KR100855802B1 - Anode material of secondary battery and secondary battery using the same - Google Patents

Anode material of secondary battery and secondary battery using the same Download PDF

Info

Publication number
KR100855802B1
KR100855802B1 KR1020070047453A KR20070047453A KR100855802B1 KR 100855802 B1 KR100855802 B1 KR 100855802B1 KR 1020070047453 A KR1020070047453 A KR 1020070047453A KR 20070047453 A KR20070047453 A KR 20070047453A KR 100855802 B1 KR100855802 B1 KR 100855802B1
Authority
KR
South Korea
Prior art keywords
secondary battery
negative electrode
natural graphite
electrode material
density ratio
Prior art date
Application number
KR1020070047453A
Other languages
Korean (ko)
Inventor
염철
오정훈
김종성
한경희
한정민
Original Assignee
엘에스엠트론 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스엠트론 주식회사 filed Critical 엘에스엠트론 주식회사
Priority to KR1020070047453A priority Critical patent/KR100855802B1/en
Priority to JP2010508278A priority patent/JP2010527132A/en
Priority to PCT/KR2007/005434 priority patent/WO2008140160A1/en
Application granted granted Critical
Publication of KR100855802B1 publication Critical patent/KR100855802B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

An anode material for a secondary battery is provided to prevent carbide coated on an electrode from being cleaved during the compression, and to inhibit side reactions between natural graphite and an electrolyte caused by swelling of an electrode. An anode material for a secondary battery is obtained by coating low crystalline carbon onto a core carbonaceous material, followed by baking. The anode material has a compression density ratio of at least 0.9. The core carbonaceous material is at least one selected from the group consisting of natural graphite and artificial graphite. The low crystalline carbon is at least one selected from the group consisting of pitch, tar, phenolic resins and furan resins.

Description

2차 전지용 음극재 및 이를 이용한 2차 전지 {Anode material of secondary battery and secondary battery using the same}Anode material of secondary battery and secondary battery using the same}

본 발명은 2차 전지용 음극재 및 이를 이용한 2차 전지에 관한 것으로, 더욱 상세하게는 음극재의 압축밀도 비가 0.9 이상이 되도록 조절함으로써 음극재 표면에서 전해액과의 반응에 대한 보호 기능을 향상시켜 음극재의 효율 및 사이클 용량을 향상시킬 수 있는 2차 전지용 음극재 및 이를 이용한 2차 전지에 관한 것이다.The present invention relates to a negative electrode material for a secondary battery and a secondary battery using the same, and more particularly, by adjusting the compressive density ratio of the negative electrode material to be 0.9 or more, thereby improving the protection function against the reaction with the electrolyte on the surface of the negative electrode material. The present invention relates to a negative electrode material for a secondary battery capable of improving efficiency and cycle capacity, and a secondary battery using the same.

비디오 카메라, 무선전화기, 핸드폰, 노트북 컴퓨터 등 각종 휴대용 전자기기가 일상생활에 급속히 보급되면서 전원 공급원으로 사용되는 2차 전지의 수요가 크게 증가되었고, 그 중에서 리튬 2차 전지는 용량이 크고 에너지밀도가 높은 우수한 전지 특성 때문에 국내외적으로 활발한 연구개발이 진행되어, 현재 2차 전지 중에서 가장 광범위하게 사용되고 있다. As portable electronic devices such as video cameras, cordless phones, mobile phones, and notebook computers are rapidly spreading in daily life, the demand for secondary batteries used as a power source has increased greatly. Among them, lithium secondary batteries have high capacity and high energy density. Due to the high battery characteristics, active research and development has been carried out at home and abroad, and is currently the most widely used secondary battery.

리튬 2차 전지는 기본적으로 양극과 음극 및 전해질로 이루어지며, 따라서 리튬 2차 전지에 대한 연구개발은 크게 양극(cathode) 및 음극(anode) 재료, 전해질(electrolyte)에 관한 연구로 나눌 수 있다.A lithium secondary battery basically consists of a positive electrode, a negative electrode, and an electrolyte. Therefore, research and development of a lithium secondary battery can be largely divided into studies on a cathode, an anode material, and an electrolyte.

이 중에서 리튬 2차 전지의 음극재료로서 사용되고 있는 천연흑연은 초도 용 량은 우수하나 효율과 사이클 용량이 떨어지는 특성을 나타낸다. 이는 고결정성의 천연흑연 에지(edge) 부분에서의 전해액 분해반응이 원인으로 알려져 있다.Among these, natural graphite, which is used as a negative electrode material for lithium secondary batteries, has excellent initial capacity but poor efficiency and cycle capacity. This is known to be due to the electrolyte decomposition reaction in the highly crystalline natural graphite edge portion.

