JPH07235294A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH07235294A
JPH07235294A JP6022283A JP2228394A JPH07235294A JP H07235294 A JPH07235294 A JP H07235294A JP 6022283 A JP6022283 A JP 6022283A JP 2228394 A JP2228394 A JP 2228394A JP H07235294 A JPH07235294 A JP H07235294A
Authority
JP
Japan
Prior art keywords
graphite
value
secondary battery
spectrum
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6022283A
Other languages
Japanese (ja)
Other versions
JP3502143B2 (en
Inventor
Takahiro Teraoka
孝浩 寺岡
Junichi Yamaura
純一 山浦
Shigeo Kobayashi
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP02228394A priority Critical patent/JP3502143B2/en
Publication of JPH07235294A publication Critical patent/JPH07235294A/en
Application granted granted Critical
Publication of JP3502143B2 publication Critical patent/JP3502143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a nonaqueous electrolyte secondary battery with less gas evolution in high temperature storage, high safety by using high capacity graphite, and high capacity. CONSTITUTION:Graphite in which R value (I1360/I1580) indicating by the ratio of peak intensity (I1360) of spectrum in a 1360+ or -100cm<-1> wave length region to peak intensity (I1580) of spectrum in a 1580+ or -100cm<-1> wave region in spectrum analysis using argon ion laser beam whose wave length is 5145Angstrom is 0.15 or more, preferably 0.20 or more, and half-power band width DELTAnu1580 of spectrum in a 1580+ or -100cm<-1> wave region is less than 25c<-1>, preferably less than 23cm<-1> is used as a negative active material in a nonaqueous electrolyte secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭素材を負極活物質に用
いる非水電解液二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a carbon material as a negative electrode active material.

【0002】[0002]

【従来の技術】有機電解液を用い、リチウムなどのアル
カリ金属を負極活物質とするリチウム二次電池は、水溶
液の二次電池に比べてエネルギー密度が高くなることか
ら注目を集めている。しかしながら、金属リチウムを負
極とした場合、充電によって生ずる活性なリチウムが電
解液の有機溶媒と反応することや、析出したリチウムが
デンドライト状に成長し、析出リチウムと溶媒との反応
により絶縁層が形成されるために電子伝導性のないリチ
ウムが生成すること(R.Selim and Bro, J. Electroche
m. Soc, 121,1457(1974)など)により、リチウム極の充
放電効率が悪い。また、デンドライト状に成長したリチ
ウムにより電池の内部短絡が発生するなどの問題点があ
り、実用的に十分なリチウム二次電池は得られていな
い。このような問題を回避し得るもので、他に、高エネ
ルギー密度が期待できる電池系として、炭素材を負極体
とした非水電解液二次電池が提案された。この電池系は
すでに一部商品化されていて、正極にはLiCoO2
用いている。
2. Description of the Related Art A lithium secondary battery using an organic electrolytic solution and an alkali metal such as lithium as a negative electrode active material has attracted attention because it has a higher energy density than an aqueous secondary battery. However, when metallic lithium is used as the negative electrode, active lithium generated by charging reacts with the organic solvent of the electrolytic solution, and the deposited lithium grows in the form of dendrite, and the insulating layer is formed by the reaction between the deposited lithium and the solvent. Lithium, which has no electronic conductivity, is generated (R. Selim and Bro, J. Electroche
m. Soc, 121, 1457 (1974)), the charge / discharge efficiency of the lithium electrode is poor. In addition, there is a problem that an internal short circuit of the battery occurs due to lithium grown in a dendrite shape, and a practically sufficient lithium secondary battery has not been obtained. In addition, a non-aqueous electrolyte secondary battery using a carbon material as a negative electrode has been proposed as a battery system which can avoid such a problem and which can be expected to have a high energy density. This battery system has already been partially commercialized, and LiCoO 2 is used for the positive electrode.

【0003】リチウム二次電池における負極の炭素材の
役割は、充電でLiを取り込み、放電でそれを放出する
もので、いわゆるLiを担持する母体として働く活物質
である。
The role of the carbon material of the negative electrode in the lithium secondary battery is to take in Li by charging and release it by discharging, which is an active material that acts as a base material carrying Li.

【0004】一般に炭素材は黒鉛系、カーボンブラック
系、非晶質系などきわめて多くの種類があり、各々その
形態も物性も大きく異なっている。リチウム二次電池用
の負極材料として炭素材が注目されてから、負極として
の最適な炭素材を選択する試みが多くなされ、炭素材の
物性と負極特性についても多くの議論がなされてきた。
例えば、充放電容量はその炭素材中に可逆的に担持し得
るLiの量を意味し、黒鉛の場合、その理想的な結晶で
は黒鉛の層間に理論的にC6 LiまでLiが担持し得る
といわれている。また、リチウム二次電池用の負極活物
質としての炭素材に関する出願も多くなされており、多
くは炭素材の物性を特定したものである。例えば、粒
度、純度、表面積に関したもの、X線回折分析から得ら
れた結晶性パラメータであるd002面間隔や結晶子の
大きさLc 値に関したもの、さらにはラマンスペクトル
のラマン強度比(1580cm-1のスペクトル強度と1
360のcm-1のスペクトル強度との比;R値)に関し
たもの(特開昭63−124380号公報,特開平2−
267873号公報)がある。
Generally, there are many kinds of carbon materials such as graphite type, carbon black type and amorphous type, and their forms and physical properties are greatly different. Since attention has been paid to a carbon material as a negative electrode material for a lithium secondary battery, many attempts have been made to select an optimum carbon material for the negative electrode, and much discussion has been made on the physical properties of the carbon material and the negative electrode characteristics.
For example, the charge / discharge capacity means the amount of Li that can be reversibly supported in the carbon material, and in the case of graphite, ideal graphite can theoretically support Li up to C 6 Li between the graphite layers. It is said that. In addition, many applications have been filed regarding carbon materials as negative electrode active materials for lithium secondary batteries, and many specify the physical properties of the carbon materials. For example, those relating to particle size, purity and surface area, those relating to d002 interplanar spacing and crystallite size L c value which are crystallinity parameters obtained from X-ray diffraction analysis, and further Raman intensity ratio (1580 cm) of Raman spectrum. -1 spectrum intensity and 1
The ratio of 360 to the spectrum intensity of cm -1 ; R value (JP-A-63-124380, JP-A-2-
267873).

