JP5979441B2 - Electrode plate, stacked electrode group, battery, and cylindrical battery - Google Patents
Electrode plate, stacked electrode group, battery, and cylindrical battery Download PDFInfo
- Publication number
- JP5979441B2 JP5979441B2 JP2012277047A JP2012277047A JP5979441B2 JP 5979441 B2 JP5979441 B2 JP 5979441B2 JP 2012277047 A JP2012277047 A JP 2012277047A JP 2012277047 A JP2012277047 A JP 2012277047A JP 5979441 B2 JP5979441 B2 JP 5979441B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode plate
- active material
- plate element
- holding portion
- holding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011149 active material Substances 0.000 claims description 239
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 34
- 239000000463 material Substances 0.000 description 23
- 238000000034 method Methods 0.000 description 20
- 238000003466 welding Methods 0.000 description 19
- 239000007774 positive electrode material Substances 0.000 description 18
- 229910052759 nickel Inorganic materials 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- 125000006850 spacer group Chemical group 0.000 description 15
- 238000005452 bending Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000003860 storage Methods 0.000 description 9
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000003825 pressing Methods 0.000 description 7
- 238000004804 winding Methods 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 239000007773 negative electrode material Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910018007 MmNi Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910001068 laves phase Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Primary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Description
本発明は、電極板、この電極板を用いて構成した積層型電極群、電池及び円筒形電池に関するものである。 The present invention relates to an electrode plate, a stacked electrode group formed using the electrode plate, a battery, and a cylindrical battery.
従来の円筒形電池としては、特許文献1に示すように、円筒状をなす電池ケースに、帯状の正極板及び負極板を帯状のセパレータを介して渦巻状に巻回されてなる円柱状の電極群を収容したものがある。 As a conventional cylindrical battery, as shown in Patent Document 1, a cylindrical electrode is formed by winding a belt-like positive electrode plate and a negative electrode plate in a spiral shape through a belt-like separator around a cylindrical battery case. Some have housed groups.
しかしながら、帯状の正極板、負極板及びセパレータを渦巻き状に巻回するものでは、その巻き工程において正極板及び負極板の巻きずれが生じる。そうすると、円筒形電池において所望の電池容量を得ることができない、また、内部短絡を引き起こしてしまう等の問題が生じる。 However, when the belt-like positive electrode plate, negative electrode plate, and separator are wound in a spiral shape, the positive electrode plate and the negative electrode plate are unwound in the winding process. If it does so, problems, such as not being able to obtain a desired battery capacity in a cylindrical battery and causing an internal short circuit, will arise.
そこで本願発明者は、巻きずれ及び巻きずれに伴う種々の問題点を解決すべく、積層型の電極群を円筒形電池に収容することを考えている。 Therefore, the inventor of the present application considers accommodating a stacked electrode group in a cylindrical battery in order to solve various problems associated with winding misalignment and winding misalignment.
しかしながら、積層型の電極群を複数の電極板から構成した場合、各正極板から導出した複数の集電端子を、共通の集電板に重なり合うように接続することになり、各正極板ごとに集電効率にばらつきが生じる虞がある。また、各正極板の集電端子を集電板に溶接する作業が煩雑になる。 However, when the stacked electrode group is composed of a plurality of electrode plates, a plurality of current collecting terminals led out from each positive electrode plate are connected so as to overlap a common current collecting plate, There is a possibility that the current collection efficiency may vary. Moreover, the operation | work which welds the current collection terminal of each positive electrode plate to a current collection plate becomes complicated.
これらの不都合を解決するために、1枚の厚形の電極板を用いて、電極群を構成することが考えられる。しかしながら、厚形の電極板は、従来程度のプレス圧では、圧縮し難くなり、活物質の充填密度が低下してしまう。また、充填密度を高めるべく、プレス厚を上昇させて場合には、集電体が破断したり、電極板内部の集電体の密度が低下したりして、内部抵抗が増大してしまうという問題がある。 In order to solve these disadvantages, it is conceivable to form an electrode group using a single thick electrode plate. However, the thick electrode plate is difficult to compress at a conventional press pressure, and the packing density of the active material is reduced. Also, when the press thickness is increased in order to increase the packing density, the current collector is broken or the density of the current collector inside the electrode plate is decreased, and the internal resistance is increased. There's a problem.
そこで本発明は、上記問題点を解決すべくなされたものであり、積層型の電極群において、集電端子の数を減らすことを可能としながら、電極全体としての活物質の充填率を向上させつつ、電極板の内部抵抗を小さくすることをその主たる所期課題とするものである。 Therefore, the present invention has been made to solve the above problems, and in the stacked electrode group, it is possible to reduce the number of current collecting terminals and improve the filling rate of the active material as the whole electrode. On the other hand, reducing the internal resistance of the electrode plate is the main desired problem.
すなわち本発明に係る電極板は、集電体に活物質を保持させて構成される電極板であって、活物質非保持部と当該活物質非保持部を挟んで両側に形成された略平板状の活物質保持部とを有し、前記両側の活物質保持部が互いに対向するように、前記活物質非保持部が折り曲げられた第1極板要素と、活物質非保持部と活物質保持部とを有する第2極板要素とを備え、前記第1極板要素の活物質保持部に前記第2極板要素の活物質保持部が接触して重ね合わされ、前記第1極板要素の活物質非保持部と前記第2極板要素の活物質非保持部とが溶接されていることを特徴とする。 That is, the electrode plate according to the present invention is an electrode plate configured by holding an active material on a current collector, and is a substantially flat plate formed on both sides of the active material non-holding portion and the active material non-holding portion. A first electrode plate element in which the active material non-holding portion is bent so that the active material holding portions on both sides face each other, and the active material non-holding portion and the active material A second electrode plate element having a holding portion, wherein the active material holding portion of the second electrode plate element is in contact with and overlapped with the active material holding portion of the first electrode plate element, and the first electrode plate element The active material non-holding portion of the second electrode plate element and the active material non-holding portion of the second electrode plate element are welded.
このようなものであれば、電極板が第1極板要素及び第2極板要素からなり、第1極板要素を2つの活物質保持部及び活物質非保持部から構成しているので、活物質非保持部に集電端子を設けることで、2つの活物質保持部に対して共通の集電端子とすることができ、集電端子の数を減らすことができ、溶接作業を簡略化することができる。ここで、第2極板要素の活物質保持部が、第1極板要素の活物質保持部に接触しているので、第2極板要素の集電を第1極板要素の集電端子により行うことができる。また、電極板を第1極板要素及び第2極板要素に分割することで、各極板要素における集電体の厚みを薄くすることができ、各集電体への活物質の充填率を向上させることができる。さらに、活物質充填後のプレスにおいて集電体の破断を防止するとともに、電極板内部の集電体の密度の低下を防止して、電極板の内部抵抗を小さくすることができる。その上、第2極板要素を第1極板要素の活物質非保持部に溶接しているので、電極板の内部抵抗をより一層小さくすることができる。 If this is the case, the electrode plate is composed of a first electrode plate element and a second electrode plate element, and the first electrode plate element is composed of two active material holding portions and an active material non-holding portion. By providing a current collecting terminal in the active material non-holding part, it can be used as a common current collecting terminal for the two active material holding parts, the number of current collecting terminals can be reduced, and welding work is simplified. can do. Here, since the active material holding part of the second electrode plate element is in contact with the active material holding part of the first electrode plate element, the current collecting terminal of the first electrode plate element is used for collecting the current of the second electrode plate element. Can be performed. Further, by dividing the electrode plate into the first electrode plate element and the second electrode plate element, the thickness of the current collector in each electrode plate element can be reduced, and the filling ratio of the active material to each current collector Can be improved. Furthermore, the current collector can be prevented from being broken in the press after being filled with the active material, and the density of the current collector inside the electrode plate can be prevented from being lowered, thereby reducing the internal resistance of the electrode plate. In addition, since the second electrode plate element is welded to the active material non-holding portion of the first electrode plate element, the internal resistance of the electrode plate can be further reduced.
前記第2極板要素が、活物質非保持部と当該活物質非保持部を挟んで両側に形成された略平板状の活物質保持部を有し、前記両側の活物質保持部が互いに対向するように、前記活物質非保持部が折り曲げられたものであり、前記第2極板要素の活物質保持部が、前記第1極板要素の活物質保持部に接触して重ね合わされており、前記第2極板要素の活物質非保持部が、前記第1極板要素の活物質非保持部に溶接されていることが望ましい。これならば、集電端子を除いた第1極板要素及び第2極板要素を略同一形状とすることで、それらを重ね合わせた後に、一緒に折り曲げることができ、作業性を向上させることができる。ここで、第1極板要素及び第2極板要素を折り曲げる前に、第1極板要素の活物質非保持部及び第2極板要素の活物質非保持部を溶接することで、より一層電極板を折り曲げ易くすることができる。また、第2極板要素が1枚の極板要素から構成されるので、部品点数を削減することができる。さらに集電端子が溶接される前の第1極板要素と第2極板要素とを略同一形状とすれば、部品点数を一層削減することができる。 The second electrode plate element has an active material non-holding portion and a substantially flat active material holding portion formed on both sides of the active material non-holding portion, and the active material holding portions on both sides face each other. As described above, the active material non-holding portion is bent, and the active material holding portion of the second electrode plate element is overlapped in contact with the active material holding portion of the first electrode plate element. Preferably, the active material non-holding portion of the second electrode plate element is welded to the active material non-holding portion of the first electrode plate element. If this is the case, the first electrode plate element and the second electrode plate element excluding the current collecting terminal can be made to have substantially the same shape, and can be folded together after being overlapped, thereby improving workability. Can do. Here, before the first electrode plate element and the second electrode plate element are bent, the active material non-holding portion of the first electrode plate element and the active material non-holding portion of the second electrode plate element are welded, so that The electrode plate can be easily bent. Further, since the second electrode plate element is composed of one electrode plate element, the number of parts can be reduced. Furthermore, if the first electrode plate element and the second electrode plate element before the current collecting terminal are welded are formed in substantially the same shape, the number of parts can be further reduced.
前記集電体が、発泡ニッケル多孔体等の三次元金属多孔体であることが望ましい。三次元金属多孔体を用いることで、製造工程をその他の集電体基材よりも簡単にすることができ、また、導電性の低い活物質を用いる場合にも良好な集電特性が得られ、電極の高容量化も可能である点で優れている。 It is desirable that the current collector is a three-dimensional metal porous body such as a foamed nickel porous body. By using a three-dimensional porous metal body, the manufacturing process can be made simpler than other current collector base materials, and good current collection characteristics can be obtained even when an active material with low conductivity is used. It is excellent in that the capacity of the electrode can be increased.
