JP2001266859A - Hydrogen storage alloy electrode and nickel hydrogen secondary battery incorporating the same - Google Patents

Hydrogen storage alloy electrode and nickel hydrogen secondary battery incorporating the same

Info

Publication number
JP2001266859A
JP2001266859A JP2000074232A JP2000074232A JP2001266859A JP 2001266859 A JP2001266859 A JP 2001266859A JP 2000074232 A JP2000074232 A JP 2000074232A JP 2000074232 A JP2000074232 A JP 2000074232A JP 2001266859 A JP2001266859 A JP 2001266859A
Authority
JP
Japan
Prior art keywords
storage alloy
hydrogen storage
powder
hydrogen
alloy electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000074232A
Other languages
Japanese (ja)
Inventor
Masahiro Endo
賢大 遠藤
Masayoshi Hiruma
雅義 蛭間
Shusuke Inada
周介 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP2000074232A priority Critical patent/JP2001266859A/en
Publication of JP2001266859A publication Critical patent/JP2001266859A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy electrode using spherical particle powders of hydrogen storage alloy and offers a hydrogen storage alloy electrode of which the nickel hydrogen secondary battery incorporating the same has a large discharging characteristics and excellent cycle life properties. SOLUTION: The hydrogen storing alloy electrode comprises hydrogen storing alloy powders carried on the current collector substrate 1. The hydrogen storing alloy powder is a spherical particle powder of the average size of 20-80 μm and the current collector substrate 1 has several openings 2 protruding from the metal sinter sheet of a thickness of 60 μm or less, and the periphery of the openings adjoining to each other is made a notched portion 3 protruding in the opposing direction each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水素吸蔵合金電極と
それを組み込んだニッケル・水素二次電池に関し、更に
詳しくは、そこに塗着された電極合剤に対する保持能が
良好で、また電極合剤の高密度塗着を実現することがで
きる集電基板を備えた水素吸蔵合金電極と、その水素吸
蔵合金電極が組み込まれることにより高率放電特性とサ
イクル寿命特性が優れているニッケル・水素二次電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode and a nickel-hydrogen secondary battery incorporating the same, and more particularly, to a hydrogen storage alloy electrode having a good ability to hold an electrode mixture applied thereto, Hydrogen-absorbing alloy electrode equipped with a current-collecting substrate capable of realizing high-density application of a chemical agent, and nickel-hydrogen alloys with excellent high-rate discharge characteristics and cycle life characteristics by incorporating the hydrogen-absorbing alloy electrode Next battery.

【0002】[0002]

【従来の技術】ニッケル・水素二次電池に負極として組
み込まれる水素吸蔵合金電極は、概ね、次のようにして
製造されている。まず、電気化学的に水素を吸蔵・放出
する水素吸蔵合金の粉末と例えばカーボンブラックのよ
うな導電材と例えばカルボキシメチルセルロースのよう
な結着剤とを水で混練して所定組成の粘稠な合剤(以
下、電極合剤という)のペーストを調製する。
2. Description of the Related Art A hydrogen storage alloy electrode incorporated as a negative electrode in a nickel-hydrogen secondary battery is generally manufactured as follows. First, a powder of a hydrogen storage alloy that electrochemically stores and releases hydrogen, a conductive material such as carbon black, and a binder such as carboxymethyl cellulose are kneaded with water to form a viscous mixture having a predetermined composition. A paste of an agent (hereinafter, referred to as an electrode mixture) is prepared.

【0003】ついで、この合剤ペーストを集電基板に直
接塗着または充填したのち乾燥し、更に例えばロール圧
延を行って厚みを整えると同時に、乾燥合剤を緻密化し
た状態で集電基板に担持させる。集電基板としては、一
般に、所定口径の開口が所定の間隔で例えば千鳥格子状
に穿設されているNiパンチングシートが用いられてい
る。その場合、上記した開口の口径や個数を適宜設定す
ることにより所望の開口率に調整して、そこに担持され
る電極合剤の塗着量、すなわち充填密度を調節してい
る。この塗着量が多くなると、得られた水素吸蔵合金電
極の容量は高くなり、組み立てた電池を高容量電池にす
ることができるからである。
[0003] Then, the mixture paste is directly applied to or filled in the current collecting substrate and dried, and further, for example, roll-rolled to adjust the thickness, and at the same time, the dried mixture is densified on the current collecting substrate. Carry it. In general, a Ni punching sheet in which openings having a predetermined diameter are formed at predetermined intervals, for example, in a staggered lattice pattern, is used as the current collecting substrate. In such a case, the aperture ratio is adjusted to a desired one by appropriately setting the diameter and the number of the above-mentioned openings, and the coating amount of the electrode mixture carried there, that is, the packing density is adjusted. This is because if the amount of the coating increases, the capacity of the obtained hydrogen storage alloy electrode increases, and the assembled battery can be made a high capacity battery.

【0004】また、水素吸蔵合金の粉末としては、従
来、合金インゴットを機械的に粉砕したものが用いられ
ている。この粉砕粉末は複雑な形状をしており、粉末相
互は面接触状態で集電基板に担持されるので、電気的な
接触抵抗が小さくなるという利点を備えているが、他方
では、嵩密度が小さいので、集電基板への充填密度は低
くなり、電池の高容量化にとっては不利であるという問
題がある。
Conventionally, as a powder of a hydrogen storage alloy, a powder obtained by mechanically pulverizing an alloy ingot has been used. The pulverized powder has a complicated shape, and the powders are supported on the current collecting substrate in surface contact with each other, so that the pulverized powder has an advantage of reducing electrical contact resistance. Since it is small, the packing density of the current collecting substrate is low, which is disadvantageous for increasing the capacity of the battery.

【0005】このようなことから、最近では、水素吸蔵
合金の溶湯を公知のガスアトマイズ法やディスクアトマ
イズ法などによって球形または鶏卵状にした球状粉末を
用いることが行われている。この球状粉末は、合金イン
ゴットを機械粉砕した粉末に比べると嵩密度が高く、仮
に同量の粉末を集電基板に担持させた場合は、水素吸蔵
合金としての容量が高くなくなるからである。
[0005] For these reasons, recently, a spherical powder or an egg-shaped spherical powder of a molten metal of a hydrogen storage alloy has been used by a known gas atomizing method or disk atomizing method. This is because the spherical powder has a higher bulk density than a powder obtained by mechanically pulverizing an alloy ingot, and if the same amount of powder is supported on a current collecting substrate, the capacity as a hydrogen storage alloy is not high.

【0006】しかしながら、この球状粉末の場合は、粉
末間の接触は点接触となるため粉末間の電気的な接触抵
抗が大きくなり、高率放電特性が低下するという問題が
ある。また、この球状粉末は相互間の滑り抵抗が小さい
ので、これを用いて調製した電極合剤を、単に開口が分
布している前記パンチングメタルシートのような集電基
板に塗着したのち例えばロール圧延を行った場合、その
過程で合剤中の球状粉末が滑りあって結局はそれほど高
い充填密度を実現することはできないという問題もあ
る。
However, in the case of this spherical powder, there is a problem that the contact between the powders is a point contact, so that the electrical contact resistance between the powders increases and the high-rate discharge characteristics deteriorate. Also, since the spherical powder has a small slip resistance between each other, the electrode mixture prepared using the same is simply applied to a current collecting substrate such as the punched metal sheet in which the openings are distributed and then rolled, for example. When rolling is performed, there is also a problem in that spherical powder in the mixture slips in the process, so that a high packing density cannot be realized eventually.

【0007】このような問題に対しては、球状粉末と前
記した機械粉砕した粉末とを混合して成る混合粉末をパ
ンチングシートに担持せしめることにより、高率放電特
性と低率放電特性を向上せしめる提案がなされている
(特開平7−109543号公報を参照)。また、球状
またはほぼ球状の水素吸蔵合金粉末に熱処理を行って部
分的な焼結を進め、必要に応じてはそれを解砕して成る
嵩比重が3.3以上の粉末をパンチングメタルシートに
担持せしめることにより、放電特性を向上せしめた水素
吸蔵合金電極の提案がある(特開平8−45505号公
報を参照)。
To solve such a problem, a high-rate discharge characteristic and a low-rate discharge characteristic are improved by supporting a mixed powder obtained by mixing a spherical powder and the above-mentioned mechanically pulverized powder on a punching sheet. A proposal has been made (see JP-A-7-109543). In addition, heat treatment is performed on the spherical or almost spherical hydrogen storage alloy powder to promote partial sintering, and if necessary, the powder is crushed to give a punching metal sheet having a bulk specific gravity of 3.3 or more. There is a proposal of a hydrogen storage alloy electrode in which discharge characteristics are improved by carrying the electrode (see Japanese Patent Application Laid-Open No. 8-45505).

【0008】更には、球形の合金母粉末の表面にそれの
1/10以下の粒径を有する合金微粉末を仮焼結させて
成る、実質的に球状の粉末を導電基板に塗着また充填す
ることにより、圧延時における滑りを抑制してその充填
密度を高め、放電特性を向上せしめるという提案がなさ
れている(特開平10−199521号公報を参照)。
Furthermore, a substantially spherical powder, which is obtained by temporarily sintering a fine alloy powder having a particle size of 1/10 or less of the surface of a spherical alloy base powder, is applied to a conductive substrate and filled therein. By doing so, it has been proposed to suppress slippage during rolling, increase the packing density, and improve the discharge characteristics (see Japanese Patent Application Laid-Open No. 10-199521).

【0009】このように、水素吸蔵合金の球状粉末は、
嵩密度が高く、電極容量を高める材料としては有用であ
るが、実際に集電基板に担持せしめると、その小さい滑
り抵抗によって高密度充填の実現が困難になるという問
題があるため、上記した先行技術の場合のように、当該
球状粉末に対して何らかの処理を施しているのが通例で
ある。
Thus, the spherical powder of the hydrogen storage alloy is
Although the material has a high bulk density and is useful as a material for increasing the electrode capacity, it is difficult to realize high-density packing due to its small sliding resistance when actually supported on a current collecting substrate. As in the case of technology, it is customary to apply some treatment to the spherical powder.

【0010】しかしながら、このような処理は、電極の
素材である水素吸蔵合金粉末の製造コストを高めること
になり、経済的に不利である。本発明は、水素吸蔵合金
の球状粉末を用いたときの上記した問題を解決し、集電
基板として後述する形態のものを用いることにより、前
記球状粉末を何らかの処理を行うことなくそのまま用い
ても、それを含む電極合剤の高密度塗着が実現されてい
る水素吸蔵合金電極と、それを組み込むことにより高率
放電特性とサイクル寿命特性が優れているニッケル・水
素二次電池の提供を目的とする。
[0010] However, such treatment increases the production cost of the hydrogen storage alloy powder, which is a material of the electrode, and is economically disadvantageous. The present invention solves the above-described problem when using a spherical powder of a hydrogen storage alloy, and by using a current collecting substrate having a form described below, the spherical powder can be used as it is without performing any processing. To provide a hydrogen-absorbing alloy electrode with a high-density application of an electrode mixture containing it, and a nickel-hydrogen secondary battery with excellent high-rate discharge characteristics and cycle life characteristics by incorporating it And

【0011】[0011]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、集電基板に水素吸蔵合金粉
末が担持されている水素吸蔵合金電極において、前記水
素吸蔵合金粉末は、平均粒径20〜80μmの球状粉末
であり、かつ、前記集電基板は、厚み60μm以下の金
属焼結体シートに複数個の開口が穿設されており、また
互いに隣接する前記開口の周縁部は互いに反対方向に突
出するバリ部になっていることを特徴とする水素吸蔵合
金電極が提供される。
In order to achieve the above object, according to the present invention, in a hydrogen storage alloy electrode in which a hydrogen storage alloy powder is supported on a current collecting substrate, the hydrogen storage alloy powder has an average The current collector substrate is a spherical powder having a particle size of 20 to 80 μm, and the current collecting substrate has a plurality of openings perforated in a metal sintered body sheet having a thickness of 60 μm or less. A hydrogen storage alloy electrode is provided, which has burr portions projecting in opposite directions.

【0012】また、本発明においては、上記した水素吸
蔵合金電極が組み込まれていることを特徴とするニッケ
ル・水素二次電池が提供される。
Further, the present invention provides a nickel-hydrogen secondary battery incorporating the above-mentioned hydrogen storage alloy electrode.

【0013】[0013]

【発明の実施の形態】本発明の水素吸蔵合金電極は、水
素吸蔵合金の球状粉末と結着剤と、必要に応じては導電
剤とを水で混練して電極合剤のペーストを調製し、この
ペーストを後述する集電基板に塗着したのち乾燥し、引
き続き例えばロール圧延して製造される。
BEST MODE FOR CARRYING OUT THE INVENTION A hydrogen storage alloy electrode of the present invention is prepared by kneading a spherical powder of a hydrogen storage alloy, a binder, and, if necessary, a conductive agent with water to prepare a paste of an electrode mixture. The paste is applied to a current collecting substrate described later, dried, and subsequently roll-rolled, for example.

【0014】球状粉末は、所定組成の水素吸蔵合金の溶
湯に対して例えばガスアトマイズ法やディスクアトマイ
ズ法を適用して製造されたものであり、その平均粒径が
20〜80μmに設定されている。平均粒径が20μm
より小さくなるような場合は、上記アトマイズ法で製造
された粉末内における微粒子の割合が多くなっているの
で、そのような球状粉末で製造した水素吸蔵合金電極を
負極として組み込んだニッケル・水素二次電池は、充放
電サイクルの初期段階で当該微細な球状粉末の腐食が進
行して容量低下を引き起こし、電池寿命が短くなるとい
う問題が生ずる。
The spherical powder is produced by applying, for example, a gas atomizing method or a disk atomizing method to a molten metal of a hydrogen absorbing alloy having a predetermined composition, and has an average particle size of 20 to 80 μm. Average particle size is 20μm
In the case where the particle size becomes smaller, the proportion of fine particles in the powder produced by the above-mentioned atomizing method is increased, and thus a nickel-hydrogen secondary electrode incorporating a hydrogen storage alloy electrode produced with such a spherical powder as a negative electrode is used. In the battery, the fine spherical powder is corroded at an early stage of the charge / discharge cycle, causing a reduction in capacity and a problem that the battery life is shortened.

【0015】また、平均粒径が80μmより大きくなる
と、組み立てた電池を実使用可能な容量にまで立ち上げ
るに要する充放電サイクル数が増加するので、実用的と
は言えなくなる。用いる球状粉末としては、その平均粒
径が20〜70μmであって、しかも、粒径10μm以
下の微粒子と粒径150μm以上の粗大粒子の割合がそ
れぞれ5体積%未満であるものが好ましい。特に、平均
粒径が30〜60μmで、粒径10μm以下の微粒子と
粒径150μm以上の粗大粒子の割合がそれぞれ3体積
%未満であるものがより好適である。
On the other hand, if the average particle size is larger than 80 μm, the number of charge / discharge cycles required to start the assembled battery to a practically usable capacity increases, which is not practical. As the spherical powder to be used, those having an average particle diameter of 20 to 70 μm and a ratio of fine particles having a particle diameter of 10 μm or less and coarse particles having a particle diameter of 150 μm or more each being less than 5% by volume are preferable. In particular, those having an average particle diameter of 30 to 60 μm and a ratio of fine particles having a particle diameter of 10 μm or less and coarse particles having a particle diameter of 150 μm or more each being less than 3% by volume are more preferable.

【0016】なお、水素吸蔵合金としては、一般式AB
xで表される水素吸蔵合金(ただし、AはYを含む希土
類元素およびZr,Hfから成る元素から選ばれる少な
くとも1種の元素から成り、BはNi,Co,Mn,F
e,Cr,Al,Si,Cuから成り、モル比xは4.
5〜5.5の範囲の数である)を用いることが好まし
い。前記モル比が4.5未満の場合には、負極が劣化す
るおそれがあり、前記モル比xが5.5を超えると、負
極の水素吸蔵能力が低下するおそれがある。なお、前記
一般式ABxで表される合金は、Ca,Mg,Pb,C
l,Zn,Mo,Cなどの不可避的不純物が含まれてい
てもよい。
The hydrogen absorbing alloy is represented by the general formula AB
a hydrogen storage alloy represented by x (where A is a rare earth element containing Y and at least one element selected from the elements consisting of Zr and Hf, and B is Ni, Co, Mn, F
e, Cr, Al, Si, Cu, and the molar ratio x is 4.
(A number in the range of 5 to 5.5). If the molar ratio is less than 4.5, the negative electrode may deteriorate, and if the molar ratio x exceeds 5.5, the hydrogen storage capacity of the negative electrode may decrease. The alloy represented by the general formula ABx is Ca, Mg, Pb, C
Inevitable impurities such as l, Zn, Mo, and C may be contained.

【0017】次に、本発明の水素吸蔵合金電極における
集電基板について説明する。図1は本発明の集電基板の
1例を示す部分斜視図であり、図2は図1のII−II線に
沿う断面図である。この集電基板1は粉末圧延法によっ
て製造された金属粉焼結体シートから成る。具体的に
は、所定粒径の金属粉(例えばNi粉)を一対の圧延ロ
ールの間に供給量を調節しながら供給して当該圧延ロー
ルで所定厚みの圧粉体シートを連続的に製造し、更にそ
の圧粉体シートを所定温度(例えば700〜1000
℃)に調節されている例えばArのような不活性ガスの
雰囲気の焼成炉に導入して金属粉を焼結することによっ
て製造されたシートである。なお、焼結後のシートに更
に一対の圧延ロールで熱間圧延を行ってもよい。
Next, the current collecting substrate in the hydrogen storage alloy electrode of the present invention will be described. FIG. 1 is a partial perspective view showing an example of the current collecting substrate of the present invention, and FIG. 2 is a cross-sectional view taken along line II-II of FIG. The current collecting substrate 1 is made of a metal powder sintered body sheet manufactured by a powder rolling method. Specifically, metal powder (for example, Ni powder) having a predetermined particle size is supplied between a pair of rolling rolls while adjusting a supply amount, and a green compact sheet having a predetermined thickness is continuously manufactured by the rolling rolls. The green compact sheet is further heated to a predetermined temperature (for example, 700 to 1000).
C.), which is a sheet manufactured by introducing into a firing furnace in an atmosphere of an inert gas such as Ar and sintering the metal powder. The sheet after sintering may be further subjected to hot rolling with a pair of rolling rolls.

【0018】この粉末圧延法によれば、小規模で簡単な
設備を用い、しかも1度の圧延−焼結の工程だけで、理
論密度に近く、したがって緻密で柔軟性に富むシートを
製造することができるので、その製造コストは安価にな
る。本発明の集電基板は、上記した粉末圧延法で製造さ
れた金属粉焼結体シートの全面に機械加工を行って、後
述する開口2とバリ部3を形成したものである。その場
合、粉末圧延法ではあまり厚いシートを製造することが
できないことに制約されて、本発明の集電基板の厚み
(t)は60μm以下になっている。好ましくは25〜
40μmである。
According to the powder rolling method, it is possible to produce a sheet having a density close to the theoretical density, and thus a dense and flexible sheet, by using a small-scale and simple facility and performing only one rolling-sintering step. Therefore, the manufacturing cost is reduced. The current collector substrate of the present invention is obtained by machining the entire surface of a metal powder sintered body sheet manufactured by the above-described powder rolling method to form an opening 2 and a burr portion 3 described later. In that case, the thickness (t) of the current collecting substrate of the present invention is 60 μm or less, because the powder rolling method cannot produce a very thick sheet. Preferably 25 to
40 μm.

【0019】この集電基板1には、複数個の開口2が穿
設されていて、各開口2の周縁部はバリ部3になってい
る。そして、互いに隣接する開口のバリ部3は互いに反
対方向に突起して形成されている。この集電基板1の両
面または片面にペースト状の電極合剤を塗布し、ついで
乾燥し、更に例えばロール圧延などの成形を行って全体
を所定の厚みに調製することによって、本発明の水素吸
蔵合金電極が製造される。
A plurality of openings 2 are formed in the current collecting substrate 1, and the peripheral edge of each opening 2 is a burr 3. The burrs 3 of the openings adjacent to each other are formed so as to protrude in opposite directions. A paste-like electrode mixture is applied to both surfaces or one surface of the current collecting substrate 1, then dried, and further formed by, for example, roll rolling to adjust the whole to a predetermined thickness. An alloy electrode is manufactured.

【0020】この過程で、電極合剤は開口2の中に充填
され、また、成形時にはバリ部3が厚み方向に押しつぶ
されることにより、電極合剤が集電基板に保持される。
このような働きをする開口2は集電基板1の全面に例え
ば千鳥格子模様なして形成されていることが好ましい。
また、開口2の平面視形状は格別限定されるものではな
く、図のような四角形形状やそれに類似した多角形形
状、更には円形、楕円形などの形状をあげることができ
る。その場合、開口2が小さすぎると、電極合剤の塗着
状態は不充分となって電極合剤の保持能に難が生じ、ま
た大きすぎると、集電基板1の強度が低下して電極
(群)の製造時に破損することもあるとともに電極合剤
の脱落や剥離も起こりやすくなるので、例えば開口2が
四角形形状である場合には、一辺の長さを0.03〜1.
0mmの範囲内にすることが好ましい。そして、隣接する
開口間の間隔が長すぎると、やはり塗着した電極合剤に
対する保持能が低下し、また間隔が短すぎると、集電基
板の強度低下を招くとともにバリ部3の形成が困難にな
るため、0.3〜1.5mm程度の間隔に設定することが好
ましい。
In this process, the electrode mixture is filled into the opening 2 and the burr portion 3 is crushed in the thickness direction during molding, so that the electrode mixture is held on the current collecting substrate.
The opening 2 having such a function is preferably formed in a zigzag pattern on the entire surface of the current collecting substrate 1.
In addition, the shape of the opening 2 in plan view is not particularly limited, and examples thereof include a square shape as shown in the figure, a polygonal shape similar thereto, a circular shape, an elliptical shape, and the like. In this case, if the opening 2 is too small, the state of application of the electrode mixture becomes insufficient and the ability to hold the electrode mixture becomes difficult. If the opening 2 is too large, the strength of the current collecting substrate 1 decreases and the electrode (Group) may be damaged at the time of manufacture, and the electrode mixture may easily fall off or peel off. For example, when the opening 2 has a rectangular shape, the length of one side is 0.03 to 1.0.
It is preferred to be within the range of 0 mm. If the distance between the adjacent openings is too long, the ability to hold the coated electrode mixture is also reduced. If the distance is too short, the strength of the current collecting substrate is reduced and the formation of the burr portion 3 is difficult. Therefore, it is preferable to set the interval to about 0.3 to 1.5 mm.

【0021】そして、バリ部3の高さ(h)を高くしす
ぎると、不可避的に開口2が大きくなるため、集電基板
の強度低下が引き起こされる。このようなことから、バ
リ部3の高さ(h)は0.05〜2.0mmの範囲内に設定
することが好ましい。この集電基板において、このよう
な態様の開口2の開口率は10〜40%に設定すること
が好ましい。電極合剤の適切な塗着量を確保することが
できるからである。
If the height (h) of the burr portion 3 is too high, the opening 2 is inevitably enlarged, and the strength of the current collecting substrate is reduced. For this reason, it is preferable that the height (h) of the burr portion 3 is set in the range of 0.05 to 2.0 mm. In this current collecting substrate, the aperture ratio of the opening 2 in such an embodiment is preferably set to 10 to 40%. This is because an appropriate coating amount of the electrode mixture can be secured.

【0022】この集電基板に、電極合剤が塗布され、乾
燥したのち例えばロール圧延して厚みを調整することに
より、本発明の水素吸蔵合金電極が製造される。本発明
のニッケル・水素二次電池は、上記した水素吸蔵合金電
極を負極し、公知のニッケル極を正極とし、両者の間に
セパレータを配置して電極群とし、この電極群を所定の
アルカリ電解液と一緒に電池缶の中に収容し、電池缶の
開口を封口して製造される。
The electrode mixture is applied to the current collecting substrate, dried, and then roll-rolled to adjust the thickness, thereby producing the hydrogen storage alloy electrode of the present invention. The nickel-hydrogen secondary battery of the present invention comprises a negative electrode of the above-mentioned hydrogen storage alloy electrode, a positive electrode of a known nickel electrode, and a separator disposed therebetween to form an electrode group. It is housed in a battery can together with the liquid, and is manufactured by closing the opening of the battery can.

【0023】[0023]

【実施例】(1)集電基板の製造 図3で概略を示した装置を用いた粉末圧延法により、次
のようにしてNi粉焼結体シートを製造した。まず、ロ
ール4a,4bの間を無限軌道を描いて走行速度1.0
m/分で回転するベルトコンベア5の上に、ホッパ6内
に収容されている平均粒径0.5μmのNi粉7を連続
的に供給して下流に搬送し、下流側に配置したドクター
ブレード8で厚み300μmの粉末層にしたのち、一対
の圧延ロール9,9の間に通して上下方向から圧3×1
6MPaで圧延して圧粉層にした。
EXAMPLES (1) Production of current collector substrate A Ni powder sintered body sheet was produced as follows by a powder rolling method using an apparatus schematically shown in FIG. First, an endless track is drawn between the rolls 4a and 4b, and the running speed is set to 1.0.
A doctor blade disposed on the downstream side by continuously supplying Ni powder 7 having an average particle size of 0.5 μm contained in a hopper 6 on a belt conveyor 5 rotating at m / min and transporting it downstream. 8, a powder layer having a thickness of 300 μm is passed through a pair of rolling rolls 9, 9, and a pressure of 3 × 1 is applied from above and below.
And rolled in the 0 6 MPa was in the dust layer.

【0024】ついで、Ar雰囲気の焼成炉10の中に導
入し、温度950℃で5分間加熱して焼結体シート1に
し、それをベルトコンベア5から剥離して連続的に巻き
取った。得られた焼結体シート1の厚みは平均値で30
μmであった。ついで、この焼結体シート1に、一辺の
長さが1.0mm、高さが1.0mmの四角形形状をした開口
2とバリ部3を加工して、開口相互間の間隔は0.5mm
で、開口率が30%である集電基板を製造した。これを
集電基板Aとする。
Then, it was introduced into a baking furnace 10 in an Ar atmosphere and heated at a temperature of 950 ° C. for 5 minutes to form a sintered body sheet 1 which was peeled off from the belt conveyor 5 and continuously wound up. The thickness of the obtained sintered body sheet 1 is 30 on average.
μm. Then, a rectangular opening 2 and a burr portion 3 each having a side length of 1.0 mm and a height of 1.0 mm are formed on the sintered body sheet 1, and the interval between the openings is 0.5 mm.
Thus, a current collecting substrate having an aperture ratio of 30% was manufactured. This is referred to as a current collecting substrate A.

【0025】なお、比較のために、厚み0.06mm、口
径1.0mmの開口が間隔3.0mmで千鳥格子模様をなして
形成されている開口率30%のNiパンチングシートを
用意した。これを集電基板Bとする。 (2)水素吸蔵合金電極の製造 組成:MmNi4.0Co0.4Mn0.4Al0.3(Mmはミッ
シュメタル)の水素吸蔵合金に対しディスクアトマイズ
法を適用して、表1で示した粒度特性を有する球状粉末
を製造した。
For comparison, a Ni punching sheet having a thickness of 0.06 mm and a diameter of 1.0 mm, and having an opening ratio of 30% and formed in a houndstooth check pattern at intervals of 3.0 mm was prepared. This is referred to as a current collecting substrate B. (2) Production of hydrogen storage alloy electrode Composition: Spherical powder having particle size characteristics shown in Table 1 by applying a disk atomization method to a hydrogen storage alloy of MmNi 4.0 Co 0.4 Mn 0.4 Al 0.3 (Mm is a misch metal). Was manufactured.

【0026】これらの球状粉末100重量部に対し、ポ
リアクリル酸ナトリウム0.5重量部、カルボキシメチ
ルセルロース0.12重量部、ポリテトラフルオロエチ
レンのディスパージョン(比重1.5、固形分60重量
%)1.0重量部(固形分換算)、カーボンブラック0.
5重量部、水30重量部を配合したのち混練して負極合
剤ペーストを調製した。
With respect to 100 parts by weight of these spherical powders, 0.5 parts by weight of sodium polyacrylate, 0.12 parts by weight of carboxymethyl cellulose, and a dispersion of polytetrafluoroethylene (specific gravity 1.5, solid content 60% by weight) 1.0 parts by weight (in terms of solid content), carbon black
After mixing 5 parts by weight and 30 parts by weight of water, the mixture was kneaded to prepare a negative electrode mixture paste.

【0027】このペーストを上記した集電基板に塗着・
熱処理を施し、ロール圧延して厚み0.35mmの水素吸
蔵合金電極を製造した。なお、得られた各水素吸蔵合金
電極につき、次式: 充填密度={(電極重量−基板重量)×100/102.12}
/電極体積 に基づいて担持されている球状粉末の充填密度(g/m
l)を算出した。その結果を表1に示した。
This paste is applied to the above-mentioned current collecting substrate.
Heat treatment was performed and roll rolling was performed to produce a hydrogen storage alloy electrode having a thickness of 0.35 mm. For each of the obtained hydrogen storage alloy electrodes, the following formula: packing density = {(electrode weight−substrate weight) × 100 / 102.12}
/ Packing density of the supported spherical powder based on the electrode volume (g / m
l) was calculated. The results are shown in Table 1.

【0028】(3)電池の組み立て まず、平均粒径10μmの水酸化ニッケル粒子90重量
%と平均粒径2μmの一酸化コバルト粒子10重量%と
から成る混合粉末100重量部に対し、カルボキシメチ
ルセルロース0.3重量部、ポリテトラフルオロエチレ
ンのディスパージョン(比重0.15、固形分60重量
%)0.5重量部(固形分換算)、水45重量部を配合
したのち混練して正極合剤ペーストにした。
(3) Battery assembly First, 100 parts by weight of a mixed powder composed of 90% by weight of nickel hydroxide particles having an average particle size of 10 μm and 10% by weight of cobalt monoxide particles having an average particle size of 2 μm was added to 0 parts by weight of carboxymethyl cellulose. 0.3 parts by weight, 0.5 parts by weight (in terms of solids) of polytetrafluoroethylene dispersion (specific gravity 0.15, solids content 60% by weight), and 45 parts by weight of water, and then kneaded, followed by kneading and mixing. I made it.

【0029】このペーストを空隙率96%の発泡ニッケ
ル基板に充填し、ついで温度100℃で10分間の乾燥
処理を施したのち、圧力9×106MPaでロール圧延して
厚みが約0.7mmのニッケル極にした。なお、これらの
ニッケル極の理論容量は、いずれも約3550mAhとな
るように調整されている。水素吸蔵合金電極とニッケル
極の間にグラフト重合による親水化処理が施されている
ポリプロピレン繊維製不織布を配置したのち渦巻状に巻
回して電極群とし、その電極群を電池缶(内容積0.0
145リットル)に収容し、更に7Nの水酸化カリウム水溶
液と1Nの水酸化リチウム水溶液から成る比重1.30
の電解液を注液したのち封口し、4/3Aサイズ(公称
容量3500mAh)の円筒形ニッケル・水素二次電池を
組み立てた。
This paste was filled in a foamed nickel substrate having a porosity of 96%, dried at a temperature of 100 ° C. for 10 minutes, and then roll-rolled at a pressure of 9 × 10 6 MPa to a thickness of about 0.7 mm. Of nickel electrode. The theoretical capacities of these nickel electrodes are all adjusted to be about 3550 mAh. A nonwoven fabric made of polypropylene fiber which has been subjected to a hydrophilic treatment by graft polymerization is arranged between the hydrogen storage alloy electrode and the nickel electrode, and then spirally wound to form an electrode group. 0
145 liters) and a specific gravity of 1.30 consisting of a 7N aqueous solution of potassium hydroxide and a 1N aqueous solution of lithium hydroxide.
The electrolyte solution was injected and sealed, and a 4/3 A size (3500 mAh nominal capacity) cylindrical nickel-metal hydride secondary battery was assembled.

【0030】(4)電池の特性評価 まず各電池に対し、温度20℃において0.1CmAで15
時間の充電を行い、更に0.2CmAで1Vになるまでの放
電を5サイクル行って初期活性化処理を行った。つい
で、温度20℃において1CmAで90分充電したのち0.
2CmAで1Vになるまでの放電を行い、このときの容量
を初期容量とした。
(4) Evaluation of battery characteristics First, each battery was tested at 0.1 ° C. for 15 minutes at a temperature of 20 ° C.
The battery was charged for a period of time, and further discharged for 5 cycles at 0.2 CmA until the voltage became 1 V, thereby performing an initial activation process. Next, the battery was charged at 1 CmA at a temperature of 20 ° C. for 90 minutes, and then charged at a temperature of 0.2.
Discharge was performed at 2 CmA until the voltage reached 1 V, and the capacity at this time was defined as the initial capacity.

【0031】また、温度20℃において1CmAで90分
充電したのち、温度0℃において10CmAで放電し、そ
のときの容量(高率放電容量)を測定した。その後、温
度45℃において、3CmAで90分充電したのち、3CmA
で終止電圧が1Vになるまでの充放電サイクルを反復
し、電池容量が初期容量に対して2500mAhを示すと
きのサイクル数を計測した。以上の結果を一括して表1
に示した。
After charging at 1 ° C. for 90 minutes at a temperature of 20 ° C., discharging at 10 ° C. at a temperature of 0 ° C., and measuring the capacity at that time (high-rate discharge capacity). After that, at a temperature of 45 ° C, the battery is charged at 3 CmA for 90 minutes, and then charged at 3 CmA.
The charge / discharge cycle until the final voltage became 1 V was repeated, and the number of cycles when the battery capacity showed 2500 mAh with respect to the initial capacity was measured. Table 1 summarizes the above results.
It was shown to.

【0032】[0032]

【表1】 [Table 1]

【0033】表1から次のことが明らかである。 (1)集電基板が同じであっても、球状粉末の平均粒径
が80μmより大きい場合(比較例1)は、実施例に比
べて高率放電特性が大幅に低下し、また平均粒径が20
μmより小さい場合(比較例2)の場合には、サイクル
寿命特性の大幅な低下が認められる。
The following is clear from Table 1. (1) Even when the current collecting substrates are the same, when the average particle size of the spherical powder is larger than 80 μm (Comparative Example 1), the high-rate discharge characteristics are significantly reduced as compared with the examples, and the average particle size is reduced. Is 20
In the case of smaller than μm (Comparative Example 2), a significant decrease in cycle life characteristics is observed.

【0034】(2)そして、球状粉末の平均粒径が20
〜80μmの範囲内にあっても、集電基板が従来と同じ
ようなパンチングメタルシートである場合(比較例4)
には、高率放電特性とサイクル寿命のいずれもが大幅に
低下している。 (3)このようなことから、水素吸蔵合金の球状粉末を
用いて水素吸蔵合金電極を製造する場合には、実施例の
ように、球状粉末の平均粒径は20〜80μmの範囲内
とし、かつ集電基板としては本発明で規定するものを用
いることの有用性が明らかである。
(2) The spherical powder has an average particle diameter of 20.
In the case where the current collecting substrate is a punched metal sheet similar to the conventional one, even in the range of up to 80 μm (Comparative Example 4)
In both cases, both the high rate discharge characteristics and the cycle life are significantly reduced. (3) From the above, when the hydrogen storage alloy electrode is manufactured using the spherical powder of the hydrogen storage alloy, the average particle diameter of the spherical powder is set in the range of 20 to 80 μm as in the example. In addition, it is clear that the use of the current collector substrate defined in the present invention is useful.

【0035】[0035]

【発明の効果】以上の説明で明らかなように、本発明の
水素吸蔵合金電極は、それを負極として組み込んだニッ
ケル・水素二次電池の高率放電特性とサイクル寿命特性
を高めることができる。
As is apparent from the above description, the hydrogen storage alloy electrode of the present invention can enhance the high-rate discharge characteristics and cycle life characteristics of a nickel-hydrogen secondary battery incorporating it as a negative electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素吸蔵合金電極で用いる集電基板の
1例を示す部分斜視図である。
FIG. 1 is a partial perspective view showing an example of a current collecting substrate used in a hydrogen storage alloy electrode of the present invention.

【図2】図1のII−II線に沿う断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】粉末圧延法のライン例を示す概略図である。FIG. 3 is a schematic view showing a line example of a powder rolling method.

【符号の説明】[Explanation of symbols]

1 集電基板(金属粉焼結体シート) 2 開口 3 バリ部 4a,4b ロール 5 ベルトコンベア 6 ホッパ 7 金属粉(Ni粉) 8 ドクターブレード 9 圧延ロール 10 焼成炉 DESCRIPTION OF SYMBOLS 1 Current collection board (sintered metal powder sheet) 2 Opening 3 Burr part 4a, 4b Roll 5 Belt conveyor 6 Hopper 7 Metal powder (Ni powder) 8 Doctor blade 9 Rolling roll 10 Firing furnace

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/30 H01M 10/30 Z (72)発明者 蛭間 雅義 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 (72)発明者 稲田 周介 神奈川県川崎市幸区堀川町72番地 株式会 社東芝内 Fターム(参考) 4K018 BA05 BA11 BA18 BB03 BB04 BD07 CA36 KA38 5H017 AA02 AS02 BB04 BB06 BB14 CC03 CC05 CC27 DD08 EE04 HH03 5H028 BB04 EE01 EE05 HH05 5H050 AA02 AA07 BA14 CA03 CB17 DA04 FA10 FA14 FA17 GA03 GA06 HA04 HA05 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 10/30 H01M 10/30 Z (72) Inventor Masayoshi Hiruma 3-4-1 Minamishinagawa, Shinagawa-ku, Tokyo No. Toshiba Battery Co., Ltd. CC27 DD08 EE04 HH03 5H028 BB04 EE01 EE05 HH05 5H050 AA02 AA07 BA14 CA03 CB17 DA04 FA10 FA14 FA17 GA03 GA06 HA04 HA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 集電基板に水素吸蔵合金粉末が担持され
ている水素吸蔵合金電極において、 前記水素吸蔵合金粉末は、平均粒径20〜80μmの球
状粉末であり、かつ、前記集電基板は、厚み60μm以
下の金属焼結体シートに複数個の開口が穿設されてお
り、また互いに隣接する前記開口の周縁部は互いに反対
方向に突出するバリ部になっていることを特徴とする水
素吸蔵合金電極。
1. A hydrogen storage alloy electrode in which a hydrogen storage alloy powder is supported on a current collecting substrate, wherein the hydrogen storage alloy powder is a spherical powder having an average particle diameter of 20 to 80 μm, and the current collecting substrate is A plurality of openings formed in a sintered metal sheet having a thickness of 60 μm or less, and peripheral portions of the openings adjacent to each other are burr portions projecting in opposite directions to each other. Storage alloy electrode.
【請求項2】 前記球状粉末はアトマイズ法で製造され
ている請求項1の水素吸蔵合金電極。
2. The hydrogen storage alloy electrode according to claim 1, wherein said spherical powder is produced by an atomizing method.
【請求項3】 前記金属焼結体シートは粉末圧延法で製
造されている請求項1の水素吸蔵合金電極。
3. The hydrogen storage alloy electrode according to claim 1, wherein the metal sintered body sheet is manufactured by a powder rolling method.
【請求項4】 請求項1〜3のいずれか水素吸蔵合金電
極が組み込まれていることを特徴とするニッケル・水素
二次電池。
4. A nickel-hydrogen secondary battery comprising the hydrogen storage alloy electrode according to claim 1 incorporated therein.
JP2000074232A 2000-03-16 2000-03-16 Hydrogen storage alloy electrode and nickel hydrogen secondary battery incorporating the same Pending JP2001266859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000074232A JP2001266859A (en) 2000-03-16 2000-03-16 Hydrogen storage alloy electrode and nickel hydrogen secondary battery incorporating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000074232A JP2001266859A (en) 2000-03-16 2000-03-16 Hydrogen storage alloy electrode and nickel hydrogen secondary battery incorporating the same

Publications (1)

Publication Number Publication Date
JP2001266859A true JP2001266859A (en) 2001-09-28

Family

ID=18592319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000074232A Pending JP2001266859A (en) 2000-03-16 2000-03-16 Hydrogen storage alloy electrode and nickel hydrogen secondary battery incorporating the same

Country Status (1)

Country Link
JP (1) JP2001266859A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282050A (en) * 2002-03-20 2003-10-03 Ishikawajima Harima Heavy Ind Co Ltd Electrode and battery
JP2008186658A (en) * 2007-01-29 2008-08-14 Sanyo Electric Co Ltd Nickel-hydrogen secondary battery
JP2012119465A (en) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp Electrode for electric double layer capacitor and electric double layer capacitor using thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282050A (en) * 2002-03-20 2003-10-03 Ishikawajima Harima Heavy Ind Co Ltd Electrode and battery
JP2008186658A (en) * 2007-01-29 2008-08-14 Sanyo Electric Co Ltd Nickel-hydrogen secondary battery
JP2012119465A (en) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp Electrode for electric double layer capacitor and electric double layer capacitor using thereof

Similar Documents

Publication Publication Date Title
JP2001035499A (en) Electricity collecting base board for electrode of alkaline secondary battery, electrode using same, and alkaline secondary battery incorporating the electrode
JP6132279B2 (en) Nickel metal hydride secondary battery
US5529857A (en) Hydrogen-absorbing alloy electrode and process for producing the same
JP2947284B2 (en) Non-sintered positive electrode for alkaline storage battery and alkaline storage battery using the same
JP2001266859A (en) Hydrogen storage alloy electrode and nickel hydrogen secondary battery incorporating the same
JP3729815B2 (en) Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same
US6824571B2 (en) Hydrogen absorbing alloy electrode, manufacturing method thereof, and alkaline storage battery equipped with the hydrogen absorbing alloy electrode
JP3557063B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2004124132A (en) Hydrogen occlusion alloy powder, hydrogen occlusion alloy electrode, and nickel-hydrogen storage battery using the same
JP3897527B2 (en) Non-sintered nickel positive electrode for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
JP2002246032A (en) Collector substrate for electrode for alkaline secondary battery, electrode using the same, and alkaline secondary battery with electrode assembled therein
EP0599603B1 (en) Metal hydride electrode, cell and manufacturing process
JP3761763B2 (en) Hydrogen storage alloy electrode, battery using the same, and manufacturing method thereof
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JP4723737B2 (en) Positive electrode for nickel / hydrogen secondary battery, nickel / hydrogen secondary battery using the same
JP3778685B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP2005108457A (en) Non-sinter type electrode for alkaline storage battery, and alkali storage battery
JP2001266860A (en) Nickel hydrogen storage battery
JP3519836B2 (en) Hydrogen storage alloy electrode
JP2002260720A (en) Nickel hydrogen secondary battery
JP2631191B2 (en) Method for producing active material slurry for hydrogen storage alloy electrode
JP3614567B2 (en) Sealed nickel metal hydride battery
JP3553752B2 (en) Method for producing hydrogen storage alloy electrode
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
JPH09320576A (en) Hydrogen absorbing alloy electrode and sealed nickelhydrogen storage battery