KR100884431B1 - Anode material of secondary battery and secondary battery using the same - Google Patents
Anode material of secondary battery and secondary battery using the same Download PDFInfo
- Publication number
- KR100884431B1 KR100884431B1 KR1020070052190A KR20070052190A KR100884431B1 KR 100884431 B1 KR100884431 B1 KR 100884431B1 KR 1020070052190 A KR1020070052190 A KR 1020070052190A KR 20070052190 A KR20070052190 A KR 20070052190A KR 100884431 B1 KR100884431 B1 KR 100884431B1
- Authority
- KR
- South Korea
- Prior art keywords
- negative electrode
- secondary battery
- electrode material
- surface area
- specific surface
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
본 발명은 2차 전지용 음극재 및 이를 이용한 2차 전지에 관한 것이다. 본 발명의 2차 전지용 음극재는 심재 탄소에 저결정성 탄소를 피복하고 소성하여 제조된 2차 전지용 음극재에서, 상기 음극재의 비표면적 비가 1.4 이하인 것을 특징으로 한다. 본 발명에 따르면, 음극재 표면에서의 전해액 분해 반응에 대한 보호 기능을 향상시켜 음극재의 효율 및 사이클 용량을 향상시킬 수 있는 장점이 있다.The present invention relates to a negative electrode material for a secondary battery and a secondary battery using the same. The negative electrode material for a secondary battery of the present invention is a negative electrode material for a secondary battery manufactured by coating low crystalline carbon on a core carbon and firing, wherein the specific surface area ratio of the negative electrode material is 1.4 or less. According to the present invention, there is an advantage that the efficiency and cycle capacity of the negative electrode material can be improved by improving the protection against electrolyte decomposition reaction on the surface of the negative electrode material.
흑연, 음극재, 비표면적 비, 사이클 용량, 2차 전지 Graphite, negative electrode material, specific surface area ratio, cycle capacity, secondary battery
Description
본 발명은 2차 전지용 음극재 및 이를 이용한 2차 전지에 관한 것으로, 더욱 상세하게는 음극재의 비표면적 비를 1.4 이하로 조절함으로써 음극재 표면에서의 전해액 분해 반응에 대한 보호 기능을 향상시켜 음극재의 효율 및 사이클 용량을 향상시킬 수 있는 2차 전지용 음극재 및 이를 이용한 2차 전지에 관한 것이다.The present invention relates to a negative electrode material for a secondary battery and a secondary battery using the same, and more particularly, by adjusting the specific surface area ratio of the negative electrode material to 1.4 or less, thereby improving the protection function against the electrolyte decomposition reaction on the surface of the negative electrode material. The present invention relates to a negative electrode material for a secondary battery capable of improving efficiency and cycle capacity, and a secondary battery using the same.
비디오 카메라, 무선전화기, 핸드폰, 노트북 컴퓨터 등 각종 휴대용 전자기기가 일상생활에 급속히 보급되면서 전원 공급원으로 사용되는 2차 전지의 수요가 크게 증가되었고, 그 중에서 리튬 2차 전지는 용량이 크고 에너지밀도가 높은 우수한 전지 특성 때문에 국내외적으로 활발한 연구개발이 진행되어, 현재 2차 전지 중에서 가장 광범위하게 사용되고 있다. As portable electronic devices such as video cameras, cordless phones, mobile phones, and notebook computers are rapidly spreading in daily life, the demand for secondary batteries used as a power source has increased greatly. Among them, lithium secondary batteries have high capacity and high energy density. Due to the high battery characteristics, active research and development has been carried out at home and abroad, and is currently the most widely used secondary battery.
리튬 2차 전지는 기본적으로 양극과 음극 및 전해질로 이루어지며, 따라서 리튬 2차 전지에 대한 연구개발은 크게 양극(cathode) 및 음극(anode) 재료, 전해질(electrolyte)에 관한 연구로 나눌 수 있다. A lithium secondary battery basically consists of a positive electrode, a negative electrode, and an electrolyte. Therefore, research and development of a lithium secondary battery can be largely divided into studies on a cathode, an anode material, and an electrolyte.
이 중에서 리튬 2차 전지의 음극 재료로서 사용되고 있는 천연흑연은 초도 용량은 우수하나 효율과 사이클 용량이 떨어지는 특성을 나타낸다. 이는 고결정성의 천연흑연 에지(edge) 부분에서의 전해액 분해반응이 원인인 것으로 알려져 있다. Among these, natural graphite used as a negative electrode material of a lithium secondary battery has excellent initial capacity but poor efficiency and cycle capacity. This is known to be due to the electrolyte decomposition reaction in the highly crystalline natural graphite edge (edge).
이러한 특성을 극복하기 위해, 천연흑연에 저결정성 탄소를 표면처리(피복)하고, 1,000 ℃ 이상에서 열처리하여 천연흑연 표면에 결정성이 낮은 탄화물을 피복함으로써 초도 용량은 소량 감소하나 효율과 사이클 용량 특성이 개선된 음극 활물질을 얻는 방법이 제시되었다.In order to overcome these characteristics, the low-crystalline carbon is surface-treated (coated) on natural graphite and heat-treated at 1,000 ° C or higher to coat low-crystalline carbide on the surface of natural graphite, resulting in a small reduction in initial capacity, but efficiency and cycle capacity. A method of obtaining a negative electrode active material having improved characteristics has been proposed.
일예로, 일본공개특허공보 제2002-084836호는 심재 탄소 재료의 결정의 에지 부분 중 일부 또는 전부를 피복 형성용 탄소 재료로 피복한 흑연의 특성에 대하여 개시하고 있다.As an example, Japanese Laid-Open Patent Publication No. 2002-084836 discloses a characteristic of graphite in which some or all of the edge portions of the crystal of the core carbon material are coated with the carbon material for forming the coating.
그러나, 상기와 같은 방법으로 수득한 음극 활물질을 전극으로 사용하기 위해 구리 코일과 같은 전극 집전체에 코팅한 후 압착하는 공정에서, 피복된 탄화물이 깨지게 되고, 이 부분을 통해 고결정성의 천연흑연 에지 부분이 다시 전해액과 반응하게 되어 실제로 탄화물 피복 효과가 떨어지게 되는 문제점이 있었다.However, in the process of coating the negative electrode active material obtained by the above method on an electrode current collector such as a copper coil and then compressing it for use as an electrode, the coated carbide is broken, through which the highly crystalline natural graphite edge is broken. The part was reacted with the electrolyte again, and there was a problem that the carbide coating effect was actually lowered.
또한, 상기 일본특허의 경우 천연흑연에 피복하는 피복 형성용 탄소 재료의 양과 열처리 온도 그리고 피복 형성용 탄소 재료가 피복된 천연흑연의 X선 회절(X-ray diffraction), 라만 등의 분석에 대한 내용은 있으나, 실제 전극 적용에서 압착공정 중 피복된 탄화물이 깨지는 영향에 대한 내용은 전무하였다. 또한 리튬 2차 전지의 활물질로 사용되었을 경우 충전과 방전을 반복하는 과정에서 부피 변화로 활물질이 깨지는 현상이 발생하게 되는데, 상기 특허의 경우 이러한 현상으로 야기 되는 영향에 대한 내용 또한 언급하지 않고 있다.In addition, in the case of the Japanese patent, the contents of the amount of carbon coating material for forming a coating on natural graphite, the heat treatment temperature, and the analysis of X-ray diffraction, Raman, etc. of natural graphite coated with coating carbon material However, there was no information on the effect of cracking the coated carbide during the crimping process in the actual electrode application. In addition, when used as an active material of a lithium secondary battery, a phenomenon in which the active material is broken due to volume change occurs in a process of repeating charging and discharging, and the patent does not mention the effect caused by such a phenomenon.
따라서, 전술한 종래 기술의 문제점을 해결하기 위한 노력이 관련 업계에서 지속되어 왔으며, 이러한 기술적 배경하에서 본 발명이 안출되었다.Accordingly, efforts to solve the above-mentioned problems of the prior art have been continued in the related art, and the present invention has been devised under such a technical background.
본 발명이 이루고자하는 기술적 과제는, 실제 전극 적용에서 압착공정 중 피복된 탄화물이 깨지는 문제점을 해결하기 위해 음극재 표면에서의 전해액 분해 반응에 대한 보호 기능을 향상시켜 음극재의 효율 및 사이클 용량을 향상시키는데 있으며, 이러한 기술적 과제를 달성할 수 있는 2차 전지용 음극재 및 이를 이용한 2차 전지를 제공함에 본 발명의 목적이 있다.The technical problem to be achieved by the present invention is to improve the protection function against the electrolyte decomposition reaction on the surface of the negative electrode material in order to solve the problem that the coated carbide during the pressing process in the actual electrode application to improve the efficiency and cycle capacity of the negative electrode material In addition, an object of the present invention to provide a secondary battery negative electrode material and a secondary battery using the same that can achieve the technical problem.
본 발명이 이루고자 하는 기술적 과제를 달성하기 위한 2차 전지용 음극재는 심재 탄소 재료에 저결정성 탄소를 피복하고 소성하여 제조된 2차 전지용 음극재에 있어서, 상기 음극재의 비표면적 비가 1.4 이하인 것을 특징으로 한다.The negative electrode material for a secondary battery for achieving the technical problem to be achieved by the present invention is a secondary battery negative electrode material prepared by coating a low crystalline carbon on a core carbon material and firing, characterized in that the specific surface area ratio of the negative electrode material is 1.4 or less. do.
본 발명이 이루고자 하는 기술적 과제를 달성하기 위한 2차 전지는, 전술한 음극재를 음극으로 구비하는 것을 특징으로 한다.A secondary battery for achieving the technical problem to be achieved by the present invention is characterized in that it comprises the negative electrode material described above as a negative electrode.
이하 본 발명의 바람직한 실시예를 상세히 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, preferred embodiments of the present invention will be described in detail. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the configurations shown in the embodiments described herein are only one of the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, and various equivalents may be substituted for them at the time of the present application. It should be understood that there may be variations and variations.
본 발명에서는 2차 전지용 음극재에 있어서, 피복된 천연흑연을 이용하여 전극 제조시 압착 전,후의 비표면적 측정을 통해 측정한 비표면적 비에 따라 실제 전지에 적용되는 전극 활물질의 피복성이 전극상태까지 유지되는 정도가 달라지고, 이는 전지의 충/방전 특성에 영향을 미침을 확인하였다.In the present invention, in the negative electrode material for the secondary battery, the electrode state of the electrode active material that is applied to the actual battery according to the specific surface area ratio measured by measuring the specific surface area before and after crimping during electrode production using the coated natural graphite electrode state The degree to which it is maintained varies, and it is confirmed that this affects the charge / discharge characteristics of the battery.
상기 음극재의 비표면적 비는 저결정성 탄소로 피복된 심재 탄소를 압착하기 전과 압착시킨 후의 비표면적을 각각 측정하고, 이를 이용하여 하기 수학식 1에 따라 구할 수 있다.The specific surface area ratio of the negative electrode material is measured by measuring the specific surface area before and after pressing the core carbon coated with low crystalline carbon, respectively, it can be obtained according to the following equation (1).
상기와 같이 측정한 본 발명의 2차 전지용 음극재의 비표면적 비는 1.4 이하인 것이 바람직하다.It is preferable that the specific surface area ratio of the negative electrode material for secondary batteries of this invention measured as mentioned above is 1.4 or less.
본 발명에 따라 음극재의 비표면적 비가 1.4 이하일 경우에는 초도효율이 94 % 이상이고, 25 번째 사이클에서의 방전용량(보유용량)이 95 % 이상으로 유지할 수 있는데 반하여, 상기 음극재의 비표면적 비가 1.4를 초과할 경우에는 초도효율이 94 % 미만이고, 25 번째 사이클에서의 방전용량이 95 % 미만으로 나타나 사이클 성능(반복해서 충,방전하는 특성)에 문제가 있어 바람직하지 않다. According to the present invention, when the specific surface area ratio of the negative electrode material is 1.4 or less, the initial efficiency is 94% or more, and the discharge capacity (holding capacity) in the 25th cycle can be maintained at 95% or more, whereas the specific surface area ratio of the negative electrode material is 1.4 If exceeded, the initial efficiency is less than 94%, and the discharge capacity at the 25th cycle is less than 95%, which is not preferable because there is a problem in cycle performance (characteristic of repeated charging and discharging).
또한 본 발명의 2차 전지용 음극재는 당 업계에서 실시하는 통상의 방법에 따라 심재 탄소 재료에 저결정성 탄소를 피복하고 소성하여 제조할 수 있다.In addition, the negative electrode material for a secondary battery of the present invention can be produced by coating a low crystalline carbon on a core carbon material and firing according to a conventional method performed in the art.
상기 심재 탄소 재료는 천연흑연, 인조흑연 또는 이들의 혼합물을 사용할 수 있으며, 특히 천연흑연을 사용하는 것이 좋다.The core carbon material may be natural graphite, artificial graphite or a mixture thereof, and in particular, natural graphite may be used.
상기 저결정성 탄소로는 피치(pitch), 타르(tar), 페놀수지, 퓨란 수지, 풀푸릴알콜 등을 사용할 수 있다.As the low crystalline carbon, pitch, tar, phenol resin, furan resin, fulfuryl alcohol and the like can be used.
즉, 본 발명에서는 상기 심재 탄소 재료의 에지 부분 중 일부 또는 전부를 저결정성 탄소로 피복하여 제조되는 음극재의 비표면적 비를 1.4 이하가 되도록 저결정성 탄소의 종류와 공정 조건을 선택하고, 피복함으로써 효율과 사이클 특성이 우수한 음극재를 제조할 수 있는 것이다.That is, in the present invention, the type and process conditions of the low crystalline carbon are selected so that the specific surface area ratio of the negative electrode material manufactured by coating a part or all of the edge portions of the core carbon material with the low crystalline carbon is 1.4 or less. As a result, an anode material having excellent efficiency and cycle characteristics can be produced.
상기와 같이 제조한 음극재를 포함하는 극판 제조용 슬러리에는 필요에 따라 선택적으로 도전제나 바인더를 소량으로 첨가할 수 있다.A small amount of a conductive agent or a binder can be selectively added to the slurry for electrode plate production including the negative electrode material prepared as described above, if necessary.
상기 도전제나 바인더의 사용함량은 당업계에서 통상적으로 사용되는 정도로 적절히 조절하여 사용할 수 있으며, 그 범위가 본 발명에 영향을 미치는 것은 아니다.The use amount of the conductive agent or binder can be appropriately adjusted and used to the extent commonly used in the art, the range does not affect the present invention.
상기 도전제는 구성된 전지 내에서 화학변화를 일으키지 않는 전자전도성 재료이면 무엇이든지 사용가능하다. 예를 들면, 아세틸렌블랙, 케첸블랙, 파네스블랙, 서멀블랙 등과 같은 카본블랙, 천연흑연, 인조흑연, 도전성 낱소섬유 등이 있으며, 특히 카본블랙, 흑연분말 또는 탄소섬유를 사용하는 것이 바람직하다.The conductive agent may be used as long as it is an electron conductive material that does not cause chemical change in the battery configured. For example, there are carbon blacks such as acetylene black, Ketjen black, farnes black, thermal black, natural graphite, artificial graphite, conductive fibrous fibers, and the like, and in particular, carbon black, graphite powder or carbon fiber is preferably used.
상기 바인더로는 열가소성 수지, 열경화성 수지 또는 이들의 혼합물을 사용 할 수 있으며, 특히 폴리불화비닐리덴(PVDF) 또는 폴리테트라플루오로에틸렌(PTFE)을 사용하는 것이 바람직하며, 더욱 바람직하게는 폴리불화비닐리덴을 사용하는 것이다.As the binder, a thermoplastic resin, a thermosetting resin or a mixture thereof may be used, and in particular, polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE) is preferably used, and more preferably polyvinyl fluoride. It is to use Leeden.
상기와 같이 음극 활물질과 선택적으로 도전제 및 바인더 중 적어도 어느 하나를 포함하는 극판 제조용 슬러리는 이후 전극 집전체에 도포한 후, 건조시켜 용매나 분산매 등을 제거함으로써 집전체에 활물질을 결착시킴과 더불어 활물질간을 결착시키게 된다.As described above, the slurry for preparing a cathode plate including the negative electrode active material and optionally at least one of a conductive agent and a binder is then coated on an electrode current collector and then dried to remove a solvent or a dispersion medium, thereby binding the active material to the current collector. It binds between active materials.
상기 전극 집전체는 도전성 재료로 된 것이면 특별히 제한되지 않으나, 특히 구리, 금, 니켈, 구리합금 또는 이들의 조합에 의해 제조된 호일을 사용하는 것이 바람직하다.The electrode current collector is not particularly limited as long as it is made of a conductive material. Particularly, it is preferable to use a foil made of copper, gold, nickel, a copper alloy, or a combination thereof.
또한 본 발명은 양극, 음극, 양 전극 사이에 개재된 분리막 및 전해질을 포함하는 2차 전지에 있어서, 전술한 제조방법에 의하여 제조된 음극재를 음극으로 구비하는 것을 특징으로 한다.In addition, the present invention is characterized in that in the secondary battery comprising a separator and an electrolyte interposed between the positive electrode, the negative electrode, both electrodes, the negative electrode material prepared by the above-described manufacturing method as a negative electrode.
본 발명의 2차 전지는 당 기술 분야에 알려져 있는 통상적인 방법으로 양극과 음극 사이에 다공성 분리막을 넣고 전해질을 투입하여 제조할 수 있다.The secondary battery of the present invention can be prepared by inserting a porous separator between the positive electrode and the negative electrode in a conventional manner known in the art.
상기 전해질은 리튬염과 전해액 화합물을 포함하는 비수전해액으로서, 리튬염으로는 LiClO4, LiCF3SO3, LiPF6, LiBF4, LiAsF6 및 LiN(CF3SO2)2로 이루어진 군으로부터 선택된 1종 이상의 화합물이 바람직하다. 또한 전해액 화합물은 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 감마부티로락톤(GBL), 디에틸 카보네이 트(DEC), 디메틸 카보네이트(DMC), 에틸메틸카보네이트 (EMC) 및 메틸 프로필 카보네이트(MPC)로 이루어진 군으로부터 선택된 1 종 이상인 것이 바람직하다.The electrolyte is a non-aqueous electrolyte containing a lithium salt and an electrolyte compound, wherein the lithium salt is selected from the group consisting of LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6 and LiN (CF 3 SO 2 ) 2 . Preference is given to compounds of species or more. In addition, the electrolyte compounds include ethylene carbonate (EC), propylene carbonate (PC), gamma butyrolactone (GBL), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC) and methyl propyl carbonate ( It is preferable that it is 1 or more types chosen from the group which consists of MPC).
본 발명의 전지 제조시에는 분리막(seperator)으로서 다공성 분리막을 사용하는 것이 바람직하며, 비제한적인 예로는 폴리프로필렌계, 폴리에틸렌계 또는 폴리올레핀계 다공성 분리막 등이 있다.In manufacturing the battery of the present invention, it is preferable to use a porous separator as a separator, and non-limiting examples include a polypropylene-based, polyethylene-based or polyolefin-based porous separator.
본 발명의 2차 전지는 외형에 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다. The secondary battery of the present invention is not limited in appearance, but may be cylindrical, square, pouch or coin type using a can.
상기와 같은 본 발명의 2차 전지는 충/방전 효율이 94 % 이상이고, 25 번째 사이클에서의 방전용량이 95 % 이상이다.As described above, the secondary battery of the present invention has a charge / discharge efficiency of 94% or more and a discharge capacity of 95% or more in the 25th cycle.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예와 이에 대비되는 비교예를 통하여 보다 구체적으로 설명하기로 한다.Hereinafter, in order to help the understanding of the present invention will be described in more detail through preferred examples and comparative examples.
실시예 1Example 1
구상의 천연흑연질 탄소재료와 피치를 준비하였다.A spherical natural graphite carbon material and pitch were prepared.
먼저, 구상의 천연흑연에 테트라하이드로퓨란으로 녹인 피치를 천연흑연 중량 대비 3 중량%로 섞고 상압에서 2 시간 이상 습식 교반하여 혼합한 후 건조하여 혼합물을 제조하였다. 상기 혼합물을 승온속도 1 ℃/분으로 승온하여 1,100 ℃에서 1 시간 동안 소성하고, 분급하여 미분을 제거하여 음극 활물질을 제조하였다.First, the pitch dissolved with tetrahydrofuran in spherical natural graphite was mixed by 3% by weight relative to the weight of natural graphite, mixed by wet stirring at normal pressure for 2 hours or more, and then dried to prepare a mixture. The mixture was heated at a temperature increase rate of 1 ° C./min, calcined at 1,100 ° C. for 1 hour, and classified to remove fine powder to prepare a negative electrode active material.
상기 제조한 음극 활물질 100 g을 500 ㎖의 반응기에 넣고 소량의 N-메틸피롤리돈(NMP)과 바인더로 폴리불화비닐리덴(PVDF)을 투입한 다음 믹서(mixer)를 이용하여 혼련하여 비표면적 비가 1.21인 음극재를 제조하였다. 100 g of the prepared negative active material was placed in a 500 ml reactor, a small amount of N-methylpyrrolidone (NMP) and polyvinylidene fluoride (PVDF) were added as a binder, and then kneaded using a mixer to obtain a specific surface area. A negative electrode material having a ratio of 1.21 was prepared.
실시예 2Example 2
상기 실시예 1에서 피치를 천연흑연 중량 대비 5 중량%로 조절하고, 승온속도를 3 ℃/분으로 조절하여 비표면적 비가 1.38인 음극재를 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In the same manner as in Example 1 except that the negative electrode material having a specific surface area ratio of 1.38 was prepared by adjusting the pitch to 5 wt% based on the weight of natural graphite and adjusting the temperature increase rate to 3 ° C./min. Was carried out.
비교예Comparative example 1 One
상기 실시예 1에서 피치를 천연흑연 중량 대비 10 중량%로 조절하고, 승온속도를 3 ℃/분으로 조절하여 비표면적 비가 1.45인 음극재를 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In the same manner as in Example 1 except that the negative electrode material having a specific surface area ratio of 1.45 was prepared by adjusting the pitch to 10% by weight relative to the weight of natural graphite and adjusting the temperature increase rate to 3 ° C / min. Was carried out.
비교예Comparative example 2 2
상기 실시예 1에서 피치를 천연흑연 중량 대비 10 중량%로 조절하고, 승온속도를 5 ℃/분으로 조절하여 비표면적 비가 1.53인 음극재를 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, the pitch was adjusted to 10 wt% based on the weight of natural graphite, and the temperature increase rate was adjusted to 5 ° C./min, except that a negative electrode material having a specific surface area ratio of 1.53 was manufactured. Was carried out.
비교예 3Comparative Example 3
상기 실시예 1에서 피치를 천연흑연 중량 대비 10 중량%로 조절하고, 승온속도를 10 ℃/분으로 조절하여 비표면적 비가 1.61인 음극재를 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, except that the pitch was adjusted to 10% by weight based on the weight of natural graphite, and the temperature increase rate was adjusted to 10 ° C / min to prepare a negative electrode material having a specific surface area ratio of 1.61. Was carried out.
비교예Comparative example 4 4
상기 실시예 1에서 피치를 천연흑연 중량 대비 10 중량%로 조절하고, 승온속도를 15 ℃/분으로 조절하여 비표면적 비가 1.67인 음극재를 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, the pitch was adjusted to 10 wt% based on the weight of natural graphite, and the temperature increase rate was adjusted to 15 ° C./min in the same manner as in Example 1 except that a negative electrode material having a specific surface area ratio of 1.67 was manufactured. Was carried out.
상기 실시예 1 및 2와 비교예 1 내지 4에서 제조한 2차 전지용 음극재를 이용하여 다음과 같은 방법으로 비표면적 비와 충/방전 특성을 평가하고, 그 결과를 하기 표 1에 나타내었다.The specific surface area ratio and charge / discharge characteristics were evaluated using the negative electrode materials for secondary batteries prepared in Examples 1 and 2 and Comparative Examples 1 to 4 in the following manner, and the results are shown in Table 1 below.
가. 압착 전 비표면적 측정 - 상기 실시예 1 및 2와 비교예 1 내지 4에서 제조한 2차 전지용 음극재를 비표면적 측정기로 TriStar 3000 Model(Micromeritics사)을 이용하여 측정하였다.end. Measurement of specific surface area before compression-The negative electrode materials for secondary batteries prepared in Examples 1 and 2 and Comparative Examples 1 to 4 were measured using a TriStar 3000 Model (Micromeritics) as a specific surface area meter.
나. 압착 - 상기 실시예 1 및 2와 비교예 1 내지 4에서 제조한 2차 전지용 음극재 각각 2 g을 φ1.4 ㎝ 홀(hole)에 담근 후, 프레스(press)기를 이용하여 2 t의 힘을 φ1.4 ㎝ 면적에 2초간 가하였다(즉, 1.3 t/㎠ 압력으로 2 초간 압착한 것임).I. Crimping-After dipping 2 g each of the negative electrode material for secondary batteries prepared in Examples 1 and 2 and Comparative Examples 1 to 4 in a φ 1.4 cm hole, the force of 2 t using a press machine It was applied to an area of 1.4 cm for 2 seconds (that is, pressed for 2 seconds at a pressure of 1.3 t / cm 2).
다. 압착 후 비표면적 측정 - 상기 나.에서 압착한 실시예 1 및 2와 비교예 1 내지 4에서 제조한 2차 전지용 음극재의 비표면적을 마이크로메리틱사(Micromeritics사)의 트리스타 3000 모델(TriStar 3000 Model)을 이용하여 측정하였다.All. Measurement of specific surface area after crimping-The specific surface area of the negative electrode material for secondary batteries manufactured in Examples 1 and 2 and Comparative Examples 1 to 4 pressed in the above B. was measured using a MicroStar 3000 model (TriStar 3000 Model). ) Was measured.
라. 비표면적 비 계산 - 상기 수학식 1에 따라 측정하였다.la. Specific Surface Area Ratio Calculation-Measured according to Equation 1 above.
마. 전극 제조 - 상기 실시예 1 및 2와 비교예 1 내지 4에서 제조한 2차 전지용 음극재를 구리 호일상에 코팅하고 압착한 후 건조하여 전극을 제조하였다. 이때, 전극의 압착 후 밀도는 1.65 g/㎠로 균일화하였다. hemp. Electrode Preparation-Electrodes were prepared by coating the negative electrode material for secondary batteries prepared in Examples 1 and 2 and Comparative Examples 1 to 4 on a copper foil, pressing, and drying. At this time, the density after crimping of the electrodes was uniformized to 1.65 g / cm 2.
바. 충/방전 특성 - 상기 마.에서 제조한 전극의 충/방전 효율을 측정하기 위하여 코인 셀(Coin cell)을 제조하였다. 충/방전 시험은 전위를 0∼1.5 V의 범위 로 규제하여 충전 전류 0.5 ㎃/㎠로 0.01 V가 될 때까지 충전하고, 0.01 V의 전압을 유지하며 충전전류가 0.02 ㎃/㎠가 될 때까지 충전을 계속하였다. 그리고, 방전전류는 0.5 ㎃/㎠로 1.5 V까지의 방전을 행하였다.bar. Charge / discharge characteristics-A coin cell was prepared to measure the charge / discharge efficiency of the electrode prepared in E. The charge / discharge test regulates the potential in the range of 0 to 1.5 V and charges until the charging current is 0.5 V / cm 2 until it reaches 0.01 V, maintains the voltage of 0.01 V until the charging current reaches 0.02 mA / cm 2. Charging continued. The discharge current was discharged up to 1.5 V at 0.5 mA / cm 2.
상기 표 1에 나타낸 바와 같이, 본 발명에 따라 음극재의 비표면적 비를 1.4이하로 조절하여 제조한 실시예 1 및 2는 비표면적 비가 1.4를 넘는 비교예 1 내지 4와 비교하여 초도효율은 각각 94.7 %, 94.0 %로 94 % 이상으로 나타났으며, 25 번째 사이클시 방전용량(보유용량)은 각각 98.3 %, 97.5 %로 모두 95 % 이상을 나타냄을 확인할 수 있었다.As shown in Table 1, Examples 1 and 2 prepared by adjusting the specific surface area ratio of the negative electrode material in accordance with the present invention to 1.4 or less compared to Comparative Examples 1 to 4 with a specific surface area ratio of more than 1.4, respectively, the initial efficiency is 94.7 %, 94.0%, was 94% or more, and the discharge capacity (holding capacity) at the 25th cycle was 98.3%, 97.5%, respectively, it was confirmed that more than 95%.
또한, 상기 표 1을 통하여 비표면적 비는 초도용량과의 상관관계는 없으나, 비표면적 비가 클수록 효율과 사이클 성능이 열화됨을 확인할 수 있었다. 이같은 결과로부터 비표면적 비, 즉 압착 후 비표면적이 커진다는 것은 피치로 도포됐던 천연흑연의 표면이 압착공정시 피복된 탄소층이 깨지고 전해액에 노출되어 분해반응됨으로써 나타난 결과임을 예측할 수 있었다.In addition, it can be seen from Table 1 that the specific surface area ratio has no correlation with the initial capacitance, but the efficiency and cycle performance deteriorate as the specific surface area ratio increases. From these results, it can be predicted that the specific surface area ratio, that is, the specific surface area after the compression, is a result of the surface of the natural graphite, which was coated with pitch, cracked during the pressing process and the carbon layer coated during the compression process was exposed to the electrolyte and decomposed.
이상에서 본 발명의 기재된 구체예에 대해서만 상세히 설명되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although only described in detail with respect to the described embodiments of the present invention, it will be apparent to those skilled in the art that various modifications and variations are possible within the technical spirit of the present invention, it is natural that such variations and modifications belong to the appended claims. .
본 발명에 따르면, 실제 전극 적용에서 압착공정 중 피복된 탄화물이 깨지는 문제점을 해결하기 위해 음극재 표면에서의 전해액 분해 반응에 대한 보호 기능을 향상시킴으로써 음극재의 효율 및 사이클 용량을 향상시킬 수 있는 효과가 있다.According to the present invention, it is possible to improve the efficiency and cycle capacity of the negative electrode material by improving the protection against the electrolyte decomposition reaction on the surface of the negative electrode material in order to solve the problem that the coated carbide breaks during the pressing process in the actual electrode application have.
Claims (5)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070052190A KR100884431B1 (en) | 2007-05-29 | 2007-05-29 | Anode material of secondary battery and secondary battery using the same |
JP2009516413A JP2009533835A (en) | 2007-05-29 | 2007-10-31 | Anode material for secondary battery and secondary battery using the same |
PCT/KR2007/005450 WO2008146995A1 (en) | 2007-05-29 | 2007-10-31 | Anode material for secondary battery and secondary battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070052190A KR100884431B1 (en) | 2007-05-29 | 2007-05-29 | Anode material of secondary battery and secondary battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080104833A KR20080104833A (en) | 2008-12-03 |
KR100884431B1 true KR100884431B1 (en) | 2009-02-19 |
Family
ID=40075204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070052190A KR100884431B1 (en) | 2007-05-29 | 2007-05-29 | Anode material of secondary battery and secondary battery using the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2009533835A (en) |
KR (1) | KR100884431B1 (en) |
WO (1) | WO2008146995A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021101219A1 (en) * | 2019-11-18 | 2021-05-27 | 주식회사 엘지에너지솔루션 | Method for manufacturing anode, anode manufactured thereby, and secondary battery comprising same |
KR102674173B1 (en) | 2023-10-31 | 2024-06-12 | 주식회사 태성 | Plating apparatus and plating method for Anode material of secondary battery of Horizontal Transfer type |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011243567A (en) * | 2010-04-20 | 2011-12-01 | Jfe Chemical Corp | Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990067584A (en) * | 1995-11-14 | 1999-08-25 | 료끼 신이찌로 | Cathode material for lithium secondary battery, manufacturing method thereof, and secondary battery using the same |
US6294291B1 (en) | 1990-09-03 | 2001-09-25 | Matsushita Electric Industrial Co., Ltd. | Secondary battery or cell with a non-aqueous electrolyte |
US6420070B1 (en) | 1997-09-19 | 2002-07-16 | Matsushita Electric Industrial Co., Ltd. | Nonaqueous electrolyte secondary battery and its anode |
US7150944B2 (en) | 2000-05-03 | 2006-12-19 | Samsung Sdi Co., Ltd. | Non-aqueous electrolyte compositions and lithium secondary batteries made thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07201357A (en) * | 1994-01-06 | 1995-08-04 | Asahi Chem Ind Co Ltd | Lighium battery |
WO1995028011A1 (en) * | 1994-04-08 | 1995-10-19 | Sony Corporation | Nonaqueous-electrolyte secondary cell |
JP4045438B2 (en) * | 1995-11-14 | 2008-02-13 | 大阪瓦斯株式会社 | Double-layer carbon material for secondary battery and lithium secondary battery using the same |
JP2001332263A (en) * | 2000-03-16 | 2001-11-30 | Sony Corp | Secondary battery and manufacturing method for negative electrode material of carbon |
JP4415241B2 (en) * | 2001-07-31 | 2010-02-17 | 日本電気株式会社 | Negative electrode for secondary battery, secondary battery using the same, and method for producing negative electrode |
JP2003100292A (en) * | 2001-09-21 | 2003-04-04 | Osaka Gas Chem Kk | Carbon material for negative electrode and manufacturing method thereof, and lithium ion secondary battery using the same |
JP2003217585A (en) * | 2002-01-24 | 2003-07-31 | Osaka Gas Co Ltd | Graphite system negative electrode material for lithium secondary battery, negative electrode, and lithium secondary battery |
JP2003272630A (en) * | 2002-03-19 | 2003-09-26 | Denso Corp | Manufacturing method of negative electrode active material |
JP4215633B2 (en) * | 2002-12-19 | 2009-01-28 | Jfeケミカル株式会社 | Method for producing composite graphite particles |
-
2007
- 2007-05-29 KR KR1020070052190A patent/KR100884431B1/en active IP Right Grant
- 2007-10-31 WO PCT/KR2007/005450 patent/WO2008146995A1/en active Application Filing
- 2007-10-31 JP JP2009516413A patent/JP2009533835A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6294291B1 (en) | 1990-09-03 | 2001-09-25 | Matsushita Electric Industrial Co., Ltd. | Secondary battery or cell with a non-aqueous electrolyte |
KR19990067584A (en) * | 1995-11-14 | 1999-08-25 | 료끼 신이찌로 | Cathode material for lithium secondary battery, manufacturing method thereof, and secondary battery using the same |
US6420070B1 (en) | 1997-09-19 | 2002-07-16 | Matsushita Electric Industrial Co., Ltd. | Nonaqueous electrolyte secondary battery and its anode |
US7150944B2 (en) | 2000-05-03 | 2006-12-19 | Samsung Sdi Co., Ltd. | Non-aqueous electrolyte compositions and lithium secondary batteries made thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021101219A1 (en) * | 2019-11-18 | 2021-05-27 | 주식회사 엘지에너지솔루션 | Method for manufacturing anode, anode manufactured thereby, and secondary battery comprising same |
KR102674173B1 (en) | 2023-10-31 | 2024-06-12 | 주식회사 태성 | Plating apparatus and plating method for Anode material of secondary battery of Horizontal Transfer type |
Also Published As
Publication number | Publication date |
---|---|
JP2009533835A (en) | 2009-09-17 |
WO2008146995A1 (en) | 2008-12-04 |
KR20080104833A (en) | 2008-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100392034B1 (en) | Nonaqueous Electrolyte Secondary Cell, Method for Manufacturing the Same, and Carbonaceous Material Composition | |
KR101790400B1 (en) | Anode active material and lithium secondary battery comprising the same | |
KR101552763B1 (en) | Anode comprising silicon based material and carbon material, and lithium secondary battery comprising the same | |
JP5611453B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode | |
KR100817977B1 (en) | Anode material of secondary battery and secondary battery using the same | |
KR101650569B1 (en) | Lithium transition metal cathode active material, preparation method thereof, and lithium secondary battery comprising the same | |
KR100936571B1 (en) | Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same | |
KR101416064B1 (en) | Anode active material, lithium secondary battery having the anode active material and manufacturing method thereof | |
KR20090111129A (en) | Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same, and method thereof | |
KR100978422B1 (en) | Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same | |
KR101072068B1 (en) | Secondary battery | |
KR100884431B1 (en) | Anode material of secondary battery and secondary battery using the same | |
KR101551407B1 (en) | Negative electrode active material for rechargeable lithium battery, method for preparing the same, negative electrode including the same, and rechargeable lithium battery including the negative electrode | |
JP2001006730A (en) | Nonaqueous electrolyte battery | |
JP2001283861A (en) | Battery electrode and nonaqueous electrolyte battery | |
KR100855802B1 (en) | Anode material of secondary battery and secondary battery using the same | |
KR100853888B1 (en) | Anode material of secondary battery and secondary battery using the same | |
US20230378424A1 (en) | Method for manufacturing negative electrode | |
KR20090111289A (en) | Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same, and method thereof | |
KR100886529B1 (en) | Anode material of secondary battery and secondary battery using the same | |
JPH08180878A (en) | Lithium secondary battery | |
JP5567232B1 (en) | Composite carbon particles and lithium ion secondary battery using the same | |
KR20080097875A (en) | Anode material of secondary battery and secondary battery using the same | |
JP2003031218A (en) | Negative active material for lithium secondary battery and its manufacturing method | |
KR20080097876A (en) | Anode material of secondary battery and secondary battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
N231 | Notification of change of applicant | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130107 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20140113 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150106 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160212 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20170104 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20180104 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20190201 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20200204 Year of fee payment: 12 |