이러한 특성을 극복하기 위해, 천연흑연에 저결정성 탄소를 표면처리(피복)하고 이를 1,000 ℃ 이상에서 열처리하여 천연흑연 표면에 결정성이 낮은 탄화물을 피복함으로써 초도 용량은 소량 감소하나 효율과 사이클 용량 특성이 개선된 음극 활물질을 얻을 수 있었다. 상기 음극 활물질을 전극으로 사용하기 위해 구리 코일과 같은 전극 집전체에 코팅 후 압착하는 공정에서 피복된 탄화물이 깨지게 되고, 이 부분을 통해 고결정성의 천연흑연 에지 부분이 다시 전해액과 반응하게 되어 실제로 탄화물 피복 효과가 떨어지게 된다.In order to overcome this characteristic, the initial capacity is reduced by surface treatment (coating) of low-crystalline carbon on natural graphite and heat-treated at 1,000 ° C or higher to coat low crystalline carbide on the surface of natural graphite. An anode active material having improved characteristics could be obtained. In the process of coating and compressing an electrode current collector such as a copper coil to use the anode active material as an electrode, the coated carbide is broken, through which the highly crystalline natural graphite edge portion reacts again with the electrolyte solution. The coating effect is reduced.

일본공개특허공보 제2002-084836호는 심재 탄소 재료의 결정의 에지 부분 중 일부 또는 전부를 피복 형성용 탄소 재료로 피복한 흑연의 특성에 대하여 개시하고 있다.Japanese Laid-Open Patent Publication No. 2002-084836 discloses a characteristic of graphite in which part or all of an edge portion of a crystal of a core carbon material is coated with a carbon material for forming a coating.

상기 특허의 경우 천연흑연에 피복하는 피복 형성용 탄소 재료의 양과 열처리 온도 그리고 피복 형성용 탄소 재료가 피복된 천연흑연의 X선회절(X-ray diffraction), 라만 등의 분석에 대한 내용은 있으나, 실제 전극 적용에서 압착공정 중 피복된 탄화물이 깨지는 영향에 대한 내용은 전무하였다. 또한 리튬 2차 전지의 활물질로 사용되었을 경우 충전과 방전을 반복하는 과정에서 부피 변화로 활물질이 깨지는 현상이 발생하게 되는데, 상기 특허의 경우 이러한 현상으로 야기되는 영향에 대한 내용 또한 언급하지 않고 있다.In the case of the patent, there is a description of the amount of the carbon material for forming the coating on the natural graphite, the heat treatment temperature and the analysis of the X-ray diffraction, Raman, etc. of the natural graphite coated with the coating carbon material, There was no information on the effect of cracking the coated carbide during the crimping process in actual electrode applications. In addition, when used as an active material of a lithium secondary battery, the phenomenon in which the active material is broken due to volume change occurs in a process of repeating charging and discharging. The patent does not mention the effect caused by such a phenomenon.

따라서, 전술한 종래 기술의 문제점을 해결하기 위한 노력이 관련 업계에서 지속되어 왔으며, 이러한 기술적 배경하에서 본 발명이 안출되었다.Accordingly, efforts to solve the above-mentioned problems of the prior art have been continued in the related art, and the present invention has been devised under such a technical background.

본 발명이 이루고자하는 기술적 과제는, 실제 전극 적용에서 압착공정 중 피복된 탄화물이 깨지는 문제점과 리튬 2차 전지의 활물질로 사용되었을 경우 충/방전 반복 과정에서 부피 변화로 인해 활물질이 깨지는 현상에 따른 천연흑연과 전해질과의 분해반응을 방지하기 위해 음극재 표면에서 전해액과의 반응에 대한 보호 기능을 향상시키데 있으며, 이러한 기술적 과제를 달성할 수 있는 2차 전지용 음극재 및 이를 이용한 2차 전지를 제공함에 본 발명의 목적이 있다.The technical problem to be achieved by the present invention is a natural problem due to the problem of breaking the coated carbide during the pressing process in the actual electrode application and the phenomenon that the active material is broken due to the volume change during repeated charging / discharging process when used as the active material of the lithium secondary battery In order to prevent decomposition reaction between graphite and electrolyte, it is to improve the protection against reaction of electrolyte on the surface of the negative electrode material, and to provide a negative electrode material for a secondary battery and a secondary battery using the same, which can achieve the technical problem. There is an object of the present invention.

본 발명이 이루고자 하는 기술적 과제를 달성하기 위한 2차 전지용 음극재는 심재 탄소 재료에 저결정성 탄소를 피복하고 소성하여 제조된 2차 전지용 음극재에 있어서, 상기 음극재의 압축밀도 비가 0.9 이상인 것을 특징으로 한다.In the negative electrode material for a secondary battery for achieving the technical problem to be achieved by the present invention is a secondary battery negative electrode material prepared by coating a low crystalline carbon on the core carbon material and firing, characterized in that the compression density ratio of the negative electrode material is 0.9 or more do.

본 발명이 이루고자 하는 기술적 과제를 달성하기 위한 2차 전지는, 전술한 음극재를 음극으로 구비하는 것을 특징으로 한다.A secondary battery for achieving the technical problem to be achieved by the present invention is characterized in that it comprises the negative electrode material described above as a negative electrode.

이하 본 발명의 바람직한 실시예를 상세히 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, preferred embodiments of the present invention will be described in detail. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the configurations shown in the embodiments described herein are only one of the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, and various equivalents may be substituted for them at the time of the present application. It should be understood that there may be variations and variations.

2차 전지용 음극재에 있어서, 피복된 천연흑연의 특정 가압상태에서 압축밀도(Pressed density, P.D.) 측정을 통해 측정한 압축밀도 비(P.D.[피복된 천연흑연]/P.D.[천연흑연])에 따라 실제 전지에 적용되는 전극 활물질의 피복성이 전극상태까지 유지되는 정도가 달라지고, 이는 전지의 충/방전 특성에 영향을 미침을 확인하였다.In the negative electrode material for secondary batteries, according to the compression density ratio (PD [coated natural graphite] / PD [natural graphite]) measured by measuring the pressed density (PD) in a specific pressurized state of the coated natural graphite. The degree to which the coating property of the electrode active material applied to the actual battery is maintained up to the electrode state is changed, and it is confirmed that this affects the charge / discharge characteristics of the battery.

본 발명의 2차 전지용 음극재는 심재 탄소 재료에 저결정성 탄소를 피복하고 소성하여 제조된 2차 전지용 음극재에 있어서, 상기 음극재의 압축밀도 비가 0.9 이상인 것을 특징으로 한다.The negative electrode material for a secondary battery of the present invention is a negative electrode material for a secondary battery manufactured by coating a low crystalline carbon on a core carbon material and firing, wherein the compression density ratio of the negative electrode material is 0.9 or more.

상기 음극재의 압축밀도 비는 특정 가압상태에서 저결정성 탄소로 피복된 천연흑연의 압축밀도 측정을 통하여 구할 수 있다. 이때, 상기 가압은 20 내지 130 MPa의 범위인 것이 바람직하다. 상기 가압의 수치범위에 있어서, 상기 하한치 미만일 경우에는 극판 접착력 및 전지 용량 부족으로 인하여 바람직하지 않으며, 상기 상한치를 초과할 경우에는 전해액과 부반응 및 함침성 부족으로 인하여 바람직하지 않다.The compression density ratio of the negative electrode material may be obtained by measuring the compression density of natural graphite coated with low crystalline carbon in a specific pressurized state. At this time, the pressure is preferably in the range of 20 to 130 MPa. In the numerical range of the pressurization, when the lower limit is less than the lower limit, it is not preferable due to the electrode plate adhesion and lack of battery capacity, and when the upper limit is exceeded, it is not preferable due to the electrolyte solution and the side reaction and lack of impregnation.

상기 압축밀도는 하기 수학식 1에 따라 측정하며, 압축밀도 비는 하기 수학식 2에 따라 측정한다.The compression density is measured according to Equation 1 below, and the compression density ratio is measured according to Equation 2 below.

Figure 112007035972546-pat00001
Figure 112007035972546-pat00001

상기 수학식 1에서, m은 특정 가압상태에서의 피복 또는 피복되지 않은 천연흑연의 무게(g)이고, V는 특정 가압상태에서의 피복 또는 피복되지 않은 천연흑연의 부피(㎤)이다.In Equation 1, m is the weight (g) of coated or uncoated natural graphite in a specific pressurized state, and V is the volume (cm 3) of coated or uncoated natural graphite in a specific pressurized state.

Figure 112007035972546-pat00002
Figure 112007035972546-pat00002

상기 수학식 2에서, PDc는 피복된 천연흑연의 압축밀도이고, PDn은 천연흑연의 압축밀도이다.In Equation 2, PDc is the compressive density of the coated natural graphite, PDn is the compressive density of the natural graphite.

상기와 같이 측정한 음극재의 압축밀도 비는 0.9 이상인 것이 바람직하다. 상기 압축밀도 비의 수치범위에 있어서, 압축밀도 비가 0.9 이상일 경우에는 초도효율이 93.5 % 이상이고, 30 번째 사이클에서의 방전용량(보유용량)이 95 % 이상인데 반하여, 상기 하한치 미만일 경우에는 초도효율이 93.5 % 미만이고, 30 번째 사이클에서의 방전용량이 95 % 미만으로 나타나 바람직하지 않다.It is preferable that the compression density ratio of the negative electrode material measured as mentioned above is 0.9 or more. In the numerical range of the compression density ratio, the initial efficiency is 93.5% or more when the compression density ratio is 0.9 or more, and the discharge capacity (holding capacity) in the 30th cycle is 95% or more. Is less than 93.5%, and the discharge capacity at the 30th cycle is less than 95%, which is not preferable.

또한 본 발명의 2차 전지용 음극재는 당 업계에서 실시하는 통상의 방법에 따라 심재 탄소 재료에 저결정성 탄소를 피복하고 소성하여 제조할 수 있다.In addition, the negative electrode material for a secondary battery of the present invention can be produced by coating a low crystalline carbon on a core carbon material and firing according to a conventional method performed in the art.

상기 심재 탄소 재료는 천연흑연, 인조흑연, 또는 이들의 혼합물을 사용할 수 있으며, 특히 천연흑연을 사용하는 것이 좋다.The core carbon material may be natural graphite, artificial graphite, or a mixture thereof, and particularly, natural graphite may be used.

상기 저결정성 탄소로는 피치, 타르, 페놀수지, 퓨란수지 등을 사용할 수 있 다.As the low crystalline carbon, pitch, tar, phenol resin, furan resin and the like can be used.

즉, 본 발명에서는 상기 심재 탄소 재료의 에지 부분 중 일부 또는 전부를 저결정성 탄소로 피복하여 제조되는 음극재의 압축밀도 비를 0.9 이상이 되도록 저결정성 탄소의 종류와 공정 조건을 선택하고, 피복함으로써 효율과 사이클 특성이 우수한 음극재를 제조할 수 있는 것이다.That is, in the present invention, the type and process conditions of the low crystalline carbon are selected so that the compression density ratio of the negative electrode material manufactured by coating a part or all of the edge portion of the core carbon material with the low crystalline carbon is 0.9 or more, and the coating is performed. As a result, an anode material having excellent efficiency and cycle characteristics can be produced.

상기와 같이 제조한 음극재를 포함하는 극판 제조용 슬러리에는 필요에 따라 선택적으로 도전제나 바인더를 소량으로 첨가할 수 있다.A small amount of a conductive agent or a binder can be selectively added to the slurry for electrode plate production including the negative electrode material prepared as described above, if necessary.

상기 도전제나 바인더의 사용함량은 당업계에서 통상적으로 사용되는 정도로 적절히 조절하여 사용할 수 있으며, 그 범위가 본 발명에 영향을 미치는 것은 아니다.The use amount of the conductive agent or binder can be appropriately adjusted and used to the extent commonly used in the art, the range does not affect the present invention.

상기 도전제는 구성된 전지 내에서 화학변화를 일으키지 않는 전자전도성 재료이면 무엇이든지 사용가능하다. 예를 들면, 아세틸렌블랙, 케첸블랙, 파네스블랙, 서멀블랙 등과 같은 카본블랙, 천연흑연, 인조흑연, 또는 도전성 낱소섬유 등이 있으며, 특히 카본블랙, 흑연분말, 또는 탄소섬유를 사용하는 것이 바람직하다.The conductive agent may be used as long as it is an electron conductive material that does not cause chemical change in the battery configured. For example, carbon black such as acetylene black, ketjen black, farnes black, thermal black, and the like, natural graphite, artificial graphite, or conductive fibrous fibers, and the like, and in particular, carbon black, graphite powder, or carbon fiber is preferably used. Do.

상기 바인더로는 열가소성 수지, 열경화성 수지, 또는 이들의 혼합물을 사용할 수 있으며, 특히 폴리불화비닐리덴(PVDF) 또는 폴리테트라플루오로에틸렌(PTFE)을 사용하는 것이 바람직하며, 더욱 바람직하게는 폴리불화비닐리덴을 사용하는 것이다.As the binder, a thermoplastic resin, a thermosetting resin, or a mixture thereof may be used, and in particular, polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE) is preferably used, and more preferably polyvinyl fluoride. It is to use Leeden.

상기와 같이 음극 활물질과 선택적으로 도전제 및 바인더 중 적어도 어느 하나를 포함하는 극판 제조용 슬러리는 이후 전극 집전체에 도포한 후, 건조시켜 용 매나 분산매 등을 제거함으로써 집전체에 활물질을 결착시킴과 더불어 활물질간을 결착시키게 된다.As described above, the slurry for preparing a cathode plate including the negative electrode active material and optionally at least one of a conductive agent and a binder is then coated on an electrode current collector and then dried to remove a solvent or a dispersion medium, thereby binding the active material to the current collector. It binds between active materials.

상기 전극 집전체는 도전성 재료로 된 것이면 특별히 제한되지 않으나, 특히 구리, 금, 니켈, 구리합금, 또는 이들의 조합에 의해 제조된 호일을 사용하는 것이 바람직하다.The electrode current collector is not particularly limited as long as it is made of a conductive material, and it is particularly preferable to use a foil made of copper, gold, nickel, a copper alloy, or a combination thereof.

또한 본 발명은 양극, 음극, 양 전극 사이에 개재된 분리막 및 전해질을 포함하는 2차 전지에 있어서, 전술한 제조방법에 의하여 제조된 음극재를 음극으로 구비하는 것을 특징으로 한다.In addition, the present invention is characterized in that in the secondary battery comprising a separator and an electrolyte interposed between the positive electrode, the negative electrode, both electrodes, the negative electrode material prepared by the above-described manufacturing method as a negative electrode.

본 발명의 2차 전지는 당 기술 분야에 알려져 있는 통상적인 방법으로 양극과 음극 사이에 다공성 분리막을 넣고 전해질을 투입하여 제조할 수 있다.The secondary battery of the present invention can be prepared by inserting a porous separator between the positive electrode and the negative electrode in a conventional manner known in the art.

상기 전해질은 리튬염과 전해액 화합물을 포함하는 비수전해액으로서, 리튬염으로는 LiClO4, LiCF3SO3, LiPF6, LiBF4, LiAsF6 및 LiN(CF3SO2)2로 이루어진 군으로부터 선택된 1종 이상의 화합물이 바람직하다. 또한 전해액 화합물은 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 감마부티로락톤(GBL), 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 에틸메틸카보네이트 (EMC) 및 메틸 프로필 카보네이트(MPC)로 이루어진 군으로부터 선택된 1 종 이상인 것이 바람직하다.The electrolyte is a non-aqueous electrolyte containing a lithium salt and an electrolyte compound, wherein the lithium salt is selected from the group consisting of LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6 and LiN (CF 3 SO 2 ) 2 . Preference is given to compounds of species or more. In addition, the electrolyte compounds include ethylene carbonate (EC), propylene carbonate (PC), gamma butyrolactone (GBL), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC) and methyl propyl carbonate (MPC). It is preferable that it is 1 or more types chosen from the group which consists of.

본 발명의 전지 제조시에는 분리막(seperator)으로서 다공성 분리막을 사용하는 것이 바람직하며, 비제한적인 예로는 폴리프로필렌계, 폴리에틸렌계 또는 폴리올레핀계 다공성 분리막 등이 있다.In manufacturing the battery of the present invention, it is preferable to use a porous separator as a separator, and non-limiting examples include a polypropylene-based, polyethylene-based or polyolefin-based porous separator.

본 발명의 2차 전지는 외형에 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다. The secondary battery of the present invention is not limited in appearance, but may be cylindrical, square, pouch or coin type using a can.

상기와 같은 본 발명의 2차 전지는 충/방전 효율이 93.5 % 이상이고, 30번째 사이클에서의 방전용량이 95 % 이상이다.As described above, the secondary battery of the present invention has a charge / discharge efficiency of 93.5% or more, and a discharge capacity of 95% or more in the 30th cycle.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예와 이에 대비되는 비교예를 통하여 보다 구체적으로 설명하기로 한다.Hereinafter, in order to help the understanding of the present invention will be described in more detail through preferred examples and comparative examples.

실시예 1Example 1

구상의 천연흑연질 탄소재료와 피치를 준비하였다.A spherical natural graphite carbon material and pitch were prepared.

먼저, 구상의 천연흑연에 테트라하이드로퓨란으로 녹인 피치를 5 중량%로 섞고 상압에서 2 시간 이상 습식 교반하여 혼합한 후 건조하여 혼합물을 제조하였다. 상기 혼합물을 1,100 ℃와 1,500 ℃에서 각각 1 시간 동안 1, 2차 소성하고, 분급하여 미분을 제거하여 압축밀도 비가 0.9인 음극재를 제조하였다.First, the pitch dissolved in tetrahydrofuran in spherical natural graphite was mixed by 5% by weight, mixed by wet stirring at normal pressure for 2 hours or more, and then dried to prepare a mixture. The mixture was calcined first and second at 1,100 ° C. and 1,500 ° C. for 1 hour, and classified to remove fine powder to prepare a negative electrode material having a compression density ratio of 0.9.

실시예 2Example 2

상기 실시예 1에서 피치 함량을 3 중량%로, 열처리 온도를 1,000 ℃로, 온도 상승속도를 분당 0.14 ℃로 조절하여 압축밀도 비가 0.98인 음극재를 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.Except that the negative electrode material having a compressive density ratio of 0.98 was prepared by adjusting the pitch content to 3% by weight, the heat treatment temperature to 1,000 ℃, the temperature increase rate to 0.14 ℃ per minute in Example 1 was prepared It was carried out by the method.

실시예 3Example 3

상기 실시예 1에서 피치 함량을 1 중량%로, 열처리 온도를 1,000 ℃로, 온도 상승속도를 분당 0.14 ℃로 조절하여 압축밀도 비가 1.12인 음극재를 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.Except that the negative electrode material having a compressive density ratio of 1.12 was prepared by adjusting the pitch content to 1% by weight, the heat treatment temperature to 1,000 ℃, the temperature increase rate to 0.14 ℃ per minute in Example 1 was prepared It was carried out by the method.

비교예 1Comparative Example 1

상기 실시예 1에서 열처리 온도를 1,000 ℃로, 온도 상승속도를 분당 10 ℃로 조절하여 압축밀도 비가 0.71인 음극재를 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.Except that the negative electrode material having a compression density ratio of 0.71 was prepared by adjusting the heat treatment temperature to 1,000 ℃ in Example 1, the temperature rising rate to 10 ℃ per minute was carried out in the same manner as in Example 1.

비교예 2Comparative Example 2

상기 실시예 1에서 열처리 온도를 1,000 ℃로, 온도 상승속도를 분당 10 ℃로 조절하여 압축밀도 비가 0.82인 음극재를 제조한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.Except that the negative electrode material with a compression density ratio of 0.82 was prepared by adjusting the heat treatment temperature to 1,000 ℃ in Example 1, the temperature increase rate to 10 ℃ per minute was carried out in the same manner as in Example 1.

상기 실시예 1 내지 3 및 비교예 1 내지 2에서 제조한 음극재에 대하여 다음과 같은 방법으로 전지특성을 평가하였다.Battery characteristics of the negative electrode materials prepared in Examples 1 to 3 and Comparative Examples 1 to 2 were evaluated in the following manner.

먼저, 천연흑연 2 g을 φ1.4 ㎝ 홀(hole)에 담고, 압력(press)기를 이용하여 0.5 t의 힘을 φ1.4 ㎝ 면적에 2 초간 가하였다(즉, 31,852 KPa 압력으로 2 초간 가압한 것임). 상기 가압 상태에서 홀의 높이를 마이크로 게이지(micro gauge)로 측정하여 압축밀도를 얻었다.First, 2 g of natural graphite was placed in a φ 1.4 cm hole, and a force of 0.5 t was applied to the φ 1.4 cm area for 2 seconds using a press machine (that is, pressurized for 2 seconds at a pressure of 31,852 KPa). One). In the pressurized state, the height of the hole was measured by a micro gauge to obtain a compression density.

상기와 동일한 방법으로 상기 실시예 1 내지 3 및 비교예 1 및 2에서 제조한 피복된 천연흑연에 대한 압축밀도를 각각 측정하였다. 그 다음, 상기 수학식 2에 따라 상기 실시예 1 내지 3 및 비교예 1 및 2에서 제조한 음극재 각각의 압축밀도 비를 계산하였다. 상기 계산한 압축밀도와 압축밀도비는 하기 표 1에 나타내었다.In the same manner as described above, the compressive densities of the coated natural graphite prepared in Examples 1 to 3 and Comparative Examples 1 and 2 were measured, respectively. Then, the compression density ratio of each of the negative electrode materials prepared in Examples 1 to 3 and Comparative Examples 1 and 2 was calculated according to Equation 2 above. The calculated compression density and compression density ratio are shown in Table 1 below.

구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 피복된 천연흑연의 압축밀도 (g/㎥)Compressed density of coated natural graphite (g / ㎥) 1.681.68 1.831.83 2.092.09 1.331.33 1.531.53 천연흑연 압축밀도 (g/㎥)Natural Graphite Compression Density (g / ㎥) 1.871.87 1.871.87 1.871.87 1.871.87 1.871.87 압축밀도 비Compression Density Ratio 0.900.90 0.980.98 1.121.12 0.710.71 0.820.82

상기 실시예 1 내지 3 및 비교예 1 및 2에서 제조한 음극재 100 g을 500 ㎖의 반응기에 넣고 소량의 N-메틸피롤리돈(NMP)과 바인더로 폴리불화비닐리덴(PVDF)을 투입한 다음 믹서(mixer)를 이용하여 혼련하고, 구리 호일상에 압착 건조하여 전극으로 사용하였다. 이때, 전극의 압착 후 밀도는 1.65 g/㎠로 균일화하였다. 이 전극의 충/방전 효율은 코인 셀(coin cell)을 이용하여 평가하였다.100 g of the negative electrode material prepared in Examples 1 to 3 and Comparative Examples 1 and 2 were placed in a 500 ml reactor, and polyvinylidene fluoride (PVDF) was added to a small amount of N-methylpyrrolidone (NMP) and a binder. The mixture was then kneaded using a mixer, pressed and dried on a copper foil, and used as an electrode. At this time, the density after crimping of the electrodes was uniformized to 1.65 g / cm 2. The charge / discharge efficiency of this electrode was evaluated using a coin cell.

충/방전 시험은 전위를 0∼1.5 V의 범위로 규제하여 충전 전류 0.5 ㎃/㎠로 0.01 V가 될 때까지 충전하고, 0.01 V의 전압을 유지하며 충전전류가 0.02 ㎃/㎠가 될 때까지 충전을 계속하였다. 그리고, 방전전류는 0.5 ㎃/㎠로 1.5 V까지의 방전을 행하였다. 시험결과를 하기 표 2에 나타내었으며, 하기 표 2에서 충/방전 효율은 충전한 전기용량에 대한 방전한 전기용량의 비율을 나타낸 것이다.The charge / discharge test regulates the potential in the range of 0 to 1.5 V to charge until the charging current is 0.5 V / cm 2 until it becomes 0.01 V, maintains the voltage of 0.01 V until the charging current reaches 0.02 mA / cm 2. Charging continued. The discharge current was discharged up to 1.5 V at 0.5 mA / cm 2. The test results are shown in Table 2 below, and the charging / discharging efficiency in Table 2 shows the ratio of the discharged capacity to the charged capacity.

구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 1st 사이클 방전용량 (mAh/g)1 st cycle discharge capacity (mAh / g) 358.5358.5 356.0356.0 356.7356.7 351.7351.7 353.2353.2 1st 사이클 효율 (%)1 st cycle efficiency (%) 93.693.6 94.294.2 94.794.7 90.890.8 92.192.1 보유용량 (30th 사이클 방전용량, %)Holding capacity (30 th cycle discharge capacity,%) 95.495.4 98.398.3 99.899.8 83.383.3 90.990.9

상기 표 2에 나타낸 바와 같이, 본 발명에 따라 음극재의 압축밀도 비를 9.0 이상으로 제조한 실시예 1 내지 3은 초도효율(1st 사이클 효율)이 93.5 이상으로 나타났으며, 보유 용량(30th 사이클 방전용량)이 95 % 이상으로 나타났다. 반면, 비교예 1 및 2는 초도효율이 각각 90.8 %, 92.1 %이었으며, 보유용량이 83.3 %, 90.9 %로 낮게 나타남을 확인할 수 있었다.As shown in Table 2, according to the present invention, Examples 1 to 3 prepared with a compression density ratio of 9.0 or more according to the present invention showed an initial efficiency (1 st cycle efficiency) of 93.5 or more, and a storage capacity (30 th Cycle discharge capacity) was more than 95%. On the other hand, Comparative Examples 1 and 2, the initial efficiency was 90.8%, 92.1%, respectively, the retention capacity was found to be low as 83.3%, 90.9%.

상기 표 1 및 표 2를 통하여, 압축밀도 비는 초도효율과의 상관관계는 없으나, 압축밀도 비가 작을수록 효율과 사이클 성능이 열화되는 것을 확인할 수 있었다.Through Table 1 and Table 2, the compression density ratio has no correlation with the initial efficiency, but it was confirmed that the smaller the compression density ratio, the lower the efficiency and cycle performance.

이상과 같은 결과는 압축밀도 비가 작아질수록 피치로 피복됐던 천연흑연의 표면적이 전극밀도를 맞추기 위한 압착공정시 도포, 열처리된 탄소층이 깨지고 전해액에 노출되어 분해반응됨으로써 나타난 결과임을 예측할 수 있었다.As described above, it could be predicted that the smaller the compression density ratio, the more the surface area of the natural graphite, which was coated with pitch, was the result of cracking and coating and heat treatment of the carbon layer during the pressing process to match the electrode density.

이상에서 본 발명의 기재된 구체예에 대해서만 상세히 설명되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although only described in detail with respect to the described embodiments of the present invention, it will be apparent to those skilled in the art that various modifications and variations are possible within the technical spirit of the present invention, it is natural that such variations and modifications belong to the appended claims. .

본 발명에 따르면, 실제 전극 적용에서 압착공정 중 피복된 탄화물이 깨지는 문제점과 리튬 2차 전지의 활물질로 사용되었을 경우 충/방전 반복 과정에서 부피 변화로 인해 활물질이 깨지는 현상으로 인한 천연흑연과 전해질과의 분해반응을 방지하여 음극재 표면에서 전해액과의 반응에 대한 보호 기능을 향상시킴으로써 음극재의 효율 및 사이클 용량을 향상시킬 수 있는 효과가 있다.According to the present invention, natural graphite and an electrolyte due to a problem of breaking the coated carbide during the crimping process in the actual electrode application and the active material being broken due to the volume change during repeated charging / discharging when used as an active material of a lithium secondary battery. It is possible to improve the efficiency and cycle capacity of the negative electrode material by preventing the decomposition reaction to improve the protection function against the reaction with the electrolyte on the surface of the negative electrode material.

Claims (5)

심재 탄소 재료에 저결정성 탄소를 피복하고 소성하여 제조된 2차 전지용 음극재에 있어서, 상기 음극재의 압축밀도 비가 0.9 이상인 것을 특징으로 하는 2차 전지용 음극재.A negative electrode material for secondary batteries prepared by coating a core carbon material with low crystalline carbon and firing, wherein the negative electrode material has a compressive density ratio of 0.9 or more. 제1항에 있어서,The method of claim 1, 상기 심재 탄소 재료가, 천연흑연 및 인조흑연으로 이루어진 군으로부터 선택된 단일물 또는 둘 이상의 혼합물인 것을 특징으로 하는 2차 전지용 음극재.The core material carbon material is a negative electrode material for a secondary battery, characterized in that a single substance or a mixture of two or more selected from the group consisting of natural graphite and artificial graphite. 제1항에 있어서,The method of claim 1, 상기 저결정성 탄소가, 피치, 타르, 페놀수지 및 퓨란수지로 이루어지는 군으로부터 선택된 단일물 또는 둘 이상의 혼합물인 것을 특징으로 하는 2차 전지용 음극재.The low crystalline carbon is a single material or a mixture of two or more selected from the group consisting of pitch, tar, phenol resin and furan resin. 제1항 내지 제3항 중 선택된 어느 한 항에 따른 음극재를 음극으로 구비하는 것을 특징으로 하는 2차 전지.A secondary battery comprising the negative electrode material according to any one of claims 1 to 3 as a negative electrode. 제4항에 있어서,The method of claim 4, wherein 상기 2차 전지는, 초도효율이 93.5 % 이상이고, 30 번째 사이클에서의 방전 용량(보유용량)이 95 % 이상인 것을 특징으로 하는 2차 전지.The secondary battery has a secondary efficiency of 93.5% or more, and a secondary battery having a discharge capacity (holding capacity) of 95% or more in the 30th cycle.
KR1020070047453A 2007-05-16 2007-05-16 Anode material of secondary battery and secondary battery using the same KR100855802B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020070047453A KR100855802B1 (en) 2007-05-16 2007-05-16 Anode material of secondary battery and secondary battery using the same
JP2010508278A JP2010527132A (en) 2007-05-16 2007-10-31 Anode material for secondary battery and secondary battery using the same
PCT/KR2007/005434 WO2008140160A1 (en) 2007-05-16 2007-10-31 Anode material of secondary battery and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070047453A KR100855802B1 (en) 2007-05-16 2007-05-16 Anode material of secondary battery and secondary battery using the same

Publications (1)

Publication Number Publication Date
KR100855802B1 true KR100855802B1 (en) 2008-09-01

Family

ID=40002337

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070047453A KR100855802B1 (en) 2007-05-16 2007-05-16 Anode material of secondary battery and secondary battery using the same

Country Status (3)

Country Link
JP (1) JP2010527132A (en)
KR (1) KR100855802B1 (en)
WO (1) WO2008140160A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101035099B1 (en) * 2008-04-08 2011-05-19 (주)포스코켐텍 Carbon anode material for secondary battery, and secondary battery using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996827B (en) * 2014-04-29 2016-01-20 同济大学 A kind of preparation method of lithium ion battery negative material GeC nanosphere

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010043713A (en) * 1998-05-20 2001-05-25 료끼 신이찌로 Nonaqueous secondary cell and method for controlling the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201357A (en) * 1994-01-06 1995-08-04 Asahi Chem Ind Co Ltd Lighium battery
JP3803866B2 (en) * 1995-11-14 2006-08-02 大阪瓦斯株式会社 Double-layer carbon material for secondary battery and lithium secondary battery using the same
JP4045438B2 (en) * 1995-11-14 2008-02-13 大阪瓦斯株式会社 Double-layer carbon material for secondary battery and lithium secondary battery using the same
JP3712288B2 (en) * 1996-02-02 2005-11-02 三菱化学株式会社 Nonaqueous solvent secondary battery electrode material and method for producing the same
JP3152226B2 (en) * 1998-08-27 2001-04-03 日本電気株式会社 Non-aqueous electrolyte secondary battery, method for producing the same, and carbon material composition
JP3681913B2 (en) * 1999-02-04 2005-08-10 三菱化学株式会社 Non-aqueous secondary battery carbonaceous negative electrode active material and non-aqueous secondary battery
JP4415241B2 (en) * 2001-07-31 2010-02-17 日本電気株式会社 Negative electrode for secondary battery, secondary battery using the same, and method for producing negative electrode
US7179565B2 (en) * 2001-12-06 2007-02-20 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary cell
JP3716818B2 (en) * 2002-06-25 2005-11-16 日本カーボン株式会社 Method for producing negative electrode material for high performance lithium ion secondary battery using natural graphite
JP4252846B2 (en) * 2002-07-31 2009-04-08 パナソニック株式会社 Lithium secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010043713A (en) * 1998-05-20 2001-05-25 료끼 신이찌로 Nonaqueous secondary cell and method for controlling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101035099B1 (en) * 2008-04-08 2011-05-19 (주)포스코켐텍 Carbon anode material for secondary battery, and secondary battery using the same

Also Published As

Publication number Publication date
WO2008140160A1 (en) 2008-11-20
JP2010527132A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
KR101310300B1 (en) Negative Electrode Active Material for Lithium Ion Rechargeable Battery and Negative Electrode
KR101552763B1 (en) Anode comprising silicon based material and carbon material, and lithium secondary battery comprising the same
JP4752574B2 (en) Negative electrode and secondary battery
KR100817977B1 (en) Anode material of secondary battery and secondary battery using the same
KR102542649B1 (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
KR20060091486A (en) Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
US7261976B2 (en) Non-aqueous electrolyte battery and method of manufacturing the same
KR100975875B1 (en) Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
KR101416064B1 (en) Anode active material, lithium secondary battery having the anode active material and manufacturing method thereof
KR20010030298A (en) Positive Electrode Active Material for a Non-aqueous Electrolyte Cell and Non-aqueous Electrolyte Cell Using the Same
KR102530678B1 (en) Anode Active Material for Lithium Secondary Battery, Anode Comprising the same, and Lithium Secondary Battery Comprising the Same
KR100578869B1 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
KR100578868B1 (en) Negative material for lithium secondary battery and negative electrode and lithium secondary battery comprising same
KR100978422B1 (en) Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same
KR20090107740A (en) Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same
KR20190090723A (en) Method of manufacturing negative electrode for lithium secondary battery
KR20090067769A (en) Anode for secondary battery
JP2001283861A (en) Battery electrode and nonaqueous electrolyte battery
KR101072068B1 (en) Secondary battery
KR100855802B1 (en) Anode material of secondary battery and secondary battery using the same
KR100884431B1 (en) Anode material of secondary battery and secondary battery using the same
KR100853888B1 (en) Anode material of secondary battery and secondary battery using the same
JP2000195550A (en) Nonaqueous electrolyte secondary battery
KR100432669B1 (en) Negative active material for rechargeable lithium batteries and preparing for same
KR100886529B1 (en) Anode material of secondary battery and secondary battery using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130703

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140603

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150706

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160704

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170705

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180802

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190802

Year of fee payment: 12