JP2003031218A - Negative active material for lithium secondary battery and its manufacturing method - Google Patents

Negative active material for lithium secondary battery and its manufacturing method

Info

Publication number
JP2003031218A
JP2003031218A JP2001211196A JP2001211196A JP2003031218A JP 2003031218 A JP2003031218 A JP 2003031218A JP 2001211196 A JP2001211196 A JP 2001211196A JP 2001211196 A JP2001211196 A JP 2001211196A JP 2003031218 A JP2003031218 A JP 2003031218A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001211196A
Other languages
Japanese (ja)
Inventor
Naruaki Okuda
匠昭 奥田
Osamu Hiruta
修 蛭田
Hideyuki Nakano
秀之 中野
Yoshio Ukiyou
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2001211196A priority Critical patent/JP2003031218A/en
Publication of JP2003031218A publication Critical patent/JP2003031218A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative active material constituting a lithium secondary battery with high storage characteristics, especially the high storage characteristics under high temperature, and its manufacturing method. SOLUTION: The negative active material is made of powdery carbon material, the carbon material is such a material that three parameters obtained by a powder X-ray diffraction method using CuKα line satisfy the following three conditions: (A) the ratio I110 /I002 of the intensity I110 of diffraction line from the (110) face and the intensity I002 of diffraction line from the (002) face; I110 /I002 <=0.015, (B) the half-value width W( deg.) of the peak in the (002) face; W>=0.2, and (C) the interlay distance d002 (nm); d002 >=0.337. The manufacturing method contains a raw material preparation process preparing a powdery raw carbon material satisfying prescribed conditions, and a crystallinity adjusting process for making the carbon material to satisfy the conditions (A) to (C) by changing the crystallinity of the carbon material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムの吸蔵・
脱離現象を利用したリチウム二次電池に用いられる負極
活物質材料およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to storage of lithium
The present invention relates to a negative electrode active material used in a lithium secondary battery utilizing a desorption phenomenon and a method for manufacturing the same.

【0002】[0002]

【従来の技術】パソコン、ビデオカメラ、携帯電話等の
小型化に伴い、情報関連機器、通信機器の分野では、こ
れらの機器に用いる電源として、高エネルギー密度であ
るという理由から、リチウム二次電池が実用化され広く
普及するに至っている。また一方で、自動車の分野にお
いても、環境問題、資源問題から電気自動車の開発が急
がれており、この電気自動車用の電源としても、リチウ
ム二次電池が検討されている。
2. Description of the Related Art With the miniaturization of personal computers, video cameras, mobile phones, etc., in the field of information-related equipment and communication equipment, lithium secondary batteries are used as a power source for these equipment because of their high energy density. Has been put into practical use and has become widespread. On the other hand, also in the field of automobiles, the development of electric vehicles has been rushed due to environmental problems and resource problems, and lithium secondary batteries are also being considered as a power source for these electric vehicles.

【0003】このように広い分野での要望があるリチウ
ム二次電池であるが、その価格が高いことから、他の二
次電池にも増して長寿命であることが要求される。長寿
命であるための要件の一つとして、リチウム二次電池を
充電率を高く保持した状態で保存した場合に、例えば電
池の内部抵抗が上昇しないといった、いわゆる保存特性
が良好であることが要求される。特に、高温下では電池
反応が活性化し内部抵抗の増加も大きいことから、例え
ば屋外放置される可能性のある電気自動車用電源等の用
途にリチウム二次電池を使用することを想定した場合に
は、高温下での保存特性が良好であることが重要な特性
の一つとなる。
As described above, the lithium secondary battery has been demanded in a wide variety of fields, but its price is high, so that it is required to have a longer life than other secondary batteries. As one of the requirements for long life, when the lithium secondary battery is stored in a state where the charge rate is kept high, it is required that the so-called storage characteristics are good, for example, the internal resistance of the battery does not increase. To be done. In particular, since the battery reaction is activated at a high temperature and the internal resistance increases greatly, for example, when it is assumed that the lithium secondary battery is used for a power source for an electric vehicle that may be left outdoors, One of the important characteristics is that the storage characteristics at high temperature are good.

【0004】現在リチウム二次電池は、負極表面のデン
ドライトの析出がない等の安全性等の理由から、負極活
物質として炭素材料を用い、正極活物質にリチウム遷移
金属複合酸化物を用いたものが主流を成している。そし
て、負極活物質として用いられる炭素材料では、結晶性
が高く、密度が大きいことから高エネルギー密度の電池
を構成できるものとして黒鉛が好んで用いられている。
At present, a lithium secondary battery uses a carbon material as a negative electrode active material and a lithium transition metal composite oxide as a positive electrode active material for safety reasons such as no dendrite deposition on the negative electrode surface. Is the mainstream. In the carbon material used as the negative electrode active material, graphite is preferably used as a material that can form a battery with high energy density because of its high crystallinity and high density.

【0005】[0005]

【発明が解決しようとする課題】しかし、このようなリ
チウム二次電池は、充電率を高く保持した状態で保存し
た場合に電池の内部抵抗の上昇が大きく、保存特性、特
に高温下での保存特性に問題があった。
However, such a lithium secondary battery has a large increase in internal resistance of the battery when stored in a state where the charge rate is kept high, and storage characteristics, particularly storage at high temperature. There was a problem with the characteristics.

【0006】本発明は、炭素材料を負極活物質とするリ
チウム二次電池が抱える高温保存における内部抵抗上昇
という問題を解決するためにされたものであり、保存特
性、特に高温下での保存特性の良好なリチウム二次電池
を構成することのできる負極活物質材料を提供すること
を課題とする。
The present invention has been made in order to solve the problem of an increase in internal resistance during high temperature storage that a lithium secondary battery using a carbon material as a negative electrode active material has, and has storage characteristics, particularly storage characteristics at high temperatures. It is an object of the present invention to provide a negative electrode active material which can form a good lithium secondary battery.

【0007】[0007]

【課題を解決するための手段】本発明のリチウム二次電
池用負極活物質材料は、粉末状の炭素物質からなり、そ
の炭素物質はCuΚα線を用いた粉末X線回折法によっ
て得られた以下の3つのパラメータが、以下の条件、 (A)(110)面の回折線の強度I110と(002)
面の回折線の強度I002との比I110/I002 ; I110
/I002≦0.015 (B)(002)面のピークの半値幅W(°) ; W
≧0.2 (C)層間距離d002(nm) ; d002≧0.337 を満足することを特徴とする。
The negative electrode active material for a lithium secondary battery of the present invention comprises a powdery carbonaceous material, which is obtained by a powder X-ray diffraction method using Cu Kα rays. The three parameters of are the following conditions: (A) Intensity I 110 of the diffraction line on the (110) plane and (002)
Ratio of intensity of diffraction line I 002 to plane I 110 / I 002 ; I 110
/ I 002 ≦ 0.015 (B) Half-width W (°) of peak of (002) plane; W
≧ 0.2 (C) interlayer distance d 002 (nm); d 002 ≧ 0.337 are satisfied.

【0008】負極活物質として用いられる炭素材料のう
ち、例えば人造黒鉛は、炭素材料を2800℃以上の高
温で焼成し、高結晶化したものである。そのため、焼成
後に室温に戻す際に、黒鉛の粒子内部に歪みが生じ、粒
子内部に大きな応力が生じていると考えられる。本発明
者は、リチウム二次電池の保存による内部抵抗上昇は、
負極活物質である黒鉛の結晶性の変化によるものと考え
た。すなわち、リチウム二次電池を長期間保存すると、
負極活物質である黒鉛の内部応力により結晶性が大きく
変化し、その結果、電池の内部抵抗が上昇すると考えら
れる。したがって、黒鉛の内部応力を緩和し、結晶性の
変化を抑制することで、長期保存によるリチウム二次電
池の内部抵抗の上昇を抑制することができるとの知見を
得た。
Among the carbon materials used as the negative electrode active material, for example, artificial graphite is a highly crystallized material obtained by firing the carbon material at a high temperature of 2800 ° C. or higher. Therefore, it is considered that when the temperature is returned to room temperature after firing, strain is generated inside the graphite particles and a large stress is generated inside the particles. The present inventors have found that the increase in internal resistance due to storage of a lithium secondary battery is
It was considered that this was due to a change in the crystallinity of the negative electrode active material, graphite. That is, when the lithium secondary battery is stored for a long time,
It is considered that the internal stress of graphite, which is the negative electrode active material, significantly changes the crystallinity, and as a result, the internal resistance of the battery increases. Therefore, it was found that the internal stress of graphite can be relaxed and the change in crystallinity can be suppressed to suppress an increase in internal resistance of the lithium secondary battery due to long-term storage.

【0009】本発明のリチウム二次電池用負極活物質材
料は、粉末状の炭素物質からなり、上記パラメータがそ
れぞれ各条件を満たすものである。ここで、(110)
面の回折線の強度I110と(002)面の回折線の強度
002との比I110/I002は、黒鉛化度を表すパラメー
タであり、I110/I002の値が小さいほど黒鉛構造が発
達していることを示している。結晶性の高い通常の黒鉛
では、I110/I002の値は0.01以下となる。また、
(002)面のピークの半値幅W(°)は、結晶子の配
向性等を表すパラメータであり、Wの値が小さいほど結
晶子の配向性が高く、層間距離も均一であることを示し
ている。黒鉛では、通常、Wは0.2°未満となる。さ
らに、層間距離d002(nm)は六角炭素網の層間距離
であり、理想的な黒鉛構造では、d002の値は0.33
48nmとなる。したがって、d002の値が0.334
8nmに近い程、黒鉛化度が高く、結晶性が高いと判断
される。
The negative electrode active material for a lithium secondary battery of the present invention comprises a powdery carbonaceous material, and the above parameters satisfy the respective conditions. Where (110)
The ratio I 110 / I 002 of the intensity I 110 of the diffraction line of the plane to the intensity I 002 of the diffraction line of the (002) plane is a parameter representing the degree of graphitization, and the smaller the value of I 110 / I 002 is, the smaller the graphite is. It shows that the structure is well developed. With ordinary graphite having high crystallinity, the value of I 110 / I 002 is 0.01 or less. Also,
The half-width W (°) of the peak of the (002) plane is a parameter indicating the orientation of crystallites, etc., and the smaller the value of W, the higher the orientation of crystallites and the uniform interlayer distance. ing. For graphite, W is typically less than 0.2 °. Further, the inter-layer distance d 002 (nm) is the inter-layer distance of the hexagonal carbon network, and in an ideal graphite structure, the value of d 002 is 0.33.
It becomes 48 nm. Therefore, the value of d 002 is 0.334.
The closer it is to 8 nm, the higher the degree of graphitization and the higher the crystallinity.

【0010】一方、例えば、焼成温度を低くする等によ
り、黒鉛構造があまり発達していない結晶性の低い黒鉛
も製造することができる。このようにもともと結晶性の
低い黒鉛(以下、本明細書において「低結晶性黒鉛」と
いう。)は、I110/I002の値が0.05程度と大き
く、かつ、d002の値は0.339nm程度となる。
On the other hand, for example, by lowering the firing temperature, it is possible to produce graphite with low crystallinity in which the graphite structure is not well developed. In this way, graphite having originally low crystallinity (hereinafter referred to as “low crystalline graphite” in the present specification) has a large I 110 / I 002 value of about 0.05 and a d 002 value of 0. It is about 339 nm.

【0011】本発明のリチウム二次電池用負極活物質材
料は、I110/I002の値が0.015以下、かつ、d
002の値が0.337nm以上となるものである。I110
/I00 2の値が0.015以下と小さいことから、I110
/I002の値が0.05程度と大きい低結晶性黒鉛とは
大きく異なる。なお、本発明の負極活物質材料のI110
/I002の値は、0.008以上であることが望まし
い。また、本発明の負極活物質材料のd002の値は、理
想的な黒鉛構造における値(0.3348nm)より大
幅に大きくなるものではなく、0.337nm以上0.
340nm以下程度となるものである。したがって、本
発明のリチウム二次電池用負極活物質材料は、黒鉛と比
較すれば黒鉛化度は若干低下しているものの、黒鉛構造
の充分発達した負極活物質材料といえる。
The negative electrode active material for lithium secondary batteries of the present invention
The fee is I110/ I002Value of 0.015 or less, and d
002Is 0.337 nm or more. I110
/ I00 2Since the value of is as small as 0.015 or less, I110
/ I002Is low crystalline graphite with a large value of about 0.05
to differ greatly. In addition, I of the negative electrode active material of the present invention110
/ I002It is desirable that the value of is 0.008 or more.
Yes. In addition, d of the negative electrode active material of the present invention002The value of
Greater than the value (0.3348 nm) in the ideal graphite structure
It does not increase in width, but is 0.337 nm or more.
It is about 340 nm or less. Therefore, the book
The negative electrode active material for a lithium secondary battery of the invention has a ratio of graphite to graphite.
Although the graphitization degree is slightly reduced by comparison, the graphite structure
It can be said that it is a fully developed negative electrode active material.

【0012】一方、本発明の負極活物質材料は、黒鉛と
比較した場合、半値幅の値が大きく異なる。黒鉛のWの
値は、通常0.2°未満であり、これは、上記低結晶性
黒鉛であっても同様である。これに対し、本発明の負極
活物質材料のWの値は0.2°以上である。黒鉛化度が
高いにもかかわらず、X線回折パターンにおける(00
2)面のピークがブロードとなり、半値幅の値が大きい
のは、個々の結晶子の結晶性は高いものの、それらが規
則的に配向していないこと、六角炭素網の層間距離が一
様ではないこと等の理由が考えられる。なお、Wの値
は、0.4以下であることが望ましい。このように、個
々の結晶子の結晶性は高いが結晶子の配向性が低いこと
で、粒子全体としての結晶性は黒鉛と異なるものとな
る。
On the other hand, the negative electrode active material of the present invention has a greatly different half-width value as compared with graphite. The value of W of graphite is usually less than 0.2 °, which is the same for the above low crystalline graphite. On the other hand, the value of W of the negative electrode active material of the present invention is 0.2 ° or more. Despite the high degree of graphitization, (00
2) The peak of the plane becomes broad and the value of full width at half maximum is large because the crystallinity of individual crystallites is high, but they are not regularly oriented, and the interlayer distance of the hexagonal carbon network is not uniform. It is possible that there is no reason. The value of W is preferably 0.4 or less. As described above, the crystallinity of each particle is high, but the crystallinity of the crystallite is low, so that the crystallinity of the entire particle is different from that of graphite.

【0013】したがって、本発明のリチウム二次電池用
負極活物質材料は、結晶子の配向性等が黒鉛とは異なる
ため、材料の内部応力が緩和されることとなる。よっ
て、本発明のリチウム二次電池用負極活物質材料は、充
電状態の高い状態で長期間保存した場合であっても結晶
性の変化が小さく、保存による内部抵抗の上昇が少ない
保存特性の良好な二次電池を構成することができる。
Therefore, the negative electrode active material for a lithium secondary battery of the present invention has a different crystallite orientation from that of graphite, so that the internal stress of the material is relieved. Therefore, the negative electrode active material for a lithium secondary battery of the present invention has a small change in crystallinity even when stored for a long period of time in a highly charged state, and has a small increase in internal resistance due to storage and good storage characteristics. Secondary battery can be configured.

【0014】また、本発明のリチウム二次電池用負極活
物質材料の製造方法は、CuΚα線を用いた粉末X線回
折法によって得られた以下の3つのパラメータが、以下
の条件、 (a)(110)面の回折線の強度I110と(002)
面の回折線の強度I002との比I110/I002 ; I110
/I002≦0.01 (b)(002)面のピークの半値幅W(°) ; W
<0.2 (c)層間距離d002(nm) ; d002<0.337 を満足するような粉末状の原料炭素物質を準備する原料
準備工程と、前記原料炭素物質を、その原料炭素物質の
結晶性を変化させて、CuΚα線を用いた粉末X線回折
法によって得られた以下の3つのパラメータが、以下の
条件、 (A)(110)面の回折線の強度I110と(002)
面の回折線の強度I002との比I110/I002 ; I110
/I002≦0.015 (B)(002)面のピークの半値幅W(°) ; W
≧0.2 (C)層間距離d002(nm) ; d002≧0.337 を満足するような炭素物質とする結晶性調整工程とを含
んでなることを特徴とする。
Further, in the method for producing a negative electrode active material for a lithium secondary battery of the present invention, the following three parameters obtained by the powder X-ray diffraction method using Cu Kα rays are as follows: (a) Diffraction line intensity I 110 of (110) plane and (002)
Ratio of intensity of diffraction line I 002 to plane I 110 / I 002 ; I 110
/ I 002 ≦ 0.01 (b) Half-width of peak of (002) plane W (°); W
<0.2 (c) interlayer distance d 002 (nm); a raw material preparing step of preparing a powdery raw material carbon material satisfying d 002 <0.337; and the raw material carbon material The following three parameters obtained by the powder X-ray diffraction method using the Cu Kα ray by changing the crystallinity of the above-mentioned materials have the following conditions: (A) the intensity I 110 of the diffraction line on the (110) plane and (002) )
Ratio of intensity of diffraction line I 002 to plane I 110 / I 002 ; I 110
/ I 002 ≦ 0.015 (B) Half-width W (°) of peak of (002) plane; W
≧ 0.2 (C) interlayer distance d 002 (nm); and d 002 ≧ 0.337.

【0015】すなわち、本発明のリチウム二次電池用負
極活物質材料の製造方法は、上記パラメータがそれぞれ
(a)〜(c)の各条件を満足するような結晶性の高い
炭素物質を原料とし、その結晶性を変化させることで、
もともと結晶性の低い炭素物質とは異なる上記本発明の
リチウム二次電池用負極活物質材料を製造する方法であ
る。
That is, the method for producing a negative electrode active material for a lithium secondary battery according to the present invention uses as a raw material a carbon material having high crystallinity such that the above parameters satisfy the respective conditions (a) to (c). , By changing its crystallinity,
This is a method for producing the above-mentioned negative electrode active material material for a lithium secondary battery of the present invention, which is different from a carbon material having low crystallinity.

【0016】本発明のリチウム二次電池用負極活物質材
料の製造方法によれば、結晶性の高い炭素物質の結晶性
を変化させて内部応力を緩和することで、保存による内
部抵抗の上昇が抑制された二次電池を構成することがで
きる負極活物質材料を簡便に製造することができる。
According to the method for producing a negative electrode active material for a lithium secondary battery of the present invention, the internal stress is relieved by changing the crystallinity of a carbon material having a high crystallinity to reduce the internal stress. A negative electrode active material material capable of forming a suppressed secondary battery can be easily manufactured.

【0017】[0017]

【発明の実施の形態】以下に、本発明のリチウム二次電
池用負極活物質材料およびその製造方法を説明し、その
後に、本発明のリチウム二次電池用負極活物質材料の利
用形態であるリチウム二次電池について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The negative electrode active material material for a lithium secondary battery of the present invention and the method for producing the same will be described below, followed by a usage form of the negative electrode active material for a lithium secondary battery of the present invention. The lithium secondary battery will be described.

【0018】〈リチウム二次電池用負極活物質材料〉本
発明のリチウム二次電池用負極活物質材料は、粉末状の
炭素物質からなり、その炭素物質はCuΚα線を用いた
粉末X線回折法によって得られた以下の3つのパラメー
タが、以下の条件、 (A)(110)面の回折線の強度I110と(002)
面の回折線の強度I002との比I110/I002 ; I110
/I002≦0.015 (B)(002)面のピークの半値幅W(°) ; W
≧0.2 (C)層間距離d002(nm) ; d002≧0.337 を満足するものである。
<Negative Electrode Active Material Material for Lithium Secondary Battery> The negative electrode active material material for lithium secondary battery of the present invention comprises a powdery carbon material, and the carbon material is a powder X-ray diffraction method using Cu Kα ray. The following three parameters obtained by the following conditions are as follows: (A) Intensity I 110 of the diffraction line on the (110) plane and (002)
Ratio of intensity of diffraction line I 002 to plane I 110 / I 002 ; I 110
/ I 002 ≦ 0.015 (B) Half-width W (°) of peak of (002) plane; W
≧ 0.2 (C) interlayer distance d 002 (nm); d 002 ≧ 0.337 is satisfied.

【0019】本発明の負極活物質材料は、粉末状の炭素
物質からなる。炭素物質としては、例えば、天然黒鉛
や、人造黒鉛等が挙げられる。後に製造方法において詳
しく説明するが、例えば、上記結晶性の高い粉末状の炭
素物質を原料とし、その結晶性を変化させることで本発
明の負極活物質材料を製造することができる。なお、本
発明の負極活物質材料の結晶性に関する上記パラメータ
の満足すべき条件については、上述したのでここでは省
略する。
The negative electrode active material of the present invention comprises a powdery carbon material. Examples of the carbon substance include natural graphite and artificial graphite. As will be described later in detail in the production method, for example, the negative electrode active material of the present invention can be produced by changing the crystallinity of the powdery carbonaceous material having high crystallinity as a raw material. The conditions to be satisfied by the above parameters regarding the crystallinity of the negative electrode active material of the present invention have been described above, and will not be repeated here.

【0020】粉末を構成する粒子の粒子径は、特に制限
されるものではないが、体積平均粒子径D50が2μm以
上30μm以下であることが望ましい。D50が2μm未
満の場合には、結晶性の低い微粒子の割合が多くなり、
電池の劣化を促進するおそれがあるからであり、30μ
mを超えると、電極の作製が困難になるからである。こ
こで、体積平均粒子径D50は、体積の個数平均値を粒子
径に換算したものである。
The particle diameter of the particles constituting the powder is not particularly limited, but the volume average particle diameter D 50 is preferably 2 μm or more and 30 μm or less. When D 50 is less than 2 μm, the proportion of fine particles having low crystallinity increases,
This is because there is a risk of promoting deterioration of the battery.
This is because if it exceeds m, it becomes difficult to manufacture the electrode. Here, the volume average particle diameter D 50 is obtained by converting the number average value of the volume into the particle diameter.

【0021】また、粉末を構成する粒子のほとんどが1
μm以上の粒子径を有するものであることが望ましい。
後に詳しく説明するが、非晶質成分である結晶性の低い
粒子は、1μm未満の微粒子として存在する。したがっ
て、そのような微粒子の割合をできるだけ少なくするこ
とで、より電池の劣化を抑制することができる。具体的
には、粉末を構成する粒子の総重量において99%以上
が1μm以上の粒子径を有するものであることが望まし
い。〈リチウム二次電池用負極活物質材料の製造方法〉
本発明のリチウム二次電池用負極活物質材料の製造方法
は、粉末状の炭素物質からなるリチウム二次電池用負極
活物質材料の製造方法であって、原料準備工程と結晶性
調整工程とを含んで構成される。以下、両工程について
説明する。
Most of the particles constituting the powder are 1
It is desirable that the particles have a particle size of μm or more.
As will be described later in detail, particles having low crystallinity, which are amorphous components, exist as fine particles of less than 1 μm. Therefore, by reducing the proportion of such fine particles as much as possible, the deterioration of the battery can be further suppressed. Specifically, it is desirable that 99% or more of the total weight of the particles constituting the powder have a particle diameter of 1 μm or more. <Method for producing negative electrode active material for lithium secondary battery>
A method for producing a negative electrode active material for a lithium secondary battery of the present invention is a method for producing a negative electrode active material for a lithium secondary battery comprising a powdery carbon material, which comprises a raw material preparing step and a crystallinity adjusting step. It is configured to include. Both steps will be described below.

【0022】(1)原料準備工程 本工程は、CuΚα線を用いた粉末X線回折法によって
得られた以下の3つのパラメータが、以下の条件、 (a)(110)面の回折線の強度I110と(002)
面の回折線の強度I002との比I110/I002 ; I110
/I002≦0.01 (b)(002)面のピークの半値幅W(°) ; W
<0.2 (c)層間距離d002(nm) ; d002<0.337 を満足するような粉末状の原料炭素物質を準備する工程
である。
(1) Raw Material Preparation Step In this step, the following three parameters obtained by the powder X-ray diffraction method using Cu Kα rays are as follows: (a) Intensity of diffraction line of (110) plane I 110 and (002)
Ratio of intensity of diffraction line I 002 to plane I 110 / I 002 ; I 110
/ I 002 ≦ 0.01 (b) Half-width of peak of (002) plane W (°); W
<0.2 (c) interlayer distance d 002 (nm); a step of preparing a powdery raw material carbon material satisfying d 002 <0.337.

【0023】原料炭素物質は、上記(a)〜(c)の条
件を満足できるものであれば、特に制限するものではな
い。すなわち、原料炭素物質は、結晶性の高い炭素物質
であり、例えば、天然黒鉛や、天然黒鉛とコークスとを
混合し2800℃以上で熱処理した人造黒鉛、あるい
は、易黒鉛化性炭素を2800℃以上の高温で熱処理し
た人造黒鉛等が挙げられる。なお、原料炭素物質は、製
造者が自ら製造して準備してもよく、また購入して準備
しても構わない。
The raw carbon material is not particularly limited as long as it can satisfy the above conditions (a) to (c). That is, the raw material carbon material is a carbon material having high crystallinity, and for example, natural graphite, artificial graphite obtained by mixing natural graphite and coke and heat-treated at 2800 ° C or higher, or graphitizable carbon at 2800 ° C or higher. Artificial graphite heat-treated at a high temperature is used. The raw carbon material may be prepared and prepared by the manufacturer, or may be purchased and prepared.

【0024】ここで、易黒鉛化性炭素には、コークス、
ピッチ類を400℃前後で加熱する過程で得られる光学
異方性の小球体(メソカーボンマイクロビーズ:MCM
B)等がある。原料炭素物質として人造黒鉛を使用する
場合、上記メソカーボンマイクロビーズを黒鉛化した黒
鉛化メソカーボンマイクロビーズ(黒鉛化MCMB)を
用いることが望ましい。この黒鉛化MCMBは、球状形
態をしていることが特徴であり、比表面積が小さく電解
液の分解を最小限に抑え、かつ充填密度の向上に寄与す
ることができる。したがって、黒鉛化MCMBを原料炭
素物質に用いて製造した本発明の負極活物質材料を負極
活物質として使用した二次電池は、エネルギー密度のよ
り高い電池となる。また、結晶子がラメラ状に配列し、
結晶子端面が粒子表面に露出しているため、黒鉛化MC
MBを原料炭素物質に用いて製造した本発明の負極活物
質材料を負極活物質として使用した二次電池は、充放電
時のリチウムの吸蔵・放出がスムーズで、出力特性にも
優れた電池となる。
Here, the easily graphitizable carbon includes coke,
Optically anisotropic small spheres (mesocarbon microbeads: MCM) obtained by heating pitches at around 400 ° C
B) etc. When artificial graphite is used as the raw material carbon material, it is desirable to use graphitized mesocarbon microbeads (graphitized MCMB) obtained by graphitizing the above mesocarbon microbeads. This graphitized MCMB is characterized in that it has a spherical shape, has a small specific surface area, can minimize the decomposition of the electrolytic solution, and can contribute to the improvement of the packing density. Therefore, the secondary battery using the negative electrode active material material of the present invention manufactured by using graphitized MCMB as a raw material carbon material as a negative electrode active material has a higher energy density. Also, the crystallites are arranged in a lamella shape,
Because the crystallite end face is exposed on the particle surface, graphitized MC
A secondary battery using the negative electrode active material of the present invention manufactured by using MB as a raw material carbon material has a smooth lithium occlusion / release at the time of charging / discharging and an excellent output characteristic. Become.

【0025】(2)結晶性調整工程 本工程は、前記原料準備工程で準備した原料炭素物質
を、その結晶性を変化させて、CuΚα線を用いた粉末
X線回折法によって得られた以下の3つのパラメータ
が、以下の条件、 (A)(110)面の回折線の強度I110と(002)
面の回折線の強度I002との比I110/I002 ; I110
/I002≦0.015 (B)(002)面のピークの半値幅W(°) ; W
≧0.2 (C)層間距離d002(nm) ; d002≧0.337 を満足するような炭素物質とする工程である。
(2) Crystallinity adjusting step In this step, the crystallinity of the raw carbon material prepared in the raw material preparing step is changed to obtain the following powder X-ray diffraction method using Cu Kα rays. The three parameters are as follows: (A) Diffraction line intensity I 110 on the (110) plane and (002)
Ratio of intensity of diffraction line I 002 to plane I 110 / I 002 ; I 110
/ I 002 ≦ 0.015 (B) Half-width W (°) of peak of (002) plane; W
≧ 0.2 (C) An interlayer distance d 002 (nm); d 002 ≧ 0.337.

【0026】結晶性を変化させる方法は、特に制限する
ものではない。その一例として、原料炭素物質を窒素を
含有する有機溶媒に分散させて行う方法が挙げられる。
原料炭素物質を窒素を含有する有機溶媒に分散させる
と、プラスの電荷を持ちやすい溶媒中の窒素原子とマイ
ナスの電荷を持ちやすい炭素原子が引き合って、炭素物
質中に溶媒が浸透するため、極めて簡便に原料炭素物質
の結晶性を変化させることができる。
The method of changing the crystallinity is not particularly limited. An example thereof is a method in which a raw material carbon material is dispersed in an organic solvent containing nitrogen.
When the raw material carbon material is dispersed in an organic solvent containing nitrogen, the nitrogen atoms in the solvent, which tend to have a positive charge, and the carbon atoms, which tend to have a negative charge, attract each other, and the solvent penetrates into the carbon material. The crystallinity of the raw carbon material can be easily changed.

【0027】この場合、窒素を含有する有機溶媒とし
て、例えば、N−メチル−2−ピロリドン、N,N−ジ
メチルアセトアミド、トリエチルアミン、ピリジン等を
用いることができる。特に、結着剤として用いるポリフ
ッ化ビニリデンとの親和性が高いという理由から、N−
メチル−2−ピロリドンを用いることが望ましい。な
お、原料炭素物質を窒素を含有する有機溶媒に分散させ
る場合には、攪拌して行うことが望ましい。また、分散
させる時間は24時間〜数日間程度、溶媒温度は室温〜
80℃程度とすればよい。
In this case, as the nitrogen-containing organic solvent, for example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, triethylamine, pyridine or the like can be used. In particular, because of its high affinity with polyvinylidene fluoride used as a binder, N-
It is desirable to use methyl-2-pyrrolidone. When the raw carbon material is dispersed in an organic solvent containing nitrogen, it is desirable to stir it. In addition, the time for dispersion is about 24 hours to several days, and the solvent temperature is room temperature to
It may be about 80 ° C.

【0028】なお、原料炭素物質、あるいは結晶性を変
化させて得られる炭素物質の粒子の中に、結晶性の低い
微粒子が含まれている場合には、その微粒子を取り除く
ことが望ましい。上述したように、結晶性の低い粒子は
1μm未満の微粒子として存在する。したがって、その
ような微粒子の割合をできるだけ少なくすることで、よ
り電池の劣化を抑制することができる。この場合には、
本結晶性調整工程を、原料炭素物質の微粒子あるいは炭
素物質の微粒子を除去する微粒子除去工程を含んで構成
することができる。微粒子の除去は、原料炭素物質の結
晶性を変化させる前に行ってもよく、結晶性を変化させ
た後で行ってもよい。さらに、原料炭素物質の結晶性を
変化させている間に行ってもよい。また、微粒子を除去
する回数は特に限定されるものではなく、1〜10回程
度行えばよい。
When particles of the raw material carbon material or carbon material obtained by changing the crystallinity contain fine particles having low crystallinity, it is desirable to remove the fine particles. As described above, the particles having low crystallinity exist as fine particles of less than 1 μm. Therefore, by reducing the proportion of such fine particles as much as possible, the deterioration of the battery can be further suppressed. In this case,
This crystallinity adjusting step can be configured to include a fine particle removing step of removing fine particles of the raw material carbon material or fine particles of the carbon material. The fine particles may be removed before the crystallinity of the raw material carbon material is changed or after the crystallinity is changed. Furthermore, it may be performed while changing the crystallinity of the raw material carbon material. The number of times the fine particles are removed is not particularly limited and may be about 1 to 10 times.

【0029】微粒子を除去する方法は、特に限定される
ものではなく、粒子の分級に用いられる一般の方法を用
いればよい。例えば、気体分級、液体分級等を用いるこ
とができる。なかでも、より粒子径の小さな微粒子を確
実に除去できるという理由から液体分級を用いることが
望ましい。この場合、微粒子除去工程は、原料炭素物質
あるいは炭素物質を分級液に分散させた後、静置するこ
とにより沈降させ、沈降せずに上澄み液中に浮遊した微
粒子を除去する工程を含んで構成することができる。
The method for removing the fine particles is not particularly limited, and a general method used for classifying the particles may be used. For example, gas classification, liquid classification and the like can be used. Above all, it is desirable to use the liquid classification because the fine particles having a smaller particle size can be surely removed. In this case, the fine particle removing step includes a step of dispersing the raw material carbon material or the carbon material in the classification liquid, and then allowing the material to settle by allowing it to stand, and removing fine particles suspended in the supernatant liquid without settling. can do.

【0030】分級液は、特に限定されるものではなく、
除去したい微粒子の粒子径等に応じて粘度、比重等を考
慮し、適宜選択すればよい。例えば、結晶性調整工程に
おいて、原料炭素物質の結晶性を変化させる方法とし
て、原料炭素物質を窒素を含有する有機溶媒に分散させ
る方法を採用した場合には、その窒素を含有する有機溶
媒を分級液とすることができる。本態様を採用した場合
には、新たに分級液を準備する必要はなく、原料炭素物
質を窒素を含有する有機溶媒に分散させた後、静置する
ことにより微粒子を分級することができる。つまり、結
晶性を変化させるのと同時に微粒子を除去することがで
きるため、結晶性調整工程と微粒子除去工程とを実質的
に一つの工程とすることができる。
The classification liquid is not particularly limited,
The viscosity, specific gravity and the like may be taken into consideration according to the particle size of the fine particles to be removed and the like, and may be appropriately selected. For example, in the crystallinity adjusting step, when a method of dispersing the raw material carbon material in an organic solvent containing nitrogen is adopted as a method of changing the crystallinity of the raw material carbon material, the organic solvent containing nitrogen is classified. It can be a liquid. When this embodiment is adopted, it is not necessary to newly prepare a classifying liquid, and the raw material carbon material is dispersed in an organic solvent containing nitrogen and then allowed to stand to classify the fine particles. That is, since the fine particles can be removed at the same time as the crystallinity is changed, the crystallinity adjusting step and the fine particle removing step can be substantially one step.

【0031】〈リチウム二次電池〉本発明のリチウム二
次電池は、上記本発明のリチウム二次電池用負極活物質
材料を負極活物質として用いたものである。以下、その
リチウム二次電池の主要構成について説明する。一般に
リチウム二次電池は、リチウムイオンを吸蔵・放出する
正極および負極と、この正極と負極との間に挟装される
セパレータと、正極と負極の間をリチウムイオンを移動
させる非水電解液とから構成される。本実施形態の二次
電池もこの構成に従うため、以下の説明は、これらの構
成要素のそれぞれについて行うこととする。
<Lithium Secondary Battery> The lithium secondary battery of the present invention uses the above-mentioned negative electrode active material material for lithium secondary batteries of the present invention as a negative electrode active material. The main configuration of the lithium secondary battery will be described below. Generally, a lithium secondary battery includes a positive electrode and a negative electrode that absorbs and releases lithium ions, a separator that is sandwiched between the positive electrode and the negative electrode, and a non-aqueous electrolyte that moves lithium ions between the positive electrode and the negative electrode. Composed of. Since the secondary battery of this embodiment also follows this configuration, the following description will be given for each of these components.

【0032】正極は、リチウムイオンを吸蔵・放出でき
る正極活物質に導電材および結着剤を混合し、必要に応
じ適当な溶媒を加えて、ペースト状の正極合材としたも
のを、アルミニウム等の金属箔製の集電体表面に塗布、
乾燥し、その後プレスによって活物質密度を高めること
によって形成することができる。
For the positive electrode, a positive electrode active material capable of occluding and releasing lithium ions is mixed with a conductive material and a binder, and a suitable solvent is added if necessary to obtain a paste-like positive electrode mixture. Apply to the surface of the metal foil collector of
It can be formed by drying and then increasing the density of the active material by pressing.

【0033】正極活物質には、例えば、4V級の二次電
池を構成できるという観点から、基本組成をLiCoO
2、LiNiO2、LiMnO2等とする層状岩塩構造の
リチウム遷移金属複合酸化物、基本組成をLiMn24
等とするスピネル構造のリチウム遷移金属複合酸化物を
用いることができる。なかでも、基本組成をLiNiO
2とする層状岩塩構造のリチウム遷移金属複合酸化物
は、Coを中心金属としたリチウム遷移金属複合酸化物
より低価格であり、単位重量あたりの放電容量が大きい
二次電池を構成できることから好適である。
The positive electrode active material has a basic composition of LiCoO 2 from the viewpoint that a secondary battery of 4 V class can be constructed.
2 , LiNiO 2 , LiMnO 2, etc., layered rock salt structure lithium transition metal composite oxide, basic composition of which is LiMn 2 O 4
A lithium transition metal composite oxide having a spinel structure such as Among them, the basic composition is LiNiO
The layered rock salt structure lithium transition metal composite oxide of 2 is preferable because it is cheaper than the lithium transition metal composite oxide having Co as a central metal and can form a secondary battery having a large discharge capacity per unit weight. is there.

【0034】なお、基本組成とは、上記各複合酸化物の
代表的な組成という意味であり、上記組成式で表される
ものの他、例えば、リチウムサイトや遷移金属サイトを
他の1種または2種以上の元素で一部置換したもの等の
組成をも含む。また、必ずしも化学量論組成のものに限
定されるわけではなく、例えば、製造上不可避的に生じ
るLi、Ni等の陽イオン元素が欠損した、あるいは酸
素原素が欠損した非化学量論組成のもの等をも含む。さ
らに、リチウム遷移金属複合酸化物のうち1種類のもの
を用いることも、また、2種類以上のものを混合して用
いることもできる。
The basic composition means a typical composition of each of the above composite oxides, and in addition to the one represented by the above composition formula, for example, a lithium site or a transition metal site may be used as another one or two. It also includes compositions such as those partially substituted with one or more elements. Further, the composition is not necessarily limited to the stoichiometric composition, and for example, a non-stoichiometric composition in which a cation element such as Li or Ni, which is inevitably produced in production, is deficient or an oxygen atom is deficient. Also includes things. Further, one kind of lithium-transition metal composite oxide may be used, or two or more kinds thereof may be mixed and used.

【0035】正極に用いる導電材は、正極活物質層の電
気伝導性を確保するためのものであり、カーボンブラッ
ク、アセチレンブラック、黒鉛等の炭素物質の1種また
は2種以上を混合したものを用いることができる。結着
剤は、活物質粒子を繋ぎ止める役割を果たすもので、ポ
リテトラフルオロエチレン、ポリフッ化ビニリデン、フ
ッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチ
レン等の熱可塑性樹脂を用いることができる。これら活
物質、導電材、結着剤を分散させる溶剤としては、N−
メチル−2−ピロリドン等の有機溶剤を用いることがで
きる。
The conductive material used for the positive electrode is for ensuring the electric conductivity of the positive electrode active material layer, and one or a mixture of two or more carbon materials such as carbon black, acetylene black and graphite is used. Can be used. The binder plays a role of binding the active material particles, and may be a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene. As a solvent for dispersing the active material, the conductive material, and the binder, N-
An organic solvent such as methyl-2-pyrrolidone can be used.

【0036】負極は、負極活物質に結着剤を混合し、適
当な溶媒を加えてペースト状にした負極合材を、銅等の
金属箔集電体の表面に塗布乾燥して形成することができ
る。
The negative electrode is formed by mixing a negative electrode active material with a binder, adding a suitable solvent to form a paste of the negative electrode mixture, and applying and drying the mixture on the surface of a metal foil current collector such as copper. You can

【0037】負極活物質には、本発明のリチウム二次電
池用負極活物質材料を用いる。なお、本発明の負極活物
質材料は、その結晶構造、粒子径等により種々の材料が
存在する。したがって、それらの1種を負極活物質とし
て用いるものであってもよく、また、2種以上を混合し
て用いるものであってもよい。さらに、本発明の負極活
物質材料と既に公知の負極活物質材料とを混合して負極
活物質とする構成を採用することもできる。そして、正
極同様、負極結着剤としてはポリフッ化ビニリデン等の
含フッ素樹脂等を、溶剤としてはN−メチル−2−ピロ
リドン等の有機溶剤を用いることができる。
As the negative electrode active material, the negative electrode active material material for lithium secondary batteries of the present invention is used. The negative electrode active material of the present invention has various materials depending on its crystal structure, particle size, and the like. Therefore, one of them may be used as the negative electrode active material, or two or more thereof may be mixed and used. Furthermore, it is also possible to adopt a configuration in which the negative electrode active material of the present invention is mixed with a known negative electrode active material to obtain a negative electrode active material. As with the positive electrode, a fluorine-containing resin such as polyvinylidene fluoride can be used as the negative electrode binder, and an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent.

【0038】正極と負極の間に挟装されるセパレータ
は、正極と負極とを隔離しつつ電解液を保持してイオン
を通過させるものであり、ポリエチレン、ポリプロピレ
ン等の薄い微多孔膜を用いることができる。
The separator sandwiched between the positive electrode and the negative electrode is for separating the positive electrode and the negative electrode, holding the electrolytic solution and allowing ions to pass therethrough, and uses a thin microporous membrane such as polyethylene or polypropylene. You can

【0039】非水電解液は、有機溶媒に電解質を溶解さ
せたもので、有機溶媒としては、非プロトン性有機溶
媒、例えばエチレンカーボネート、プロピレンカーボネ
ート、ジメチルカーボネート、ジエチルカーボネート、
γ−ブチロラクトン、アセトニトリル、ジメトキシエタ
ン、テトラヒドロフラン、ジオキソラン、塩化メチレン
等の1種またはこれらの2種以上の混合液を用いること
ができる。また、溶解させる電解質としては、溶解させ
ることによりリチウムイオンを生じるLiI、LiCl
4、LiAsF6、LiBF4、LiPF6等を用いるこ
とができる。
The non-aqueous electrolytic solution is obtained by dissolving an electrolyte in an organic solvent, and as the organic solvent, an aprotic organic solvent such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate,
It is possible to use one kind of γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, etc., or a mixed solution of two or more kinds thereof. Further, as the electrolyte to be dissolved, LiI and LiCl which generate lithium ions when dissolved
O 4 , LiAsF 6 , LiBF 4 , LiPF 6 or the like can be used.

【0040】なお、上記セパレータおよび非水電解液と
いう構成に代えて、ポリエチレンオキシド等の高分子量
ポリマーとLiClO4やLiN(CF3SO22等のリ
チウム塩を使用した高分子固体電解質を用いることもで
き、また、上記非水電解液をポリアクリロニトリル等の
固体高分子マトリクスにトラップさせたゲル電解質を用
いることもできる。
Instead of the separator and the non-aqueous electrolyte solution, a polymer solid electrolyte using a high molecular weight polymer such as polyethylene oxide and a lithium salt such as LiClO 4 or LiN (CF 3 SO 2 ) 2 is used. It is also possible to use a gel electrolyte in which the above nonaqueous electrolytic solution is trapped in a solid polymer matrix such as polyacrylonitrile.

【0041】以上のものから構成されるリチウム二次電
池であるが、その形状はコイン型、積層型、円筒型等の
種々のものとすることができる。いずれの形状を採る場
合であっても、正極および負極にセパレータを挟装させ
電極体とし、正極および負極から外部に通ずる正極端子
および負極端子までの間をそれぞれ導通させるようにし
て、この電極体を非水電解液とともに電池ケースに密閉
して電池を完成させることができる。
The lithium secondary battery composed of the above-mentioned ones can have various shapes such as a coin type, a laminated type and a cylindrical type. Regardless of which shape is adopted, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the positive electrode terminal and the negative electrode terminal that communicate with the outside are electrically connected to each other by the electrode body. The battery can be completed by hermetically sealing the battery case with the non-aqueous electrolyte.

【0042】〈他の実施形態の許容〉これまでに説明し
た本発明のリチウム二次電池用負極活物質材料、その製
造方法、およびリチウム二次電池の実施形態は例示にす
ぎず、本発明のリチウム二次電池用負極活物質材料およ
びその製造方法、また本発明のリチウム二次電池用負極
活物質材料を負極活物質に用いたリチウム二次電池は、
上記実施形態を始めとして、当業者の知識に基づいて種
々の変更、改良を施した形態で実施することができる。
<Acceptance of Other Embodiments> The embodiments of the negative electrode active material for a lithium secondary battery, the method for producing the same, and the lithium secondary battery of the present invention described above are merely examples, and the present invention is not limited thereto. A negative electrode active material for lithium secondary batteries and a method for producing the same, and a lithium secondary battery using the negative active material for lithium secondary batteries of the present invention as a negative active material,
Starting from the above-described embodiment, various modifications and improvements can be made based on the knowledge of those skilled in the art.

【0043】[0043]

【実施例】上記実施形態に基づいて、本発明のリチウム
二次電池用負極活物質材料を2種類製造した。また、比
較のため、結晶性の高い通常の黒鉛と低結晶性黒鉛とを
準備し、それら各材料を負極活物質として用いたリチウ
ム二次電池を作製し、保存特性を評価した。
EXAMPLE Two types of negative electrode active material materials for lithium secondary batteries of the present invention were manufactured based on the above-described embodiment. For comparison, ordinary graphite having low crystallinity and low-crystallinity graphite were prepared, and a lithium secondary battery using each of these materials as a negative electrode active material was prepared to evaluate the storage characteristics.

【0044】以下、リチウム二次電池用負極活物質材料
の製造、リチウム二次電池の作製および保存特性の評価
について説明する。
The production of a negative electrode active material for a lithium secondary battery, the production of a lithium secondary battery and the evaluation of storage characteristics will be described below.

【0045】〈リチウム二次電池用負極活物質材料の製
造〉 (1)実施例1の負極活物質材料 原料炭素物質として、粉末状(平均粒子径25μm)の
黒鉛化メソカーボンマイクロビーズ(黒鉛化MCMB:
焼成温度2800℃)を準備した。なお、黒鉛化MCM
BをCuΚα線を用いた粉末X線回折法により解析し、
以下に示す3つのパラメータ値から、黒鉛化MCMBの
結晶性が高いことを確認した。I110/I002=0.00
7、W=0.165(°)、d002=0.335(n
m)。
<Manufacture of Negative Electrode Active Material for Lithium Secondary Battery> (1) Powdery (average particle diameter 25 μm) graphitized mesocarbon microbeads (graphitized) as the raw material carbon material for the negative electrode active material of Example 1 MCMB:
A firing temperature of 2800 ° C.) was prepared. In addition, graphitized MCM
B was analyzed by a powder X-ray diffraction method using Cu Kα rays,
From the three parameter values shown below, it was confirmed that the crystallinity of graphitized MCMB was high. I 110 / I 002 = 0.00
7, W = 0.165 (°), d 002 = 0.335 (n
m).

【0046】この黒鉛化MCMBを、窒素を含有する有
機溶媒であるN−メチル−2−ピロリドンに分散させ、
1週間放置した。その後、200℃下で減圧乾燥して粉
末状の炭素物質を得た。得られた炭素物質を実施例1の
負極活物質材料とした。
This graphitized MCMB was dispersed in N-methyl-2-pyrrolidone, which is an organic solvent containing nitrogen,
It was left for one week. Then, it dried under reduced pressure at 200 degreeC and the powdery carbon material was obtained. The obtained carbon material was used as the negative electrode active material material of Example 1.

【0047】(2)実施例2の負極活物質材料 実施例1の負極活物質材料の製造において、さらに炭素
物質の微粒子を除去する工程を加えた以外は、上記
(1)と同様に製造した。すなわち、黒鉛化MCMB
を、N−メチル−2−ピロリドンに分散させ、3日間静
置した後、上澄み液を捨てることで上澄み液中に浮遊し
た炭素物質の微粒子を除去した。さらに、分級液として
N−メチル−2−ピロリドンを加え、再び炭素物質を分
散させた後、4日間静置して同様に上澄み液中に浮遊し
た炭素物質の微粒子を除去した。その後、200℃下で
減圧乾燥して粉末状の炭素物質を得た。得られた炭素物
質を実施例2の負極活物質材料とした。
(2) Negative Electrode Active Material Material of Example 2 A negative electrode active material material of Example 1 was manufactured in the same manner as in the above (1) except that a step of removing fine particles of carbon material was added. . That is, graphitized MCMB
Was dispersed in N-methyl-2-pyrrolidone and allowed to stand for 3 days, and then the supernatant was discarded to remove fine particles of carbonaceous material suspended in the supernatant. Further, N-methyl-2-pyrrolidone was added as a classification liquid, the carbon substance was dispersed again, and the mixture was allowed to stand for 4 days to similarly remove fine particles of the carbon substance suspended in the supernatant. Then, it dried under reduced pressure at 200 degreeC and the powdery carbon material was obtained. The obtained carbon material was used as the negative electrode active material material of Example 2.

【0048】(3)CuΚα線を用いた粉末X線回折法
による解析およびSEM観察 上記実施例1、2の負極活物質材料について、CuΚα
線を用いた粉末X線回折法による解析を行った。図1
に、実施例2の負極活物質材料、および原料炭素物質で
ある黒鉛化MCMBを200℃下で減圧乾燥したもの
(以下、「比較例1の炭素物質」とする。)のX線回折
パターンを示す。また、表1に、実施例1、2の負極活
物質材料、および比較例1の炭素物質について、得られ
た3つのパラメータの値を示す。なお、比較のため、2
300℃で焼成され結晶性の低い黒鉛化MCMBを20
0℃下で減圧乾燥したもの(以下、「比較例2の炭素物
質」とする。)についてのパラメータの値も合わせて示
す。
(3) Analysis by powder X-ray diffraction method using Cu Kα ray and SEM observation Regarding the negative electrode active material of Examples 1 and 2, Cu Kα α
The powder X-ray diffraction analysis using the X-ray was performed. Figure 1
In addition, the X-ray diffraction patterns of the negative electrode active material of Example 2 and the graphitized MCMB, which is a raw material carbon material, dried under reduced pressure at 200 ° C. (hereinafter, referred to as “carbon material of Comparative Example 1”). Show. Table 1 shows the values of the three parameters obtained for the negative electrode active material materials of Examples 1 and 2 and the carbon material of Comparative Example 1. For comparison, 2
20 pieces of graphitized MCMB with low crystallinity, which was baked at 300 ° C
The values of the parameters for the one dried under reduced pressure at 0 ° C. (hereinafter, referred to as “carbon material of Comparative Example 2”) are also shown.

【0049】[0049]

【表1】 [Table 1]

【0050】表1より、実施例1、2の負極活物質材料
は、比較例1の炭素物質と比較して、I110/I002およ
びd002の値が若干大きくなっている。つまり、実施例
1、2の負極活物質材料は、原料の炭素物質よりも黒鉛
化度が若干低下していることがわかる。一方、低結晶性
黒鉛である比較例2の炭素物質と比較すると、実施例
1、2の負極活物質材料のI110/I002およびd002
値は小さい。つまり、もともと結晶性の低い炭素物質に
比べると、実施例1、2の負極活物質材料の黒鉛化度は
高いことがわかる。
From Table 1, the negative electrode active material materials of Examples 1 and 2 have slightly higher I 110 / I 002 and d 002 values than the carbon material of Comparative Example 1. That is, it can be understood that the negative electrode active material materials of Examples 1 and 2 have a degree of graphitization slightly lower than that of the raw material carbon material. On the other hand, the values of I 110 / I 002 and d 002 of the negative electrode active material materials of Examples 1 and 2 are smaller than that of the carbon material of Comparative Example 2 which is low crystalline graphite. That is, it can be seen that the negative electrode active material materials of Examples 1 and 2 have a higher degree of graphitization than carbon materials having originally low crystallinity.

【0051】また、半値幅Wの値は、比較例1、2の炭
素物質では0.2°未満であるのに対し、実施例1、2
の負極活物質材料では0.2°以上となっている。これ
は、結晶性の高い炭素物質の結晶性を変化させたことに
起因するものであり、結晶子の配向性が低いこと、層間
距離が一様ではないこと等が原因と考えられる。したが
って、本発明の負極活物質材料である実施例1、2の負
極活物質材料は、結晶性の高い炭素物質と比較すると若
干黒鉛化度は低下しているが、もともと結晶性の低い炭
素物質とは異なるものであることが確認できた。
Further, the value of the full width at half maximum W is less than 0.2 ° in the carbon substances of Comparative Examples 1 and 2, whereas in Examples 1 and 2
In the case of the negative electrode active material, the angle is 0.2 ° or more. This is because the crystallinity of the carbon material having high crystallinity was changed, and it is considered that the crystallinity of the crystallite is low and the interlayer distance is not uniform. Therefore, the negative electrode active material materials of Examples 1 and 2 which are negative electrode active material materials of the present invention have a slightly lower graphitization degree than the carbon material having high crystallinity, but the carbon material originally has low crystallinity. It was confirmed to be different from.

【0052】なお、実施例1の負極活物質材料と実施例
と2の負極活物質材料とを比較すると、実施例2の負極
活物質材料の方がより比較例1の炭素物質に近い結晶性
を有することがわかる。これは実施例2の負極活物質材
料では、結晶性の低い炭素物質の微粒子を除去したから
であると考えられる。
When the negative electrode active material material of Example 1 and the negative electrode active material materials of Examples 2 and 2 are compared, the negative electrode active material material of Example 2 has a crystallinity closer to that of the carbon material of Comparative Example 1. It turns out that It is considered that this is because the negative electrode active material of Example 2 was prepared by removing fine particles of a carbon material having low crystallinity.

【0053】ここで、実施例1の負極活物質材料を走査
型電子顕微鏡(SEM)により撮影した写真を図2に、
実施例2の負極活物質材料をSEMにより撮影した写真
を図3にそれぞれ示す。図2の写真より、実施例1の負
極活物質材料では、粒子径が10μm〜30μm程度の
粒子に加え、1μm未満の微粒子が数多く観察された。
一方、図3の写真より、実施例2の負極活物質材料で
は、粒子のほとんどが1μm以上の粒子径を有するもの
であり、1μm未満の微粒子はほとんど観察されない。
したがって、液体分級を行った実施例2の負極活物質材
料は、その粉末を構成する粒子のほとんどが1μm以上
の粒子径を有するものであり、分級を行わなかったもの
より結晶性の低い粒子が少ないことが確認できた。
A photograph of the negative electrode active material of Example 1 taken with a scanning electron microscope (SEM) is shown in FIG.
The photographs of the negative electrode active material of Example 2 taken by SEM are shown in FIG. 3, respectively. From the photograph of FIG. 2, in the negative electrode active material of Example 1, many particles having a particle diameter of less than 1 μm were observed in addition to the particles having a particle diameter of about 10 μm to 30 μm.
On the other hand, from the photograph of FIG. 3, in the negative electrode active material of Example 2, most of the particles have a particle size of 1 μm or more, and fine particles of less than 1 μm are hardly observed.
Therefore, in the negative electrode active material of Example 2 in which the liquid classification was performed, most of the particles forming the powder had a particle size of 1 μm or more, and particles having lower crystallinity than those not subjected to the classification were It was confirmed to be small.

【0054】なお、参考までに、実施例2の負極活物質
材料を製造する際に取り除かれた微粒子をSEMにより
撮影した写真を図4に示す。図4の写真より、除去され
た微粒子は、粒子径が1μm未満の不定形微粒子である
ことがわかる。そして、ここには示さないが、X線回折
パターンから、この微粒子は非晶質成分であることが確
認された。
For reference, FIG. 4 shows a photograph taken by SEM of the fine particles removed when the negative electrode active material of Example 2 was manufactured. From the photograph of FIG. 4, it is understood that the removed fine particles are amorphous fine particles having a particle diameter of less than 1 μm. Although not shown here, the X-ray diffraction pattern confirmed that the fine particles were an amorphous component.

【0055】また、実施例1、2の負極活物質材料を製
造する際に使用した、黒鉛化MCMBを分散させたN−
メチル−2−ピロリドンを回収し、約10万分の1の重
量になるまで濃縮して赤外線吸収法(IR法)による測
定を行った。その結果、回収したN−メチル−2−ピロ
リドンは、未使用のN−メチル−2−ピロリドンとほぼ
同じ吸収スペクトルを示した。これより、黒鉛化MCM
BをN−メチル−2−ピロリドンに分散させても、黒鉛
化MCMBの成分は溶出していないと考えられる。つま
り、実施例1、2の負極活物質材料は、黒鉛化MCMB
の組成が変化したものではないと考えられる。
Further, N- in which the graphitized MCMB used in the production of the negative electrode active material of Examples 1 and 2 was dispersed.
Methyl-2-pyrrolidone was recovered, concentrated to a weight of about 1 / 100,000, and measured by an infrared absorption method (IR method). As a result, the recovered N-methyl-2-pyrrolidone showed almost the same absorption spectrum as the unused N-methyl-2-pyrrolidone. From this, graphitized MCM
Even if B is dispersed in N-methyl-2-pyrrolidone, it is considered that the components of graphitized MCMB are not eluted. That is, the negative electrode active material materials of Examples 1 and 2 were the graphitized MCMB.
It is considered that the composition of the is not changed.

【0056】〈リチウム二次電池の作製および保存特性
の評価〉 (1)リチウム二次電池の作製 上記実施例1、2の負極活物質材料、および比較例1、
2の炭素物質をそれぞれ負極活物質に用いてリチウム二
次電池を作製した。
<Preparation of Lithium Secondary Battery and Evaluation of Storage Characteristics> (1) Preparation of Lithium Secondary Battery Negative electrode active material of Examples 1 and 2 and Comparative Example 1,
A lithium secondary battery was prepared by using the carbon materials of No. 2 as the negative electrode active material.

【0057】まず、負極活物質となるそれぞれの材料の
95重量部に、結着剤としてのポリフッ化ビニリデンを
5重量部混合し、溶剤として適量のN−メチル−2−ピ
ロリドンを添加し、ペースト状の負極合材を調製した。
次いで、このペースト状の負極合材を厚さ10μmの銅
箔集電体の両面に塗布し、乾燥させ、その後ロールプレ
スにて圧縮し、負極合材の厚さが片面当たり30μmの
シート状のものを作製した。このシート状の負極は56
mm×500mmの大きさに裁断して用いた。
First, 5 parts by weight of polyvinylidene fluoride as a binder was mixed with 95 parts by weight of each material to be the negative electrode active material, and an appropriate amount of N-methyl-2-pyrrolidone was added as a solvent to prepare a paste. A negative electrode mixture was prepared.
Next, this paste-like negative electrode mixture is applied to both sides of a copper foil current collector having a thickness of 10 μm, dried, and then compressed by a roll press to form a sheet-like negative electrode mixture having a thickness of 30 μm per side. The thing was produced. This sheet-shaped negative electrode is 56
It was used after being cut into a size of mm × 500 mm.

【0058】対向させる正極は、組成式LiNi0.8
0.15Al0.052で表されるリチウムニッケル複合酸
化物を活物質として用いた。まず、正極活物質となるリ
チウムニッケル複合酸化物85重量部に、導電材として
のカーボンブラックを10重量部、結着剤としてのポリ
フッ化ビニリデンを5重量部混合し、溶剤として適量の
N−メチル−2−ピロリドンを添加して、ペースト状の
正極合材を調製した。次いで、このペースト状の正極合
材を厚さ20μmのアルミニウム箔集電体の両面に塗布
し、乾燥させ、その後ロールプレスにて圧縮し、正極合
材の厚さが片面当たり40μmのシート状のものを作製
した。このシート状の正極は54mm×450mmの大
きさに裁断して用いた。
The positive electrodes facing each other have a composition formula of LiNi 0.8 C.
A lithium nickel composite oxide represented by 0.15 Al 0.05 O 2 was used as an active material. First, 85 parts by weight of a lithium nickel composite oxide serving as a positive electrode active material is mixed with 10 parts by weight of carbon black as a conductive material and 5 parts by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl as a solvent is mixed. 2-Pyrrolidone was added to prepare a paste-like positive electrode mixture. Next, this paste-like positive electrode mixture is applied to both sides of an aluminum foil current collector having a thickness of 20 μm, dried, and then compressed by a roll press to obtain a sheet-like sheet having a thickness of 40 μm per side of the positive electrode mixture. The thing was produced. This sheet-shaped positive electrode was used after being cut into a size of 54 mm × 450 mm.

【0059】上記それぞれ正極および負極を、それらの
間に厚さ25μm、幅58mmのポリエチレン製セパレ
ータを挟んで捲回し、ロール状の電極体を形成した。そ
して、その電極体を18650型円筒形電池ケース(外
径18mmφ、長さ65mm)に挿設し、非水電解液を
注入し、その電池ケースを密閉して円筒型リチウム二次
電池を作製した。なお、非水電解液は、エチレンカーボ
ネートとジエチルカーボネートとを体積比で1:1に混
合した混合溶媒に、LiPF6を1Mの濃度で溶解した
ものを用いた。
The positive electrode and the negative electrode were wound by sandwiching a polyethylene separator having a thickness of 25 μm and a width of 58 mm between them to form a roll-shaped electrode body. Then, the electrode body was inserted into a 18650 type cylindrical battery case (outer diameter 18 mmφ, length 65 mm), a nonaqueous electrolytic solution was injected, and the battery case was sealed to produce a cylindrical lithium secondary battery. . The non-aqueous electrolyte used was a mixture of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 with LiPF 6 dissolved at a concentration of 1M.

【0060】なお、実施例1の負極活物質材料を負極活
物質として用いたリチウム二次電池を実施例1のリチウ
ム二次電池とし、実施例2の負極活物質材料を負極活物
質として用いたリチウム二次電池を実施例2のリチウム
二次電池とし、比較例1の炭素物質を負極活物質として
用いたリチウム二次電池を比較例1のリチウム二次電池
とし、比較例2の炭素物質を負極活物質として用いたリ
チウム二次電池を比較例2のリチウム二次電池とした。
The lithium secondary battery using the negative electrode active material of Example 1 as a negative electrode active material was used as the lithium secondary battery of Example 1, and the negative electrode active material of Example 2 was used as the negative electrode active material. The lithium secondary battery was used as the lithium secondary battery of Example 2, the lithium secondary battery using the carbon material of Comparative Example 1 as the negative electrode active material was used as the lithium secondary battery of Comparative Example 1, and the carbon material of Comparative Example 2 was used. The lithium secondary battery used as the negative electrode active material was used as the lithium secondary battery of Comparative Example 2.

【0061】(2)保存特性の評価 上記実施例1、2および比較例1、2のそれぞれのリチ
ウム二次電池について保存特性を評価した。まず、コン
ディショニングとして、温度20℃下にて、電流密度
0.2mA/cm2の定電流で4.1Vまで充電した
後、電流密度0.2mA/cm2の定電流で3.0Vま
で放電を行った。コンディショニングの後、初期容量を
測定するために、温度20℃下にて、3サイクルの充放
電を行った。その充放電条件は、電流密度0.1mA/
cm2の定電流で充電上限電圧4.1Vまで充電を行
い、さらに4.1Vの定電圧で2時間充電を続け、その
後、電流密度0.1mA/cm2の定電流で放電下限電
圧3.0Vまで放電を行う充放電を1サイクルとするも
のである。この充放電の3サイクル目の放電容量を、2
0℃における正極活物質の単位重量あたりの初期放電容
量とした。
(2) Evaluation of storage characteristics The storage characteristics of the lithium secondary batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were evaluated. First, as conditioning, at a temperature of 20 ° C., a constant current of 0.2 mA / cm 2 was charged to 4.1 V, and then a constant current of 0.2 mA / cm 2 was discharged to 3.0 V. went. After conditioning, in order to measure the initial capacity, charging / discharging was performed for 3 cycles at a temperature of 20 ° C. The charging / discharging condition is a current density of 0.1 mA /
The charging was performed at a constant current of cm 2 up to the charging upper limit voltage of 4.1 V, and the charging was continued at a constant voltage of 4.1 V for 2 hours, and thereafter, the discharging lower limit voltage was 3. at a constant current of 0.1 mA / cm 2 . The charging / discharging for discharging to 0 V is one cycle. The discharge capacity of the third cycle of this charge / discharge is set to 2
It was defined as the initial discharge capacity per unit weight of the positive electrode active material at 0 ° C.

【0062】次いで、初期の内部抵抗を算出するため
に、入出力パワー測定を行い、入出力時の内部抵抗を算
出した。入出力パワー測定は以下の条件で行った。ま
ず、各リチウム二次電池の初期容量の50%まで充電し
た状態(SOC50%)で、1Aの電流で10秒間放電
させ、10秒目の電圧を測定した。再びSOC50%の
状態に充電した後、3Aの電流で10秒間放電させ、1
0秒目の電圧を測定した。さらに、SOC50%の状態
に充電した後、5Aの電流で10秒間放電させ、10秒
目の電圧を測定した。そして、電圧の電流依存性を求
め、電流−電圧直線の勾配を出力時の内部抵抗とした。
また、同様の手順で充電を行い、各10秒目の電圧を測
定して、電流−電圧直線の勾配から入力時の内部抵抗を
求めた。求めた入出力時の内部抵抗の平均値を初期内部
抵抗とした。
Next, in order to calculate the initial internal resistance, the input / output power was measured and the internal resistance at the time of input / output was calculated. The input / output power was measured under the following conditions. First, in a state where each lithium secondary battery was charged to 50% of the initial capacity (SOC 50%), the lithium secondary battery was discharged at a current of 1 A for 10 seconds, and the voltage at the 10th second was measured. After recharging to the state of SOC 50%, discharge it with a current of 3A for 10 seconds, and
The voltage at 0 second was measured. Further, after being charged to a state of SOC 50%, it was discharged at a current of 5 A for 10 seconds, and the voltage at the 10th second was measured. Then, the current dependency of the voltage was obtained, and the slope of the current-voltage line was used as the internal resistance at the time of output.
In addition, charging was performed in the same procedure, the voltage at each 10th second was measured, and the internal resistance at the time of input was determined from the slope of the current-voltage line. The average value of the obtained internal resistances at the time of input / output was used as the initial internal resistance.

【0063】次に、保存試験を行った。保存試験は、電
流密度0.1mA/cm2の定電流で電圧が4.1Vに
到達するまで充電を行い、さらに4.1Vの定電圧で2
時間充電を続けることにより、各二次電池をSOC10
0%の状態とした後、60℃の恒温槽に1ヶ月間保存す
ることとした。そして、保存後に上記と同様にして入出
力時の内部抵抗を求め、その平均値を保存後内部抵抗と
した。そして、保存試験の前後における内部抵抗の値か
ら、式[{(保存後内部抵抗/初期内部抵抗)−1}×
100(%)]を用いて内部抵抗増加率(%)を計算し
た。
Next, a storage test was conducted. In the storage test, the battery was charged at a constant current with a current density of 0.1 mA / cm 2 until the voltage reached 4.1 V, and further charged at a constant voltage of 4.1 V for 2
By continuing to charge for a time, each secondary battery can
After the state of 0%, it was stored in a constant temperature bath at 60 ° C. for 1 month. Then, after storage, the internal resistance at the time of input / output was determined in the same manner as above, and the average value was used as the internal resistance after storage. Then, from the value of the internal resistance before and after the storage test, the formula [{(internal resistance after storage / initial internal resistance) -1} ×
100 (%)] was used to calculate the internal resistance increase rate (%).

【0064】さらに、参考として、各リチウム二次電池
に対し、充放電サイクル試験を行った。充放電サイクル
試験は、電池の実使用温度範囲の上限と目される60℃
の温度条件下で、電流密度2mA/cm2の定電流で充
電上限電圧4.1Vまで充電を行い、次いで電流密度2
mA/cm2の定電流で放電下限電圧3.0Vまで放電
を行う充放電を1サイクルとし、このサイクルを合計5
00サイクル行うものとした。そして、各リチウム二次
電池の500サイクル目の放電容量を測定し、正極活物
質の単位重量あたりのサイクル後放電容量を算出した。
そして、式[サイクル後放電容量/初期放電容量×10
0(%)]から各リチウム二次電池の容量維持率(%)
を求めた。表2に、各リチウム二次電池の初期内部抵抗
(mΩ)、保存後内部抵抗(mΩ)、内部抵抗増加率
(%)、初期放電容量(mAh/g)、容量維持率
(%)の値を示す。
Further, as a reference, a charge / discharge cycle test was performed on each lithium secondary battery. The charge / discharge cycle test is 60 ° C, which is regarded as the upper limit of the actual temperature range of the battery.
Under the temperature condition of 2. , the battery was charged to a charging upper limit voltage of 4.1 V with a constant current of a current density of 2 mA / cm.
Charge and discharge for discharging at a constant current of mA / cm 2 to a discharge lower limit voltage of 3.0 V is defined as one cycle, and this cycle is a total of 5
It was supposed to perform 00 cycles. Then, the discharge capacity at the 500th cycle of each lithium secondary battery was measured, and the post-cycle discharge capacity per unit weight of the positive electrode active material was calculated.
Then, the formula [discharge capacity after cycle / initial discharge capacity × 10
0 (%)] to capacity retention rate (%) of each lithium secondary battery
I asked. Table 2 shows the values of initial internal resistance (mΩ), internal resistance after storage (mΩ), internal resistance increase rate (%), initial discharge capacity (mAh / g), and capacity retention rate (%) of each lithium secondary battery. Indicates.

【0065】[0065]

【表2】 [Table 2]

【0066】表2より、初期内部抵抗の値では各二次電
池により大きな差は見られないが、保存後内部抵抗の値
は、実施例1、2の二次電池と比較例1、2の二次電池
とでは大きく異なっていることがわかる。つまり、実施
例1、2の二次電池では、保存後の内部抵抗増加率はそ
れぞれ約14%、約10%であるのに対し、比較例1、
2の二次電池では、約43%、約81%と大きな値とな
った。特に、低結晶性黒鉛を負極活物質として用いた比
較例2の二次電池では、内部抵抗の増加が甚だしかっ
た。つまり、本発明の負極活物質材料は、結晶子の配向
等が均一ではなく黒鉛化度は若干低いものの、もともと
結晶性の低い炭素物質とは大きく異なるものであること
がわかる。そして、結晶子の配向性等が異なることによ
り、保存中の結晶性の変化は充分抑制されることがわか
る。
From Table 2, there is no great difference in the initial internal resistance value among the secondary batteries, but the internal resistance values after storage are the same as those of the secondary batteries of Examples 1 and 2 and Comparative Examples 1 and 2. It can be seen that it is significantly different from the secondary battery. That is, in the secondary batteries of Examples 1 and 2, the internal resistance increase rates after storage were about 14% and about 10%, respectively.
The secondary batteries of No. 2 had large values of about 43% and about 81%. In particular, in the secondary battery of Comparative Example 2 in which low crystalline graphite was used as the negative electrode active material, the internal resistance was significantly increased. That is, it can be seen that the negative electrode active material of the present invention is not substantially uniform in crystallite orientation and has a slightly low graphitization degree, but is significantly different from a carbon material having originally low crystallinity. It can be seen that the change in crystallinity during storage is sufficiently suppressed due to the difference in crystallite orientation and the like.

【0067】よって、本発明の負極活物質材料を負極活
物質に用いることで、電池の保存による内部抵抗の上昇
が効果的に抑制されることが確認できた。特に、微粒子
を除去した負極活物質材料を用いた実施例2の二次電池
は、内部抵抗の増加率が小さい。これは、負極活物質材
料に含まれる非晶質成分である微粒子を除去したことに
より、電池の劣化がより抑制されることを示すものであ
る。
Therefore, it was confirmed that the use of the negative electrode active material of the present invention as the negative electrode active material effectively suppressed the increase in internal resistance due to the storage of the battery. In particular, the secondary battery of Example 2 using the negative electrode active material in which the fine particles were removed had a small increase rate of internal resistance. This shows that the deterioration of the battery is further suppressed by removing the fine particles which are the amorphous component contained in the negative electrode active material.

【0068】また、サイクル試験後の容量維持率につい
ては、実施例1、2の二次電池と比較例1の二次電池と
で大きな差は見られなかった。一方、もともと結晶性の
低い炭素物質を用いた比較例2の二次電池では、サイク
ル試験後に容量は大きく低下し、サイクル特性は良好と
はいえない。これより、本発明の負極活物質材料を用い
た二次電池は、結晶性の高い炭素物質を用いた二次電池
と同等のサイクル特性を有していることが確認できた。
Regarding the capacity retention ratio after the cycle test, no significant difference was observed between the secondary batteries of Examples 1 and 2 and the secondary battery of Comparative Example 1. On the other hand, in the secondary battery of Comparative Example 2 which originally used a carbon material having low crystallinity, the capacity was greatly reduced after the cycle test, and the cycle characteristics were not good. From this, it was confirmed that the secondary battery using the negative electrode active material of the present invention had cycle characteristics equivalent to those of the secondary battery using the carbon material having high crystallinity.

【0069】以上より、本発明のリチウム二次電池用負
極活物質材料は、容量が大きく、かつ、充電状態の高い
状態で長期間保存した場合であっても内部抵抗の上昇が
少ない保存特性の良好な二次電池を構成することができ
ることが確認できた。
From the above, the negative electrode active material for a lithium secondary battery of the present invention has a large storage capacity and a storage characteristic that does not increase the internal resistance even when stored for a long period of time in a highly charged state. It was confirmed that a good secondary battery could be constructed.

【0070】[0070]

【発明の効果】本発明のリチウム二次電池用負極活物質
材料は、粉末状の炭素物質からなり、結晶性を変化させ
ることにより、炭素物質粒子の内部応力を緩和したもの
である。本発明のリチウム二次電池用負極活物質材料を
負極活物質として用いることにより、充電状態の高い状
態で長期間保存した場合であっても内部抵抗の上昇が少
ない保存特性の良好な二次電池を構成することができ
る。また、本発明のリチウム二次電池用負極活物質材料
の製造方法によれば、本発明の負極活物質材料を簡便に
製造することができる。
The negative electrode active material for a lithium secondary battery of the present invention is made of a powdery carbon material, and the internal stress of the carbon material particles is relaxed by changing the crystallinity. By using the negative electrode active material for a lithium secondary battery of the present invention as a negative electrode active material, a secondary battery having good storage characteristics with little increase in internal resistance even when stored for a long period of time in a highly charged state. Can be configured. Further, according to the method for producing a negative electrode active material for a lithium secondary battery of the present invention, the negative electrode active material of the present invention can be easily produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例2の負極活物質材料および比較例1の
炭素物質のX線回折パターンを示す。
FIG. 1 shows X-ray diffraction patterns of a negative electrode active material of Example 2 and a carbon material of Comparative Example 1.

【図2】 実施例1の負極活物質材料のSEM写真を示
す。
FIG. 2 shows an SEM photograph of the negative electrode active material of Example 1.

【図3】 実施例2の負極活物質材料のSEM写真を示
す。
FIG. 3 shows an SEM photograph of the negative electrode active material of Example 2.

【図4】 実施例2の負極活物質材料を製造する際に取
り除かれた微粒子のSEM写真を示す。
FIG. 4 shows an SEM photograph of fine particles removed when the negative electrode active material of Example 2 was manufactured.

【手続補正書】[Procedure amendment]

【提出日】平成13年7月17日(2001.7.1
7)
[Submission date] July 17, 2001 (2001.7.1)
7)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 秀之 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 右京 良雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 Fターム(参考) 4G046 CA07 CB02 CB09 CC10 5H029 AJ04 AK03 AL06 AL07 AM03 AM04 AM05 AM07 CJ12 CJ28 DJ16 DJ17 HJ05 HJ13 5H050 AA09 AA12 BA17 CA07 CA08 CA09 CB07 CB08 CB09 FA17 FA19 GA12 GA27 HA05 HA13   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideyuki Nakano             Aichi Prefecture Nagachite Town Aichi District             Local 1 Toyota Central Research Institute Co., Ltd. (72) Inventor Yoshio Ukyo             Aichi Prefecture Nagachite Town Aichi District             Local 1 Toyota Central Research Institute Co., Ltd. F-term (reference) 4G046 CA07 CB02 CB09 CC10                 5H029 AJ04 AK03 AL06 AL07 AM03                       AM04 AM05 AM07 CJ12 CJ28                       DJ16 DJ17 HJ05 HJ13                 5H050 AA09 AA12 BA17 CA07 CA08                       CA09 CB07 CB08 CB09 FA17                       FA19 GA12 GA27 HA05 HA13

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 粉末状の炭素物質からなり、その炭素物
質はCuΚα線を用いた粉末X線回折法によって得られ
た以下の3つのパラメータが、以下の条件、 (A)(110)面の回折線の強度I110と(002)
面の回折線の強度I002との比I110/I002 ; I110
/I002≦0.015 (B)(002)面のピークの半値幅W(°) ; W
≧0.2 (C)層間距離d002(nm) ; d002≧0.337 を満足することを特徴とするリチウム二次電池用負極活
物質材料。
1. A carbonaceous substance in powder form, which is obtained by a powder X-ray diffraction method using Cu Kα rays. The following three parameters are defined as follows: (A) (110) plane Diffraction line intensities I 110 and (002)
Ratio of intensity of diffraction line I 002 to plane I 110 / I 002 ; I 110
/ I 002 ≦ 0.015 (B) Half-width W (°) of peak of (002) plane; W
≧ 0.2 (C) Interlayer distance d 002 (nm); d 002 ≧ 0.337 is satisfied, and a negative electrode active material material for a lithium secondary battery.
【請求項2】 粉末を構成する粒子の体積平均粒子径D
50が2μm以上30μm以下である請求項1に記載のリ
チウム二次電池用負極活物質材料。
2. A volume average particle diameter D of particles constituting the powder.
The negative electrode active material for a lithium secondary battery according to claim 1, wherein 50 is 2 μm or more and 30 μm or less.
【請求項3】 粉末を構成する粒子のほとんどが1μm
以上の粒子径を有するものである請求項1または請求項
2に記載のリチウム二次電池用負極活物質用材料。
3. Most of the particles constituting the powder are 1 μm.
The material for a negative electrode active material for a lithium secondary battery according to claim 1, which has the above particle size.
【請求項4】 請求項1ないし請求項3のいずれかに記
載の負極活物質材料を負極活物質として用いたリチウム
二次電池。
4. A lithium secondary battery using the negative electrode active material according to any one of claims 1 to 3 as a negative electrode active material.
【請求項5】 粉末状の炭素物質からなるリチウム二次
電池用負極活物質材料の製造方法であって、 CuΚα線を用いた粉末X線回折法によって得られた以
下の3つのパラメータが、以下の条件、 (a)(110)面の回折線の強度I110と(002)
面の回折線の強度I002との比I110/I002 ; I110
/I002≦0.01 (b)(002)面のピークの半値幅W(°) ; W
<0.2 (c)層間距離d002(nm) ; d002<0.337 を満足するような粉末状の原料炭素物質を準備する原料
準備工程と、 前記原料炭素物質を、その原料炭素物質の結晶性を変化
させて、CuΚα線を用いた粉末X線回折法によって得
られた以下の3つのパラメータが、以下の条件、 (A)(110)面の回折線の強度I110と(002)
面の回折線の強度I002との比I110/I002 ; I110
/I002≦0.015 (B)(002)面のピークの半値幅W(°) ; W
≧0.2 (C)層間距離d002(nm) ; d002≧0.337 を満足するような炭素物質とする結晶性調整工程と、 を含んでなるリチウム二次電池用負極活物質材料の製造
方法。
5. A method for producing a negative electrode active material for a lithium secondary battery, comprising a powdery carbonaceous material, wherein the following three parameters obtained by a powder X-ray diffraction method using Cu Kα rays are as follows: (A) Intensity I 110 of the diffraction line on the (110) plane and (002)
Ratio of intensity of diffraction line I 002 to plane I 110 / I 002 ; I 110
/ I 002 ≦ 0.01 (b) Half-width of peak of (002) plane W (°); W
<0.2 (c) Interlayer distance d 002 (nm); Raw material preparing step of preparing a powdery raw material carbon material satisfying d 002 <0.337; The following three parameters obtained by the powder X-ray diffraction method using the Cu Kα ray by changing the crystallinity of the above-mentioned materials have the following conditions: (A) the intensity I 110 of the diffraction line on the (110) plane and (002) )
Ratio of intensity of diffraction line I 002 to plane I 110 / I 002 ; I 110
/ I 002 ≦ 0.015 (B) Half-width W (°) of peak of (002) plane; W
≧ 0.2 (C) interlayer distance d 002 (nm); a crystallinity adjusting step of using a carbon material satisfying d 002 ≧ 0.337, and a negative electrode active material for a lithium secondary battery, comprising: Production method.
【請求項6】 前記結晶性調整工程は、前記原料炭素物
質を窒素を含有する有機溶媒に分散させて該原料炭素物
質の結晶性を変化させる工程を含む請求項5に記載のリ
チウム二次電池用負極活物質材料の製造方法。
6. The lithium secondary battery according to claim 5, wherein the crystallinity adjusting step includes a step of changing the crystallinity of the raw material carbon material by dispersing the raw material carbon material in an organic solvent containing nitrogen. For manufacturing negative electrode active material.
【請求項7】 前記窒素を含有する有機溶媒は、N−メ
チル−2−ピロリドンである請求項6に記載のリチウム
二次電池用負極活物質材料の製造方法。
7. The method for producing a negative electrode active material for a lithium secondary battery according to claim 6, wherein the organic solvent containing nitrogen is N-methyl-2-pyrrolidone.
【請求項8】 前記結晶性調整工程は、前記原料炭素物
質の微粒子あるいは前記炭素物質の微粒子を除去する微
粒子除去工程を含んでなる請求項5ないし請求項7のい
ずれかに記載のリチウム二次電池用負極活物質材料の製
造方法。
8. The lithium secondary according to claim 5, wherein the crystallinity adjusting step includes a fine particle removing step of removing fine particles of the raw carbon material or fine particles of the carbon material. A method for manufacturing a negative electrode active material for a battery.
【請求項9】 前記微粒子除去工程は、前記原料炭素物
質あるいは前記炭素物質を分級液に分散させた後、静置
することにより沈降させ、沈降せずに上澄み液中に浮遊
した微粒子を除去する工程を含む請求項8に記載のリチ
ウム二次電池用負極活物質材料の製造方法。
9. In the step of removing fine particles, the raw material carbon material or the carbon material is dispersed in a classification liquid, and then allowed to stand to settle, and fine particles floating in the supernatant liquid without settling are removed. The method for producing a negative electrode active material for a lithium secondary battery according to claim 8, which includes a step.
【請求項10】 前記結晶性調整工程は、前記原料炭素
物質を窒素を含有する有機溶媒に分散させて該原料炭素
物質の結晶性を変化させる工程を含み、その窒素を含有
する有機溶媒を前記微粒子除去工程における前記分級液
として前記微粒子を除去する請求項9に記載のリチウム
二次電池用負極活物質材料の製造方法。
10. The crystallinity adjusting step includes a step of changing the crystallinity of the raw material carbon material by dispersing the raw material carbon material in a nitrogen-containing organic solvent. The method for producing a negative electrode active material for a lithium secondary battery according to claim 9, wherein the fine particles are removed as the classification liquid in the fine particle removing step.
JP2001211196A 2001-07-11 2001-07-11 Negative active material for lithium secondary battery and its manufacturing method Pending JP2003031218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001211196A JP2003031218A (en) 2001-07-11 2001-07-11 Negative active material for lithium secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001211196A JP2003031218A (en) 2001-07-11 2001-07-11 Negative active material for lithium secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003031218A true JP2003031218A (en) 2003-01-31

Family

ID=19046550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001211196A Pending JP2003031218A (en) 2001-07-11 2001-07-11 Negative active material for lithium secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003031218A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1720211A1 (en) * 2004-01-16 2006-11-08 Hitachi Chemical Co., Ltd. Negative electrode for lithium secondary battery and lithium secondary battery
WO2008149539A1 (en) * 2007-06-01 2008-12-11 Panasonic Corporation Composite negative electrode active material and rechargeable battery with nonaqueous electrolyte
KR101683201B1 (en) * 2011-06-20 2016-12-06 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US9627682B2 (en) 2012-12-26 2017-04-18 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery including the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1720211A1 (en) * 2004-01-16 2006-11-08 Hitachi Chemical Co., Ltd. Negative electrode for lithium secondary battery and lithium secondary battery
EP1720211A4 (en) * 2004-01-16 2010-02-17 Hitachi Chemical Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
US7906240B2 (en) 2004-01-16 2011-03-15 Hitachi Chemical Co., Ltd. Negative electrode for lithium secondary battery and lithium secondary battery
US10651458B2 (en) 2004-01-16 2020-05-12 Hitachi Chemical Company, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery
WO2008149539A1 (en) * 2007-06-01 2008-12-11 Panasonic Corporation Composite negative electrode active material and rechargeable battery with nonaqueous electrolyte
US8399131B2 (en) 2007-06-01 2013-03-19 Panasonic Corporation Composite negative electrode active material and non-aqueous electrolyte secondary battery
KR101683201B1 (en) * 2011-06-20 2016-12-06 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US9627682B2 (en) 2012-12-26 2017-04-18 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery including the same

Similar Documents

Publication Publication Date Title
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
EP3117474A1 (en) Cathode for lithium batteries
JP2001126733A (en) Nonaqueous electrolytic material
JP2002251992A (en) Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery
JP2000294240A (en) Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this
JP4021652B2 (en) Positive electrode plate for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode plate
JP4354723B2 (en) Method for producing graphite particles
JP5586116B2 (en) Positive electrode mixture for lithium secondary battery and use thereof
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2000200624A (en) Nonaqueous electrolyte secondary battery
JP3140880B2 (en) Lithium secondary battery
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JP2002151154A (en) Lithium secondary battery
JP2000348724A (en) Lithium nickel composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using it
JP2000268878A (en) Lithium ion secondary battery
JPH07147158A (en) Negative electrode for lithium secondary battery
JP5066132B2 (en) Polycrystalline mesocarbon microsphere graphitized product, negative electrode active material, and lithium ion secondary battery
JPH11217266A (en) Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
JP5189466B2 (en) Lithium secondary battery
JP2001110424A (en) Conductive material for positive electrode of lithium secondary battery and positive electrode for the lithium secondary battery using the conductive material
JP2003031218A (en) Negative active material for lithium secondary battery and its manufacturing method
JP2001216965A (en) Positive electrode for lithium secondary battery
JP4069784B2 (en) Non-aqueous electrolyte secondary battery and its negative electrode material
JP4643165B2 (en) Carbon material, negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP5567232B1 (en) Composite carbon particles and lithium ion secondary battery using the same