【0005】[0005]

【発明が解決しようとする課題】本発明者らの鋭意検討
の結果、炭素材の中でも黒鉛(結晶性の発達した炭素材
で人造黒鉛、天然黒鉛等がある)が比較的高容量を示す
ことがわかった。そこで、特に黒鉛に注目して検討を進
めてきた。一般に黒鉛には天然に産出する天然黒鉛と人
工的に合成する人造黒鉛がある。天然黒鉛は化石燃料が
高温高圧下で黒鉛化したもので、一般に純度は低い。そ
こで、高純度化処理を施して使用する場合が多い。人造
黒鉛は易黒鉛性(黒鉛になり易い)素材、例えば、石油
ピッチ、石炭ピッチ、コークスなどを出発物質として2
500℃以上の高温で熱処理(黒鉛化処理ともいう)し
て得られる。いずれも結晶性が発達した炭素材である。
しかし、黒鉛といっても、その出発物質の違い、処理温
度、処理時間を含めた黒鉛化処理条件の違いで結晶性パ
ラメータであるd002(X線回折法による(002)
面の面間隔)やLC 値(C軸方向の結晶子の大きさ)な
ども一様ではなく、さらには、粒度、表面積、純度など
のパラメータの違いなどもあり、負極特性はそれらによ
って大きく左右されることがわかっている。例えば、X
線回折法で求めた結晶性パラメータがほとんど同一にも
かかわらず、容量が大きく異なるなどの結果が得られて
いる。このように黒鉛ひとつをとっても大きな幅がある
ことから、負極特性と黒鉛の物性の関係をさらに深く掘
り下げて見極める必要がある。ただし、本発明者らがこ
れまで行ってきた黒鉛に関する検討から、いくつか経験
的に導き出された方向というものがある。ひとつは、高
容量を得るためには少なくともd002が3.37Å以
下で、Lc 値が500Å以上の黒鉛であること、また安
定な負極特性を得るためには少なくとも99.5%以上
の純度であること、そして出発物質としては石油系の素
材が好ましいことなどである。しかし、このように黒鉛
をある程度特定しても十分ではなく、これらの範疇に含
まれる黒鉛が比較的高容量を示すといっても、やはり個
々に比べれば容量に明確な差が存在する。さらに容量ば
かりでなく、黒鉛を負極活物質に用いた電池では、充電
状態(リチウムが黒鉛中に担持された状態)で高温保存
(例えば、60℃で20日間貯蔵するなど)を行うと黒
鉛表面から著しいガス発生が起こり電池内圧が上昇する
ものがあることがわかった。特に内圧上昇が著しい場
合、電池破裂の危険を招くこともあり、きわめて重要な
問題となっている。安全性は最優先されるべき課題でも
あり、現在のところこの問題を回避するために、内圧上
昇がある時点に達すると防爆弁が作動しガスを抜くな
ど、機械的な工夫がなされているが本質的な解決とはな
っていない。
As a result of earnest studies by the present inventors, it has been found that among carbon materials, graphite (a carbon material having advanced crystallinity, such as artificial graphite or natural graphite) has a relatively high capacity. I understood. Therefore, we have been focusing our attention on graphite in particular. Generally, there are natural graphite that is naturally produced and artificial graphite that is artificially synthesized. Natural graphite is a fossil fuel graphitized under high temperature and high pressure, and generally has low purity. Therefore, it is often used after being subjected to a high-purification treatment. Artificial graphite is made of easily graphitizable (prone to become graphite) materials such as petroleum pitch, coal pitch, and coke as starting materials.
It is obtained by heat treatment (also referred to as graphitization treatment) at a high temperature of 500 ° C. or higher. Both are carbon materials with developed crystallinity.
However, even with graphite, the crystallinity parameter d002 (according to the (002) X-ray diffraction method) is different due to the difference in the starting materials, the graphitization processing conditions including the processing temperature and the processing time.
The surface spacing) and the L C value (the size of the crystallite in the C-axis direction) are not uniform, and there are differences in parameters such as particle size, surface area, and purity. I know it depends. For example, X
Although the crystallinity parameters obtained by the line diffraction method are almost the same, the results show that the capacities differ greatly. Since graphite alone has such a wide range, it is necessary to dig deeper into the relationship between the negative electrode characteristics and the physical properties of graphite. However, some directions have been empirically derived from the studies on graphite that the present inventors have conducted so far. One is that at least d002 is 3.37Å or less and L c value is 500Å or more in order to obtain a high capacity, and in order to obtain stable negative electrode characteristics, it is at least 99.5% or more in purity. And that starting materials are preferably petroleum-based materials. However, it is not sufficient to specify graphite to some extent in this way, and even if the graphite contained in these categories exhibits a relatively high capacity, there is still a clear difference in capacity as compared with each other. Furthermore, in addition to the capacity, in a battery using graphite as the negative electrode active material, when the battery is stored at a high temperature in a charged state (state in which lithium is supported in graphite) (for example, stored at 60 ° C. for 20 days), the graphite surface From the results, it was found that there was a case where remarkable gas generation occurred and the internal pressure of the battery increased. In particular, when the internal pressure rises remarkably, there is a risk of the battery bursting, which is a very important problem. Safety is also a priority issue, and currently, in order to avoid this problem, mechanical devises such as explosion-proof valve actuating when the internal pressure reaches a certain point and releasing gas are made. It is not an essential solution.

【0006】従来、負極活物質として用いる炭素材に関
してはいくつかの提案がなされているが、特に充電状態
で高温保存を行うとガスが発生するという上記課題に関
しては解決策はもちろんのこと、十分な説明がなされて
いるものも見当たらない。
Conventionally, some proposals have been made regarding carbon materials used as negative electrode active materials, but in particular, regarding the above-mentioned problem that gas is generated when high temperature storage is performed in a charged state, not only a solution but also a sufficient solution is sufficient. I can't find anything that explains it.

【0007】本発明はこの課題を解決するもので、高容
量であり、かつ充電状態での高温保存時におけるガス発
生量の少ない炭素材、特に黒鉛を提供することを目的と
する。
The present invention solves this problem, and an object of the present invention is to provide a carbon material, especially graphite, which has a high capacity and produces a small amount of gas during high temperature storage in a charged state.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の非水電解液二次電池は、波長5145Åの
アルゴンイオンレーザー光を用いたラマンスペクトル分
析において、1580±100cm-1の波長域における
スペクトルのピーク強度(I1580)に対する1360±
100cm-1の波長域におけるスペクトルのピーク強度
(I1360)の比率で示されるR値(I1360/I1580)が
0.15以上であり、かつ1580±100cm-1の波
長域におけるスペクトルの半価幅Δν1580が25cm-1
未満である黒鉛を負極活物質として用いるようにした。
In order to solve the above-mentioned problems, the non-aqueous electrolyte secondary battery of the present invention has a Raman spectrum of 1580 ± 100 cm -1 in Raman spectrum analysis using an argon ion laser beam having a wavelength of 5145Å. 1360 ± with respect to the peak intensity (I 1580 ) of the spectrum in the wavelength range
The R value (I 1360 / I 1580 ) indicated by the ratio of the peak intensity (I 1360 ) of the spectrum in the wavelength range of 100 cm −1 is 0.15 or more, and half of the spectrum in the wavelength range of 1580 ± 100 cm −1. Price range Δν 1580 is 25 cm -1
Graphite, which is less than, was used as the negative electrode active material.

【0009】なお、前記R値(I1360/I1580)が0.
20以上であり、かつ前記半価幅Δν1580が23cm-1
未満であることが好ましい。
The R value (I 1360 / I 1580 ) is 0.
20 or more and the full width at half maximum Δν 1580 is 23 cm −1
It is preferably less than.

【0010】これにより、高容量であるばかりでなく、
高温保存中のガス発生の少ない負極が実現でき、高エネ
ルギー密度で、かつ安全性にもすぐれたリチウム二次電
池が提供できるものである。
As a result, not only is the capacity high, but
It is possible to provide a lithium secondary battery having a high energy density and an excellent safety, which can realize a negative electrode with less gas generation during high temperature storage.

【0011】[0011]

【作用】一般に、黒鉛は図1に示すように炭素の六角網
面で構成された層が積み重なった層状結晶からなる単位
結晶子の集合体である。そして、層面と垂直な面をエッ
ジ面(図1中A)、並行な面をベーサル面(図1中B)
と呼んでいる。上記ラマンスペクトルから得られたR値
は黒鉛化度、結晶の配向性に関与するパラメータであ
り、特に黒鉛のエッジ面とベーサル面の露出度合いを示
すパラメータでもある。この場合、R値が大ならエッジ
面が多く露出しており、R値が小ならベーサル面が多く
露出していることになる。上記ガス発生は黒鉛の表面で
その反応が生ずるものであり、結果的にR値が大きくな
るほどガス発生量が少なくなる事実は黒鉛表面のエッジ
面の割合が多くなるほどガス発生量が少なくなる傾向を
示している。すなわち、ガス発生は、選択的にベーサル
面が関与して起こると考えられる。ベーサル面が関与し
て起こるガス発生の詳細なメカニズムについては定かで
はないが、ベーサル面にはπ電子が大きく広がった電子
密度の高い状態が存在しており、この電子がガス発生反
応に関与していると思われる。従って、ベーサル面がな
るべく表面に露出していない黒鉛が好ましいと考えられ
る。また、黒鉛を負極に用いた場合の充放電反応は黒鉛
層間へのLiの挿入放出反応であるため、層の入口、す
なわちエッジ面が外側に露出しているほうがより好まし
い形態ともいえるので、ガス発生ばかりでなく電極反応
という観点からもR値が大きいことは有利である。一
方、容量は黒鉛の層間に入り得るLi量で決まり、層状
結晶の完成度が高いほど理論容量の372mAh/g
(C6 Liに相当)に近づくと考えられる。すなわち、
黒鉛の単位結晶子の結晶性が高いほど容量は大きくなる
ことが予想される。従って、個々の単位結晶子の結晶性
が高く、かつ表面にエッジ面が多く露出した形態の黒鉛
材料は高容量でかつ高温保存時のガス発生の少ないすぐ
れた負極材となり得る。なお、R値とΔν1580の最適値
については、実施例の項で詳しく述べる。
In general, graphite is an aggregate of unit crystallites composed of layered crystals in which layers composed of hexagonal mesh planes of carbon are stacked as shown in FIG. The surface perpendicular to the layer surface is the edge surface (A in FIG. 1), and the parallel surface is the basal surface (B in FIG. 1).
I am calling. The R value obtained from the Raman spectrum is a parameter relating to the degree of graphitization and crystal orientation, and is also a parameter indicating the degree of exposure of the edge surface and basal surface of graphite. In this case, if the R value is large, many edge surfaces are exposed, and if the R value is small, many basal surfaces are exposed. The above-mentioned gas generation is caused by the reaction on the surface of graphite. As a result, the larger the R value, the smaller the gas generation amount. The fact is that the gas generation amount tends to decrease as the ratio of the edge surface of the graphite surface increases. Shows. That is, it is considered that gas generation occurs selectively with the involvement of the basal plane. Although the detailed mechanism of gas generation caused by the involvement of the basal plane is not clear, there is a high electron density state in which the π electrons are widely spread on the basal plane, and these electrons are involved in the gas generation reaction. It seems that Therefore, it is considered that graphite whose basal plane is not exposed to the surface as much as possible is preferable. In addition, since the charge / discharge reaction when graphite is used for the negative electrode is an insertion / release reaction of Li between the graphite layers, it can be said that it is more preferable that the inlet of the layer, that is, the edge surface is exposed to the outside. A large R value is advantageous not only in terms of generation but also in terms of electrode reaction. On the other hand, the capacity is determined by the amount of Li that can enter the graphite layers. The higher the degree of perfection of the layered crystal, the theoretical capacity of 372 mAh / g.
It is considered to approach (corresponding to C 6 Li). That is,
It is expected that the higher the crystallinity of the unit crystallite of graphite, the larger the capacity. Therefore, the graphite material in which the crystallinity of each unit crystallite is high and the edge surface is exposed a lot can be an excellent negative electrode material having a high capacity and less gas generation during storage at high temperature. The optimum values of R value and Δν 1580 will be described in detail in the section of Examples.

【0012】[0012]

【実施例】以下本発明の実施例について、図を参照しな
がら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図2は、本発明の実施例に用いた直径20
mm、高さ1.6mmのコイン形電池の断面図である。
1はステンレス製ケース、2はステンレス製封口板、3
は金属リチウムで封口板2の内面に圧着されている。4
はポリプロピレン製セパレータである。5は負極活物質
の黒鉛と結着剤のフッ素樹脂を重量比95:5で混合
し、増粘剤を加えペースト状にし銅箔6に0.2mmの
厚みで塗布した後、80℃で10分乾燥し、圧延ローラ
ーで0.1mmの厚みまで圧延し、直径12.5mmに
打ち抜いた負極板である。7はポリプロピレン製ガスケ
ットである。電解液は炭酸エチレン(EC)と炭酸ジエ
チル(DEC)を体積比50:50の配合比で混合した
混合溶媒に、電解質として6フッ化リン酸リチウム(L
iPF6 )を1モル/lの濃度に溶解したものである。
このコイン形電池を用いた充放電は0.1mA定電流で
充電(黒鉛中にLiが挿入される反応で電圧が下がる方
向)終止電圧を0V、放電(黒鉛中からLiが放出され
る反応で電圧が上がる方向)終止電圧を1Vとして行っ
た。なお、この種の電池の場合、初期に充電電気量の一
部が不可逆に働くこともあり、充放電容量が安定する3
サイクル目の放電容量を本実施例で比較の対象とする黒
鉛の容量とした。
FIG. 2 shows a diameter 20 used in the embodiment of the present invention.
FIG. 3 is a cross-sectional view of a coin-shaped battery having a size of mm and a height of 1.6 mm.
1 is a stainless steel case, 2 is a stainless steel sealing plate, 3
Is pressed against the inner surface of the sealing plate 2 with metallic lithium. Four
Is a polypropylene separator. In No. 5, graphite of the negative electrode active material and fluororesin of the binder were mixed at a weight ratio of 95: 5, a thickener was added to form a paste, and the paste was applied to the copper foil 6 with a thickness of 0.2 mm. It is a negative electrode plate that is minutely dried, rolled with a rolling roller to a thickness of 0.1 mm, and punched to have a diameter of 12.5 mm. 7 is a polypropylene gasket. The electrolytic solution is a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) mixed at a volume ratio of 50:50, and lithium hexafluorophosphate (L) as an electrolyte.
iPF 6 ) is dissolved in a concentration of 1 mol / l.
Charging / discharging using this coin-shaped battery is performed by charging with a constant current of 0.1 mA (direction in which the voltage decreases due to the reaction of Li being inserted into graphite), 0 V, and discharging (the reaction of releasing Li from the graphite). (The direction in which the voltage increases) The final voltage was set to 1V. In addition, in the case of this type of battery, a part of the charged electricity quantity may work irreversibly in the initial stage, and the charge / discharge capacity becomes stable.
The discharge capacity at the cycle was used as the capacity of graphite for comparison in this example.

【0014】図3は、本発明の実施例に用いた充電状態
の負極の高温保存時に発生するガス捕集用装置の断面図
である。11はテフロン容器、12はガス捕集用の目盛
りつき筒、13は上記コイン形電池から取り出した充電
状態の黒鉛負極、14は電解液(コイン形電池の場合と
同じ)である。ガス発生量の測定はガス捕集用装置を構
成した後、テフロン容器11を密封し、85℃の恒温槽
に3日間保存し、その間に黒鉛負極13から発生したガ
スをガス捕集用の目盛りつき筒12で捕集して行った。
FIG. 3 is a cross-sectional view of an apparatus for collecting gas generated during high temperature storage of a negative electrode in a charged state used in an embodiment of the present invention. Reference numeral 11 is a Teflon container, 12 is a graduated cylinder for collecting gas, 13 is a graphite negative electrode in a charged state taken out from the coin battery, and 14 is an electrolytic solution (same as in the coin battery). The amount of gas generated was measured by configuring a gas collecting device, sealing the Teflon container 11 and storing it in a constant temperature bath at 85 ° C. for 3 days, during which the gas generated from the graphite negative electrode 13 was calibrated for gas collection. It was collected with the louver 12 and went.

【0015】本実施例では、負極活物質として複数の炭
素材メーカーから入手した人造黒鉛、天然黒鉛の中か
ら、上述した経験則に従い、少なくともd002が3.
37Å以下で、Lc 値が500Å以上で、純度が少なく
とも99.5%以上である20種類の黒鉛を選択して用
いた。また、人造黒鉛の場合はその出発物質が石油系の
素材であるものを選択した。ただし、天然黒鉛の出発物
質は当然のことながら不明である。なお、ここで選択し
た黒鉛は上記経験則に基づいて限定した条件以外は完全
に無作為に選んだものである。上記20種の黒鉛(サン
プルNo. A〜Tでアルファベット順に表記)の内、No.
A〜Oの15種は人造黒鉛であり、No. P〜Tの5種は
天然黒鉛である。
In the present embodiment, at least d002 of 3. is selected from artificial graphite and natural graphite obtained from a plurality of carbon material manufacturers as the negative electrode active material, according to the above-mentioned empirical rule.
Twenty kinds of graphite having an L c value of 37 Å or less, an L c value of 500 Å or more and a purity of at least 99.5% or more were selected and used. In the case of artificial graphite, the starting material selected was a petroleum-based material. However, the starting material for natural graphite is naturally unknown. The graphite selected here was completely randomly selected except for the conditions defined based on the above empirical rule. Of the above 20 kinds of graphite (sample No. A to T, written in alphabetical order), No.
15 kinds of A to O are artificial graphite, and 5 kinds of No. P to T are natural graphite.

【0016】表1には、上記20種類の黒鉛について、
アルゴンレーザーラマンスペクトルで得られた結果(R
値、Δν1580)と、上記コイン形電池により得られた活
物質重量当たりの放電容量、および上記ガス捕集用装置
を用いて測定したガス量を示した。
Table 1 shows the above 20 kinds of graphite.
Results obtained by Ar laser Raman spectrum (R
Value, Δν 1580 ), the discharge capacity per weight of the active material obtained by the coin-shaped battery, and the amount of gas measured by using the gas collecting device.

【0017】[0017]

【表1】 [Table 1]

【0018】図4は、全サンプルのR値とΔν1580の関
係をプロットしたものである。図4を見ると、R値とΔ
ν1580の間にはR値が大きくなるとΔν1580が大きくな
る傾向がわずかながら見られるが、明確な相関性ではな
く、どちらかというと互いに独立した因子として捉え得
るものである。ただ、人造黒鉛に比べて天然黒鉛(No.
P〜T)の場合は比較的R値もΔν1580も小さい傾向に
ある。また、ここで選択した黒鉛のR値は0.08〜
0.37の範囲にあり、Δν1580は19.7〜29.1
の範囲にあった。黒鉛の選択はほぼ無作為で行っている
こともあり、おそらく黒鉛として分類される炭素材料は
ほぼこの範囲に収まると考えられる。
FIG. 4 is a plot of the relationship between the R values of all samples and Δν 1580 . Looking at FIG. 4, R value and Δ
There is a slight tendency for Δν 1580 to increase as the R value increases between ν 1580 , but it is not a clear correlation, but rather can be regarded as factors independent of each other. However, compared with artificial graphite, natural graphite (No.
In the case of P to T), both the R value and Δν 1580 tend to be relatively small. Also, the R value of the graphite selected here is 0.08 to
It is in the range of 0.37, and Δν 1580 is 19.7 to 29.1.
Was in the range. Since graphite is selected almost at random, it is considered that carbon materials classified as graphite fall within this range.

【0019】図5はR値と放電容量の関係をプロットし
たもので、R値と放電容量の間には明確な相関性は見ら
れない。
FIG. 5 is a plot of the relationship between the R value and the discharge capacity, and there is no clear correlation between the R value and the discharge capacity.

【0020】図6はR値とガス発生量の関係をプロット
したもので、明らかに相関性が見られる。図6からも明
らかなように、R値が大きくなるほどガス発生量が少な
くなる傾向がある。特に、ガス発生量に関してはR値と
相関する3つの領域に大きく分けられることがわかっ
た。一つは、最もガス発生量の大きい領域で、R値では
0.15未満の領域に相当する。次は、ガス発生量の比
較的少ない領域で、R値では0.15以上、0.20未
満の領域に相当する。そして、ガス発生量のきわめて少
ない領域であるR値が0.20以上の領域である。従っ
て、ガス発生量の観点から見れば、R値は0.15以
上、好ましくは0.20以上であることが望ましい。
FIG. 6 is a plot of the relationship between the R value and the gas generation amount, and the correlation is clearly seen. As is clear from FIG. 6, the gas generation amount tends to decrease as the R value increases. In particular, it was found that the gas generation amount can be roughly divided into three regions that correlate with the R value. One is a region where the gas generation amount is the largest, and corresponds to a region where the R value is less than 0.15. The next is a region where the gas generation amount is relatively small, and corresponds to a region where the R value is 0.15 or more and less than 0.20. Further, it is a region where the R value is 0.20 or more, which is a region where the gas generation amount is extremely small. Therefore, from the viewpoint of the amount of generated gas, the R value is 0.15 or more, preferably 0.20 or more.

【0021】図7はΔν1580と容量の関係をプロットし
たもので、明らかに相関性が見られる。図7からも明ら
かなように、Δν1580が大きくなるほど容量が小さくな
る傾向がある。特に、容量に関してはΔν1580に相関す
る3つの領域に大きく分けられることがわかった。一つ
は、最も容量の大きな領域で、Δν1580は23cm-1
満の領域に相当する。次は、比較的容量の大きな領域
で、Δν1580は23cm -1以上、25cm-1未満の領域
に相当する。そして、比較的容量の小さな領域であるΔ
ν1580が25cm-1以上の領域である。従って、容量の
観点から見れば、Δν1580は25cm-1未満、好ましく
は23cm-1未満であることが望ましい。
FIG. 7 shows Δν1580Plot the relationship between
However, the correlation is clearly seen. Clear from Figure 7
As you can see, Δν1580Becomes larger, the capacity becomes smaller
Tend to Especially for the capacity Δν1580Correlates to
It was found that it can be roughly divided into three areas. One
Is the region with the largest capacity, and Δν1580Is 23 cm-1Not yet
Corresponds to the full area. Next is a relatively large area
And Δν1580Is 23 cm -1Above, 25cm-1Less than the area
Equivalent to. And Δ, which is a region with a relatively small capacity
ν1580Is 25 cm-1The above is the area. Therefore,
From a viewpoint, Δν1580Is 25 cm-1Less than, preferably
Is 23 cm-1It is desirable to be less than.

【0022】図8はΔν1580とガス発生量の関係をプロ
ットしたもので、明確な相関性は見られない。
FIG. 8 is a plot of the relationship between Δν 1580 and the gas generation amount, and no clear correlation can be seen.

【0023】図9は以上の結果をまとめたもので、横軸
にΔν1580、縦軸にR値をとって、容量ならびにガス発
生量の両方の観点から好ましい領域を示したものであ
る。すなわち、R値が0.15以上で、かつΔν1580
25cm-1未満の領域(図9中斜線部分)の黒鉛(例え
ば、本実施例に用いたサンプルでは、No. B,C,K,
N,O及びRがこれに相当する)を用いれば、容量が大
きく、かつガス発生量も少ない負極活物質となる。さら
に好ましくは、R値が0.20以上で、かつΔν 1580
23cm-1未満の領域(図9中網目線部分)の黒鉛(例
えば、本実施例に用いたサンプルでは、No. BとKがこ
れに相当する)である。
FIG. 9 summarizes the above results, the horizontal axis
To Δν1580, Take the R value on the vertical axis and
It shows a preferable region from both viewpoints of production.
It That is, the R value is 0.15 or more, and Δν1580But
25 cm-1Graphite in the area below (shaded area in Figure 9)
For example, in the samples used in this example, No. B, C, K,
N, O, and R correspond to this), the capacity is large.
It becomes a negative electrode active material that is sharp and generates a small amount of gas. Furthermore
Preferably, the R value is 0.20 or more, and Δν 1580But
23 cm-1Graphite in the area below (mesh line part in Fig. 9) (example
For example, in the samples used in this example, No. B and K are
It is equivalent to this).

【0024】以上のように、波長5145Åのアルゴン
イオンレーザー光を用いたラマンスペクトル分析におい
て、1580±100cm-1の波長域におけるスペクト
ルのピーク強度(I1580)に対する1360±100c
-1の波長域におけるスペクトルのピーク強度
(I1360)の比率で示されるR値(I1360/I1580)が
0.15以上、好ましくは0.20以上であり、かつ1
580±100cm-1の波長域におけるスペクトルの半
価幅Δν1580が25cm-1未満、好ましくは23cm-1
未満である黒鉛を負極活物質として用いることで、高容
量でかつ安全性に優れたリチウム二次電池を提供するこ
とができるものである。
As described above, in Raman spectrum analysis using an argon ion laser beam having a wavelength of 5145Å, the peak intensity (I 1580 ) of the spectrum in the wavelength range of 1580 ± 100 cm -1 was 1360 ± 100 c.
The R value (I 1360 / I 1580 ) represented by the ratio of the peak intensity (I 1360 ) of the spectrum in the wavelength range of m −1 is 0.15 or more, preferably 0.20 or more, and 1
580 is less than 25 cm -1 FWHM .DELTA..nu 1580 of spectrum in the wavelength range of ± 100 cm -1, preferably 23cm -1
By using graphite, which is less than the above, as the negative electrode active material, it is possible to provide a lithium secondary battery having high capacity and excellent safety.

【0025】なお、本発明に係わるところの黒鉛は円筒
形、角形等各種形状の非水電解液二次電池に適用するこ
とができるが、特に、角形電池は円筒形電池に比べて電
池の内圧上昇で形状が変形しやすい短所があり、本発明
の黒鉛はガス発生が抑制できる点で、特に角形電池には
有効な負極活物質といえる。
The graphite according to the present invention can be applied to a non-aqueous electrolyte secondary battery having various shapes such as a cylindrical shape and a prismatic shape. In particular, a prismatic battery has an internal pressure higher than that of a cylindrical battery. Since the graphite of the present invention has a drawback that its shape is likely to be deformed due to rising, and that gas generation can be suppressed, it can be said that the graphite is an effective negative electrode active material particularly for prismatic batteries.

【0026】なお、本発明の実施例では、電解液として
炭酸エチレン(EC)と炭酸ジエチル(DEC)を体積
比50:50の配合比で混合した混合溶媒に、電解質と
して6フッ化リン酸リチウム(LiPF6 )を1モル/
lの濃度に溶解したものを用いたが、他の溶媒、例えば
炭酸エステル系では炭酸メチルエチル(EMC)、鎖状
エステル系では酢酸メチル(MA)、プロピオン酸メチ
ル(MP)などを含む混合溶媒でも、ガス発生特性、な
らびに容量特性は同様の傾向が得られている。
In the examples of the present invention, a mixed solvent prepared by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 50:50 as an electrolytic solution and lithium hexafluorophosphate as an electrolyte are used. (LiPF 6 ) 1 mol /
Although the one dissolved in a concentration of 1 was used, a mixed solvent containing another solvent, for example, methyl ethyl carbonate (EMC) for a carbonate ester system, methyl acetate (MA), and methyl propionate (MP) for a chain ester system. However, the same tendency is obtained in gas generation characteristics and capacity characteristics.

【0027】[0027]

【発明の効果】以上の説明で明らかなように、表面の配
向性と単位結晶子の結晶性の観点から選択した本発明の
黒鉛を負極活物質として用いることにより、高容量で、
かつ安全性の高いリチウム二次電池が提供できる。
As is clear from the above description, by using the graphite of the present invention selected from the viewpoints of surface orientation and crystallinity of unit crystallites as a negative electrode active material,
In addition, a highly safe lithium secondary battery can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】黒鉛の単位結晶子の集合体の概念図FIG. 1 is a conceptual diagram of an assembly of unit crystallites of graphite.

【図2】コイン形電池の断面図FIG. 2 is a sectional view of a coin battery.

【図3】ガス捕集用装置の断面図FIG. 3 is a cross-sectional view of a gas collection device.

【図4】黒鉛サンプルのR値とΔν1580のプロット図FIG. 4 is a plot of R value and Δν 1580 of a graphite sample.

【図5】R値と放電容量の関係を示した図FIG. 5 is a diagram showing the relationship between R value and discharge capacity.

【図6】R値とガス発生量の関係を示した図FIG. 6 is a diagram showing a relationship between an R value and a gas generation amount.

【図7】Δν1580と容量の関係を示した図FIG. 7 is a diagram showing the relationship between Δν 1580 and capacity.

【図8】Δν1580とガス発生量の関係を示した図FIG. 8 is a diagram showing the relationship between Δν 1580 and gas generation amount.

【図9】R値とΔν1580の好ましい領域を示した図FIG. 9 is a diagram showing a preferable range of R value and Δν 1580 .

【符号の説明】[Explanation of symbols]

1 ケース 2 封口板 3 金属リチウム 4 セパレータ 5 負極板 6 銅箔 7 ガスケット A エッジ面 B ベーサル面 1 Case 2 Sealing Plate 3 Metal Lithium 4 Separator 5 Negative Electrode Plate 6 Copper Foil 7 Gasket A Edge Surface B Basal Surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 波長5145Åのアルゴンイオンレーザ
ー光を用いたラマンスペクトル分析において、1580
±100cm-1の波長域におけるスペクトルのピーク強
度(I1580)に対する1360±100cm-1の波長域
におけるスペクトルのピーク強度(I1360)の比率で示
されるR値(I1360/I1580)が0.15以上であり、
かつ1580±100cm-1の波長域におけるスペクト
ルの半価幅Δν1580が25cm-1未満である黒鉛を負極
活物質として用いることを特徴とする非水電解液二次電
池。
1. In a Raman spectrum analysis using an argon ion laser beam having a wavelength of 5145Å, 1580
R value represented by the ratio of the peak intensity of the spectrum (I 1360) in the wavelength range of 1360 ± 100 cm -1 to the peak intensity of the spectrum (I 1580) in the wavelength range of ± 100cm -1 (I 1360 / I 1580) is 0 .15 or more,
And 1580 non-aqueous electrolyte secondary battery, which comprises using a graphite spectral half width .DELTA..nu 1580 of less than 25 cm -1 in the wavelength range of ± 100 cm -1 as a negative electrode active material.
【請求項2】 前記R値(I1360/I1580)が0.20
以上であり、かつ前記半価幅Δν1580が23cm-1未満
であることを特徴とする請求項1記載の非水電解液二次
電池。
2. The R value (I 1360 / I 1580 ) is 0.20.
The non-aqueous electrolyte secondary battery according to claim 1, wherein the half width Δν 1580 is less than 23 cm −1 .
JP02228394A 1994-02-21 1994-02-21 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3502143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02228394A JP3502143B2 (en) 1994-02-21 1994-02-21 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02228394A JP3502143B2 (en) 1994-02-21 1994-02-21 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH07235294A true JPH07235294A (en) 1995-09-05
JP3502143B2 JP3502143B2 (en) 2004-03-02