また本発明に係る電極板は、2つの活物質保持体と当該2つの活物質保持体を連結する導電性部材とを有し、前記活物質保持体が互いに対向するように、前記導電性部材が折り曲げられた第1極板要素と、活物質非保持部と活物質保持部とを有する第2極板要素とを備え、前記第1極板要素の活物質保持体に前記第2極板要素の活物質保持部が接触して重ね合わされ、前記第1極板要素の導電性部材と前記第2極板要素の活物質非保持部とが溶接されていることを特徴とする。 In addition, the electrode plate according to the present invention includes two active material holders and a conductive member that connects the two active material holders, and the conductive member so that the active material holders face each other. A first electrode plate element bent and a second electrode plate element having an active material non-holding portion and an active material holding portion, and the second electrode plate in an active material holding body of the first electrode plate element. The active material holding portion of the element is overlapped in contact, and the conductive member of the first electrode plate element and the active material non-holding portion of the second electrode plate element are welded.
このような電極板であれば、電極板が第1極板要素及び第2極板要素からなり、第1極板要素を2つの活物質保持体及び導電性部材から構成しているので、導電性部材を集電端子要素とすることで、2つの活物質保持体に対して共通の集電端子とすることができ、集電端子の数を減らすことができ、溶接作業を簡略化することができる。ここで、第2極板要素の活物質保持部が、第1極板要素の活物質保持体に接触しているので、第2極板要素の集電を第1極板要素の集電端子により行うことができる。また、電極板を第1極板要素及び第2極板要素に分割することで、各極板要素における集電体の厚みを薄くすることができ、各集電体への活物質の充填率を向上させることができる。さらに、活物質充填後のプレスにおいて集電体の破断を防止するとともに、電極板内部の集電体の密度の低下を防止して、電極板の内部抵抗を小さくすることができる。その上、第2極板要素を第1極板要素の導電性部材に溶接しているので、電極板の内部抵抗をより一層小さくすることができる。 In such an electrode plate, the electrode plate is composed of a first electrode plate element and a second electrode plate element, and the first electrode plate element is composed of two active material holders and a conductive member. By using a conductive member as a current collecting terminal element, it can be used as a common current collecting terminal for two active material holders, the number of current collecting terminals can be reduced, and welding work can be simplified. Can do. Here, since the active material holding part of the second electrode plate element is in contact with the active material holding body of the first electrode plate element, the current collecting terminal of the first electrode plate element is used for collecting current of the second electrode plate element. Can be performed. Further, by dividing the electrode plate into the first electrode plate element and the second electrode plate element, the thickness of the current collector in each electrode plate element can be reduced, and the filling ratio of the active material to each current collector Can be improved. Furthermore, the current collector can be prevented from being broken in the press after being filled with the active material, and the density of the current collector inside the electrode plate can be prevented from being lowered, thereby reducing the internal resistance of the electrode plate. In addition, since the second plate element is welded to the conductive member of the first plate element, the internal resistance of the electrode plate can be further reduced.
本発明の電極板を好適に用いることができる電極群の構成としては、前記両側の活物質保持部の間にセパレータを介して極性の異なる電極板が挟まれることにより形成される積層構造の電極群である。本発明の電極板は、直線状の活物質非保持部又は集電端子を挟んで両側に活物質保持体が形成され、活物質非保持部又は集電端子で折り曲げる構成であり、折り曲げられて対向する活物質保持部は同一極性となる。このような構成であるので、対向する活物質保持部の間に極性の異なる電極板を挟みこむだけで積層型の電極群を構成することができる。なお、極性の異なる電極板としてはポケット式電極、発泡式ニッケルなどの三次元基材に活物質を充填した電極および穿孔鋼板などの二次元基材に活物質を塗布した電極を用いることが考えられる。このとき、1つの負極板及び1つの正極板により積層型の電極群が構成される。 As a configuration of an electrode group in which the electrode plate of the present invention can be suitably used, an electrode having a laminated structure formed by sandwiching electrode plates having different polarities through a separator between the active material holding portions on both sides. Is a group. The electrode plate of the present invention has a structure in which an active material holding body is formed on both sides of a linear active material non-holding portion or a current collecting terminal, and is bent at the active material non-holding portion or current collecting terminal. Opposing active material holding portions have the same polarity. Since it is such a structure, a laminated electrode group can be comprised only by inserting | pinching the electrode plate from which polarity differs between the active material holding parts which oppose. As electrode plates with different polarities, it is considered to use a three-dimensional base material such as a pocket electrode, foamed nickel, etc., and an electrode obtained by applying an active material to a two-dimensional base material such as a perforated steel plate. It is done. At this time, a laminated electrode group is constituted by one negative electrode plate and one positive electrode plate.
具体的な積層型電極群の構成としては、本発明の電極板からなる第1の電極板と、前記第1の電極板を展開した状態で前記第1の電極板の両面を挟むように2つ折りにされたセパレータと、前記セパレータに包まれた第1の電極板を折り曲げてなる電極構造体を挟むように設けられており、前記第1の電極板と極性が異なる第2の電極板とを有することを特徴とする。 As a specific configuration of the laminated electrode group, a first electrode plate made of the electrode plate of the present invention and two surfaces of the first electrode plate sandwiched between the first electrode plate and the first electrode plate are unfolded. And a second electrode plate having a polarity different from that of the first electrode plate, the separator being folded, and an electrode structure formed by bending the first electrode plate wrapped in the separator. It is characterized by having.
本発明の電極板を用いて構成した積層構造の電極群を、円筒状をなす電池ケースに収容してなる円筒形電池として構成することが望ましい。従来の渦巻き状に巻回された電極群では、その巻回工程において、正極板及び負極板の巻きずれが生じてしまい、円筒形電池において所望の電池容量を得ることができない、また、内部短絡を引き起こしてしまう等の問題が生じる。ところが、本発明のように積層構造の電極群を円筒状の電池ケースに収容することにより、電極群の巻きずれ及び巻きずれに付随する種々の問題を解決することができる。また、円筒状の電池ケースであることから、内部圧力の上昇に対して強度的に強くすることができる。また、円筒形の電池ケースに対して略直方体形状の電極群を配置することから、基材やセパレータの使用量が減るために、電池ケース内の空間を大きくすることができ、電池内圧の上昇を防ぐことができるだけでなく、円筒形電池内の電解液量を多くすることもできる。 It is desirable to configure a laminated battery group constituted by using the electrode plate of the present invention as a cylindrical battery housed in a cylindrical battery case. In the conventional spirally wound electrode group, the positive electrode plate and the negative electrode plate are unwound in the winding process, and a desired battery capacity cannot be obtained in the cylindrical battery. This causes problems such as However, by accommodating the stacked electrode group in the cylindrical battery case as in the present invention, various problems associated with the winding deviation and winding deviation of the electrode group can be solved. Moreover, since it is a cylindrical battery case, it can be strengthened in strength against an increase in internal pressure. In addition, since a substantially rectangular parallelepiped electrode group is arranged with respect to the cylindrical battery case, the use amount of the base material and the separator is reduced, so that the space in the battery case can be increased and the internal pressure of the battery is increased. In addition, the amount of electrolyte in the cylindrical battery can be increased.
このように構成した本発明によれば、集電端子を2つの活物質保持部で共通化することによって集電端子の数を減らすことができる。また、電極板を第1極板要素及び第2極板要素に分割しているので、電極全体としての活物質の充填性を向上させつつ、電極板の内部抵抗を小さくすることができる。 According to the present invention configured as described above, the number of current collecting terminals can be reduced by sharing the current collecting terminals by the two active material holding portions. Further, since the electrode plate is divided into the first electrode plate element and the second electrode plate element, the internal resistance of the electrode plate can be reduced while improving the filling property of the active material as the whole electrode.
以下に本発明に係る円筒形電池の一実施形態について図面を参照して説明する。 An embodiment of a cylindrical battery according to the present invention will be described below with reference to the drawings.
本実施形態に係る円筒形電池100は、例えばニッケル・カドミウム蓄電池やニッケル・水素蓄電池等のアルカリ蓄電池である。具体的には、図1及び図2に示すように、有底円筒状をなす金属製の電池ケース2と、この電池ケース2内に配置され、正極板31、負極板32及びセパレータ33からなる略直方体形状の電極群3とを有するものである。 The cylindrical battery 100 according to the present embodiment is an alkaline storage battery such as a nickel / cadmium storage battery or a nickel / hydrogen storage battery. Specifically, as shown in FIGS. 1 and 2, a metal battery case 2 having a bottomed cylindrical shape, and a positive electrode plate 31, a negative electrode plate 32, and a separator 33 are arranged in the battery case 2. The electrode group 3 has a substantially rectangular parallelepiped shape.
電池ケース2は、ニッケルめっきを施した有底円筒状をなすものであり、図1に示すように、上部開口は絶縁体4を介して封口体5により封止されている。また、封口体5の裏面には、正極板31の上端部に突出して設けられた集電端子311が例えば溶接により直接又は集電板(不図示)を介して接続されて、封口体5が正極端子となる。なお本実施形態では、後述するように、電池ケース2の底面2Bに電極群3の最外側に位置する負極板32の集電端子321が溶接される。 The battery case 2 has a bottomed cylindrical shape with nickel plating, and the upper opening is sealed with a sealing body 5 via an insulator 4 as shown in FIG. Further, a current collecting terminal 311 provided so as to protrude from the upper end portion of the positive electrode plate 31 is connected to the back surface of the sealing body 5 by, for example, welding directly or via a current collecting plate (not shown). It becomes the positive terminal. In the present embodiment, as will be described later, the current collecting terminal 321 of the negative electrode plate 32 positioned on the outermost side of the electrode group 3 is welded to the bottom surface 2B of the battery case 2.
電極群3は、正極板31及び負極板32を例えばポリオレフィン製の不織布からなるセパレータ33を介して積層した略直方体形状をなすものである(図2参照)。なおセパレータ33には例えば水酸化カリウム等の電解液が含侵される。 The electrode group 3 has a substantially rectangular parallelepiped shape in which a positive electrode plate 31 and a negative electrode plate 32 are laminated via a separator 33 made of, for example, a nonwoven fabric made of polyolefin (see FIG. 2). The separator 33 is impregnated with an electrolytic solution such as potassium hydroxide.
正極板31は、発泡式ニッケルからなる正極集電体と、この正極集電体の中空内に水酸化ニッケル活物質及び導電材のコバルト化合物の混合物(以下、単に正極活物質という。)を充填したものである。なお、水酸化ニッケル活物質は、ニッケル・カドミウム蓄電池の場合には例えば水酸化ニッケルであり、ニッケル・水素蓄電池の場合には例えば水酸化カルシウムを添加した水酸化ニッケルである。 The positive electrode plate 31 is filled with a positive electrode current collector made of foamed nickel and a mixture of a nickel hydroxide active material and a cobalt compound of a conductive material (hereinafter simply referred to as a positive electrode active material) in the hollow of the positive electrode current collector. It is a thing. The nickel hydroxide active material is, for example, nickel hydroxide in the case of a nickel / cadmium storage battery, and nickel hydroxide to which calcium hydroxide is added in the case of a nickel / hydrogen storage battery.
具体的に正極板31は、図3及び図4に示すように、集電端子311を有する1つの第1極板要素31Pと、集電端子311を有さない1つの第2極板要素31Qとからなる。 Specifically, as shown in FIGS. 3 and 4, the positive electrode plate 31 includes one first electrode plate element 31 </ b> P having a current collecting terminal 311 and one second electrode plate element 31 </ b> Q having no current collecting terminal 311. It consists of.
第1極板要素31Pは、図3及び図4に示すように、正極活物質を保持しない直線状の活物質非保持部31Aと、この活物質非保持部31Aを挟んで両側に形成され、正極活物質を保持する活物質保持部31Bとを有する。活物質非保持部31Aは、正極集電体の中心線H1を含むように左右対称に形成されており、活物質保持部31Bは、活物質非保持部31Aに対して左右対称である(図4参照)。 As shown in FIGS. 3 and 4, the first electrode plate element 31 </ b> P is formed on both sides of the linear active material non-holding portion 31 </ b> A that does not hold the positive electrode active material and the active material non-holding portion 31 </ b> A. An active material holding part 31B for holding the positive electrode active material. The active material non-holding part 31A is formed symmetrically so as to include the center line H1 of the positive electrode current collector, and the active material holding part 31B is symmetrical with respect to the active material non-holding part 31A (see FIG. 4).
そして、第1極板要素31Pは、図3に示すように、両側の活物質保持部31Bが向き合うように活物質非保持部31Aにおいて正極集電体が略U字状に折り曲げられる。具体的には、活物質非保持部31A及び活物質保持部31Bの境界又は境界よりも若干内側を折り曲げ線として活物質非保持部31A及び活物質保持部31Bが互いに直角となるように折り曲げられている。 As shown in FIG. 3, in the first electrode plate element 31 </ b> P, the positive electrode current collector is bent in a substantially U shape at the active material non-holding portion 31 </ b> A so that the active material holding portions 31 </ b> B on both sides face each other. Specifically, the active material non-holding part 31A and the active material holding part 31B are bent so that the inner side of the active material non-holding part 31A and the active material holding part 31B are at right angles to each other with a folding line slightly inside the boundary. ing.
さらに、第1極板要素31Pは、2つの活物質保持部31Bの間に形成された折れ曲がり部である活物質非保持部31Aに例えばニッケル鋼板等からなる集電端子311が設けられている。この集電端子311は、2つの活物質保持部31Bの対向方向に直交する幅方向の一方に外側に向かって延びている。図3においては、集電端子311は、活物質非保持部31Aの直線方向と同一方向に沿って一方の外側(図3において手前側)に延出している。なお、集電端子311は、前記直線方向から傾斜していても良い。この集電端子311は、正極集電体からの集電効率を向上させるために、活物質非保持部31Aの略全体に亘って設けられている。このように、集電端子311が2つの活物質保持部31Bの対向方向に直交する幅方向の一方に外側に向かって延びるように設けられていることから、展開状態の正極板31を2つ折りのセパレータ33により挟むように収容する際に、セパレータ33の折り曲げ部を集電端子311が外側に延びている辺31mと対向する辺31nに位置させることで、集電端子311がセパレータ33による収容の邪魔にならない。 Further, in the first electrode plate element 31P, a current collecting terminal 311 made of, for example, a nickel steel plate is provided in an active material non-holding portion 31A that is a bent portion formed between two active material holding portions 31B. The current collecting terminal 311 extends outward in one of the width directions orthogonal to the opposing direction of the two active material holding portions 31B. In FIG. 3, the current collecting terminal 311 extends to one outer side (front side in FIG. 3) along the same direction as the linear direction of the active material non-holding portion 31A. The current collecting terminal 311 may be inclined from the linear direction. The current collecting terminal 311 is provided over substantially the entire active material non-holding portion 31A in order to improve the current collecting efficiency from the positive electrode current collector. Thus, since the current collecting terminal 311 is provided so as to extend outward in one of the width directions orthogonal to the opposing direction of the two active material holding portions 31B, the unfolded positive electrode plate 31 is folded in two. When the separator 33 is accommodated so as to be sandwiched by the separator 33, the bent portion of the separator 33 is positioned on the side 31n facing the side 31m where the current collector terminal 311 extends outward, so that the current collector terminal 311 is accommodated by the separator 33. Does not get in the way.
また、第2極板要素31Qは、図3及び図4に示すように、正極活物質を保持しない直線状の活物質非保持部31Cと、この活物質非保持部31Cを挟んで両側に形成され、正極活物質を保持する活物質保持部31Dとを有する。活物質非保持部31Cは、正極集電体の中心線H3を含むように左右対称に形成されており、活物質保持部31Dは、活物質非保持部31Cに対して左右対称である(図4参照)。また、本実施形態の第2極板要素31Qの展開形状は、集電端子311が溶接される前の第1極板要素31Pと略同一形状である。 Further, as shown in FIGS. 3 and 4, the second electrode plate element 31Q is formed on both sides of the linear active material non-holding portion 31C that does not hold the positive electrode active material and the active material non-holding portion 31C. And an active material holding part 31D for holding the positive electrode active material. The active material non-holding part 31C is formed symmetrically so as to include the center line H3 of the positive electrode current collector, and the active material holding part 31D is symmetrical with respect to the active material non-holding part 31C (see FIG. 4). Further, the developed shape of the second electrode plate element 31Q of the present embodiment is substantially the same shape as the first electrode plate element 31P before the current collecting terminal 311 is welded.
そして、第2極板要素31Qは、図3に示すように、両側の活物質保持部31Dが向き合うように活物質非保持部31Cにおいて正極集電体が略U字状に折り曲げられる。具体的には、活物質非保持部31C及び活物質保持部31Dの境界又は境界よりも若干内側を折り曲げ線として活物質非保持部31C及び活物質保持部31Dが互いに直角となるように折り曲げられている。 As shown in FIG. 3, in the second electrode plate element 31Q, the positive electrode current collector is bent in a substantially U shape in the active material non-holding portion 31C so that the active material holding portions 31D on both sides face each other. Specifically, the active material non-holding part 31C and the active material holding part 31D are bent so that the inner side of the active material non-holding part 31C and the active material holding part 31D are at right angles to each other with a fold line as a folding line. ing.
上記構成の第1極板要素31P及び第2極板要素31Qは、それら要素31P、31Qの活物質非保持部31A、31Cが同じ側に位置して重なり、それら要素31P、31Qの両側の活物質保持部31B、31D同士が互いに接触して重ね合わされた状態で正極板31を形成する(図3参照)。また、このように重ね合わされた状態の第1極板要素31P及び第2極板要素31Qにおいて、それら要素31P、31Qの活物質非保持部31A、31Cは互いに溶接されている。つまり、本実施形態の正極板31は、第1極板要素31P及び第2極板要素31Qの接触だけでなく、活物質非保持部31A、31C同士の溶接によって、第1極板要素31Pの集電端子311が、第2極板要素31Qの集電を行うように構成している。 In the first electrode plate element 31P and the second electrode plate element 31Q having the above-described configuration, the active material non-holding portions 31A and 31C of the elements 31P and 31Q are located on the same side and overlap, and the active elements on both sides of the elements 31P and 31Q are overlapped. The positive electrode plate 31 is formed in a state where the substance holding portions 31B and 31D are in contact with each other and overlapped (see FIG. 3). Further, in the first electrode plate element 31P and the second electrode plate element 31Q that are superposed in this manner, the active material non-holding portions 31A and 31C of the elements 31P and 31Q are welded to each other. That is, the positive electrode plate 31 of the present embodiment is not only in contact with the first electrode plate element 31P and the second electrode plate element 31Q, but also by welding the active material non-holding portions 31A and 31C to each other. The current collecting terminal 311 is configured to collect the second electrode plate element 31Q.
次にこのように構成した正極板31(第1極板要素31P及び第2極板要素31Q)の製造方法について簡単に説明する。 Next, a method for manufacturing the positive electrode plate 31 (the first electrode plate element 31P and the second electrode plate element 31Q) configured as described above will be briefly described.
まず、図5に示すように長尺形状をなす発泡ニッケルからなる母材(集電体基材)Xに対して、その長手方向に沿って中心部に直線状の活物質非保持部となる部分(非保持領域X1)をプレスする(プレス工程)。次に、非保持領域X1以外を活物質保持領域となる部分(保持領域X2)とすべく正極活物質を充填する(活物質充填工程)。この活物質充填工程の後に、集電体基材全体をプレスする(極板プレス工程)。そして、第1極板要素31P(端子311を除く。)及び第2極板要素31Qの展開状態と同一形状となるように非保持領域X1に直交する方向に切断する(切断工程)。これにより、集電端子311が溶接される前の第1極板要素31Pと、展開状態の第2極板要素31Qとが形成される。また、第1極板要素31Pとなる正極集電体の活物質非保持部31Aに集電端子311を溶接する(端子溶接工程)。これにより展開状態の第1極板要素31Pが形成される。このように構成された前記第1極板要素31P及び第2極板要素31Qは、その外周部分が略一致するように重ね合わされて、第1極板要素31Pの活物質非保持部31A及び第2極板要素31Qの活物質非保持部31Cが溶接されることにより、展開状態の正極板31が形成される(図10参照)。 First, as shown in FIG. 5, with respect to a base material (collector base material) X made of nickel foam having a long shape, a linear active material non-holding portion is formed at the center along the longitudinal direction. A portion (non-holding region X1) is pressed (pressing step). Next, the positive electrode active material is filled so that the portion other than the non-holding region X1 becomes the active material holding region (holding region X2) (active material filling step). After this active material filling step, the entire current collector substrate is pressed (electrode plate pressing step). And it cut | disconnects in the direction orthogonal to the non-holding area | region X1 so that it may become the same shape as the expansion | deployment state of the 1st electrode plate element 31P (except the terminal 311) and the 2nd electrode plate element 31Q (cutting process). Thereby, the 1st electrode plate element 31P before the current collection terminal 311 is welded and the 2nd electrode plate element 31Q of an unfolded state are formed. Further, the current collecting terminal 311 is welded to the active material non-holding portion 31A of the positive electrode current collector that becomes the first electrode plate element 31P (terminal welding process). Thereby, the unfolded first electrode plate element 31P is formed. The first electrode plate element 31P and the second electrode plate element 31Q configured as described above are overlapped so that their outer peripheral portions substantially coincide with each other, and the active material non-holding portion 31A and the first electrode plate element 31P of the first electrode plate element 31P are overlapped. The positive electrode plate 31 in the unfolded state is formed by welding the active material non-holding portion 31C of the bipolar plate element 31Q (see FIG. 10).
上記方法では、母材Xの正極活物質を充填することなく活物質非保持部31A、31Cを形成し、この活物質非保持部31A、31Cを挟んで両側に活物質保持部31B、31Dを形成していることから、活物質保持部31B、31Dと活物質非保持部31A、31Cとの伸び率が異なりその境界部分で破断してしまう可能性がある。このため、以下の方法を用いることも考えられる。つまり、発泡ニッケルからなる母材X(集電体基材)全体に正極活物質を充填させる(活物質充填工程)。この活物質充填工程の後に、集電体基材X全体をプレスする(極板プレス工程)。次に、正極活物質が充填された母材Xの中央部に直線状の活物質非保持部31Aとなる非保持領域X1を形成すべく、超音波除去等で正極活物質を除去する(活物質除去工程)。そして、非保持領域X1が形成された母材Xにおける非保持領域X1をプレスする(プレス工程)。その後、非保持領域X1がプレスされた母材Xを非保持領域X1に直交する方向に切断する(切断工程)。これにより、展開状態の第2極板要素31Qが形成される。また、第1極板要素31Pとなる正極集電体の活物質非保持部31Aに集電端子311を溶接する(端子溶接工程)。これにより展開状態の第1極板要素31Pが形成される。 In the above method, the active material non-holding portions 31A and 31C are formed without filling the positive electrode active material of the base material X, and the active material holding portions 31B and 31D are arranged on both sides of the active material non-holding portions 31A and 31C. Since they are formed, the elongation rates of the active material holding portions 31B and 31D and the active material non-holding portions 31A and 31C are different and may break at the boundary portions. For this reason, it is possible to use the following method. That is, the positive electrode active material is filled in the entire base material X (current collector base material) made of foamed nickel (active material filling step). After this active material filling step, the entire current collector base X is pressed (electrode plate pressing step). Next, the positive electrode active material is removed by ultrasonic removal or the like in order to form a non-holding region X1 that becomes the linear active material non-holding portion 31A at the center of the base material X filled with the positive electrode active material (active material). Substance removal step). And the non-holding area | region X1 in the base material X in which the non-holding area | region X1 was formed is pressed (press process). Thereafter, the base material X on which the non-holding region X1 is pressed is cut in a direction orthogonal to the non-holding region X1 (cutting step). Thereby, the unfolded second electrode plate element 31Q is formed. Further, the current collecting terminal 311 is welded to the active material non-holding portion 31A of the positive electrode current collector that becomes the first electrode plate element 31P (terminal welding process). Thereby, the unfolded first electrode plate element 31P is formed.
また、切断工程を極板プレス工程及び活物質除去工程の間に実施しても良い。つまり、発泡ニッケルからなる母材X(集電体基材)全体に正極活物質を充填させる(活物質充填工程)。この活物質充填工程の後に、集電体基材X全体をプレスする(極板プレス工程)。次に、プレスされた母材Xを第1極板要素31P(端子311を除く。)、第2極板要素31Qの展開形状に切断する(切断工程)。そして、切断された母材Xの中央部に直線状の活物質非保持部31Aとなる非保持領域X1を形成すべく、超音波除去等で正極活物質を除去する(活物質除去工程)。そして、非保持領域X1が形成された母材Xにおける非保持領域X1をプレスする(プレス工程)。これにより、展開状態の第2極板要素31Qが形成される。また、第1極板要素31Pとなる正極集電体の活物質非保持部31Aに集電端子311を溶接する(端子溶接工程)。 Moreover, you may implement a cutting process between an electrode plate press process and an active material removal process. That is, the positive electrode active material is filled in the entire base material X (current collector base material) made of foamed nickel (active material filling step). After this active material filling step, the entire current collector base X is pressed (electrode plate pressing step). Next, the pressed base material X is cut into a developed shape of the first electrode plate element 31P (excluding the terminal 311) and the second electrode plate element 31Q (cutting step). Then, the positive electrode active material is removed by ultrasonic removal or the like in order to form a non-holding region X1 that becomes the linear active material non-holding portion 31A at the center of the cut base material X (active material removal step). And the non-holding area | region X1 in the base material X in which the non-holding area | region X1 was formed is pressed (press process). Thereby, the unfolded second electrode plate element 31Q is formed. Further, the current collecting terminal 311 is welded to the active material non-holding portion 31A of the positive electrode current collector that becomes the first electrode plate element 31P (terminal welding process).
負極板32は、例えばニッケルめっきを施した平板状の穿孔鋼板からなる負極集電体と、この負極集電体上に塗布された負極活物質からなる。なお負極活物質としては、ニッケル・カドミウム蓄電池の場合には、例えば酸化カドミウム粉末と金属カドミウム粉末との混合物であり、ニッケル・水素蓄電池の場合には、例えば主にAB5型(希土類系)又はAB2型(Laves相)の水素吸蔵合金の粉末である。 The negative electrode plate 32 is made of, for example, a negative electrode current collector made of a flat perforated steel sheet plated with nickel, and a negative electrode active material coated on the negative electrode current collector. The negative electrode active material is, for example, a mixture of cadmium oxide powder and metal cadmium powder in the case of a nickel-cadmium storage battery, and mainly in the case of a nickel-hydrogen storage battery, for example, AB type 5 (rare earth) or is a powder of hydrogen absorbing alloy of AB 2 type (Laves phase).
具体的に負極板32は、図6及び図7に示すように、負極活物質を保持しない直線状の活物質非保持部(未塗工部)32Aと、この活物質非保持部32Aを挟んで両側に形成され、負極活物質を保持する活物質保持部(塗工部)32Bとを有する。活物質非保持部32Aは、負極集電体の中心線H3を含むように左右対称に形成されており、活物質保持部32Bは、活物質非保持部32Aに対して左右対称である(図7参照)。 Specifically, as shown in FIGS. 6 and 7, the negative electrode plate 32 sandwiches a linear active material non-holding portion (uncoated portion) 32A that does not hold the negative electrode active material and the active material non-holding portion 32A. And an active material holding part (coating part) 32B for holding the negative electrode active material. The active material non-holding part 32A is formed symmetrically so as to include the center line H3 of the negative electrode current collector, and the active material holding part 32B is symmetrical with respect to the active material non-holding part 32A (see FIG. 7).
そして、負極板32は、図6に示すように、両側の活物質保持部32Bが向き合うように活物質非保持部32Aにおいて負極集電体が略Uの字状に折り曲げられている。具体的には、活物質非保持部32A及び活物質保持部32Bの境界又は境界よりも若干内側を折り曲げ線として活物質非保持部32A及び活物質保持部32Bが互いに直角となるように折り曲げられている。 As shown in FIG. 6, in the negative electrode plate 32, the negative electrode current collector is bent in a substantially U shape in the active material non-holding portion 32 </ b> A so that the active material holding portions 32 </ b> B on both sides face each other. Specifically, the active material non-holding part 32A and the active material holding part 32B are bent so that the active material non-holding part 32A and the active material holding part 32B are at right angles to each other with a fold line slightly inside the boundary between the active material non-holding part 32A and the active material holding part 32B. ing.
さらに、負極板32は、活物質非保持部32Aの一部が外側に折り曲げられることにより、電池ケース2の底面2Bに溶接接続される集電端子321が形成される。具体的には、活物質非保持部32Aの一部に、所望の集電端子形状となるように切れ込み32Cを入れて、その切れ込み32C内部を外側に折り曲げることにより集電端子321が形成される。 Furthermore, the negative electrode plate 32 is formed with a current collecting terminal 321 welded to the bottom surface 2B of the battery case 2 by bending a part of the active material non-holding portion 32A outward. Specifically, the current collection terminal 321 is formed by making a cut 32C in a part of the active material non-holding portion 32A so as to have a desired current collection terminal shape and bending the inside of the cut 32C outward. .
次にこのように構成した負極板32の製造方法について簡単に説明する。 Next, a method for manufacturing the negative electrode plate 32 configured as described above will be briefly described.
まず、図8に示すように、穿孔鋼板からなる長尺形状をなす母材(集電体基材)Yに対して、その長手方向に沿って中心部に直線状の未塗工領域Y1を残して、その両側に負極活物質を塗工して塗工領域Y2、Y3を形成する(塗工工程)。そして、未塗工領域Y1に略Uの字状の切れ込み32Cを打ち抜き型を用いて打ち抜いて形成する(打ち抜き工程)。その後、負極板32の展開状態と同一形状となるように切断していく(切断工程)。これにより展開状態の負極板32が形成される。なお、切れ込み32Cは負極板32を切断した後に形成しても良い。 First, as shown in FIG. 8, with respect to a base material (current collector base material) Y having a long shape made of a perforated steel plate, a linear uncoated region Y1 is formed at the center along the longitudinal direction. The negative electrode active material is applied to both sides to form the coating regions Y2 and Y3 (coating process). Then, a substantially U-shaped cut 32C is punched and formed in the uncoated region Y1 using a punching die (punching step). Then, it cut | disconnects so that it may become the same shape as the expansion | deployment state of the negative electrode plate 32 (cutting process). Thereby, the negative electrode plate 32 in a developed state is formed. The cut 32C may be formed after the negative electrode plate 32 is cut.
そして本実施形態の積層型電極群3は、2つの活物質保持部31B(31D)が互いに対向配置された略Uの字状をなす正極板31と、2つの活物質保持部32Bが互いに対向配置された略Uの字状をなす負極板32とが噛み合うように積層されて構成されている。具体的には、図9に示すように、正極板31の1つの活物質保持部31B(31D)が負極板32の2つの活物質保持部32Bの間に挟まれるとともに、負極板32の1つの活物質保持部32Bが正極板31の2つの活物質保持部31B(31D)の間に挟まれるように積層されている。本実施形態では、正極板31の折れ曲がり部(活物質非保持部31A(31C))と、負極板32の折れ曲がり部(活物質非保持部32A)とが互いに対向するように積層されている。したがって、本実施形態の電極群3では、負極板32の外側面32a、32bが最外面となる。なお、図1、図2、図9等においては、理解を容易にするため、各極板31、32及びセパレータ33の間に間隔を挙げて図示しているが、それらは接触して積層される。 In the stacked electrode group 3 of the present embodiment, the positive electrode plate 31 having a substantially U shape in which two active material holding portions 31B (31D) are arranged to face each other, and the two active material holding portions 32B are opposed to each other. It is configured to be laminated so as to mesh with the arranged negative electrode plate 32 having a substantially U shape. Specifically, as shown in FIG. 9, one active material holding part 31 </ b> B (31 </ b> D) of the positive electrode plate 31 is sandwiched between two active material holding parts 32 </ b> B of the negative electrode plate 32 and one of the negative electrode plates 32. Two active material holding portions 32B are stacked so as to be sandwiched between two active material holding portions 31B (31D) of the positive electrode plate 31. In the present embodiment, the bent portion of the positive electrode plate 31 (active material non-holding portion 31A (31C)) and the bent portion of the negative electrode plate 32 (active material non-holding portion 32A) are stacked so as to face each other. Therefore, in the electrode group 3 of the present embodiment, the outer surfaces 32a and 32b of the negative electrode plate 32 are the outermost surfaces. In FIG. 1, FIG. 2, FIG. 9, etc., for ease of understanding, the electrode plates 31 and 32 and the separator 33 are illustrated with an interval, but they are laminated in contact with each other. The
より詳細には、本実施形態の積層型電極群3は、2つの負極板32及び1つの正極板31から構成されたものであり、隣接する2つの負極板32においてそれぞれの1つの活物質保持部32B(2つの負極板32において互いに隣り合う活物質保持部32B)が1つの正極板31の2つの活物質保持部31B(31D)の間に挟まれるように積層されている。 More specifically, the stacked electrode group 3 of the present embodiment is composed of two negative electrode plates 32 and one positive electrode plate 31, and each of the two adjacent negative electrode plates 32 holds one active material. The portions 32B (active material holding portions 32B adjacent to each other in the two negative electrode plates 32) are stacked so as to be sandwiched between two active material holding portions 31B (31D) of one positive electrode plate 31.
次にこのように構成した積層型電極群3の製造方法について説明する。 Next, a manufacturing method of the multilayer electrode group 3 configured as described above will be described.
まず、図10及び図11に示すように、展開状態の正極板31、展開状態の負極板32及び展開状態のセパレータ33を準備する。そして、図10に示すように、セパレータ33の折り曲げ線33aに対して一方の半面に、展開状態の正極板31を載置する。なお、展開状態の正極板は、この状態において、第1極板要素31Pの活物質非保持部31A及び第2極板要素31Qの活物質非保持部31Cが溶接されている。
このとき、集電端子311が外側に延出している辺(上辺31m)に対向する辺(下辺31n)をセパレータ33の折り曲げ線33aに沿うように載置する。そして、セパレータ33を折り曲げ線33aで2つ折りに折り曲げる(セパレータ収容工程)。これにより、セパレータ33の折り曲げ部が正極板31の下辺31nに位置することになり、展開状態の正極板31は、集電端子311の外側に延出した部分を除いてセパレータ33に収容された状態となる。そして、正極板31を収容したセパレータ33の正極端子部分を除く上辺及び左右側辺の3辺を超音波溶着等により溶着固定する。なお、セパレータ33における正極板31の集電端子部分には切り込み33bが入れてある。これにより、集電端子311を折り曲げた際に、当該集電端子311の変形に伴ってセパレータ33がめくれてしまうことを防止している。なお、セパレータ33の3辺があらかじめ閉じられた封筒状のセパレータ33を用いて、正極板32を包装することもできる。
First, as shown in FIGS. 10 and 11, a developed positive electrode plate 31, a developed negative electrode plate 32, and a developed separator 33 are prepared. Then, as shown in FIG. 10, the unfolded positive electrode plate 31 is placed on one half surface with respect to the fold line 33 a of the separator 33. In this state, the positive electrode plate in the developed state is welded with the active material non-holding portion 31A of the first electrode plate element 31P and the active material non-holding portion 31C of the second electrode plate element 31Q.
At this time, the side (lower side 31 n) facing the side (upper side 31 m) where the current collecting terminal 311 extends outward is placed along the fold line 33 a of the separator 33. Then, the separator 33 is folded in half along the folding line 33a (separator housing step). As a result, the bent portion of the separator 33 is positioned on the lower side 31 n of the positive electrode plate 31, and the positive electrode plate 31 in the developed state is accommodated in the separator 33 except for a portion extending to the outside of the current collecting terminal 311. It becomes a state. Then, the upper side and the left and right side sides of the separator 33 that accommodates the positive electrode plate 31 excluding the positive electrode terminal portion are welded and fixed by ultrasonic welding or the like. Note that a notch 33 b is formed in the current collecting terminal portion of the positive electrode plate 31 in the separator 33. Thereby, when the current collecting terminal 311 is bent, the separator 33 is prevented from being turned over due to the deformation of the current collecting terminal 311. In addition, the positive electrode plate 32 can also be packaged by using an envelope separator 33 in which three sides of the separator 33 are closed in advance.
次に、図11に示すように、セパレータ33に収容された状態の展開状態の正極板31の左右に設けられた2つの活物質保持部31B(31D)と、展開状態の負極板32の一方の活物質保持部32Bとを重ね合わせる。そして、展開状態の負極板32を略Uの字状に折り曲げることにより、正極板31の2つの活物質保持部31B(31D)それぞれを負極板32で挟む(負極板折り曲げ工程)。このとき、負極板32の活物質非保持部32Aから集電端子321を外側に折り曲げる。その後、左右が負極板32で挟まれた状態の正極板31を略Uの字状に折り曲げる(正極板折り曲げ工程)。これにより積層型電極群3が形成される。このように形成された積層型電極群3は、ばらけないようにするための結束テープ(不図示)が巻かれる。 Next, as shown in FIG. 11, one of two active material holding portions 31 </ b> B (31 </ b> D) provided on the left and right of the developed positive electrode plate 31 accommodated in the separator 33 and one of the developed negative electrode plate 32. The active material holding part 32B is overlaid. Then, the unfolded negative electrode plate 32 is bent into a substantially U shape, whereby each of the two active material holding portions 31B (31D) of the positive electrode plate 31 is sandwiched between the negative electrode plates 32 (negative electrode plate bending step). At this time, the current collecting terminal 321 is bent outward from the active material non-holding portion 32 </ b> A of the negative electrode plate 32. Thereafter, the positive electrode plate 31 sandwiched between the negative electrode plates 32 is bent into a substantially U-shape (positive electrode plate bending step). Thereby, the stacked electrode group 3 is formed. The laminated electrode group 3 formed in this way is wound with a binding tape (not shown) so as not to be separated.
そして本実施形態の円筒形電池100は、図1及び図2に示すように、電極群3を固定するためのスペーサ6を有する。このスペーサ6は、電池ケース2の内側周面2Aと電極群3の外側面との間に介在して設けられ、電極群3を電池ケース2に固定する一対のスペーサ61、62である。この一対のスペーサ61、62は、電池ケース2の内側周面2Aと電極群3の外側面との間の空間に配置されて、電極群3をその積層方向Lから挟むように設けられている。なお、積層方向Lは、各極板31、32の活物質保持部31B、32Bの対向方向に一致する。 And the cylindrical battery 100 of this embodiment has the spacer 6 for fixing the electrode group 3, as shown in FIG.1 and FIG.2. The spacer 6 is a pair of spacers 61 and 62 that are provided between the inner peripheral surface 2 A of the battery case 2 and the outer surface of the electrode group 3 and fix the electrode group 3 to the battery case 2. The pair of spacers 61 and 62 are disposed in a space between the inner peripheral surface 2A of the battery case 2 and the outer surface of the electrode group 3 so as to sandwich the electrode group 3 from the stacking direction L. . Note that the stacking direction L coincides with the facing direction of the active material holding portions 31B and 32B of the electrode plates 31 and 32, respectively.
一対のスペーサ61、62は、アクリル樹脂やポリプロピレン樹脂、ナイロン樹脂等の樹脂製又はステンレス鋼等の金属製で、互いに同一形状をなすものである。 The pair of spacers 61 and 62 are made of resin such as acrylic resin, polypropylene resin, nylon resin, or metal such as stainless steel, and have the same shape.
各スペーサ61、62は、電極群3における積層方向Lの最外面(具体的には負極板32の外側面32a、32b)の略全体を押圧するものである。また、各スペーサ61、62は、電池ケース2の内側周面に上下に亘って接触する。これにより、電極群3全体が一対のスペーサ61、62により均一に押圧されることになり充放電効率が向上する。各スペーサの具体的な形状としては、負極板32の外側面32a、32bの略全体に接触する接触面を一方面6aに有する矩形平板状の電極接触部6Aと、この電極接触部6Aの他方面6bから延出して電池ケース2の内側周面2Aに接触する2つのケース接触部6Bとを備える。 Each of the spacers 61 and 62 presses substantially the entire outermost surface of the electrode group 3 in the stacking direction L (specifically, the outer surfaces 32a and 32b of the negative electrode plate 32). Further, the spacers 61 and 62 are in contact with the inner peripheral surface of the battery case 2 in the vertical direction. Thereby, the whole electrode group 3 will be pressed uniformly by a pair of spacers 61 and 62, and charging / discharging efficiency will improve. The specific shape of each spacer includes a rectangular flat plate electrode contact portion 6A having a contact surface on one surface 6a that contacts substantially the entire outer surfaces 32a and 32b of the negative electrode plate 32, and other electrode contact portions 6A. Two case contact portions 6B extending from the direction 6b and contacting the inner peripheral surface 2A of the battery case 2 are provided.
2つのケース接触部6Bは、電極接触部6Aの他方面6bにおいて中心軸方向Cに沿って互いに並列に形成されている。具体的には、電池ケース2に収容された状態において電池ケース2の中心軸を挟むように対称に形成されている。さらに、ケース接触部6Bにおける電池ケース2の内側周面2Aとの接触部分(自由端辺部の先端面)は、電池ケース2の内側周面2Aの曲面と略同一の曲面を有する。これにより、ケース接触部6Bと電池ケース2とが面接触するように構成している(図2参照)。また、電極接触部6Aとケース接触部6Bとの間に形成される凹部が溶接スペースとなり、当該溶接スペースにより負極板32の集電端子321を電池ケース2の底面2Bに溶接することができる。 The two case contact portions 6B are formed in parallel with each other along the central axis direction C on the other surface 6b of the electrode contact portion 6A. Specifically, the battery case 2 is formed symmetrically so as to sandwich the central axis of the battery case 2 in a state of being accommodated in the battery case 2. Furthermore, the contact portion (tip surface of the free end side portion) of the case contact portion 6B with the inner peripheral surface 2A of the battery case 2 has a curved surface that is substantially the same as the curved surface of the inner peripheral surface 2A of the battery case 2. Thus, the case contact portion 6B and the battery case 2 are configured to be in surface contact (see FIG. 2). Moreover, the recessed part formed between 6 A of electrode contact parts and case contact part 6B becomes a welding space, The current collection terminal 321 of the negative electrode plate 32 can be welded to the bottom face 2B of the battery case 2 by the said welding space.
このようにスペーサ61、62により電極群3が押圧されることにより、正極板31の第1極板要素31Pの活物質保持部31B及び第2極板要素31Qの活物質保持部31Dが互いに押圧接触して、第1極板要素31P及び第2極板要素31Qの導電性が良好となる。そして、このように第1極板要素31P及び第2極板要素31Qが押圧接触することから、第1極板要素31Pの集電端子311により、第2極板要素31Qの集電を効率良く行うことが可能となる。 When the electrode group 3 is pressed by the spacers 61 and 62 in this way, the active material holding part 31B of the first electrode plate element 31P of the positive electrode plate 31 and the active material holding part 31D of the second electrode plate element 31Q are pressed against each other. In contact with each other, the conductivity of the first electrode plate element 31P and the second electrode plate element 31Q is improved. Since the first electrode plate element 31P and the second electrode plate element 31Q are in press contact as described above, the current collecting terminal 311 of the first electrode plate element 31P efficiently collects the current from the second electrode plate element 31Q. Can be done.
次にこのように構成した円筒形電池100の製造方法について簡単に説明する。 Next, a method for manufacturing the cylindrical battery 100 configured as described above will be briefly described.
上述した積層型電極群3を積層方向Lから一対のスペーサ61、62で挟み込む。このように形成された構造体を電池ケース2内に配置する。なお、配置した状態で負極板32の集電端子321が、一対のスペーサ61、62の2つのケース接触部6Bの間に位置するとともに、スペーサ61、62のケース接触部6Bの下面が集電端子321の一部を電池ケース2の底面2Bに押さえた状態となる。なお、電極群3を電池ケース2内に収容した後に、一対のスペーサ61、62を電極群3を挟むように収容しても良い。そして、電極群3が電池ケース2に固定された状態で、スペーサ61、62のケース接触部6B及び電池ケース2の内側周面2Aの間に形成される空間に溶接棒を挿入して負極板32の集電端子321を電池ケース2の底面2Bに溶接して接続する。その後、電池ケース2内に電解液を注液する。そして注液後、正極板31の集電端子311を直接又は集電板(不図示)を介して封口体5の裏面に接続するとともに、当該封口体5を絶縁体4を介して電池ケース2の上部開口にかしめ等により固定する。 The stacked electrode group 3 described above is sandwiched between the pair of spacers 61 and 62 from the stacking direction L. The structure thus formed is placed in the battery case 2. In addition, the collector terminal 321 of the negative electrode plate 32 is positioned between the two case contact portions 6B of the pair of spacers 61 and 62 while the lower surface of the case contact portion 6B of the spacers 61 and 62 is the current collector. A part of the terminal 321 is pressed against the bottom surface 2 </ b> B of the battery case 2. In addition, after accommodating the electrode group 3 in the battery case 2, the pair of spacers 61 and 62 may be accommodated so as to sandwich the electrode group 3. Then, with the electrode group 3 fixed to the battery case 2, a welding rod is inserted into the space formed between the case contact portion 6B of the spacers 61 and 62 and the inner peripheral surface 2A of the battery case 2, and the negative electrode plate 32 current collecting terminals 321 are connected to the bottom surface 2B of the battery case 2 by welding. Thereafter, an electrolytic solution is injected into the battery case 2. And after pouring, while the current collection terminal 311 of the positive electrode plate 31 is connected to the back surface of the sealing body 5 directly or through a current collection board (not shown), the said sealing body 5 is connected to the battery case 2 via the insulator 4. It is fixed to the upper opening of the door by caulking or the like.
<本実施形態の効果>
このように構成した本実施形態に係る円筒形電池100によれば、正極板31(第1極板要素31P)が2つの活物質保持部31B及び活物質非保持部31Aからなる略U字状をなしており、活物質非保持部31Aに集電端子311を設けているので、共通の集電端子311により2つの活物質保持部31Bが集電されて集電効率のばらつきを抑えて集電効率を向上させることができる。ここで、第2極板要素31Qの活物質保持部31Dが、第1極板要素31Pの活物質保持部31Bに接触しているので、第2極板要素31Qの集電を第1極板要素31Pの集電端子311により行うことができる。また、2つの活物質保持部31Bに対して共通の集電端子311とすることができ、溶接する集電端子311の数を減らすことができ、溶接作業を簡略化することができる。さらに、正極板31を第1極板要素31P及び第2極板要素31Qに分割することで、各極板要素31P、31Qにおける正極集電体の厚みを薄くすることができ、各正極集電体への正極活物質の充填率を向上させることができる。その上、活物質充填後のプレスにおいて正極集電体の破断を防止するとともに、正極板31内部の正極集電体の密度の低下を防止して、正極板31の内部抵抗を小さくすることができる。加えて、第2極板要素31Qの活物質非保持部31Cを第1極板要素31Pの活物質非保持部31Aに溶接しているので、正極板31の内部抵抗をより一層小さくすることができる。
<Effect of this embodiment>
According to the cylindrical battery 100 according to the present embodiment configured as described above, the positive electrode plate 31 (first electrode plate element 31P) has a substantially U-shape including two active material holding portions 31B and an active material non-holding portion 31A. Since the current collecting terminal 311 is provided in the active material non-holding portion 31A, the two active material holding portions 31B are collected by the common current collecting terminal 311 to suppress the variation in the current collecting efficiency. Electric efficiency can be improved. Here, since the active material holding portion 31D of the second electrode plate element 31Q is in contact with the active material holding portion 31B of the first electrode plate element 31P, the current collection of the second electrode plate element 31Q is performed by the first electrode plate. This can be done by the current collecting terminal 311 of the element 31P. Moreover, it can be set as the common current collection terminal 311 with respect to the two active material holding | maintenance parts 31B, the number of current collection terminals 311 to weld can be reduced, and welding work can be simplified. Furthermore, by dividing the positive electrode plate 31 into the first electrode plate element 31P and the second electrode plate element 31Q, the thickness of the positive electrode current collector in each electrode plate element 31P, 31Q can be reduced, and each positive electrode current collector The filling rate of the positive electrode active material into the body can be improved. In addition, it is possible to reduce the internal resistance of the positive electrode plate 31 by preventing the positive electrode current collector from being broken in the press after being filled with the active material, and preventing the decrease in the density of the positive electrode current collector inside the positive electrode plate 31. it can. In addition, since the active material non-holding portion 31C of the second electrode plate element 31Q is welded to the active material non-holding portion 31A of the first electrode plate element 31P, the internal resistance of the positive electrode plate 31 can be further reduced. it can.
また、本実施形態では、第1極板要素31Pの両側の活物質保持部31Bそれぞれに第2極板要素31Qの活物質保持部31Dを接触して重ね合わせる構成であり、第1極板要素31Pの集電端子311により第2極板要素31Qの集電効率を向上させることができる。ここで、集電端子311を除いた第1極板要素31Pと第2極板要素31Qとを同一形状であるため、それらを重ね合わせた後に、U字状に折り曲げればよく作業性を向上させることができる。さらに、第1極板要素31Pの活物質非保持部31A及び第2極板要素31Qの活物質非保持部31Cが溶接されているので、正極板31を折り曲げ易い。また、第2極板要素31Qが1枚の極板要素から構成されているだけでなく、集電端子311が溶接される前の第1極板要素31Pと第2極板要素31Qとを同一形状としているので、部品点数を一層削減することができる。 In the present embodiment, the active material holding portion 31D of the second electrode plate element 31Q is brought into contact with and superposed on the active material holding portions 31B on both sides of the first electrode plate element 31P. The current collecting efficiency of the second electrode plate element 31Q can be improved by the current collecting terminal 311 of 31P. Here, since the first electrode plate element 31P and the second electrode plate element 31Q excluding the current collecting terminal 311 have the same shape, the workability can be improved by bending them into a U shape after overlapping them. Can be made. Furthermore, since the active material non-holding portion 31A of the first electrode plate element 31P and the active material non-holding portion 31C of the second electrode plate element 31Q are welded, the positive electrode plate 31 can be easily bent. The second electrode plate element 31Q is not only composed of one electrode plate element, but the first electrode plate element 31P and the second electrode plate element 31Q before the current collector terminal 311 is welded are the same. Since the shape is adopted, the number of parts can be further reduced.
次に、活物質非保持部同士を溶接した本発明の正極板(発明例)と、活物質非保持部同士を溶接しない正極板(比較例A、比較例B)と、従来の正極板(比較例C)とを用いた円筒形電池の作製方法とこれらの評価試験の結果について以下に示す。なお、評価試験とは、正極板の水酸化ニッケルの利用率(IEC)及び電池の内部抵抗の測定である。 Next, the positive electrode plate of the present invention (invention example) in which the active material non-retaining parts are welded together, the positive electrode plate (comparative example A, comparative example B) in which the active material non-retaining parts are not welded together, and the conventional positive electrode plate ( A method for producing a cylindrical battery using Comparative Example C) and the results of these evaluation tests are shown below. The evaluation test is a measurement of the nickel hydroxide utilization factor (IEC) of the positive electrode plate and the internal resistance of the battery.
円筒形電池に用いた各種材料は下記のとおりである。
正極活物質には亜鉛3質量%、コバルト0.6質量%を固溶状態で含有する水酸化ニッケル表面に、7質量%のコバルト水酸化物を被覆したものを18M水酸化ナトリウム溶液を用いて110℃で1時間空気酸化処理を行ったものを用いた。この正極活物質に、増粘剤(カルボキシメチルセルロース)を溶解させた水溶液を加えて、ペーストを作製した。このペーストを、基材面密度が320g/m2の発泡ニッケルに充填し、乾燥させた後、所定の厚さにプレスすることによって、発明例、比較例A及び比較例Bの正極板とした。比較例Cの正極板は、前記ペーストを、基材面密度が500g/m2の発泡ニッケルに充填したこと以外は発明例と同様にして、作製した。
負極活物質には、平均粒径50μmに粉砕したMmNi3.8Co0.8Mn0.3Al0.3組成の水素吸蔵合金を用いた。前記合金粉末100質量部に増粘剤(メチルセルロース)を溶解した水溶液を加え、さらに、結着剤(スチレンブタジエンゴム)を1質量部加えてペースト状にしたものを厚さ45μmの穿孔鋼板の両面に塗布した。これを乾燥させた後、所定の厚さにプレスして、負極板とした。なお、平均粒径とは、体積標準の粒度分布における累積度50%の粒径である。
セパレータには、スルフォン化処理を施したポリオレフィン樹脂を用いた。電解液には、4M KOH+3M NaOH+0.8M LiOH組成の電解液を用いた。
Various materials used for the cylindrical battery are as follows.
The positive electrode active material is a nickel hydroxide surface containing 3% by mass of zinc and 0.6% by mass of cobalt in a solid solution state and coated with 7% by mass of cobalt hydroxide using an 18M sodium hydroxide solution. What performed the air oxidation process at 110 degreeC for 1 hour was used. An aqueous solution in which a thickener (carboxymethylcellulose) was dissolved was added to this positive electrode active material to prepare a paste. The paste was filled in foamed nickel having a substrate surface density of 320 g / m 2 , dried, and then pressed to a predetermined thickness to obtain positive electrode plates of invention examples, comparative examples A, and comparative examples B. . The positive electrode plate of Comparative Example C was produced in the same manner as the inventive example except that the paste was filled in foamed nickel having a substrate surface density of 500 g / m 2 .
As the negative electrode active material, a hydrogen storage alloy having a composition of MmNi 3.8 Co 0.8 Mn 0.3 Al 0.3 pulverized to an average particle diameter of 50 μm was used. An aqueous solution in which a thickener (methylcellulose) is dissolved is added to 100 parts by mass of the alloy powder, and further 1 part by mass of a binder (styrene butadiene rubber) is added to form a paste. It was applied to. This was dried and then pressed to a predetermined thickness to obtain a negative electrode plate. The average particle size is a particle size having a cumulative degree of 50% in a volume standard particle size distribution.
For the separator, a polyolefin resin subjected to a sulfonation treatment was used. As the electrolytic solution, an electrolytic solution having a composition of 4M KOH + 3M NaOH + 0.8M LiOH was used.
ここで発明例は、上記実施形態の正極板である。また、比較例Aは、前記実施形態の第1極板要素及び第2極板要素を溶接せずに構成した正極板である。比較例Bは、第1極板要素31Pにおける両側の活物質保持部31Bに、活物質保持部31Dのみからなる平板状の第2極板要素31Qを接触させた正極板、つまり、前記実施形態の第2極板要素31Qにおいて活物質非保持部31Cの無い正極板である。これら発明例、比較例A、Bは、各極板要素において活物質充填時の集電体厚さが1.6mmであり、プレス後の極板要素厚さが0.75mmである。一方、比較例Cは、一枚の正極板である。比較例Cは、活物質充填時の集電体厚さが3mmであり、プレス後の正極板厚さが1.5mmである。 The invention example is the positive electrode plate of the above embodiment. Further, Comparative Example A is a positive electrode plate configured without welding the first electrode plate element and the second electrode plate element of the embodiment. The comparative example B is a positive electrode plate in which a plate-like second electrode plate element 31Q consisting only of the active material holding part 31D is brought into contact with the active material holding parts 31B on both sides of the first electrode plate element 31P, that is, the embodiment described above. The second electrode plate element 31Q is a positive electrode plate without the active material non-holding portion 31C. In each of these invention examples and comparative examples A and B, the current collector thickness at the time of filling the active material in each electrode plate element is 1.6 mm, and the electrode plate element thickness after pressing is 0.75 mm. On the other hand, Comparative Example C is a single positive electrode plate. In Comparative Example C, the current collector thickness at the time of filling the active material is 3 mm, and the positive electrode plate thickness after pressing is 1.5 mm.
組み立て後の各電池を、次の条件で初期化成をおこない、完成させた。20℃で、100mAで12時間の条件で定電流充電し、次いで200mAで1Vとなるまで定電流放電を行った。これを2サイクル繰り返した。その後、40℃で48時間保存した。20℃で、100mAで12時間の条件で定電流充電し、次いで200mAで1Vとなるまで定電流放電を行った。これを2サイクル繰り返し、初期化成を完了した。 Each assembled battery was initialized and completed under the following conditions. A constant current charge was performed at 20 ° C. under a condition of 100 mA for 12 hours, and then a constant current discharge was performed until the voltage became 1 V at 200 mA. This was repeated for 2 cycles. Thereafter, it was stored at 40 ° C. for 48 hours. A constant current charge was performed at 20 ° C. under a condition of 100 mA for 12 hours, and then a constant current discharge was performed until the voltage became 1 V at 200 mA. This was repeated for 2 cycles to complete the initialization.
正極板の水酸化ニッケルの利用率(IEC)の測定は、次のようにして行った。上記の電池を、20℃、0.1ItA、16時間の条件で定電流充電し、20℃、0.2ItAで1.0Vとなるまで定電流放電を行うサイクル充放電を3サイクル繰り返した。このときの各サイクルにおける電池の「放電容量」の測定を行った。本試験における「理論容量」とは正極板の理論容量であり、水酸化ニッケルの充填量と理論容量とを用いて計算した値である。利用率は次の式で計算した値である。
利用率(%)= 放電容量 / 理論容量 × 100
また、正極板の内部抵抗の測定は、Hioki3560ACmΩハイテスターを用いて、電池の端子と電槽缶底との抵抗を20℃で測定した値である。
The measurement of the nickel hydroxide utilization rate (IEC) of the positive electrode plate was performed as follows. The above battery was charged at a constant current under the conditions of 20 ° C. and 0.1 ItA for 16 hours, and the cycle charge and discharge for performing constant current discharge at 20 ° C. and 0.2 ItA until reaching 1.0 V was repeated 3 cycles. The “discharge capacity” of the battery in each cycle at this time was measured. The “theoretical capacity” in this test is the theoretical capacity of the positive electrode plate, and is a value calculated using the nickel hydroxide filling amount and the theoretical capacity. The utilization rate is a value calculated by the following formula.
Utilization rate (%) = discharge capacity / theoretical capacity x 100
Moreover, the measurement of the internal resistance of a positive electrode plate is the value which measured the resistance of the terminal of a battery and a battery case can bottom at 20 degreeC using the Hioki3560ACm (ohm) high tester.
上の表1から分かるように、第1極板要素及び第2極板要素から構成した発明例、比較例A、Bは、1枚の集電体から構成した比較例Cに比べて、水酸化ニッケルの利用率が向上しており、放電容量を増大させることができる。また、発明例及び比較例A、Bは、比較例Cに比べて、内部抵抗を低下させることができる。さらに、第1極板要素及び第2極板要素を溶接して構成した発明例は、第1極板要素及び第2極板要素を溶接せずに構成した比較例A、Bに比べて、内部抵抗をさらに低下させることができる。 As can be seen from Table 1 above, the invention example constituted by the first electrode plate element and the second electrode plate element, and the comparative examples A and B are more water than the comparative example C constituted by one current collector. The utilization factor of nickel oxide is improved, and the discharge capacity can be increased. Further, the invention example and the comparative examples A and B can reduce the internal resistance as compared with the comparative example C. Furthermore, the invention example configured by welding the first electrode plate element and the second electrode plate element is compared with Comparative Examples A and B configured without welding the first electrode plate element and the second electrode plate element, The internal resistance can be further reduced.
<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
<Other modified embodiments>
The present invention is not limited to the above embodiment.
例えば、前記実施形態の第2極板要素31Qは、第1極板要素31Pと同様に、活物質非保持部31C及びその両側に形成された活物質保持部31Dを有するものであったが、図12に示すように、第1極板要素31Pの両側の活物質保持部31Bに接触して重ね合わされる略平板状の活物質保持部31Dと、前記第1極板要素31Pの活物質非保持部31Aに溶接される溶接部31Eとを有するものであっても良い。この溶接部31Eは、活物質を保持しない略直線状のものであり、前記活物質保持部31Dの一辺に形成される。また、この場合、第2極板要素31Qを、第1極板要素31Pの両側の活物質保持部31Bの何れか一方にのみ設けても良い。 For example, the second electrode plate element 31Q of the embodiment has the active material non-holding portion 31C and the active material holding portions 31D formed on both sides thereof, like the first electrode plate element 31P. As shown in FIG. 12, a substantially flat active material holding part 31D that is in contact with and superposed on the active material holding parts 31B on both sides of the first electrode plate element 31P, and an active material non-active material of the first electrode plate element 31P. It may have a welded portion 31E welded to the holding portion 31A. The welded portion 31E has a substantially linear shape that does not hold the active material, and is formed on one side of the active material holding portion 31D. In this case, the second electrode plate element 31Q may be provided only in one of the active material holding portions 31B on both sides of the first electrode plate element 31P.
また、前記実施形態では、第2極板要素31Qを第1極板要素31Pの内側に重ね合わせて設けたものであったが、第1極板要素31Pの外側に重ね合わせて設けても良いし、2つの第2極板要素31Qを第1極板要素31Pの内側及び外側の両方に重ね合わせて設けても良い。 In the above embodiment, the second electrode plate element 31Q is provided so as to be overlapped with the inside of the first electrode plate element 31P, but may be provided so as to be overlapped with the outside of the first electrode plate element 31P. The two second electrode plate elements 31Q may be provided so as to overlap both the inside and the outside of the first electrode plate element 31P.
さらに、前記実施形態では、展開状態の第1極板要素及び展開状態の第2極板要素を溶接した後に折り曲げているが、折り曲げた状態の第1極板要素及び折り曲げた状態の第2極板要素を溶接するようにしても良い。 Further, in the above-described embodiment, the first electrode plate element in the expanded state and the second electrode plate element in the expanded state are bent after being welded, but the first electrode plate element in the bent state and the second electrode in the bent state are bent. The plate elements may be welded.
その上、前記実施形態の正極板31は、1つの第1極板要素31P及び1つの第2極板要素31Qから構成されるものであったが、複数の第1極板要素31Pを有するものであっても良いし、複数の第2極板要素31Qを有するものであっても良い。 In addition, the positive electrode plate 31 of the above embodiment is composed of one first electrode plate element 31P and one second electrode plate element 31Q, but has a plurality of first electrode plate elements 31P. Or a plurality of second electrode plate elements 31Q.
加えて、前記実施形態の第1極板要素31Pは、活物質非保持部31Aと活物質保持部31Bとが1つの正極集電体から構成されているが、これに限られない。具体的には第1極板要素31Pが、図13に示すように、正極集電体に正極活物質を保持させた2つの活物質保持体31s、31tと、この2つの活物質保持体31s、31tを連結する導電性部材である集電端子31uとを備えるものであっても良い。活物質保持体31s、31tは、互いに同一形状をなすものであり、略矩形状をなす発泡ニッケルに正極活物質を充填させることにより構成される。そして、その一部に集電端子31uを溶接するための活物質除去部31xが形成されている。また、集電端子31uは、平面視略T字形状をなすものであり、そのT字水平部31u1の左右端部がそれぞれ活物質保持体31s、31tの活物質除去部31xに溶接される。この展開状態において、集電端子31uのT字垂直部31u2は、活物質保持体31s、31tよりも幅方向の外側に延出した延出部となる。そして、この正極板31は、2つの活物質保持体31s、31tが互いに対向するように集電端子31uのT字水平部31u1において略U字状に折り曲げられるとともに、U字垂直部31u2が、2つの活物質保持板31s、31tの対向方向に直交する幅方向の一方の外側に向かって延びる。 In addition, in the first electrode plate element 31P of the above-described embodiment, the active material non-holding portion 31A and the active material holding portion 31B are configured by one positive electrode current collector, but are not limited thereto. Specifically, as shown in FIG. 13, the first electrode plate element 31P includes two active material holders 31s and 31t in which a positive electrode current collector holds a positive electrode active material, and the two active material holders 31s. , 31t may be provided with a current collecting terminal 31u which is a conductive member. The active material holders 31 s and 31 t have the same shape and are configured by filling a positive electrode active material into nickel foam having a substantially rectangular shape. And the active material removal part 31x for welding the current collection terminal 31u is formed in the part. The current collecting terminal 31u has a substantially T shape in plan view, and the left and right end portions of the T-shaped horizontal portion 31u1 are welded to the active material removing portions 31x of the active material holding bodies 31s and 31t, respectively. In this unfolded state, the T-shaped vertical portion 31u2 of the current collecting terminal 31u is an extending portion that extends outward in the width direction from the active material holding bodies 31s and 31t. The positive electrode plate 31 is bent in a substantially U shape at the T-shaped horizontal portion 31u1 of the current collecting terminal 31u so that the two active material holding bodies 31s and 31t face each other, and the U-shaped vertical portion 31u2 It extends toward one outer side in the width direction orthogonal to the opposing direction of the two active material holding plates 31s and 31t.
次にこのように構成した第1極板要素31Pの製造方法について簡単に説明する。図14に示すように、長尺形状をなす発泡ニッケルからなる母材Z(集電体基材)全体に活物質を充填させる(活物質充填工程)。この活物質充填工程の後に、集電体基材全体をプレスする(極板プレス工程)。次に、活物質が充填された母材Zを活物質保持体31s、31tの大きさに切断する(切断工程)。そして、切断した活物質保持体31s、31tの短辺側中央部に略矩形状の活物質除去部31xを形成すべく、超音波除去等で正極活物質を除去する(活物質除去工程)。その後、2つの活物質除去部31xにT字端子31uのT字水平部31u1の各端部を溶接する(端子溶接工程)。なお、T字端子は一体のものに限られず、短冊状をなす2つの集電端子をT字状に溶接しても良い。また、集電端子以外の連結部材で2つの活物質保持体31s、31tを連結して、当該連結部材に集電端子を溶接するように構成しても良い。さらに、第2極板要素を、集電端子以外の導電性部材である連結部材で2つの活物質保持体31s、31tを連結して構成しても良い。 Next, a method for manufacturing the first electrode plate element 31P configured as described above will be briefly described. As shown in FIG. 14, the entire base material Z (current collector base material) made of nickel foam having a long shape is filled with an active material (active material filling step). After this active material filling step, the entire current collector substrate is pressed (electrode plate pressing step). Next, the base material Z filled with the active material is cut into the size of the active material holders 31s and 31t (cutting step). Then, the positive electrode active material is removed by ultrasonic removal or the like in order to form a substantially rectangular active material removing portion 31x at the short-side central portion of the cut active material holding bodies 31s and 31t (active material removing step). Thereafter, each end of the T-shaped horizontal portion 31u1 of the T-shaped terminal 31u is welded to the two active material removing portions 31x (terminal welding process). Note that the T-shaped terminal is not limited to a single one, and two current collecting terminals having a strip shape may be welded in a T-shape. Moreover, you may comprise so that two active material holding bodies 31s and 31t may be connected with connection members other than a current collection terminal, and a current collection terminal may be welded to the said connection member. Furthermore, you may comprise a 2nd electrode plate element by connecting the two active material holding bodies 31s and 31t with the connection member which is electroconductive members other than a current collection terminal.
また、正極板及び負極板の形状としては、略U字状に折り曲げる一態様として略コの字状に折り曲げる構成について説明したが、その他、略V字状に折り曲げる構成としても良いし、文字通り略U字状に折り曲げるように構成しても良い。 In addition, as the shape of the positive electrode plate and the negative electrode plate, the configuration of bending in a substantially U shape has been described as one aspect of bending in a substantially U shape. You may comprise so that it may be bent in a U shape.
前記実施形態の積層型電極群3は、1枚の正極板31及び2枚の負極板32を積層して構成されるものであったが、複数の正極板31及び複数の負極板32を積層して構成するものであっても良い。 The laminated electrode group 3 of the above embodiment is configured by laminating one positive electrode plate 31 and two negative electrode plates 32. However, a plurality of positive electrode plates 31 and a plurality of negative electrode plates 32 are laminated. It may be configured as follows.
その上、前記実施形態の正極板及び負極板を逆の構成としても良い。つまり、正極板の集電端子311を電池ケースの内面に溶接するように構成しても良い。また、負極板を第1極板要素及び第2極板要素からなるものとしても良い。 In addition, the positive electrode plate and the negative electrode plate of the embodiment may be reversed. That is, you may comprise so that the current collection terminal 311 of a positive electrode plate may be welded to the inner surface of a battery case. The negative electrode plate may be composed of a first electrode plate element and a second electrode plate element.
本発明は、アルカリ蓄電池の他、リチウムイオン二次電池等の二次電池に適用することも可能であり、又は一次電池に適用しても良い。また、円筒形電池に限られず、角形電池のその他の形状をなす電池に適用しても良い。 The present invention can be applied to secondary batteries such as lithium ion secondary batteries in addition to alkaline storage batteries, or may be applied to primary batteries. Further, the present invention is not limited to a cylindrical battery, and may be applied to a battery having another shape of a rectangular battery.
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
100・・・円筒形電池
2 ・・・電池ケース
3 ・・・積層型電極群
31 ・・・正極板
31P・・・第1極板要素
31A・・・活物質非保持部
31B・・・活物質保持部
311・・・集電端子
31Q・・・第2極板要素
31C・・・活物質非保持部
31D・・・活物質保持部
32 ・・・負極板
321・・・集電端子
32A・・・活物質非保持部
32B・・・活物質保持部
33 ・・・セパレータ
31s・・・活物質保持体
31t・・・活物質保持体
31u・・・集電端子
DESCRIPTION OF SYMBOLS 100 ... Cylindrical battery 2 ... Battery case 3 ... Laminated electrode group 31 ... Positive electrode plate 31P ... 1st electrode plate element 31A ... Active material non-retaining part 31B ... Active Material holding part 311 ... Current collecting terminal 31Q ... Second electrode plate element 31C ... Active material non-holding part 31D ... Active material holding part 32 ... Negative electrode plate 321 ... Current collecting terminal 32A ... Active material non-holding part 32B ... Active material holding part 33 ... Separator 31s ... Active material holder 31t ... Active material holder 31u ... Current collecting terminal
Claims (7)
活物質非保持部と当該活物質非保持部を挟んで両側に形成された略平板状の活物質保持部とを有し、前記両側の活物質保持部が互いに対向するように、前記活物質非保持部が折り曲げられた第1極板要素と、
活物質非保持部と活物質保持部とを有する第2極板要素とを備え、
前記第1極板要素の活物質保持部に前記第2極板要素の活物質保持部が接触して重ね合わされ、前記第1極板要素の活物質非保持部と前記第2極板要素の活物質非保持部とが溶接されている電極板。 An electrode plate configured by holding an active material on a current collector,
An active material non-holding portion and a substantially flat active material holding portion formed on both sides of the active material non-holding portion, and the active material holding portions on both sides face each other. A first electrode plate element in which the non-holding portion is bent;
A second electrode plate element having an active material non-holding portion and an active material holding portion;
The active material holding part of the second electrode plate element is in contact with and superposed on the active material holding part of the first electrode element, and the active material non-holding part of the first electrode element and the second electrode element An electrode plate welded to the active material non-holding portion.
前記第2極板要素の活物質保持部が、前記第1極板要素の活物質保持部に接触して重ね合わされており、
前記第2極板要素の活物質非保持部が、前記第1極板要素の活物質非保持部に溶接されている請求項1記載の電極板。 The second electrode plate element has an active material non-holding portion and a substantially flat active material holding portion formed on both sides of the active material non-holding portion, and the active material holding portions on both sides face each other. The active material non-holding portion is bent,
The active material holding portion of the second electrode plate element is in contact with the active material holding portion of the first electrode plate element,
The electrode plate according to claim 1, wherein the active material non-holding portion of the second electrode plate element is welded to the active material non-holding portion of the first electrode plate element.
活物質非保持部と活物質保持部とを有する第2極板要素とを備え、
前記第1極板要素の活物質保持体に前記第2極板要素の活物質保持部が接触して重ね合わされ、前記第1極板要素の導電性部材と前記第2極板要素の活物質非保持部とが溶接されている電極板。 A first electrode plate element having two active material holders and a conductive member connecting the two active material holders, wherein the conductive member is bent so that the active material holders face each other When,
A second electrode plate element having an active material non-holding portion and an active material holding portion;
The active material holding part of the second electrode plate element is brought into contact with and superposed on the active material holding member of the first electrode plate element, and the conductive material of the first electrode plate element and the active material of the second electrode plate element An electrode plate welded to the non-holding part.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012277047A JP5979441B2 (en) | 2012-12-19 | 2012-12-19 | Electrode plate, stacked electrode group, battery, and cylindrical battery |
CN201310684236.7A CN103887479B (en) | 2012-12-19 | 2013-12-13 | Battery lead plate, layered type electrode group, battery and cylindrical battery |
US14/108,723 US20140170471A1 (en) | 2012-12-19 | 2013-12-17 | Electrode plate, layered electrode group, battery, and cylindrical battery |
EP13197930.4A EP2747174B1 (en) | 2012-12-19 | 2013-12-18 | Electrode plate, layered electrode group, battery, and cylindrical battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012277047A JP5979441B2 (en) | 2012-12-19 | 2012-12-19 | Electrode plate, stacked electrode group, battery, and cylindrical battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014120442A JP2014120442A (en) | 2014-06-30 |
JP5979441B2 true JP5979441B2 (en) | 2016-08-24 |
Family
ID=51175092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012277047A Active JP5979441B2 (en) | 2012-12-19 | 2012-12-19 | Electrode plate, stacked electrode group, battery, and cylindrical battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5979441B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH031455A (en) * | 1989-05-30 | 1991-01-08 | Shin Kobe Electric Mach Co Ltd | Sealed square alkaline storage battery |
JPH11167930A (en) * | 1997-12-05 | 1999-06-22 | Shin Kobe Electric Mach Co Ltd | Layered secondary battery using thin electrode |
-
2012
- 2012-12-19 JP JP2012277047A patent/JP5979441B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014120442A (en) | 2014-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6740446B2 (en) | Electrochemical cell with zigzag electrodes | |
JP6020442B2 (en) | Cylindrical battery and battery electrode structure | |
JP4532448B2 (en) | Rectangular battery electrode unit, rectangular battery, and method of manufacturing rectangular battery electrode unit | |
JP5812094B2 (en) | Electrode plate, stacked electrode group and battery | |
KR20060048062A (en) | Secondary battery | |
JP5979147B2 (en) | Cylindrical battery | |
EP2747174B1 (en) | Electrode plate, layered electrode group, battery, and cylindrical battery | |
JP2006012801A (en) | Secondary battery | |
JP5016236B2 (en) | battery | |
JP6086207B2 (en) | Electrode plate, stacked electrode group, battery, and cylindrical battery | |
JP5979441B2 (en) | Electrode plate, stacked electrode group, battery, and cylindrical battery | |
KR20000076959A (en) | Rectangular battery | |
JP4152084B2 (en) | Square alkaline storage battery | |
EP2159861A1 (en) | Secondary battery with a spirally-rolled electrode group | |
JP3625731B2 (en) | Square battery | |
JP6075619B2 (en) | Cylindrical battery | |
JP3407979B2 (en) | Prismatic sealed battery | |
JP2002170544A (en) | Battery | |
JPH11162447A (en) | Cylindrical battery with spiral electrode body and its manufacture | |
JP2005071964A (en) | Alkaline accumulator | |
JP2003109656A (en) | Storage battery | |
JPH0527962U (en) | Prismatic battery | |
JP2003168418A (en) | Alkaline storage battery | |
JPS61264686A (en) | Chargeable and dischargeable electrochemical device and its manufacture | |
JP2001283901A (en) | Alkaline battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160630 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160629 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160713 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5979441 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |