KR100934612B1 - Cathode active material for nonaqueous electrolyte secondary battery, preparation method thereof, method for manufacturing nonaqueous electrolyte secondary battery, and positive electrode - Google Patents

Cathode active material for nonaqueous electrolyte secondary battery, preparation method thereof, method for manufacturing nonaqueous electrolyte secondary battery, and positive electrode Download PDF

Info

Publication number
KR100934612B1
KR100934612B1 KR1020037016383A KR20037016383A KR100934612B1 KR 100934612 B1 KR100934612 B1 KR 100934612B1 KR 1020037016383 A KR1020037016383 A KR 1020037016383A KR 20037016383 A KR20037016383 A KR 20037016383A KR 100934612 B1 KR100934612 B1 KR 100934612B1
Authority
KR
South Korea
Prior art keywords
positive electrode
active material
secondary battery
nonaqueous electrolyte
electrolyte secondary
Prior art date
Application number
KR1020037016383A
Other languages
Korean (ko)
Other versions
KR20040015266A (en
Inventor
후지와라데츠
오노시게루
무로타다다토시
Original Assignee
가부시키가이샤 산도쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 산도쿠 filed Critical 가부시키가이샤 산도쿠
Publication of KR20040015266A publication Critical patent/KR20040015266A/en
Application granted granted Critical
Publication of KR100934612B1 publication Critical patent/KR100934612B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

비수전해액 2차전지에서의 부하 특성을 유효하게 개선하여, 고용량화가 가능한, 충전효율이 높고, 충전밀도가 큰 비수전해액 2차전지용 양극활성물질 및 그 제조법으로서, 이 양극활성물질은, Li과, Co, Ni, Mn 및 Fe로 이루어지는 군으로부터 선택되는 적어도 1종의 천이원소를 포함하는 복합산화물 입자로 이루어지고, 상기 복합산화물 입자가, 최장경을 D1, 최단경을 D2라고 했을 때의 D1/D2이 1.0∼2.0의 범위에 있는 구상 및/또는 타원구상의 입자를 90% 이상 포함한다.A cathode active material for a nonaqueous electrolyte secondary battery having a high charging efficiency and a high charging density that can be effectively improved by improving the load characteristics of the nonaqueous electrolyte secondary battery, and a manufacturing method thereof, the cathode active material comprising Li, D1 / D2 composed of composite oxide particles comprising at least one transition element selected from the group consisting of Co, Ni, Mn, and Fe, wherein the composite oxide particles have the longest diameter D1 and the shortest diameter D2 90% or more of spherical and / or ellipsoidal particles in the range of 1.0 to 2.0 are included.

복합산화물, 리튬 화합물, 천이원소, 비표면적, 비수전해액, 2차전지, 양극활성물질, 소성Composite oxide, lithium compound, transition element, specific surface area, nonaqueous electrolyte, secondary battery, positive electrode active material, firing

Description

비수전해액 2차전지용 양극활성물질, 그 제조법, 비수전해액 2차전지, 및 양극의 제조법{NONAQUEOUS ELECTROLYTE SECONDARY BATTERY-USE ANODE ACTIVE MATTER, PRODUCTION METHOD THEREFOR, NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, AND PRODUCTION METHOD FOR ANODE}ANODE ACTIVE MATTER, PRODUCTION METHOD THEREFOR, NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, AND PRODUCTION METHOD

본 발명은, 비수용액을 전해질로 한 2차전지에 있어서의, 부하 특성을 유효하게 개선하고, 고용량화가 가능한 비수전해액 2차전지용 양극활성물질, 그 제조법, 이 양극활성물질을 사용한 비수전해액 2차전지, 및 이 비수전해액 2차전지용 양극의 제조법에 관한 것이다.The present invention provides a positive electrode active material for a nonaqueous electrolyte secondary battery that can effectively improve load characteristics and increase the capacity in a secondary battery using a nonaqueous electrolyte as an electrolyte, a method of manufacturing the same, and a nonaqueous electrolyte secondary using the positive electrode active material. A battery and the manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries.

근년, 비디오 카메라, 휴대형 CD, 휴대전화, PDA, 노트북 등의 휴대용 전자기기의 소형화, 경량화, 고성능화가 진행되고 있다. 휴대용 전자기기의 전원에는, 고용량이고 또한 중부하 특성이 우수한 안정성이 높은 2차전지가 필요하게 되고 있다. 이러한 목적에 합치한 2차전지로서는, 시일연축전지, 니켈·카드뮴 축전지가 사용되어 왔는데, 보다 에너지 밀도가 높은 전지로서 니켈수소 축전지, 비수전해액 2차전지로서 리튬이온 2차전지가 실용화에 달하고 있다. In recent years, miniaturization, light weight, and high performance of portable electronic devices such as video cameras, portable CDs, cellular phones, PDAs, and notebook computers are being advanced. The power source of the portable electronic device requires a secondary battery having high capacity and high stability with excellent heavy load characteristics. Sealed lead-acid batteries and nickel-cadmium accumulators have been used as secondary batteries meeting these purposes. Lithium-ion secondary batteries are becoming practical as nickel-hydrogen storage batteries and non-aqueous electrolyte secondary batteries as batteries with higher energy density.

리튬이온 2차전지는, 양극활성물질로서, Li과, Co, Ni, Mn 등의 천이금속과의 복합산화물을 사용하고, 음극활성물질에 리튬이온을 삽입·탈삽입할 수 있는 탄 소 등의 탄소질 재료를 사용한 2차전지이며, 니켈수소 축전지 등에 비해 용량이 크고, 또 전압이 높다는 특징을 가지고 있다. 그러나, 최근의 더한층의 고용량화나 대전류화의 요구에 대해 양극활성물질의 충전밀도를 올리는 것이나, 양극활성물질과 혼합하는 도전 조제의 양을 줄임으로써 양극활성물 중량을 증가시키는 등의 대책이 필요하게 되었다. Lithium ion secondary batteries use carbon, such as carbon which can insert and remove lithium ions into a negative electrode active material, using a composite oxide of Li, a transition metal such as Co, Ni, and Mn as a positive electrode active material. It is a secondary battery using quality materials, and has a characteristic of having a large capacity and a high voltage as compared with nickel hydrogen storage batteries. However, in order to meet the recent demand for higher capacity and higher current, measures such as increasing the packing density of the positive electrode active material and increasing the weight of the positive electrode active material by reducing the amount of the conductive assistant mixed with the positive electrode active material are necessary. It became.

이러한 요망에 응하기 위해 여러 연구가 행해지고 있는데, 그 중에 양극활성물질을 구형으로 해서 충전효율을 높이고, 충전효율의 향상에 의해 활성물질끼리의 접촉 면적을 늘림으로써 도전성을 향상시키고, 양극중의 도전 조제를 저감하여, 실질적으로 활성물 중량을 증가하는 시도가 행해지고 있다. In order to meet these demands, various studies have been conducted. Among them, the cathode active material is spherical to increase the filling efficiency, and the filling efficiency is increased to increase the contact area between the active materials, thereby improving the conductivity and preparing the conductive material in the positive electrode. Attempts have been made to reduce and substantially increase the active weight.

예를 들면, 일본특개평 10-74516호 공보에는, 양극활성물질을 중공구형으로 해서 충전효율을 향상시키는 동시에 비표면적을 증가하여, 전해액과의 접촉 면적을 늘려서 중부하시의 반응성을 높인다는 기술이 개시되어 있다. 그러나, 이 방법에서는, 활성물질이 중공구형이기 때문에, 구형에 의한 충전효율의 향상을 예상할 수 있다고 해도, 단위체적당에 충전할 수 있는 활성물질의 양은 저하해버려, 고용량은 기대할 수 없다. For example, Japanese Patent Application Laid-Open No. 10-74516 discloses a technique in which a positive electrode active material is made into a hollow sphere to improve filling efficiency and increase a specific surface area, thereby increasing the contact area with the electrolyte solution to increase the responsiveness in heavy loads. Is disclosed. However, in this method, since the active material is hollow spherical, the improvement of the filling efficiency due to the spherical shape decreases the amount of active material that can be charged per unit volume, and high capacity cannot be expected.

일본특개평 11-273678호 공보에는, 코발트산 리튬 양극활성물질의 코발트원으로서, 구형 또는 타원구형의 옥시수산화 코발트를 사용하여, 옥시수산화 코발트와 리튬 화합물을 혼합, 소성해서 구형의 양극활성물질을 제조하는 기술이 개시되어 있다. 일본특개평 11-288716호 공보에는, 1차입자가 방사상으로 결집된 구형 또는 타원구형의 수산화니켈 코발트와 리튬 화합물을 혼합, 소성해서 구형의 양극 활성물질을 제조하는 기술이 개시되어 있다. Japanese Unexamined Patent Application Publication No. 11-273678 discloses a spherical positive electrode active material by mixing and calcining cobalt oxyhydroxide and a lithium compound using spherical or ellipsoidal cobalt oxyhydroxide as a cobalt source of a lithium cobalt positive electrode active material. Techniques for making are disclosed. Japanese Patent Laid-Open No. 11-288716 discloses a technique for producing a spherical positive electrode active material by mixing and firing a spherical or ellipsoidal nickel cobalt hydroxide and a lithium compound in which primary particles are radially aggregated.

그러나, 이들 방법에서는, 양극활성물질을 생성하는 반응이 일어날 때에 리튬 화합물의 분해반응이나 천이금속 화합물의 분해반응이 동시에 일어난다. 이들 분해반응은 수증기나 탄산 가스 등의 기체의 생성을 동반하기 때문에, 생성한 활성물질은 구형을 유지하고 있지만 상당히 공극이 많은 것이 되고, 단위체적당에 충전할 수 있는 활성물질의 양은 저하해버려, 고용량은 기대할 수 없다.However, in these methods, when the reaction for producing the positive electrode active material occurs, the decomposition reaction of the lithium compound and the decomposition reaction of the transition metal compound occur simultaneously. Since these decomposition reactions are accompanied by the production of gases such as steam and carbon dioxide gas, the produced active substance remains spherical but has a lot of voids, and the amount of active substance that can be charged per unit volume decreases. High doses cannot be expected.

(발명의 개시)(Initiation of invention)

본 발명의 목적은, 비수전해액 2차전지에서의 부하 특성을 유효하게 개선하여, 고용량화가 가능한, 충전효율이 높고, 충전밀도가 큰 비수전해액 2차전지용 양극활성물질 및 그 제조법을 제공하는 것에 있다. SUMMARY OF THE INVENTION An object of the present invention is to provide a positive electrode active material for a nonaqueous electrolyte secondary battery having a high charging efficiency and a high packing density, which can effectively improve the load characteristics of the nonaqueous electrolyte secondary battery and to increase the capacity. .

본 발명의 다른 목적은, 우수한 방전용량을 얻을 수 있는 비수전해액 2차전지 및 이 비수전해액 2차전지용 양극의 제조법을 제공하는 것에 있다. Another object of the present invention is to provide a nonaqueous electrolyte secondary battery capable of obtaining excellent discharge capacity and a method for producing a positive electrode for the nonaqueous electrolyte secondary battery.

본 발명에 의하면, Li과, Co, Ni, Mn 및 Fe로 이루어지는 군으로부터 선택되는 적어도 1종의 천이원소를 포함하는 복합산화물 입자로 이루어지고, 이 복합산화물 입자가, 최장경을 D1, 최단경을 D2라고 했을 때의 D1/D2가 1.0∼2.0의 범위에 있는 구상(球狀) 및/또는 타원구상의 입자를 90% 이상 포함하는 비수전해액 2차전지용 양극활성물질이 제공된다. According to the present invention, a composite oxide particle comprising Li and at least one transition element selected from the group consisting of Co, Ni, Mn, and Fe, wherein the composite oxide particle has the longest diameter D1 and the shortest diameter A positive electrode active material for a non-aqueous electrolyte secondary battery containing 90% or more of spherical and / or ellipsoidal particles having D1 / D2 in the range of 1.0 to 2.0 when referred to as D2 is provided.

또 본 발명에 의하면, Co, Ni, Mn 및 Fe로 이루어지는 군으로부터 선택되는 적어도 1종의 천이원소의 화합물 입자와, 리튬 화합물을 포함하는 원재료를 혼합해 서 원료 혼합물을 준비하는 공정(A)과, 원료 혼합물 중의 리튬 화합물의 융점 이상의 온도에서 가소(假燒)하는 공정(B)과, 원료 혼합물 중의 리튬 화합물의 분해온도 이상에서 소성하는 공정(C)을 포함하는 비수전해액 2차전지용 양극활성물질의 제조법이 제공된다. According to the present invention, step (A) of preparing a raw material mixture by mixing compound particles of at least one transition element selected from the group consisting of Co, Ni, Mn, and Fe and a raw material containing a lithium compound; Positive electrode active material for a nonaqueous electrolyte secondary battery comprising a step (B) of calcining at a temperature equal to or higher than the melting point of the lithium compound in the raw material mixture and a step (C) of firing at or above the decomposition temperature of the lithium compound in the raw material mixture The preparation of is provided.

더욱이 본 발명에 의하면, 양극활성물질 분말을 갖는 양극과, 음극과, 전해액을 구비하고, 이 양극활성물질 분말이 상기 비수전해액 2차전지용 양극활성물질을 포함하는 비수전해액 2차전지가 제공된다. Further, according to the present invention, there is provided a nonaqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material powder, a negative electrode, and an electrolytic solution, wherein the positive electrode active material powder comprises the positive electrode active material for a nonaqueous electrolyte secondary battery.

더욱이 또 본 발명에 의하면, 복합산화물 입자를 포함하는 양극활성물질을 성형 가공하는, 상기 비수전해액 2차전지에 사용하는 양극의 제조법으로서, 주로 입경 2∼100㎛의 입자로 이루어지고, 또한 평균 입경이 5∼80㎛이며, Li과, Co, Ni, Mn 및 Fe로 이루어지는 군으로부터 선택되는 적어도 1종의 천이원소를 포함하고, 최장경을 D1, 최단경을 D2라고 했을 때의 D1/D2가 1.0∼2.0의 범위에 있는 구상 및/또는 타원구상의 입자를 90% 이상 포함하는 복합산화물 입자에서, 평균 입경이 10% 이상 다른 적어도 2종의 복합산화물 입자를 준비하는 공정(a)과, 공정(a)에서 준비한 복합산화물 입자를 혼합해서 양극활성물질을 얻는 공정(b)을 포함하는 비수전해액 2차전지용 양극의 제조법이 제공된다.Furthermore, according to the present invention, as a method for producing a positive electrode for use in the nonaqueous electrolyte secondary battery, which is formed by molding a positive electrode active material containing composite oxide particles, the particle is mainly composed of particles having a particle diameter of 2 to 100 µm and an average particle diameter. It is 5-80 micrometers, and it contains Li and Co, Ni, Mn, and at least 1 sort (s) of transition elements selected from the group which consists of Fe, and when D1 / D2 is 1.0 when the longest diameter is D1 and the shortest diameter is D2, Step (a) of preparing at least two composite oxide particles having an average particle diameter of 10% or more from the composite oxide particles containing 90% or more of spherical and / or elliptic spherical particles in the range of -2.0, and the process ( Provided is a method for producing a positive electrode for a non-aqueous electrolyte secondary battery comprising the step (b) of mixing the composite oxide particles prepared in a) to obtain a positive electrode active material.

도 1은, 실시예1에서 조제한 양극활성물질의 1000배율의 SEM화상의 사진, 및1 is a photograph of an SEM image at 1000 magnification of the positive electrode active material prepared in Example 1, and

도 2는, 실시예1에서 조제한 양극활성물질의 5000배율의 SEM화상의 사진.2 is a SEM image of 5000 magnification of the positive electrode active material prepared in Example 1. FIG.

(발명의 바람직한 실시형태) (Preferred Embodiment of the Invention)

이하, 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명의 비수전해액 2차전지용 양극활성물질(이하, 본 발명의 양극활성물질이라고 함)은, Li과, Co, Ni, Mn 및 Fe로 이루어지는 군으로부터 선택되는 적어도 1종의 천이원소를 포함하는 특정한 복합산화물 입자로 이루어진다. The positive electrode active material (hereinafter referred to as the positive electrode active material of the present invention) for a nonaqueous electrolyte secondary battery of the present invention contains Li and at least one transition element selected from the group consisting of Co, Ni, Mn and Fe. It consists of specific composite oxide particles.

상기 복합산화물로서는, 예를 들면, LiCoO2, LiNiO2, LiMn2O4, LiFeO2나, LiCo0.8Ni0.2O2, LiCo0.5Ni0.5O2, LiCo 0.1Ni0.9O2 등의 LiCoXNi1-XO2(0≤X≤1)로 표시되는 산화물을 들 수 있다. Examples of the composite oxide include LiCo X Ni 1 such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO 2 , LiCo 0.8 Ni 0.2 O 2 , LiCo 0.5 Ni 0.5 O 2 , LiCo 0.1 Ni 0.9 O 2, and the like. And oxides represented by -X O 2 (0≤X≤1).

본 발명의 양극활성물질은, 상기 조성에 더하여, 알칼리 금속, 알칼리 토류금속, Ti, Zr, Hf, Y, Sc 및 희토류 금속 등으로 이루어지는 군으로부터 선택되는 적어도 1종이 포함되어 있어도 좋다. 이들 금속 원소는, 본 발명의 양극활성물질의 격자간격을 넓혀서 용량을 증가시키거나, 충방전 효율을 높이거나, 양극활성물질의 소결성을 향상해서 밀도를 올리는 등의 작용을 갖는다. In addition to the above composition, the positive electrode active material of the present invention may contain at least one selected from the group consisting of alkali metals, alkaline earth metals, Ti, Zr, Hf, Y, Sc, rare earth metals, and the like. These metal elements have the effect of increasing the lattice spacing of the positive electrode active material of the present invention to increase its capacity, increase charge and discharge efficiency, improve the sinterability of the positive electrode active material, and increase the density.

이들 첨가원소의 첨가량은, 전체의 1중량% 이하가 바람직하고, 특히, 0.5중량% 이하, 0.3중량% 이하가 더욱 바람직하다. 1중량%를 초과하여 첨가해도 밀도향상을 기대할 수 없고, 오히려 본 발명의 양극활성물질의 용량이 저하될 우려가 있으므로 바람직하지 않다. The addition amount of these additional elements is preferably 1% by weight or less, and particularly preferably 0.5% by weight or less and 0.3% by weight or less. Even if it adds more than 1 weight%, density improvement cannot be expected, but since the capacity | capacitance of the positive electrode active material of this invention may fall, it is unpreferable.

본 발명의 양극활성물질로서의 복합산화물 입자의 형상은, 주로 구상 또는 타원구상이다. 침상이나 방추상, 판상, 부정형의 것으로는, 충전효율을 올릴 수 없기 때문에 바람직하지 않고, 타원구상이여도 애스펙트비가 크고, 방추상에 가깝게 되면 충전효율이 내려가기 때문에 바람직하지 않다. The shape of the composite oxide particles as the positive electrode active material of the present invention is mainly spherical or ellipsoidal. Needles, spindles, plates, and irregular ones are not preferable because they cannot increase the charging efficiency, and even elliptic spheres have a large aspect ratio and are not preferable because the charging efficiency decreases when they are close to the spindle.

따라서, 상기 복합산화물 입자는, 최장경을 D1, 최단경을 D2라고 했을 때의 D1/D2(애스펙트비)가 1.0∼2.0, 바람직하게는 1.0∼1.5의 범위에 있는 구상 및/또는 타원구상의 입자를 90% 이상 포함한다. Accordingly, the composite oxide particles are spherical and / or ellipsoidal particles having a D1 / D2 (aspect ratio) of 1.0 to 2.0, preferably 1.0 to 1.5 when the longest diameter is D1 and the shortest diameter is D2. More than 90%.

본 발명의 양극활성물질의 탭밀도는 높은 편이 좋다. 탭밀도가 낮으면 양극활성물질의 충전효율이 나빠지기 때문에, 한정된 극판의 체적내에 많은 활성물질을 충전할 수 없어, 용량이 저하되고 만다. 본 발명의 양극활성물질에서는, 바람직하게는 탭밀도 2.9g/cm3 이상, 특히 바람직하게는 3.0g/cm3 이상, 보다 바람직하게는 3.1g/cm3 이상이다. 탭밀도의 상한은 특별히 한정되지 않지만, 보통 5.0g/cm3 정도이다. The tap density of the positive electrode active material of the present invention is preferably higher. If the tap density is low, the filling efficiency of the positive electrode active material is deteriorated, so that many active materials cannot be filled in the volume of the limited electrode plate, and the capacity decreases. In the positive electrode active material of the present invention, the tap density is preferably at least 2.9 g / cm 3 , particularly preferably at least 3.0 g / cm 3 , more preferably at least 3.1 g / cm 3 . The upper limit of the tap density is not particularly limited, but is usually about 5.0 g / cm 3 .

상기 탭밀도의 향상에는, 입자의 입도 분포와 평균 입경이 중요한 역할을 갖는다. 입도 분포가 지나치게 넓거나, 지나치게 좁거나 하면 입자의 충전효율이 나빠지고, 평균 입경이 지나치게 작으면 입자의 표면 에너지가 커지기 때문에, 이러한 경우도 충전효율의 저하를 초래한다. 평균 입경이 지나치게 크면, 전극을 작성할 때에 집전체상에 활성물질을 균일하게 도포하는 것이 어렵게 된다. The particle size distribution and average particle diameter of a particle play an important role in the improvement of the said tap density. If the particle size distribution is too wide or too narrow, the filling efficiency of the particles is deteriorated, and if the average particle diameter is too small, the surface energy of the particles is increased, which causes a decrease in the filling efficiency. If the average particle diameter is too large, it becomes difficult to uniformly apply the active substance onto the current collector when preparing the electrode.

따라서, 본 발명의 양극활성물질을 구성하는 복합산화물 입자의 입경은, 주로 2∼100㎛, 특히 10∼100㎛의 범위에 있는 것이 바람직하고, 특히, 그 80% 이상, 더욱 그 85% 이상, 더욱 또 90% 이상이 상기 범위에 있는 것이 바람직하다. 또, 평균 입경은 5∼80㎛, 특히 30∼80㎛, 더욱 30∼60㎛인 것이 바람직하다. 평균 입경이 5㎛ 미만이거나, 80㎛보다 크거나 하면, 가령 입경의 범위가 상술한 바람직한 범위에 있었다고 해도 입도 분포가 지나치게 좁아져서 충전효율이 저하되기 때문에 바람직하지 않다. Therefore, the particle diameter of the composite oxide particles constituting the positive electrode active material of the present invention is preferably in the range of 2 to 100 µm, particularly 10 to 100 µm, particularly 80% or more, more preferably 85% or more, Moreover, it is preferable that 90% or more exists in the said range. Moreover, it is preferable that an average particle diameter is 5-80 micrometers, especially 30-80 micrometers, and further 30-60 micrometers. If the average particle diameter is less than 5 µm or larger than 80 µm, even if the range of the particle diameter is in the above-described preferred range, the particle size distribution becomes too narrow and the filling efficiency is not preferable.

여기에서, 복합산화물의 입경은 레이저 회절식 입도 분포계(Honey Well사제, 마이크로 트랙 HRA)로 측정한 값으로, 평균 입경은 D50값이다. Here, the particle size of the composite oxide is a value measured with a laser diffraction particle size distribution meter (Micro Track HRA, manufactured by Honey Well), and the average particle diameter is a D50 value.

상기 복합산화물의 비표면적은, 바람직하게는 0.05∼0.24m2/g, 특히 바람직하게는 0.1∼0.2m2/g이다. 비표면적이 0.05m2/g 미만에서는, 얻어지는 양극의 내부저항이 커지고, 고율방전 특성이 저하하므로 바람직하지 못하고, 한편, 0.24m2/g을 초과하는 경우에는, 전해액 등과의 반응성이 높아져, 얻어지는 양극의 열안정성이 저하되므로 바람직하지 않다. The specific surface area of the composite oxide is preferably 0.05 to 0.24 m 2 / g, particularly preferably 0.1 to 0.2 m 2 / g. When the specific surface area is less than 0.05m 2 / g, the internal resistance of the positive electrode obtained becomes large, the high-rate discharge characteristic is not preferable because it decreases. On the other hand, exceeds 0.24m 2 / g, the higher the reactivity as the electrolytic solution, obtained It is not preferable because the thermal stability of the anode is lowered.

또, 본 발명의 양극활성물질을 구성하는 복합산화물 입자를 사용해서 실제로 양극을 제조할 때는, 양극활성물질의 충전효율을 높이기 위해서, 상기 평균 입경이 다른 적어도 2종의 상기 복합산화물 입자의 혼합물을 사용하는 것이 바람직하다. 이때, 혼합되는 복합산화물 입자는, 평균 입경이 10% 이상 다른 것이 바람직하다. In addition, when actually manufacturing a positive electrode using the composite oxide particle which comprises the positive electrode active material of this invention, in order to improve the filling efficiency of a positive electrode active material, the mixture of the at least 2 types of said composite oxide particle from which the said average particle diameter differs is prepared. It is preferable to use. At this time, it is preferable that the composite oxide particles to be mixed differ in average particle diameter by 10% or more.

본 발명의 양극활성물질을 제조하는 방법은, 본 발명의 양극활성물질을 얻을 수 있으면 특별히 한정되지 않는다. 예를 들면, 리튬원이 되는 리튬 화합물과 천이금속원이 되는 천이원소의 화합물을 혼합하고, 적당한 조건을 설정하여 소성하는 방법 등에 의해 얻을 수 있다. 바람직한 방법으로서는, 이하에 나타내는 본 발명 의 제조법을 들 수 있다. The method for producing the positive electrode active material of the present invention is not particularly limited as long as the positive electrode active material of the present invention can be obtained. For example, it can obtain by the method of mixing the lithium compound used as a lithium source, and the compound of the transition element used as a transition metal source, setting a suitable condition, and baking. As a preferable method, the manufacturing method of this invention shown below is mentioned.

본 발명의 제조법은, 우선, 특정한 천이금속원이 되는 천이원소의 화합물입자와, 리튬원이 되는 리튬 화합물을 포함하는 원재료를 혼합해서 원료 혼합물을 준비하는 공정(A)을 행한다. The manufacturing method of this invention performs the process (A) of first preparing the raw material mixture by mixing the compound particle of the transition element used as a specific transition metal source, and the raw material containing the lithium compound used as a lithium source.

상기 리튬원이 되는 리튬 화합물은, 융점이 800℃이하이고, 열분해온도가 1100℃ 이하인 것이 바람직하고, 예를 들면, 수산화 리튬, 염화 리튬, 질산 리튬, 탄산 리튬, 황산 리튬 등의 무기염; 포름산 리튬, 아세트산 리튬, 옥살산 리튬 등의 유기염 등을 들 수 있다. The lithium compound serving as the lithium source preferably has a melting point of 800 ° C. or lower and a pyrolysis temperature of 1100 ° C. or lower, and examples thereof include inorganic salts such as lithium hydroxide, lithium chloride, lithium nitrate, lithium carbonate and lithium sulfate; Organic salts, such as lithium formate, lithium acetate, and a lithium oxalate, etc. are mentioned.

상기 천이금속원이 되는 천이원소의 화합물 입자는, Co, Ni, Mn 및 Fe로 이루어지는 군으로부터 선택되는 적어도 1종의 천이원소의 화합물 입자이며, 열분해 온도가 1100℃ 이하인 것이 바람직하고, 예를 들면, 수산화물, 탄산염을 들 수 있는데, 탭밀도를 향상시킬 목적을 고려하면, 열분해하지 않는 천이금속의 산화물 입자가 바람직하다. The compound particles of the transition element serving as the transition metal source are compound particles of at least one transition element selected from the group consisting of Co, Ni, Mn and Fe, and the pyrolysis temperature is preferably 1100 ° C. or lower, for example And hydroxides and carbonates. In view of the purpose of improving the tap density, oxide particles of transition metals which do not pyrolyze are preferable.

상기 천이금속원의 입자형상은, 구상 및/또는 타원구상의 구형입자가 바람직하다. 이러한 입자를 얻는 방법으로서는, 예를 들면, 부정형의 1차입자를 조립에 의해 구형으로 하는 방법이나, 액상 또는 슬러리상의 화합물을 분무 건조 또는 분무 소성법에 의해 구형으로 하는 방법, 균일침전법 등에 의해 구형의 입자를 직접 얻는 방법을 들 수 있다. 구형의 산화물 입자로 할 경우는, 이들 구형입자를 소성해서 얻을 수 있는데, 이때의 소성 온도가 낮으면 탭밀도도 낮아져버리기 때문에, 500℃ 이상의 온도에서 소성하는 것이 바람직하다. The particle shape of the transition metal source is preferably spherical and / or ellipsoidal spherical particles. As a method of obtaining such particles, for example, spherical particles may be spherical by granulation, liquid or slurry compounds may be spherical by spray drying or spray firing, spherical precipitation or the like. The method of directly obtaining the particle | grains of is mentioned. In the case of using spherical oxide particles, these spherical particles can be calcined and obtained. When the firing temperature at this time is low, the tap density is also lowered, and therefore, firing at a temperature of 500 ° C. or higher is preferable.                 

구상 및/또는 타원구상의 천이금속원은, 이 단계에서 어느 정도의 탭밀도를 갖는 것이 바람직하다. 이 단계에서의 탭밀도가 낮으면, 얻어지는 양극활성물질의 탭밀도도 낮아져버린다. 이러한 구상 및/또는 타원구상의 천이금속원의 탭밀도는, 바람직하게는 2.0g/cm3 이상, 보다 바람직하게는 2.2g/cm3 이상, 더욱 바람직하게는 2.4g/cm3 이상이다. 탭밀도의 상한은 특별히 한정되지 않지만, 통상 5.0g/cm3 정도이다. The spherical and / or elliptic spherical transition metal source preferably has a certain tap density at this stage. When the tap density in this step is low, the tap density of the obtained positive electrode active material also decreases. The tap density of such spherical and / or elliptic spherical transition metal sources is preferably 2.0 g / cm 3 or more, more preferably 2.2 g / cm 3 or more, and still more preferably 2.4 g / cm 3 or more. The upper limit of the tap density is not particularly limited, but is usually about 5.0 g / cm 3 .

본 발명의 제조법에 있어서, 상술한 리튬원과 천이금속원을 포함하는 원재료에는, 필요에 따라서, 상술한 첨가원소, 즉, 알칼리 금속, 알칼리 토류금속, Ti, Zr, Hf, Y, Sc 및 희토류 금속 등으로 이루어지는 군으로부터 선택되는 적어도 1종의 금속화합물을 포함하고 있어도 좋다. 이들 원재료의 혼합은 공지의 방법으로 행할 수 있다. In the production method of the present invention, in the raw material containing the lithium source and the transition metal source described above, if necessary, the above-described additive elements, that is, alkali metal, alkaline earth metal, Ti, Zr, Hf, Y, Sc and rare earth It may contain at least one metal compound selected from the group consisting of metals and the like. Mixing of these raw materials can be performed by a well-known method.

본 발명의 제조법에서는, 얻어지는 본 발명의 양극활성물질의 탭밀도를 향상시킬 목적으로, 공정(A)에서 준비한 원료 혼합물의 소성을, 특정한 가소 공정 및 특정한 소성 공정 2단계로 행한다. In the production method of the present invention, the firing of the raw material mixture prepared in step (A) is carried out in two steps of a specific calcination step and a specific calcination step in order to improve the tap density of the cathode active material of the present invention obtained.

특정한 가소 공정은, 공정(A)에서 원료 혼합물에 사용한 리튬 화합물의 융점 이상의 온도에서 가소하는 공정(B)이다. 이 가소 공정에서는, 원재료인 천이원소의 화합물 입자 중에 리튬 화합물을 함침시키는 것을 목적으로 한다. 따라서, 유지 온도의 상한은, 리튬 화합물의 분해 온도 미만인 것이 바람직하고, 또한 300∼950℃, 특히 500∼800℃가 바람직하다. 유지 시간은 10∼300분간이 바람직하 다. A specific calcination process is a process (B) which calcinates at the temperature more than melting | fusing point of the lithium compound used for the raw material mixture in process (A). In this calcination step, the object is to impregnate the lithium compound in the compound particles of the transition element which is the raw material. Therefore, it is preferable that the upper limit of holding temperature is less than the decomposition temperature of a lithium compound, and also 300-950 degreeC, especially 500-800 degreeC is preferable. The holding time is preferably 10 to 300 minutes.

특정한 소성 공정은, 가소 공정을 거친, 예를 들면, 리튬 화합물을 함침한 천이원소의 화합물을, 공정(A)에서 원료 혼합물에 사용한 리튬 화합물의 분해 온도 이상에서 소성하는 공정(C)이다. 이 소성 공정에서는, 리튬 화합물과 천이원소의 화합물을 반응시켜, 목적으로 하는 본 발명의 양극활성물질을 생성시키는 것을 목적으로 한다. 이 때의 온도는, 리튬 화합물의 분해 온도 이상이면 좋은데, 리튬 화합물의 분해 온도가 낮을 경우에는 천이원소의 화합물 입자와의 반응에 시간을 요하는 경우가 있기 때문에, 바람직하게는 700∼1100℃, 보다 바람직하게는 800∼1100℃ 이다. 유지 시간은, 지나치게 짧으면 반응이 완결되지 않고, 지나치게 길면 고상반응이 너무 진행해서 입자끼리가 부착되어 버리는 일이 있기 때문에, 바람직하게는 10∼1800분간, 보다 바람직하게는 10∼900분간이다. A specific baking process is a process (C) which bakes the compound of the transition element which passed through the calcination process, for example, the lithium compound impregnated above the decomposition temperature of the lithium compound used for the raw material mixture in process (A). In this firing step, a lithium compound is reacted with a compound of a transition element to produce a positive electrode active material of the present invention. Although the temperature at this time should just be the decomposition temperature of a lithium compound, when the decomposition temperature of a lithium compound is low, since it may require time for reaction with the compound particle of a transition element, Preferably it is 700-1100 degreeC, More preferably, it is 800-1100 degreeC. If the holding time is too short, the reaction will not be completed. If the holding time is too long, the solid phase reaction may proceed too much and the particles may adhere to each other. Preferably, the holding time is 10 to 1800 minutes, more preferably 10 to 900 minutes.

본 발명의 제조법에서는, 상기 공정에 의해 본 발명의 양극활성물질을 얻을 수 있는데, 필요에 따라서, 다른 공정을 포함하고 있어도 좋다. In the manufacturing method of this invention, although the positive electrode active material of this invention can be obtained by the said process, you may include another process as needed.

본 발명의 비수전해액 2차전지는, 양극활성물질 분말을 갖는 양극과, 음극과, 전해액을 구비하고, 상기 양극활성물질로서 본 발명의 양극활성물질을 포함하는 것이면 좋고, 다른 구성, 및 다른 추가의 구성 등은 공지의 것 등으로부터 적당히 선택할 수 있다. The nonaqueous electrolyte secondary battery of the present invention may include a positive electrode having a positive electrode active material powder, a negative electrode, and an electrolytic solution, and include the positive electrode active material of the present invention as the positive electrode active material, and another configuration, and other additional features. The configuration and the like can be appropriately selected from known ones.

또, 상기 비수전해액 2차전지에 사용하는 양극을 제조하기 위해서는, 주로 입경 2∼100㎛의 입자로 이루어지고, 또한 평균 입경이 5∼80㎛이며, Li과, Co, Ni, Mn 및 Fe로 이루어지는 군으로부터 선택되는 적어도 1종의 천이원소를 포함하 고, 최장경을 D1, 최단경을 D2로 했을 때의 D1/D2가 1.0∼2.0의 범위에 있는 구상 및/또는 타원구상의 입자를 90% 이상 포함하는 상기 복합산화물 입자에서, 평균 입경이 10% 이상 다른 적어도 2종의 복합산화물 입자를 준비하는 공정(a)과, 공정(a)에서 준비한 복합산화물 입자를 혼합해서 양극활성물질을 얻는 공정(b)을 행함으로써 얻을 수 있다. 평균 입경이 10% 이상 다른 적어도 2종의 복합산화물 입자의 혼합 비율은, 예를 들면, 2종류의 경우, 중량비로 1:9∼9:1의 범위가 바람직하다. In addition, in order to manufacture the positive electrode used for the said nonaqueous electrolyte secondary battery, it consists mainly of particle | grains of 2-100 micrometers of particle diameters, and has an average particle diameter of 5-80 micrometers, and is made of Li, Co, Ni, Mn, and Fe. 90% of spherical and / or ellipsoidal particles having at least one transition element selected from the group consisting of D1 / D2 in the range of 1.0 to 2.0 when the longest diameter is D1 and the shortest diameter is D2. A process of preparing a positive electrode active material by mixing the composite oxide particles prepared in the step (a) with the step (a) of preparing at least two composite oxide particles having an average particle diameter of 10% or more from the composite oxide particles including the above It can obtain by performing (b). The mixing ratio of at least two composite oxide particles having an average particle diameter of 10% or more is preferably in the range of 1: 9 to 9: 1 by weight ratio in the case of two types, for example.

본 발명의 비수전해액 2차전지용 양극활성물질은, 구상 및/또는 타원구상 입자의 복합산화물이며, 이 입자의 애스펙트비가 1.0∼2.0의 범위에 있고, 탭밀도가 2.9g/cm3 이상이므로, 이것을 사용해서 전극을 작성했을 경우, 전극밀도를 3.4∼3.7g/cm3 정도로 할 수 있고, 비수전해액 2차전지에서의 체적당의 방전용량이나, 부하 특성을 유효하게 개선할 수 있다. 또 본 발명의 제조법에서는, 이러한 양극활성물질을 용이하게 얻을 수 있다. 더욱이, 본 발명의 비수전해액 2차전지는, 본 발명의 양극활성물질을 사용하므로, 방전용량 및 부하 특성을 향상시킬 수 있다.The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is a composite oxide of spherical and / or elliptic spherical particles, the aspect ratio of these particles is in the range of 1.0 to 2.0, and the tap density is 2.9 g / cm 3 or more. In the case of using the electrode, the electrode density can be about 3.4 to 3.7 g / cm 3 , and the discharge capacity and the load characteristics per volume in the nonaqueous electrolyte secondary battery can be effectively improved. Moreover, in the manufacturing method of this invention, such a positive electrode active material can be obtained easily. Furthermore, the nonaqueous electrolyte secondary battery of the present invention uses the positive electrode active material of the present invention, so that the discharge capacity and the load characteristics can be improved.

(실시예)(Example)

이하, 실시예에 의해 본 발명을 더욱 상세하게 설명하지만, 본 발명은 이것에 한정되는 것은 아니다. Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to this.

실시예 1Example 1

순도 99.8%의 코발트 메탈 100g을 질산에 용해한 후, 순수로 희석하여, 1650ml로 했다. 잇따라서, 4N의 수산화나트륨 용액 820ml를 가하고 교반한 후에 여과하여, 구상 또는 타원구상의 입자에서 구성되는 수산화물의 케이크를 얻었다. 그 케이크를 850℃에서 4시간 소성하여, 137g의 구상 또는 타원구상의 입자인 코발트 산화물 입자를 얻었다. 얻어진 코발트 산화물 입자 137g과 탄산 리튬 65g을 균일하게 혼합한 후, 얻어진 혼합물을 700℃에서 240분간 가소성하고, 더욱, 850℃에서 300분간 본소성을 행하여, 구상 또는 타원구상의 입자를 얻었다. 100 g of cobalt metal having a purity of 99.8% was dissolved in nitric acid, and then diluted with pure water to obtain 1650 ml. Subsequently, 820 ml of 4N sodium hydroxide solution was added and stirred, followed by filtration to obtain a hydroxide cake composed of spherical or ellipsoidal particles. The cake was baked at 850 ° C. for 4 hours to obtain cobalt oxide particles as 137 g of spherical or ellipsoidal particles. After uniformly mixing 137 g of the obtained cobalt oxide particles and 65 g of lithium carbonate, the obtained mixture was calcined at 700 ° C. for 240 minutes, and further calcined at 850 ° C. for 300 minutes to obtain spherical or ellipsoidal particles.

얻어진 입자를 ICP 발광 분광분석 장치, X선회절장치, 전자현미경, 탭덴서 장치(세이신기업제, XYT-2000)을 사용해서 조사한 결과, 1차입자의 입경이 0.2∼10㎛이고, 2차입자의 입경이 10∼100㎛의 복합 입자이고, 애스펙트비 1∼1.5이고, 탭밀도 3.2g/cm3 이상인 형상을 갖는 LiCoO2의 입자인 것을 알았다. 또, 입자의 비표면적이 0.15m2/g인 것을 알았다. The obtained particles were irradiated with an ICP emission spectrophotometer, an X-ray diffractometer, an electron microscope, and a tapped denser device (manufactured by Seishin Corporation, XYT-2000). The particle size of the primary particles was 0.2 to 10 µm, It was found that the particle size was a composite particle having a particle size of 10 to 100 µm, an aspect ratio of 1 to 1.5, and particles of LiCoO 2 having a shape having a tap density of 3.2 g / cm 3 or more. In addition, it was found that the specific surface area of the particles was 0.15 m 2 / g.

또한, 탭밀도의 측정은, 얻어진 입자를 20ml 실린더에 10.0g 채취하고, 탭높이 2cm, 탭 회수 200회에서 측정했다. 또, 비표면적의 측정은, 얻어진 입자를 1g 채취하고, 200℃에서 20분간 탈기후, 칸타크롬사제의 상품명 「N0VA2000」을 사용해서 N2 흡착 BET법에 의해 행했다. 결과를 표 1에 나타낸다. In addition, the measurement of the tap density measured 10.0g of the obtained particle | grains in 20 ml cylinders, and measured it by tap height 2cm and tap collection time 200 times. The specific surface area was measured by 1 g of the obtained particles, degassed at 200 ° C. for 20 minutes, and then subjected to N 2 adsorption BET method using the brand name “N0VA2000” manufactured by Canthachromes. The results are shown in Table 1.

또 얻어진 양극활성물질로서의 입자의 1000배율의 SEM사진을 도 1에, 5000배율의 SEM사진을 도 2에 각각 도시한다. In addition, the SEM photograph of 1000 magnification of the particle | grains as the obtained positive electrode active material is shown in FIG. 1, and the SEM photograph of 5000 magnification is shown in FIG.

더욱이, 얻어진 입자와, 도전 조제로서의 아세틸렌 블랙과, 결착제로서의 PTFE를 중량비로 50:40:10의 비율로 혼합하여 양극합제를 조제하고, 스테인레스 강판을 집전체로 한 양극을 제작했다. 또, 스테인레스 강판을 집전체로 한 리튬 금속의 음극을 제작했다. 더욱이 에틸렌카보네이트와 디메틸카보네이트를 체적비 1:1의 비율로 혼합한 용액에 과염소산 리튬을 1mo1/L의 비율로 용해해서 전해액을 조제했다. 얻어진 양극, 음극, 전해액을 사용하여 리튬이온 2차전지를 제작했다. Further, the obtained particles, acetylene black as a conductive aid, and PTFE as a binder were mixed in a weight ratio of 50:40:10 to prepare a positive electrode mixture to prepare a positive electrode made of a stainless steel sheet as a current collector. Moreover, the negative electrode of the lithium metal which used the stainless steel plate as an electrical power collector was produced. Furthermore, lithium perchlorate was dissolved at a rate of 1mo1 / L in a solution in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1, to prepare an electrolyte solution. The lithium ion secondary battery was produced using the obtained positive electrode, negative electrode, and electrolyte solution.

얻어진 전지를 충전 전류밀도 3mA/cm2이 되는 조건에서 충전 상한전압 4.3V, 방전 하한전압을 3V로 하여 초기 방전용량을 측정했다. 또, 얻어진 입자와, 도전 조제로서의 그래파이트와, 결착제로서의 PVDF를 중량비로 90:5:5의 비율로 혼합하고 닥터 블레이드법에 의해 두께 20㎛의 Al집전체에 도포하고, 압력 3t/cm2로 프레스해서 전극을 제작했다. 얻어진 전극의 체적 및 중량을 측정하여, Al집전체의 체적 및 중량을 공제하고, 전극밀도를 산출했다. 결과를 표 1에 나타낸다. The initial discharge capacity of the obtained battery was measured with a charge upper limit voltage of 4.3 V and a discharge lower limit voltage of 3 V under conditions of a charge current density of 3 mA / cm 2 . Further, the obtained particles, graphite as a conductive aid and PVDF as a binder were mixed in a weight ratio of 90: 5: 5, and applied to an Al current collector having a thickness of 20 µm by the doctor blade method, and the pressure was 3 t / cm 2. It pressed and produced the electrode. The volume and weight of the obtained electrode were measured, the volume and weight of Al collector were subtracted, and electrode density was computed. The results are shown in Table 1.

실시예 2∼5Examples 2-5

실시예 1의 케이크 소성 온도를, 500℃, 700℃, 800℃ 또는 900℃, 가소성 시간을 240분간, 480분간, 360분간 또는 640분간, 본소성 온도를 800℃, 850℃, 900℃ 또는 950℃, 본소성 시간을 600분간, 1200분간, 60시간 또는 100시간으로 각각 하고, 탄산 리튬 대신에, 옥살산 리튬 47g, 질산 리튬 35g, 수산화 리튬 100g 또는 황산 리튬 44g으로 각각 한 이외는 실시예 1과 동일한 조작에 의해 1차입자의 입경이 0.2∼10㎛이며, 2차입자의 입경이 10∼100㎛인 복합 입자이고, 애스펙트비 1∼1.5의 구상 또는 타원구상 입자를 제작하여, 각 측정 및 평가를 행했다. 결과 를 표 1에 나타낸다. The cake firing temperature of Example 1 was 500 ° C, 700 ° C, 800 ° C or 900 ° C, the plasticity time was 240 minutes, 480 minutes, 360 minutes or 640 minutes, and the main firing temperature was 800 ° C, 850 ° C, 900 ° C or 950 Example 1 was carried out for 600 minutes, 1200 minutes, 60 hours or 100 hours, respectively, except that lithium oxalate, 47 g of lithium nitrate, 35 g of lithium hydroxide, or 44 g of lithium sulfate were used instead of lithium carbonate. By the same operation, the particle size of the primary particle was 0.2-10 micrometers, the particle size of the secondary particle was 10-100 micrometers, the spherical or elliptic spherical particle of aspect ratio 1-1.5 was produced, and each measurement and evaluation were performed. . The results are shown in Table 1.

실시예 6∼11Examples 6-11

구상 또는 타원구상 입자인 수산화물 대신에, 니켈 원자와 코발트 원자의 몰비가, 8:2, 5:5, 1:9 또는 10:0인 공침 수산화물, 혹은 코발트 원자와 망간 원자와의 몰비가 5:1인 공침 수산화물, 망간 원자와 니켈 원자와의 몰비가 1:1인 공침수산화물을 사용한 이외는 실시예 1과 동일한 조작에 의해 1차입자의 입경이 0.2∼10㎛이고, 2차입자의 입경이 10∼100㎛인 복합 입자이고, 애스펙트비 1∼1.5인 구상 또는 타원구상 입자를 제작하여, 각 측정 및 평가를 행했다. 결과를 표 1에 나타낸다. Instead of the hydroxides which are spherical or ellipsoidal particles, the molar ratio of nickel atoms and cobalt atoms is 8: 2, 5: 5, 1: 9 or 10: 0, and the coprecipitation hydroxides or the molar ratio of cobalt atoms and manganese atoms is 5: The particle size of the primary particles was 0.2 to 10 µm, and the particle size of the secondary particles was 10 by the same operation as in Example 1, except that a monovalent coprecipitation hydroxide and a coprecipitation hydroxide having a molar ratio of manganese atoms and nickel atoms of 1: 1 were used. It was composite particle which is -100 micrometers, the spherical or elliptic spherical particle with aspect ratio 1-1.5 was produced, and each measurement and evaluation were performed. The results are shown in Table 1.

비교예 1 및 2Comparative Examples 1 and 2

구상 또는 타원구상 입자인 수산화물 대신에, 침상 또는 부정형인 수산화물을 사용한 이외는 실시예 1과 동일한 조작에 의해 침상 또는 부정형의 복합산화물을 제작하여, 측정 및 평가를 행했다. 결과를 표 1에 나타낸다. A needle-like or amorphous composite oxide was produced and measured and evaluated in the same manner as in Example 1 except that a needle-like or amorphous hydroxide was used instead of the spherical or elliptic-shaped particles. The results are shown in Table 1.                 

Figure 112003047699428-pct00001
Figure 112003047699428-pct00001

실시예 12∼14Examples 12-14

실시예 1에서 조제한 입자를 분급하고, 평균 입경 10㎛인 소입자군과, 평균 입경 70㎛인 대입자군으로 나누고, 각각을 중량비로 1:1(실시예 12), 3:7(실시예 13) 또는 1:9(실시예 14)로 혼합하여 양극활성물질을 얻고, 더욱, 실시예 1과 동일하게 전극을 제작해서 각 측정 및 평가를 행했다. 결과를 표 2에 나타낸다.The particles prepared in Example 1 were classified, divided into small particle groups having an average particle diameter of 10 µm and large particle groups having an average particle diameter of 70 µm, and each was 1: 1 (Example 12) and 3: 7 (Example) by weight ratio. 13) or 1: 9 (Example 14), to obtain a positive electrode active material, and to prepare an electrode in the same manner as in Example 1, each measurement and evaluation were performed. The results are shown in Table 2.

Figure 112003047699428-pct00002
Figure 112003047699428-pct00002

Claims (10)

Co, Ni, Mn 및 Fe로 이루어지는 군으로부터 선택되는 적어도 1종의 천이원소의 화합물 입자로서, 입자 형상이 구상 및 타원구상으로부터 선택되는 하나 이상인 화합물 입자를 500~900℃에서 소성한 천이원소의 산화물 입자 및 리튬 화합물을 포함하는 원재료를 혼합하여 원료 혼합물을 준비하는 공정 (A);Oxide of a transition element obtained by firing at 500 to 900 ° C. of compound particles of at least one transition element selected from the group consisting of Co, Ni, Mn, and Fe, wherein the particle shape is at least one selected from spherical and ellipsoidal (A) preparing a raw material mixture by mixing raw materials containing particles and a lithium compound; 원료 혼합물 중의 리튬 화합물의 융점 이상의 온도에서 가소하는 공정 (B); 및(B) calcining at a temperature equal to or higher than the melting point of the lithium compound in the raw material mixture; And 원료 혼합물 중의 리튬 화합물의 분해 온도 이상에서 소성하는 공정 (C)를 포함하는 양극활성물질의 제조방법으로서,A method for producing a positive electrode active material comprising the step (C) of firing at or above the decomposition temperature of a lithium compound in a raw material mixture, 최장경을 D1, 최단경을 D2라고 했을 때 D1/D2가 1.0~1.5의 범위에 있는 구상 및 타원구상으로부터 선택되는 하나 이상의 입자를 포함하고, 탭밀도가 2.9~3.3 g/㎤인 비수전해액 2차 전지용 양극활성물질의 제조방법.When the longest diameter is D1 and the shortest diameter is D2, the nonaqueous electrolyte secondary containing at least one particle selected from spherical and elliptic spheres in the range of 1.0 to 1.5, and having a tap density of 2.9 to 3.3 g / cm 3 Method for producing a positive electrode active material for batteries. 제1항에 있어서, 공정(B)에서의 온도가 300∼950℃이고, 유지 시간이 10∼300분이며, 상기 공정(C)에서의 온도가 700∼1100℃이고, 유지 시간이 10∼1800분인 것을 특징으로 하는 비수전해액 2차 전지용 양극활성물질의 제조방법. 2. The process according to claim 1, wherein the temperature in the step (B) is 300 to 950 ° C, the holding time is 10 to 300 minutes, the temperature in the step (C) is 700 to 1100 ° C, and the holding time is 10 to 1800. Method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery, characterized in that the powder. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020037016383A 2001-06-27 2002-06-27 Cathode active material for nonaqueous electrolyte secondary battery, preparation method thereof, method for manufacturing nonaqueous electrolyte secondary battery, and positive electrode KR100934612B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001195157A JP5079951B2 (en) 2001-06-27 2001-06-27 Non-aqueous electrolyte secondary battery positive electrode active material, its manufacturing method, non-aqueous electrolyte secondary battery, and positive electrode manufacturing method
JPJP-P-2001-00195157 2001-06-27
PCT/JP2002/006473 WO2003003489A1 (en) 2001-06-27 2002-06-27 Nonaqueous electrolyte secondary battery-use anode active matter, production method therefor, nonaqueous electrolyte secondary battery, and production method for anode

Publications (2)

Publication Number Publication Date
KR20040015266A KR20040015266A (en) 2004-02-18
KR100934612B1 true KR100934612B1 (en) 2009-12-31

Family

ID=19033186

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020037016383A KR100934612B1 (en) 2001-06-27 2002-06-27 Cathode active material for nonaqueous electrolyte secondary battery, preparation method thereof, method for manufacturing nonaqueous electrolyte secondary battery, and positive electrode

Country Status (4)

Country Link
JP (1) JP5079951B2 (en)
KR (1) KR100934612B1 (en)
CN (1) CN1311574C (en)
WO (1) WO2003003489A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472636A3 (en) * 2003-12-15 2012-09-05 Mitsubishi Chemical Corporation Nonaqueous-Electrolyte Secondary Battery
JP5428125B2 (en) * 2005-11-24 2014-02-26 日産自動車株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
CN102656724B (en) 2009-12-14 2016-08-03 丰田自动车株式会社 Positive active material for lithium secondary battery and utilization thereof
KR101450978B1 (en) 2009-12-18 2014-10-15 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
JP6285089B2 (en) 2009-12-22 2018-02-28 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery using the same, and positive electrode active material precursor for lithium ion battery
JP5149920B2 (en) 2010-02-05 2013-02-20 トヨタ自動車株式会社 Method for producing electrode for lithium secondary battery
CN102804461B (en) 2010-02-05 2016-03-02 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
CN102792496B (en) 2010-02-05 2016-03-23 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
CN102782911B (en) 2010-03-04 2015-06-24 Jx日矿日石金属株式会社 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP5923036B2 (en) 2010-03-04 2016-05-24 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
EP2544273A4 (en) 2010-03-04 2014-06-25 Jx Nippon Mining & Metals Corp Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
KR101430839B1 (en) 2010-12-03 2014-08-18 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
WO2012098724A1 (en) 2011-01-21 2012-07-26 Jx日鉱日石金属株式会社 Method for producing positive-electrode active material for lithium-ion battery and positive-electrode active material for lithium-ion battery
TWI513663B (en) 2011-03-29 2015-12-21 Jx Nippon Mining & Metals Corp Production method of positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
CN103299456B (en) 2011-03-31 2016-01-13 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
KR101295974B1 (en) * 2011-05-02 2013-08-13 삼성정밀화학 주식회사 Method for preparing lithium manganese oxide positive active material for lithium ion secondary battery, positive active material prepared thereby, and lithium ion secondary battery including the same
WO2013069454A1 (en) 2011-11-09 2013-05-16 株式会社Gsユアサ Active substance for nonaqueous electrolyte secondary cell, method for producing active substance, electrode for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
JP6292738B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6292739B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
CN103367739A (en) * 2013-07-18 2013-10-23 桂林电子科技大学 Ellipsoidal porous-structured lithium manganate or nickel lithium manganate positive electrode material and preparation method thereof
JP2020035625A (en) * 2018-08-29 2020-03-05 株式会社田中化学研究所 Positive electrode active material particle for secondary cell and production method of positive electrode active material particle for secondary cell
KR102080310B1 (en) * 2019-02-28 2020-02-21 한화시스템 주식회사 Method for detecting target using monopulse radar and recording medium
KR102300282B1 (en) * 2019-12-04 2021-09-10 (주)이엠티 An Anode Active Material for a Lithium Ion Secondary Battery with an Excellent High Temperature Storage Performance, a Lithium Ion Secondary Battery Having The Same and a Fabricating Method Thereof
CN114050264A (en) * 2021-11-15 2022-02-15 珠海冠宇电池股份有限公司 Negative electrode material and negative plate containing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308218A (en) * 1997-03-07 1998-11-17 Nichia Chem Ind Ltd Positive electrode active material for lithium ion secondary battery, and manufacture thereof
JPH11219706A (en) * 1998-01-30 1999-08-10 Dowa Mining Co Ltd Positive electrode active material for lithium ion secondary battery, manufacture thereof and lithium ion secondary battery
JP2000082466A (en) * 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd Positive electrode active material and nonaqueous electrolyte secondary battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203867B2 (en) * 1993-04-02 2001-08-27 三菱電機株式会社 Lithium secondary battery
JPH09251854A (en) * 1996-03-14 1997-09-22 Matsushita Electric Ind Co Ltd Manufacture of positive active material for non-aqueous electrolyte secondary battery
JPH101316A (en) * 1996-06-10 1998-01-06 Sakai Chem Ind Co Ltd Lithium-cobalt multiple oxide and production thereof, and lithium ion secondary battery
JPH11135119A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
DE19849343A1 (en) * 1997-10-30 1999-06-02 Samsung Display Devices Co Ltd Composite lithium-nickel-cobalt oxide used as positive active material in a secondary lithium ion cell
JP4007439B2 (en) * 1998-11-17 2007-11-14 日立マクセル株式会社 Non-aqueous secondary battery
KR100280998B1 (en) * 1998-12-10 2001-03-02 김순택 Cathode Active Material for Lithium Secondary Battery
JP3110728B1 (en) * 1999-05-06 2000-11-20 同和鉱業株式会社 Cathode active material and cathode for non-aqueous secondary batteries
JP2001135313A (en) * 1999-11-02 2001-05-18 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2001155729A (en) * 1999-11-24 2001-06-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for use in non-aqueous secondary battery and non-aqueous electrolyte secondary battery using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308218A (en) * 1997-03-07 1998-11-17 Nichia Chem Ind Ltd Positive electrode active material for lithium ion secondary battery, and manufacture thereof
JPH11219706A (en) * 1998-01-30 1999-08-10 Dowa Mining Co Ltd Positive electrode active material for lithium ion secondary battery, manufacture thereof and lithium ion secondary battery
JP2000082466A (en) * 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd Positive electrode active material and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
KR20040015266A (en) 2004-02-18
CN1311574C (en) 2007-04-18
CN1520621A (en) 2004-08-11
WO2003003489A1 (en) 2003-01-09
JP2003017050A (en) 2003-01-17
JP5079951B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
KR100934612B1 (en) Cathode active material for nonaqueous electrolyte secondary battery, preparation method thereof, method for manufacturing nonaqueous electrolyte secondary battery, and positive electrode
JP7157252B2 (en) Positive electrode additive for lithium secondary battery, manufacturing method thereof, positive electrode for lithium secondary battery containing same, and lithium secondary battery containing same
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
US7410511B2 (en) Production method of positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material
KR101562686B1 (en) Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
US20050250013A1 (en) Positive electrode material for lithium secondary battery and process for producing the same
CN111742431A (en) Positive electrode active material for secondary battery, method for preparing same, and lithium secondary battery comprising same
JP4767484B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
CN111422919A (en) Quaternary positive electrode material, preparation method thereof, positive electrode and battery
WO2015001957A1 (en) Lithium ion secondary battery positive electrode active material, lithium ion secondary battery positive electrode, lithium ion secondary battery, and method for manufacturing said active material, said positive electrode, and said battery
JP2005332713A (en) Lithium secondary battery and positive electrode active material for secondary battery
EP3974391A1 (en) Cathode active material for lithium secondary battery and method of manufacturing the same
JPH09120815A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP6624631B2 (en) Lithium transition metal composite oxide and method for producing the same
KR102182561B1 (en) Cathode active material having a hollow structure synthesized by co-precipitation method, and manufacturing method thereof, and lithium secondary battery using the same
CN117096263A (en) Positive electrode for lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
KR101224618B1 (en) Positive active material for rechargeable lithium battery, cathod for rechargeable lithium battery, rechargeable lithium battery and method for manufacturing thereof
JP5658058B2 (en) Lithium ion secondary battery
KR100570417B1 (en) Rechargeable lithium battery comprising spinel structure limn.sub.2o.sub.4 for cathode active material to which nickel based active material is added
KR20220117639A (en) Cathode active material for lithium secondary battery and lithium secondary battery including the same
KR102553749B1 (en) Cathode active material precursor for lithium secondary battery, cathode active material for lithium secondary battery and lithium secondary battery
EP4250420A1 (en) Cathode composition for lithium secondary battery and lithium secondary battery manufactured using the same
JP7264792B2 (en) Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium-ion battery, all-solid lithium-ion battery, and method for producing positive electrode active material for all-solid-state lithium ion battery
JP2011222460A (en) Battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121214

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131213

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141212

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151211

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161209

Year of fee payment: 8