Family

ID=12078430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02228394A Expired - Fee Related JP3502143B2 (en) 1994-02-21 1994-02-21 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3502143B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998034291A1 (en) * 1997-02-04 1998-08-06 Mitsubishi Chemical Corporation Lithium ion secondary battery
WO1999063612A1 (en) * 1998-06-04 1999-12-09 Mitsubishi Chemical Corporation Secondary battery having nonaqueous electrolyte solution
KR100490464B1 (en) * 1998-11-27 2005-05-17 미쓰비시 가가꾸 가부시키가이샤 Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP2006228505A (en) * 2005-02-16 2006-08-31 Hitachi Chem Co Ltd Graphite particles for anode of lithium-ion secondary battery, its manufacturing method, as well as anode for lithium-ion secondary battery and lithium-ion secondary battery using the same
US8785050B2 (en) 2010-08-05 2014-07-22 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery
US9337490B2 (en) 2011-07-29 2016-05-10 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998034291A1 (en) * 1997-02-04 1998-08-06 Mitsubishi Chemical Corporation Lithium ion secondary battery
WO1999063612A1 (en) * 1998-06-04 1999-12-09 Mitsubishi Chemical Corporation Secondary battery having nonaqueous electrolyte solution
EP1096592A1 (en) * 1998-06-04 2001-05-02 Mitsubishi Chemical Corporation Secondary battery having nonaqueous electrolyte solution
US6664008B1 (en) 1998-06-04 2003-12-16 Mitsubishi Chemical Corporation Secondary battery having nonaqueous electrolyte solution
EP1096592A4 (en) * 1998-06-04 2007-05-02 Mitsubishi Chem Corp Secondary battery having nonaqueous electrolyte solution
KR100490464B1 (en) * 1998-11-27 2005-05-17 미쓰비시 가가꾸 가부시키가이샤 Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP2006228505A (en) * 2005-02-16 2006-08-31 Hitachi Chem Co Ltd Graphite particles for anode of lithium-ion secondary battery, its manufacturing method, as well as anode for lithium-ion secondary battery and lithium-ion secondary battery using the same
US8785050B2 (en) 2010-08-05 2014-07-22 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery
US9337490B2 (en) 2011-07-29 2016-05-10 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery

Also Published As

Publication number Publication date
JP3502143B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
JP3191394B2 (en) Manufacturing method of non-aqueous secondary battery and its negative electrode plate
JP5584299B2 (en) Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
JP3193342B2 (en) Non-aqueous electrolyte secondary battery
KR101531451B1 (en) Powder for lithium ion secondary battery negative pole material, lithium ion secondary battery negative pole and capacitor negative pole, and lithium ion secondary battery and capacitor
JP5384917B2 (en) Lithium ion battery
US20090123840A1 (en) Non-Aqueous Electrolyte Secondary Battery
KR100415810B1 (en) Non-aqueous electrolyte secondary battery
WO1998054779A1 (en) Nonaqueous electrolyte secondary battery
JP2007106634A (en) Negative-electrode active substance for lithium-ion secondary battery, its production method, and lithium-ion secondary battery using the active substance
JP2000164218A (en) Negative electrode active material for lithium secondary battery, and manufacture thereof, and lithium secondary battery including the same
JP2010267540A (en) Nonaqueous electrolyte secondary battery
JP3509050B2 (en) Lithium secondary battery and method of manufacturing the same
JP5497177B2 (en) Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
CN113363439B (en) Positive electrode active material for lithium secondary battery and lithium secondary battery comprising same
JP2001167763A (en) Lithium secondary battery
JPH07192724A (en) Nonaqueous electrolyte secondary battery
US20030185742A1 (en) Nonaqueous secondary battery, constituent elements of battery, and materials thereof
JP2000231933A (en) Lithium ion secondary battery
JPWO2020141573A1 (en) Negative material for lithium-ion secondary batteries, negative-negative materials for lithium-ion secondary batteries, and lithium-ion secondary batteries
JP2003272630A (en) Manufacturing method of negative electrode active material
JP2004299944A (en) Graphite particle, its producing method, lithium ion secondary battery and negative electrode material for it
JPH07235294A (en) Nonaqueous electrolyte secondary battery
JP3440705B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
CN108878880B (en) Negative electrode active material for nonaqueous secondary battery and nonaqueous secondary battery
JP5584302B2 (en) Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees