka Gas Co Ltd Anode material for lithium secondary battery, method for producing the same and secondary battery using the same
JP2004071580A (en) * 1995-11-14 2004-03-04 Osaka Gas Co Ltd Negative electrode material for lithium secondary battery and secondary battery using the same
JPH09213328A (en) * 1996-02-02 1997-08-15 Mitsubishi Chem Corp Electrode material for non-aqueous solvent secondary battery and manufacture of the electrode material
JP2000228193A (en) * 1999-02-04 2000-08-15 Mitsubishi Chemicals Corp Carbonaceous negative electrode active material for nonaqueous secondary battery and nonaqueous secondary battery
JP2003115293A (en) * 2001-07-31 2003-04-18 Nec Corp Negative electrode for secondary battery, secondary battery using it, and method of manufacturing negative electrode
JP2004031038A (en) * 2002-06-25 2004-01-29 Nippon Carbon Co Ltd Negative electrode material for high-performance lithium ion secondary battery using natural graphite, its manufacturing method and lithium ion secondary battery using it
JP2004127913A (en) * 2002-07-31 2004-04-22 Matsushita Electric Ind Co Ltd Lithium secondary battery

Also Published As

Publication number Publication date
WO2008140160A1 (en) 2008-11-20
KR100855802B1 (en) 2008-09-01

Similar Documents

Publication Publication Date Title
JP4974597B2 (en) Negative electrode and negative electrode active material for lithium ion secondary battery
JP4752574B2 (en) Negative electrode and secondary battery
JP5277656B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
KR101105877B1 (en) Anode active material for lithium secondary batteries and Method of preparing for the same and Lithium secondary batteries using the same
KR20140012015A (en) Electrode for lithium batteries and its method of manufacture
KR100817977B1 (en) Anode material of secondary battery and secondary battery using the same
KR100936571B1 (en) Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same
KR100978422B1 (en) Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same
KR20090067769A (en) Anode for secondary battery
KR101072068B1 (en) Secondary battery
KR100663180B1 (en) Anode active material for lithium secondary battery having high energy density
KR100884431B1 (en) Anode material of secondary battery and secondary battery using the same
JP5318921B2 (en) Graphite particles for lithium ion secondary batteries
JP2010527132A (en) Anode material for secondary battery and secondary battery using the same
KR101977973B1 (en) Negative electrode for fast charging, battery comprising the same and fabricating methods thereof
KR101091546B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR100853888B1 (en) Anode material of secondary battery and secondary battery using the same
KR101863441B1 (en) Lithium secondary cell including a cathode active material structure
JPH11135107A (en) Lithium secondary battery
JP4585229B2 (en) Nonaqueous electrolyte secondary battery
KR100886529B1 (en) Anode material of secondary battery and secondary battery using the same
JP2004022239A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2011029135A (en) Electrode for secondary battery, secondary battery, and manufacturing method of electrode for secondary battery
JP4026972B2 (en) Method for producing negative electrode material for lithium secondary battery
KR20080097875A (en) Anode material of secondary battery and secondary battery using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108