JP5717125B2 - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP5717125B2
JP5717125B2 JP2010243854A JP2010243854A JP5717125B2 JP 5717125 B2 JP5717125 B2 JP 5717125B2 JP 2010243854 A JP2010243854 A JP 2010243854A JP 2010243854 A JP2010243854 A JP 2010243854A JP 5717125 B2 JP5717125 B2 JP 5717125B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
negative electrode
battery
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010243854A
Other languages
Japanese (ja)
Other versions
JP2012099250A (en
Inventor
田村 和明
和明 田村
吉宣 片山
吉宣 片山
森 一
一 森
輝人 長江
輝人 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010243854A priority Critical patent/JP5717125B2/en
Priority to PCT/JP2011/075046 priority patent/WO2012057351A1/en
Publication of JP2012099250A publication Critical patent/JP2012099250A/en
Application granted granted Critical
Publication of JP5717125B2 publication Critical patent/JP5717125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0057Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/286Cells or batteries with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、ハイブリッド車(HEV:Hybrid Electric Vehicle)等の高出力で大電流放電を必要とする用途(高出力・大電流用途)に適した水素吸蔵合金を負極に備えたアルカリ蓄電池に関する。   The present invention relates to an alkaline storage battery having a negative electrode with a hydrogen storage alloy suitable for applications (high power / high current applications) that require high output and large current discharge, such as a hybrid electric vehicle (HEV).

水素吸蔵合金を負極に備えたアルカリ蓄電池は、安全性にも優れているという点からHEV用等といった高出力で大電流放電を必要とする用途(高出力・大電流用途)に用いられている。ところで、アルカリ蓄電池の負極に用いられる水素吸蔵合金は、一般的には、AB2型構造あるいはAB5型構造の単一相から構成されたものが用いられている。ところが、従来の範囲をはるかに超えた高出力や大電流放電性能が要望されるようになり、希土類−Mg−Ni系水素吸蔵合金のように、AB2型構造とAB5型構造を組み合わせたA27型構造やA519型構造を主相として含むものが提案されるようになった。なお、AB2型構造、AB5型構造、A27型構造、A519型構造において、A成分は希土類とMgの量論比の和を表し、B成分はNi成分と、希土類およびMg以外の成分の量論比の和を表している。 Alkaline batteries with a hydrogen storage alloy in the negative electrode are used for applications requiring high power and large current discharge (high power / high current applications) such as for HEVs because they are excellent in safety. . By the way, generally, the hydrogen storage alloy used for the negative electrode of an alkaline storage battery is composed of a single phase of AB 2 type structure or AB 5 type structure. However, high output and large current discharge performance far exceeding the conventional range have been demanded, and the AB 2 type structure and the AB 5 type structure are combined as in the rare earth-Mg—Ni based hydrogen storage alloy. A structure including an A 2 B 7 type structure or an A 5 B 19 type structure as a main phase has been proposed. In the AB 2 type structure, AB 5 type structure, A 2 B 7 type structure, and A 5 B 19 type structure, the A component represents the sum of the stoichiometric ratio of the rare earth and Mg, the B component is the Ni component, and the rare earth And the sum of the stoichiometric ratios of components other than Mg.

ここで、希土類−Mg−Ni系水素吸蔵合金は、B成分(主に、Ni)の化学量論比によって結構構造が変態し、B成分の化学量論比が増加するに従ってA27型構造からA519型構造が構成されやすくなる。この場合、A519型構造は、AB2型構造が2層とAB5型構造が3層を周期として積み重なり合った構造を含むので、単位結晶格子当たりのニッケル比率を向上させることができるものである。このため、A519型構造を主相として含む(比較的多く含む)希土類−Mg−Ni系水素吸蔵合金を負極に備えたアルカリ蓄電池は、特に優れた高出力を示す電池であるとして、特許文献1や特許文献2や特許文献3等で提案されるようになった。 Here, in the rare earth-Mg—Ni-based hydrogen storage alloy, the structure is transformed by the stoichiometric ratio of the B component (mainly Ni), and the A 2 B 7 type increases as the stoichiometric ratio of the B component increases. A 5 B 19 type structure is easily constructed from the structure. In this case, the A 5 B 19 type structure includes a structure in which the AB 2 type structure and the AB 5 type structure are stacked with a period of 3 layers, so that the nickel ratio per unit crystal lattice can be improved. Is. For this reason, an alkaline storage battery that includes a rare earth-Mg-Ni-based hydrogen storage alloy that includes an A 5 B 19 type structure as a main phase (including a relatively large amount) as a negative electrode is a battery that exhibits particularly high output, It has been proposed in Patent Literature 1, Patent Literature 2, Patent Literature 3, and the like.

近年、HEV用途などに用いられるアルカリ蓄電池において、上述したような従来の範囲を超える高出力で大電流放電性能の他に、コストダウンや、部分充放電使用範囲(例えば、SOC(State Of Charge)が20〜80%の範囲)における出力安定性(SOC変動に伴う出力変動が小さいこと)や、メモリー効果の抑制などの更なる性能向上が要望されるようになった。   In recent years, in alkaline storage batteries used for HEV applications and the like, in addition to the high output and high current discharge performance exceeding the conventional range as described above, cost reduction and partial charge / discharge use range (for example, SOC (State Of Charge)) Is in the range of 20 to 80%), and further improvement in performance such as suppression of the memory effect has been desired.

特開2008−300108号公報JP 2008-300108 A 特開2009−054514号公報JP 2009-054514 A 特開2009−087631号公報JP 2009-07631 A

ここで、コストダウンの要望に対しては、希土類−Mg−Ni系合金の希土類を低コストであるLaに置換した希土類−Mg−Ni系水素吸蔵合金を用いることが検討されている。ところが、Laの含有量を増大させると、希土類−Mg−Ni系水素吸蔵合金の水素平衡圧の平坦性、即ち、出力安定性が顕著に低下するという新たな問題が生じるようになった。そこで、成分設計により水素吸蔵合金の結晶制御の種々の試みを行った結果、所定量のLa量を含む希土類−Mg−Ni系水素吸蔵合金の場合、所定量のMg量とすることにより、結晶構造が安定化し、水素平衡圧の平坦性、即ち、出力安定性を改善できることが分かった。   Here, in response to the demand for cost reduction, use of a rare earth-Mg-Ni hydrogen storage alloy in which rare earth of the rare earth-Mg-Ni alloy is replaced with La, which is low in cost, has been studied. However, when the La content is increased, a new problem arises in that the flatness of the hydrogen equilibrium pressure of the rare earth-Mg-Ni-based hydrogen storage alloy, that is, the output stability is significantly reduced. Therefore, as a result of various attempts to control the crystal of the hydrogen storage alloy by component design, in the case of a rare earth-Mg—Ni-based hydrogen storage alloy containing a predetermined amount of La, by setting a predetermined amount of Mg, It has been found that the structure is stabilized and the flatness of the hydrogen equilibrium pressure, that is, the output stability can be improved.

この場合、所定量のLa量を含む希土類−Mg−Ni系水素吸蔵合金において、Mgの含有量を増加させると、今度は、水素吸蔵合金の微粉化が加速されて、水素吸蔵合金の劣化が進行し易いという新たな問題が生じるようになった。また、所定量のLa量を含む希土類−Mg−Ni系合金の場合、所定量のAl量を含有させることで、水素吸蔵合金の結晶構造を安定化させて、水素平衡圧の平坦性、即ち、出力安定性を改善できることが分かった。   In this case, in the rare earth-Mg—Ni-based hydrogen storage alloy containing a predetermined amount of La, if the Mg content is increased, then the pulverization of the hydrogen storage alloy is accelerated, and the hydrogen storage alloy is deteriorated. A new problem has arisen that is easy to progress. In addition, in the case of a rare earth-Mg-Ni alloy containing a predetermined amount of La, by adding a predetermined amount of Al, the crystal structure of the hydrogen storage alloy is stabilized, and the flatness of the hydrogen equilibrium pressure, that is, It was found that the output stability can be improved.

しかしながら、希土類−Mg−Ni系水素吸蔵合金に含まれるAlは、Niと比較して標準電極電位が卑であるために、アルカリ電解液中に溶出しやすいという問題があった。このため、Alの含有量を増加させた希土類−Mg−Ni系水素吸蔵合金を負極に用いてアルカリ蓄電池を構成する場合、希土類−Mg−Ni系水素吸蔵合金からアルカリ電解液中にAlが溶出し、これがニッケル正極へ移動して正極活物質内に侵入し、アルカリ蓄電池の耐久性(出力耐久性)が低下するといった新たな問題も生じるようになった。   However, Al contained in the rare earth-Mg-Ni-based hydrogen storage alloy has a problem that it easily elutes into the alkaline electrolyte because the standard electrode potential is lower than that of Ni. For this reason, when an alkaline storage battery is constructed using a rare earth-Mg-Ni hydrogen storage alloy with an increased Al content for the negative electrode, Al is eluted from the rare earth-Mg-Ni hydrogen storage alloy into the alkaline electrolyte. However, this has moved to the nickel positive electrode and entered the positive electrode active material, resulting in a new problem that the durability (output durability) of the alkaline storage battery is lowered.

また、アルカリ蓄電池のコストダウンとしてサイズダウン(小型化)した場合、これに伴う水素吸蔵合金負極のサイズダウンにより、出力安定性の低下が顕著に現れる課題があった。さらに、正極活物質中に所定量のZnを含有させることでメモリー効果が抑制されることがわかったが、Zn量を増加させた場合、充電時の電池電圧の立ち上がりが早くなり、出力安定性が低下する課題があった。   In addition, when the size of the alkaline storage battery is reduced (downsized), there is a problem that the output stability is significantly reduced due to the size reduction of the hydrogen storage alloy negative electrode. Furthermore, it has been found that the memory effect is suppressed by containing a predetermined amount of Zn in the positive electrode active material. However, when the Zn amount is increased, the battery voltage rises quickly during charging, and output stability is improved. There was a problem that would decrease.

そこで、本発明は上記した問題を解決するためになされたものであって、希土類−Mg−Ni系水素吸蔵合金の組成の量論比を最適化して、高出力と出力安定性を維持しつつ、電池サイズダウン(小型化)とメモリー効果抑制が可能なアルカリ蓄電池を提供することを目的とするものである。   Therefore, the present invention has been made to solve the above-described problems, and optimizes the stoichiometric ratio of the composition of the rare earth-Mg-Ni-based hydrogen storage alloy while maintaining high output and output stability. An object of the present invention is to provide an alkaline storage battery capable of reducing the battery size and reducing the memory effect.

本発明のアルカリ蓄電池は、水素吸蔵合金を主成分とする水素吸蔵合金負極と、水酸化ニッケルを主成分とするニッケル正極と、セパレータとからなる電極群をアルカリ電解液とともに外装缶内に備えている。そして、上記課題を解決するため、水素吸蔵合金は、一般式がLaNdRe1−x−y−zMgNin−m−vAl(ReはSmであり、T:Co、Mn、Znから選択される少なくとも1種の元素)で表され、かつ、0
.13≦x≦0.34、0.14≦y≦0.60、0.10≦z≦0.15、3.50≦n≦3.75、0.13≦m≦0.22、v≧0の条件を満たすものであることを特徴とする。
The alkaline storage battery of the present invention comprises an electrode group consisting of a hydrogen storage alloy negative electrode mainly composed of a hydrogen storage alloy, a nickel positive electrode mainly composed of nickel hydroxide, and a separator in an outer can together with an alkaline electrolyte. Yes. Then, to solve the above problems, the hydrogen storage alloy, the general formula La x Nd y Re 1-x -y-z Mg z Ni n-m-v Al m T v (Re is Sm, T: At least one element selected from Co, Mn, and Zn), and 0
. 13 ≦ x ≦ 0.34, 0.14 ≦ y ≦ 0.60, 0.10 ≦ z ≦ 0.15, 3.50 ≦ n ≦ 3.75, 0.13 ≦ m ≦ 0.22, v ≧ It satisfies the condition of 0.

ここで、一般式がLaxNdyRe1-x-y-zMgzNin-m-vAlmv(Re:Yを含む希土類元素(LaおよびNdを除く)から選択される少なくとも1種の元素、T:Co、Mn、Znから選択される少なくとも1種の元素)で表される希土類−Mg−Ni系水素吸蔵合金において、0.13≦x≦0.34、0.14≦y≦0.60、0.10≦z≦0.15、3.50≦n≦3.75、0.13≦m≦0.22、v≧0の条件を満たす水素吸蔵合金を負極に用いることで、従来レベルの高出力で、しかも出力安定性を維持し、かつ安価なアルカリ蓄電池を提供することが可能になるとともに、電池サイズダウン、メモリー効果抑制仕様においても高出力性能を維持することが可能となる。 Here, the general formula La x Nd y Re 1-xyz Mg z Ni nmv Al m T v (Re: at least one element selected from rare earth elements (except La and Nd) including Y, T: Co , At least one element selected from Mn and Zn), 0.13 ≦ x ≦ 0.34, 0.14 ≦ y ≦ 0.60, 0 .10 ≦ z ≦ 0.15, 3.50 ≦ n ≦ 3.75, 0.13 ≦ m ≦ 0.22, and v ≧ 0 satisfying the requirements of the prior art by using a hydrogen storage alloy for the negative electrode. It is possible to provide an alkaline storage battery that is low in output and stable in output, and can maintain high output performance even in a battery size reduction and memory effect suppression specification.

この場合、Laの量論比xが0.13以上で、0.34以下(0.13≦x≦0.34)で、かつNdの量論比yが0.14以上で、0.60以下(0.14≦y≦0.60)であると、コストダウンの要望に応えることができるとともに、高出力特性を達成することが可能となる。また、Mgの量論比zが0.16以上になると水素吸蔵合金の微粉化が進行して、耐食性が低下するようになる。一方、Mgの量論比zが0.15以下であると、耐食性特性がそれほど低下していないことが分かった。この場合、Mgの量論比zが0.10よりも小さくなると、水素吸蔵合金の平衡圧が低下して、電池としての機能が損なわれるため、結局、Mgの量論比zは0.10以上で、0.15以下(0.10≦z≦0.15)であるのが望ましいこととなる。   In this case, the La stoichiometric ratio x is 0.13 or more and 0.34 or less (0.13 ≦ x ≦ 0.34), and the Nd stoichiometric ratio y is 0.14 or more and 0.60. Below (0.14 ≦ y ≦ 0.60), it is possible to meet the demand for cost reduction and to achieve high output characteristics. On the other hand, when the Mg stoichiometric ratio z is 0.16 or more, the hydrogen storage alloy is pulverized and the corrosion resistance is lowered. On the other hand, it was found that when the Mg stoichiometric ratio z is 0.15 or less, the corrosion resistance characteristics are not so lowered. In this case, if the Mg stoichiometric ratio z is smaller than 0.10, the equilibrium pressure of the hydrogen storage alloy is lowered and the function as a battery is impaired. Consequently, the Mg stoichiometric ratio z is 0.10. From the above, it is desirable that 0.15 or less (0.10 ≦ z ≦ 0.15).

また、希土類−Mg−Ni系水素吸蔵合金において、A成分(希土類元素とMg)に対するB成分(Niと、希土類、Mg以外)の量論比(n)が3.45と低いと、水素平衡圧が低くなって、SOC20%出力およびSOC50%出力が低下することが明らかになった。一方、量論比(n)が3.75よりも多くなると、水素平衡圧の上昇が大きくなって、耐食性が低下することが明らかになった。これらに対して、A成分に対するB成分の量論比(n)が3.50以上で3.75以下(3.50≦n≦3.75)の範囲内であれば、SOC20%出力およびSOC50%出力が向上し、かつ耐食性特性が維持できることが明らかになった。これらのことから、A成分に対するB成分の量論比(n)が3.50以上で3.75以下(3.50≦n≦3.75)に規制するのが望ましいということができる。   Further, in the rare earth-Mg-Ni hydrogen storage alloy, when the stoichiometric ratio (n) of the B component (Ni, rare earth, other than Mg) to the A component (rare earth element and Mg) is as low as 3.45, the hydrogen equilibrium It became clear that the pressure decreased and the SOC 20% output and the SOC 50% output decreased. On the other hand, when the stoichiometric ratio (n) is greater than 3.75, it has been clarified that the increase in the hydrogen equilibrium pressure increases and the corrosion resistance decreases. On the other hand, if the stoichiometric ratio (n) of the B component to the A component is within the range of 3.50 or more and 3.75 or less (3.50 ≦ n ≦ 3.75), the SOC 20% output and the SOC 50 % Output has been improved and the corrosion resistance characteristics can be maintained. From these facts, it can be said that the stoichiometric ratio (n) of the B component to the A component is preferably regulated to 3.50 or more and 3.75 or less (3.50 ≦ n ≦ 3.75).

また、水素吸蔵合金に添加されるAlの量論比(m)が0.22より多くなると、水素吸蔵合金からアルカリ電解液中にAlが多量に溶出し、これがニッケル正極へ移動して正極活物質内に侵入し、アルカリ蓄電池の耐久性が低下するといった不具合が発生する。一方、水素吸蔵合金に添加されるAlの量論比(m)が0.13未満であると、結晶構造が不安定となって、プラトー性が低下し、安定な出力を取り出すことが困難となる。このため、Alの量論比(m)は0.13以上で0.22以下(0.13≦m≦0.22)に規制するのが望ましいということができる。   Further, when the stoichiometric ratio (m) of Al added to the hydrogen storage alloy is more than 0.22, a large amount of Al is eluted from the hydrogen storage alloy into the alkaline electrolyte, and this is transferred to the nickel positive electrode to be active in the positive electrode. There is a problem that the material enters the substance and the durability of the alkaline storage battery is lowered. On the other hand, if the stoichiometric ratio (m) of Al added to the hydrogen storage alloy is less than 0.13, the crystal structure becomes unstable, the plateau property decreases, and it is difficult to obtain a stable output. Become. For this reason, it can be said that the stoichiometric ratio (m) of Al is desirably regulated to 0.13 or more and 0.22 or less (0.13 ≦ m ≦ 0.22).

以上の結果を総合勘案すると、一般式がLaxNdyRe1-x-y-zMgzNin-m-vAlmv(Re:Yを含む希土類元素(LaおよびNdを除く)から選択される少なくとも1種の元素、T:Co、Mn、Znから選択される少なくとも1種の元素)で表され、かつ、0.13≦x≦0.34、0.14≦y≦0.60、0.10≦z≦0.15、3.50≦n≦3.75、0.13≦m≦0.22、v≧0の条件を満たす水素吸蔵合金を負極に用いるのが望ましいこととなる。なお、元素Tとして、Co、Mn、Znから選択して添加すると、各元素は水素吸蔵に関する性能への影響が小さく、無添加の場合と同様の効果を引き出せる。この場合、元素Tの量論比(v)の上限値は0.10であるのが望ましい。 Taken together consideration of the above results, the general formula La x Nd y Re 1-xyz Mg z Ni nmv Al m T v (Re: rare earth elements including Y (other than La and Nd) at least one selected from Element, T: at least one element selected from Co, Mn, and Zn), and 0.13 ≦ x ≦ 0.34, 0.14 ≦ y ≦ 0.60, 0.10 ≦ z. It is desirable to use, for the negative electrode, a hydrogen storage alloy that satisfies the conditions of ≦ 0.15, 3.50 ≦ n ≦ 3.75, 0.13 ≦ m ≦ 0.22, and v ≧ 0. Note that when the element T is selected from Co, Mn, and Zn, each element has little influence on the performance related to hydrogen storage, and the same effect as in the case of no addition can be obtained. In this case, the upper limit value of the stoichiometric ratio (v) of the element T is desirably 0.10.

ここで、水素吸蔵合金を負極に用いたアルカリ蓄電池において、負極容量α(Ah)と負極表面積β(cm2)の比β/αが60cm2/Ah以上になるのに伴って、負極の構造が薄長くなり、必然的にニッケル正極との対向面積が増加するとともに電池抵抗も小さくなって、高出力化が可能となる。このような高出力化の電池設計(60cm2/Ah≦β/α)を採用する場合には、本発明の水素吸蔵合金を負極に採用するのが好ましい。 Here, in an alkaline storage battery using a hydrogen storage alloy as a negative electrode, the negative electrode structure α as the ratio β / α of the negative electrode capacity α (Ah) and the negative electrode surface area β (cm 2 ) becomes 60 cm 2 / Ah or more. As a result, the area facing the nickel positive electrode is inevitably increased and the battery resistance is reduced, so that high output can be achieved. When such a high power battery design (60 cm 2 / Ah ≦ β / α) is employed, it is preferable to employ the hydrogen storage alloy of the present invention for the negative electrode.

また、正極活物質中に含有される亜鉛の添加量を正極中のニッケル質量に対して2.0質量%以下に低減させることにより、メモリー効果を抑制される。これは、正極活物質中に含有される亜鉛の添加量が減少することで、充放電時の電圧勾配が大きくなり、所定のSOC範囲での電圧差が大きくなるからである。この弊害として、低SOC領域での出力低下が顕著となるため、これを改善するためには、本発明の水素吸蔵合金を負極に採用するのが好ましい。   Moreover, the memory effect is suppressed by reducing the addition amount of zinc contained in the positive electrode active material to 2.0% by mass or less with respect to the mass of nickel in the positive electrode. This is because the voltage gradient during charging / discharging increases and the voltage difference in a predetermined SOC range increases due to a decrease in the amount of zinc contained in the positive electrode active material. As an adverse effect, a decrease in output in a low SOC region becomes remarkable. In order to improve this, it is preferable to employ the hydrogen storage alloy of the present invention for the negative electrode.

本発明においては、高出力で出力安定性を維持した安価な水素吸蔵合金を用いて、電池サイズの小型やメモリー効果の抑制仕様においても出力性能を維持することが可能なアルカリ蓄電池を提供することが可能となる。   In the present invention, by using an inexpensive hydrogen storage alloy that maintains high output and output stability, an alkaline storage battery that can maintain output performance even in a small battery size and in a memory effect suppression specification is provided. Is possible.

本発明の一実施例のアルカリ蓄電池を模式的に示す断面図である。It is sectional drawing which shows typically the alkaline storage battery of one Example of this invention.

ついで、本発明の実施の形態を以下に詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Next, embodiments of the present invention will be described in detail below. However, the present invention is not limited to these embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention.

1.水素吸蔵合金
水素吸蔵合金は以下のようにして作製した。この場合、まず、ランタン(La)、ネオジウム(Nd)、サマリウム(Sm)、マグネシウム(Mg)、ニッケル(Ni)、アルミニウム(Al)を所定のモル比の割合で混合し、この混合物をアルゴンガス雰囲気中で溶解させ、これを溶湯急冷して組成式がLaxNdyRe1-x-y-zMgzNin-m-vAlmv(ただし、式中Reはランタン(La)ネオジウム(Nd)を除く希土類元素から選択された元素で、TはCo,Mn,Znから選択される少なくとも1種の元素)と表される水素吸蔵合金a1〜l1のインゴットを作製した。この後、これらの各水素吸蔵合金a1〜l1の塊を粗粉砕した後、不活性ガス雰囲気中で機械的に粉砕して、体積累積頻度50%での粒径(D50)が25μmの水素吸蔵合金粉末を作製した。
1. Hydrogen storage alloy The hydrogen storage alloy was produced as follows. In this case, first, lanthanum (La), neodymium (Nd), samarium (Sm), magnesium (Mg), nickel (Ni), and aluminum (Al) are mixed at a predetermined molar ratio, and this mixture is mixed with argon gas. dissolved in an atmosphere, which melt quenching composition formula is La x Nd y Re 1-xyz Mg z Ni nmv Al m T v ( where a rare earth element Re in the formula, except for lanthanum (La), neodymium (Nd) Ingots of hydrogen storage alloys a1 to l1 expressed as follows: T is at least one element selected from Co, Mn, and Zn. Thereafter, the masses of these hydrogen storage alloys a1 to l1 are coarsely pulverized and then mechanically pulverized in an inert gas atmosphere to obtain a hydrogen storage having a particle size (D50) of 25 μm at a volume cumulative frequency of 50%. Alloy powder was prepared.

なお、これらの水素吸蔵合金a1〜l1の組成を高周波プラズマ分光法(ICP)によって分析すると、下記の表1に示すように、水素吸蔵合金a1は組成式がLa0.29Nd0.20Sm0.41Mg0.10Ni3.48Al0.15で表されものであることが分かった。同様に、水素吸蔵合金b1は組成式がLa0.32Nd0.17Sm0.40Mg0.11Ni3.47Al0.13で表され、水素吸蔵合金c1は組成式がLa0.34Nd0.15Sm0.40Mg0.11Ni3.52Al0.15で表され、水素吸蔵合金d1は組成式がLa0.32Nd0.22Sm0.35Mg0.11Ni3.50Al0.17で表され、水素吸蔵合金e1は組成式がLa0.31Nd0.18Sm0.40Mg0.11Ni3.54Al0.17で表されるものであることが分かった。 When the compositions of these hydrogen storage alloys a1 to l1 are analyzed by high frequency plasma spectroscopy (ICP), the composition formula of the hydrogen storage alloy a1 is La 0.29 Nd 0.20 Sm 0.41 Mg 0.10 Ni as shown in Table 1 below. It was found to be represented by 3.48 Al 0.15 . Similarly, the composition formula of the hydrogen storage alloy b1 is represented by La 0.32 Nd 0.17 Sm 0.40 Mg 0.11 Ni 3.47 Al 0.13 , and the composition of the hydrogen storage alloy c1 is represented by La 0.34 Nd 0.15 Sm 0.40 Mg 0.11 Ni 3.52 Al 0.15. The hydrogen storage alloy d1 is represented by the composition formula La 0.32 Nd 0.22 Sm 0.35 Mg 0.11 Ni 3.50 Al 0.17 , and the hydrogen storage alloy e1 is represented by the composition formula La 0.31 Nd 0.18 Sm 0.40 Mg 0.11 Ni 3.54 Al 0.17 It turns out that.

また、水素吸蔵合金f1は組成式がLa0.13Nd0.44Sm0.32Mg0.11Ni3.38Al0.17で表され、水素吸蔵合金g1は組成式がLa0.24Nd0.25Sm0.40Mg0.11Ni3.49Al0.22で表され、水素吸蔵合金h1は組成式がNd0.89Mg0.11Ni3.33Al0.17で表されるものであることが分かった。さらに、水素吸蔵合金i1はLa0.52Sm0.36Mg0.12Ni3.60Al0.09で表され、水素吸蔵合金j1はLa0.18Nd0.36Sm0.35Mg0.11Ni3.28Al0.17で表され、水素吸蔵合金k1はLa0.43Nd0.44Mg0.13Ni3.69Al0.10で表され、水素吸蔵合金l1はLa0.38Nd0.34Sm0.13Mg0.15Ni3.47Al0.09で表されるものであることが分かった。 The hydrogen storage alloy f1 is represented by a composition formula of La 0.13 Nd 0.44 Sm 0.32 Mg 0.11 Ni 3.38 Al 0.17 , and the hydrogen storage alloy g1 is represented by a composition formula of La 0.24 Nd 0.25 Sm 0.40 Mg 0.11 Ni 3.49 Al 0.22 , The hydrogen storage alloy h1 was found to have a compositional formula represented by Nd 0.89 Mg 0.11 Ni 3.33 Al 0.17 . Further, the hydrogen storage alloy i1 is represented by La 0.52 Sm 0.36 Mg 0.12 Ni 3.60 Al 0.09 , the hydrogen storage alloy j1 is represented by La 0.18 Nd 0.36 Sm 0.35 Mg 0.11 Ni 3.28 Al 0.17 , and the hydrogen storage alloy k1 is La 0.43 Nd. 0.44 Mg 0.13 Ni 3.69 Al 0.10 , and the hydrogen storage alloy 11 was found to be La 0.38 Nd 0.34 Sm 0.13 Mg 0.15 Ni 3.47 Al 0.09 .

なお、下記の表1には、各水素吸蔵合金a1〜l1を組成式LaxNdyRe1-x-y-zMgzNin-m-vAlmv(TはCo,Mn,Znから選択される少なくとも1種の元素)で表した場合のA成分(希土類元素(La,Nd,Re)とMg)に対するB成分(NiとAlとT)のモル比(B/A=n)の値およびLaのモル比(x),Ndのモル比(y),Re(この場合はSm)のモル比(1−x−y−z),Mgのモル比(z),Niのモル比(n−m−v),Alのモル比(m),T(v)のモル比を示している。 At least one in Table 1 below, the composition formula of each hydrogen absorbing alloy a1~l1 La x Nd y Re 1- xyz Mg z Ni nmv Al m T v (T is selected from among Co, Mn, and Zn The value of the molar ratio (B / A = n) of the B component (Ni, Al, and T) to the A component (rare earth elements (La, Nd, Re) and Mg) and the molar ratio of La (X), Nd molar ratio (y), Re (Sm in this case) molar ratio (1-xyz), Mg molar ratio (z), Ni molar ratio (nmv) ), The molar ratio of Al (m) and the molar ratio of T (v).

Figure 0005717125
Figure 0005717125

2.水素吸蔵合金負極
ついで、上述のようにして作製された水素吸蔵合金a1〜l1の粉末を用いて、以下のようにして水素吸蔵合金負極11を作製した。
この場合、まず、上述のようにして作製された水素吸蔵合金a1〜l1の粉末と、水溶性結着剤と、熱可塑性エラストマーおよび炭素系導電剤とを混合・混練して水素吸蔵合金スラリーを作製した。この場合、水溶性結着剤としては、0.1質量%のCMC(カルボキシメチルセルロース)と水(あるいは純水)とからなるものを使用した。また、熱可塑性エラストマーとしては、スチレンブタジエンラテックス(SBR)を使用した。さらに、炭素系導電剤としては、ケッチェンブラック使用した。
2. Hydrogen Storage Alloy Negative Electrode Next, the hydrogen storage alloy negative electrode 11 was manufactured as follows using the powders of the hydrogen storage alloys a1 to l1 manufactured as described above.
In this case, first, a hydrogen storage alloy slurry is prepared by mixing and kneading the powders of the hydrogen storage alloys a1 to 11 prepared as described above, a water-soluble binder, a thermoplastic elastomer, and a carbon-based conductive agent. Produced. In this case, as the water-soluble binder, a material composed of 0.1% by mass of CMC (carboxymethyl cellulose) and water (or pure water) was used. Further, styrene butadiene latex (SBR) was used as the thermoplastic elastomer. Further, ketjen black was used as the carbon-based conductive agent.

ついで、上述のようにして作製した水素吸蔵合金スラリーを負極用導電性芯体(ニッケルメッキを施した軟鋼材製の多孔性基板(パンチングメタル))に所定の充填密度(例えば、5.0g/cm3)となるように塗着、乾燥させて活物質層を形成させた後、所定の厚みになるように圧延した。この後、水素吸蔵合金負極容量が12Ah、水素吸蔵合金負極表面積が720cm2(負極表面積/負極容量=60cm2/Ah)となるように所定の寸法に切断して、水素吸蔵合金負極11(a,b,c,d,e,f,g,h,i,j,k,l)をそれぞれ作製した。 Next, the hydrogen storage alloy slurry prepared as described above is applied to a negative electrode conductive core (a nickel-plated soft steel porous substrate (punching metal)) with a predetermined filling density (for example, 5.0 g / The active material layer was formed by applying and drying to a thickness of cm 3 ), and then rolling to a predetermined thickness. Thereafter, the hydrogen storage alloy negative electrode capacity is 12 Ah, and the hydrogen storage alloy negative electrode surface area is 720 cm 2 (negative electrode surface area / negative electrode capacity = 60 cm 2 / Ah). , B, c, d, e, f, g, h, i, j, k, l), respectively.

この場合、水素吸蔵合金a1の粉末を用いて作製したものを水素吸蔵合金負極aとした。同様に、水素吸蔵合金b1の粉末を用いて作製したものを水素吸蔵合金負極bとし、水素吸蔵合金c1の粉末を用いて作製したものを水素吸蔵合金負極cとし、水素吸蔵合金d1の粉末を用いて作製したものを水素吸蔵合金負極dとし、水素吸蔵合金e1の粉末を用いて作製したものを水素吸蔵合金負極eとし、水素吸蔵合金f1の粉末を用いて作製したものを水素吸蔵合金負極fとした。   In this case, the hydrogen storage alloy negative electrode a was prepared using the hydrogen storage alloy a1 powder. Similarly, a hydrogen storage alloy negative electrode b is prepared using the hydrogen storage alloy b1 powder, a hydrogen storage alloy negative electrode c is prepared using the hydrogen storage alloy c1 powder, and the hydrogen storage alloy d1 powder is prepared. The hydrogen storage alloy negative electrode d was prepared using the hydrogen storage alloy e1 powder, the hydrogen storage alloy negative electrode e was prepared using the hydrogen storage alloy e1 powder, and the hydrogen storage alloy negative electrode was prepared using the hydrogen storage alloy f1 powder. f.

また、水素吸蔵合金g1の粉末を用いて作製したものを水素吸蔵合金負極gとし、水素吸蔵合金h1の粉末を用いて作製したものを水素吸蔵合金負極hとし、水素吸蔵合金i1の粉末を用いて作製したものを水素吸蔵合金負極iとし、水素吸蔵合金j1の粉末を用いて作製したものを水素吸蔵合金負極jとし、水素吸蔵合金k1の粉末を用いて作製したものを水素吸蔵合金負極kとした。さらに、水素吸蔵合金l1の粉末を用いて作製したものを水素吸蔵合金負極lとした。   Also, a hydrogen storage alloy negative electrode g was prepared using the hydrogen storage alloy g1 powder, a hydrogen storage alloy negative electrode h was prepared using the hydrogen storage alloy h1 powder, and a hydrogen storage alloy i1 powder was used. The hydrogen storage alloy negative electrode i, the hydrogen storage alloy j1 powder prepared using the hydrogen storage alloy negative electrode j, and the hydrogen storage alloy k1 powder prepared using the hydrogen storage alloy k1 powder. It was. Furthermore, what was produced using the powder of hydrogen storage alloy l1 was made into the hydrogen storage alloy negative electrode l.

3.ニッケル正極
ニッケル正極12は、以下のようにして作製した。
まず、多孔度が約85%の多孔性ニッケル焼結基板を比重が1.75の硝酸ニッケルと硝酸コバルトの混合水溶液に浸漬して、多孔性ニッケル焼結基板の細孔内にニッケル塩およびコバルト塩を保持させた。この後、この多孔性ニッケル焼結基板を25質量%の水酸化ナトリウム(NaOH)水溶液中に浸漬して、ニッケル塩およびコバルト塩をそれぞれ水酸化ニッケルおよび水酸化コバルトに転換させた。
ついで、充分に水洗してアルカリ溶液を除去した後、乾燥を行って、多孔性ニッケル焼結基板の細孔内に水酸化ニッケルを主成分とする活物質を充填した。このような活物質充填操作を所定回数(例えば6回)繰り返して、多孔性焼結基板の細孔内に水酸化ニッケルを主体とする活物質の充填密度が2.5g/cm3になるように充填した。この後、室温で乾燥させた後、所定の寸法に切断してニッケル正極12を作製した。
3. Nickel positive electrode The nickel positive electrode 12 was produced as follows.
First, a porous nickel sintered substrate having a porosity of about 85% is immersed in a mixed aqueous solution of nickel nitrate and cobalt nitrate having a specific gravity of 1.75, and nickel salt and cobalt are placed in the pores of the porous nickel sintered substrate. Salt was retained. Thereafter, the porous nickel sintered substrate was immersed in a 25% by mass sodium hydroxide (NaOH) aqueous solution to convert the nickel salt and the cobalt salt into nickel hydroxide and cobalt hydroxide, respectively.
Next, after sufficiently washing with water to remove the alkaline solution, drying was performed, and the active material mainly composed of nickel hydroxide was filled into the pores of the porous nickel sintered substrate. Such an active material filling operation is repeated a predetermined number of times (for example, 6 times) so that the filling density of the active material mainly composed of nickel hydroxide in the pores of the porous sintered substrate becomes 2.5 g / cm 3. Filled. Then, after making it dry at room temperature, it cut | disconnected to the predetermined dimension and the nickel positive electrode 12 was produced.

4.ニッケル−水素蓄電池
ニッケル−水素蓄電池10は、以下のようにして作製した。
まず、上述のように作製された水素吸蔵合金負極11とニッケル正極12とを用い、これらの間に、ポリプロピレン繊維を含む不織布からなるセパレータ13を介在させて渦巻状に巻回して渦巻状電極群を作製した。なお、このようにして作製された渦巻状電極群の下部には水素吸蔵合金負極11の芯体露出部11cが露出しており、その上部にはニッケル正極12の芯体露出部12cが露出している。ついで、得られた渦巻状電極群の下端面に露出する芯体露出部11cに負極集電体14を溶接するとともに、渦巻状電極群の上端面に露出するニッケル正極12の芯体露出部12cの上に正極集電体15を溶接して、電極体とした。
4). Nickel-hydrogen storage battery The nickel-hydrogen storage battery 10 was produced as follows.
First, the hydrogen storage alloy negative electrode 11 and the nickel positive electrode 12 manufactured as described above are used, and a separator 13 made of a nonwoven fabric containing polypropylene fibers is interposed between them, and the spiral electrode group is wound. Was made. The core exposed portion 11c of the hydrogen storage alloy negative electrode 11 is exposed at the lower part of the spiral electrode group thus fabricated, and the core exposed part 12c of the nickel positive electrode 12 is exposed at the upper portion thereof. ing. Next, the negative electrode current collector 14 is welded to the core exposed portion 11c exposed at the lower end surface of the obtained spiral electrode group, and the core exposed portion 12c of the nickel positive electrode 12 exposed at the upper end surface of the spiral electrode group. A positive electrode current collector 15 was welded onto the electrode body to obtain an electrode body.

ついで、得られた電極体を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)16内に収納した後、負極集電体14を外装缶16の内底面に溶接した。一方、正極集電体15より延出する集電リード部15aと、正極端子を兼ねるとともに外周部に絶縁ガスケット18が装着された封口板17とを溶接した。なお、封口板17には正極キャップ17aが設けられていて、この正極キャップ17a内に所定の圧力になると変形する弁体17bとスプリング17cよりなる圧力弁が配置されている。   Next, after the obtained electrode body is housed in a bottomed cylindrical outer can 16 in which iron is nickel-plated (the outer surface of the bottom surface becomes a negative electrode external terminal) 16, the negative electrode current collector 14 is attached to the outer can 16. Welded to the inner bottom. On the other hand, a current collecting lead portion 15a extending from the positive electrode current collector 15 and a sealing plate 17 serving as a positive electrode terminal and having an insulating gasket 18 attached to the outer peripheral portion were welded. The sealing plate 17 is provided with a positive electrode cap 17a, and a pressure valve including a valve body 17b and a spring 17c which are deformed when a predetermined pressure is reached is disposed in the positive electrode cap 17a.

ついで、外装缶16の上部外周部に環状溝部16aを形成した後、電解液を注液し、外装缶16の上部に形成された環状溝部16aの上に封口板17の外周部に装着された絶縁ガスケット18を載置した。この後、外装缶16の開口端縁16bをかしめ、外装缶16内にアルカリ電解液(例えば、30質量%の水酸化カリウム(KOH)水溶液からなる)を電池容量(Ah)当たり2.5g(2.5g/Ah)注入して、ニッケル−水素蓄電池10(A,B,C,D,E,F,G,H,I,J,K,L)を作製した。   Next, after forming the annular groove portion 16 a on the upper outer peripheral portion of the outer can 16, the electrolytic solution was injected, and the outer peripheral portion of the sealing plate 17 was mounted on the annular groove portion 16 a formed on the upper portion of the outer can 16. An insulating gasket 18 was placed. Thereafter, the opening edge 16b of the outer can 16 is caulked, and an alkaline electrolyte (for example, composed of 30% by mass potassium hydroxide (KOH) aqueous solution) is put in the outer can 16 at 2.5 g per battery capacity (Ah) ( 2.5 g / Ah) was injected to produce a nickel-hydrogen storage battery 10 (A, B, C, D, E, F, G, H, I, J, K, L).

この場合、水素吸蔵合金負極aを用いて作製したものを電池Aとし、水素吸蔵合金負極bを用いて作製したものを電池Bとし、水素吸蔵合金負極cを用いて作製したものを電池Cとし、水素吸蔵合金負極dを用いて作製したものを電池Dとし、水素吸蔵合金負極eを用いて作製したものを電池Eとし、水素吸蔵合金負極fを用いて作製したものを電池Fとした。また、水素吸蔵合金負極gを用いて作製したものを電池Gとし、水素吸蔵合金負極hを用いて作製したものを電池Hとし、水素吸蔵合金負極iを用いて作製したものを電池Iとし、水素吸蔵合金負極jを用いて作製したものを電池Jとし、水素吸蔵合金負極kを用いて作製したものを電池Kとした。さらに、水素吸蔵合金負極lを用いて作製したものを電池Lとした。   In this case, the battery A was prepared using the hydrogen storage alloy negative electrode a, the battery B was manufactured using the hydrogen storage alloy negative electrode b, and the battery C was manufactured using the hydrogen storage alloy negative electrode c. A battery D was prepared using the hydrogen storage alloy negative electrode d, a battery E was manufactured using the hydrogen storage alloy negative electrode e, and a battery F was manufactured using the hydrogen storage alloy negative electrode f. In addition, a battery prepared using the hydrogen storage alloy negative electrode g is referred to as a battery G, a battery prepared using the hydrogen storage alloy negative electrode h is referred to as a battery H, and a battery manufactured using the hydrogen storage alloy negative electrode i is referred to as a battery I. A battery J was prepared using the hydrogen storage alloy negative electrode j, and a battery K was prepared using the hydrogen storage alloy negative electrode k. Further, a battery L was prepared using the hydrogen storage alloy negative electrode 1.

5.電池試験
(1)活性化
活性化は、以下のようにして行った。即ち、上述のようにして作製されたニッケル−水素蓄電池10(A,B,C,D,E,F,G,H,I,J,K,L)を電池電圧が放置時ピーク電圧の60%になるまで放置した後、25℃の温度雰囲気で、1Itの充電々流でSOC120%まで充電し、25℃の温度雰囲気で1時間休止する。ついで、70℃の温度雰囲気で24時間放置した後、45℃の温度雰囲気で、1Itの放電々流で電池電圧が0.3Vになるまで放電させるサイクルを2サイクル繰り返した。
5. Battery test (1) Activation Activation was performed as follows. That is, the nickel-hydrogen storage battery 10 (A, B, C, D, E, F, G, H, I, J, K, L) manufactured as described above has a peak voltage of 60 when left unattended. Then, the battery is charged to SOC 120% with a charging current of 1 It in a temperature atmosphere of 25 ° C., and rested in a temperature atmosphere of 25 ° C. for 1 hour. Then, after being allowed to stand for 24 hours in a temperature atmosphere at 70 ° C., a cycle in which the battery voltage was 0.3 V with a discharge current of 1 It in a temperature atmosphere of 45 ° C. was repeated two times.

(2)出力特性(−10℃アシスト出力)
出力安定性を調べるために、出力特性(−10℃アシスト出力)を以下のようにして求めた。
まず、上述のようにして活性化したニッケル−水素蓄電池10(A,B,C,D,E,F,G,H,I,J,K,L)を25℃の温度雰囲気で1Itの充電々流でSOC50%まで充電した後、−10℃の温度雰囲気で1時間休止させた。ついで、−10℃の温度雰囲気で、任意の充電レートで20秒間充電させた後、−10℃の温度雰囲気で30分間休止させた。この後、−10℃の温度雰囲気で、任意の放電レートで10秒間放電させた後、−10℃の温度雰囲気で30分間休止させた。このような−10℃の温度雰囲気で、任意の充電レートでの20秒間充電、30分の休止、任意の放電レートで10秒間放電、−10℃の温度雰囲気での30分の休止を繰り返した。
(2) Output characteristics (-10 ° C assist output)
In order to investigate the output stability, the output characteristics (−10 ° C. assist output) were determined as follows.
First, the nickel-hydrogen storage battery 10 (A, B, C, D, E, F, G, H, I, J, K, L) activated as described above is charged at 1 It in a temperature atmosphere of 25 ° C. After charging up to 50% SOC, the battery was rested in a temperature atmosphere of −10 ° C. for 1 hour. Next, the battery was charged for 20 seconds at an arbitrary charging rate in a temperature atmosphere of −10 ° C., and then rested for 30 minutes in a temperature atmosphere of −10 ° C. Thereafter, the battery was discharged for 10 seconds at an arbitrary discharge rate in a temperature atmosphere of −10 ° C., and then rested in a temperature atmosphere of −10 ° C. for 30 minutes. In such a temperature atmosphere of −10 ° C., charging for 20 seconds at an arbitrary charging rate, pause for 30 minutes, discharging for 10 seconds at an arbitrary discharge rate, and pause for 30 minutes in a temperature atmosphere of −10 ° C. were repeated. .

この場合、任意の充電レートは、0.8It→1.7It→2.5It→3.3It→4.2Itの順で充電々流を増加させ、任意の放電レートは、1.7It→3.3It→5.0It→6.7It→8.3Itの順で放電々流を増加させるようにして、0.8It充電→1.7It放電→1.7It充電→3.3It放電→2.5It充電→5.0It放電→3.3It充電→6.7It放電→4.2It充電→8.3It放電の充放電処理を行った。このとき、各放電レートで10秒間経過時点での各電池の電池電圧(V)を放電レート毎に測定した。ついで、測定した10秒間経過時点での各電池A,B,C,D,E,F,G,H,I,J,K,Lの電池電圧(V)を放電レート毎の放電々流値に対して2次元プロットし、電池電圧と放電々流値の関係を示す近似曲線を求め、近似曲線における0.9V時の放電々流値を−10℃でのSOC50%出力特性(−10℃でのSOC50%アシスト出力)として求めると、下記の表2に示すような結果となった。   In this case, the charging rate is increased in the order of 0.8 It → 1.7 It → 2.5 It → 3.3 It → 4.2 It, and the arbitrary discharging rate is 1.7 It → 3. The discharge current is increased in the order of 3 It → 5.0 It → 6.7 It → 8.3 It so that 0.8 It charge → 1.7 It discharge → 1.7 It charge → 3.3 It discharge → 2.5 It charge → 5.0 It discharge → 3.3 It charge → 6.7 It discharge → 4.2 It charge → 8.3 It discharge / discharge treatment was performed. At this time, the battery voltage (V) of each battery at the time when 10 seconds passed at each discharge rate was measured for each discharge rate. Next, the measured battery voltage (V) of each of the batteries A, B, C, D, E, F, G, H, I, J, K, and L at the time when the measured 10 seconds elapsed is the discharge current value for each discharge rate. 2 is plotted to obtain an approximate curve showing the relationship between the battery voltage and the discharge current value, and the discharge current value at 0.9 V in the approximate curve is expressed as an SOC 50% output characteristic at −10 ° C. (−10 ° C. As a result, the results shown in Table 2 below were obtained.

また、活性化したニッケル−水素蓄電池10(A,B,C,D,E,F,G,H,I,J,K,L)を25℃の温度雰囲気で1Itの充電々流でSOC20%まで充電した以外、上記と同様にしてSOC20%出力特性(−10℃でのSOC20%アシスト出力)として求めると、下記の表2に示すような結果となった。なお、下記の表2においては、電池Hの−10℃でのSOC50%アシスト出力およびSOC20%アシスト出力を100とし、他の電池A,B,C,D,E,F,G,I,J,K,Lのアシスト出力はそれとの比で示している。   In addition, the activated nickel-hydrogen storage battery 10 (A, B, C, D, E, F, G, H, I, J, K, L) is SOC 20% with a charging current of 1 It in a temperature atmosphere of 25 ° C. When the SOC 20% output characteristics (SOC 20% assist output at −10 ° C.) were obtained in the same manner as above except that the battery was charged up to the above, the results shown in Table 2 below were obtained. In Table 2 below, SOC 50% assist output and SOC 20% assist output at −10 ° C. of the battery H are defined as 100, and other batteries A, B, C, D, E, F, G, I, J , K, L assist outputs are shown as a ratio to them.

(3)負極放電リザーブ(耐食性)
ついで、上述したニッケル−水素蓄電池10(A,B,C,D,E,F,G,H,I,J,K,L)を用い、以下のようにして負極放電リザーブ(耐食性特性)を求めた。この場合、まず、各ニッケル−水素蓄電池10(A,B,C,D,E,F,G,H,I,J,K,L)を開放して電解液リッチな状態にするとともに、開放した各電池に参照極(Hg/HgO)を配置する。ついで、正極活物質が完全に放電状態となった後、25℃の温度雰囲気において、1.0Itの放電々流で負極電位が参照極(Hg/HgO)に対して0.3V(絶対値)になるまで放電させ、このときの放電時間から負極の1It放電時の容量を求めた。
(3) Negative electrode discharge reserve (corrosion resistance)
Next, using the above-described nickel-hydrogen storage battery 10 (A, B, C, D, E, F, G, H, I, J, K, L), the negative electrode discharge reserve (corrosion resistance characteristics) is performed as follows. Asked. In this case, first, each nickel-hydrogen storage battery 10 (A, B, C, D, E, F, G, H, I, J, K, L) is opened to make the electrolyte rich state and open. A reference electrode (Hg / HgO) is arranged in each battery. Next, after the positive electrode active material is completely discharged, the negative electrode potential is 0.3 V (absolute value) with respect to the reference electrode (Hg / HgO) at a discharge current of 1.0 It in a temperature atmosphere of 25 ° C. Then, the capacity at the time of 1 It discharge of the negative electrode was determined from the discharge time at this time.

この後、25℃の温度雰囲気において、10分間放電を休止させた後、0.1Itの放電々流で負極電位が参照極(Hg/HgO)に対して0.3V(絶対値)になるまで放電させ、このときの放電時間から負極の0.1It放電時の容量を求めた。そして、求めた1It放電時の負極放電容量と0.1It放電時の負極放電容量の和(負極放電リザーブ)を求め、水素吸蔵合金負極の理論容量に対するこれらの負極放電容量の和(負極放電リザーブ)の比率(負極放電リザーブ/負極の理論容量)を負極酸化量として求めた。そして、求めた負極酸化量から耐食性指標としての負極表面積当たりの電気化学的酸化量(負極酸化量×平均粒径)を耐食性の指標として求めると、下記の表2に示すような結果となった。   Then, after stopping the discharge for 10 minutes in a temperature atmosphere of 25 ° C., until the negative electrode potential becomes 0.3 V (absolute value) with respect to the reference electrode (Hg / HgO) with a discharge current of 0.1 It. It was made to discharge, and the capacity | capacitance at the time of 0.1 It discharge of a negative electrode was calculated | required from the discharge time at this time. Then, the sum of the obtained negative electrode discharge capacity at 1 It discharge and the negative electrode discharge capacity at 0.1 It discharge (negative electrode discharge reserve) is obtained, and the sum of these negative electrode discharge capacities with respect to the theoretical capacity of the hydrogen storage alloy negative electrode (negative electrode discharge reserve). ) Ratio (negative electrode discharge reserve / negative electrode theoretical capacity) was determined as the negative electrode oxidation amount. Then, when the electrochemical oxidation amount per negative electrode surface area (negative electrode oxidation amount × average particle size) as a corrosion resistance index was determined from the determined negative electrode oxidation amount as a corrosion resistance index, the results shown in Table 2 below were obtained. .

なお、下記の表2においては、電池Hの負極hの表面積当たりの電気化学的酸化量を100とし、他の電池A,B,C,D,E,F,G,I,J,K,Lの負極a,b,c,d,e,f,g,i,j,k,lの電気化学的酸化量(負極酸化量×平均粒径)はそれとの比で示している。   In Table 2 below, the amount of electrochemical oxidation per surface area of the negative electrode h of the battery H is defined as 100, and other batteries A, B, C, D, E, F, G, I, J, K, The electrochemical oxidation amount (negative electrode oxidation amount × average particle size) of the negative electrodes a, b, c, d, e, f, g, i, j, k, and l of L is shown as a ratio to that.

Figure 0005717125
Figure 0005717125

6.試験結果
(1)水素吸蔵合金の組成におけるLaの量論比(x)およびNdの量論比(y)について
ここで、電池Hに用いられた負極hのように、希土類をLaに置換することがない水素吸蔵合金h1を用いると、その水素吸蔵合金h1の価格が高価となるため、コストダウンの要望に応えることができないので、希土類をLaに置換することがない水素吸蔵合金を用いることは好ましくないということができる。
6). Test results (1) Regarding the stoichiometric ratio (x) of La and the stoichiometric ratio (y) of Nd in the composition of the hydrogen storage alloy Here, as in the negative electrode h used in the battery H, the rare earth is replaced with La. When using a hydrogen storage alloy h1 that does not occur, the price of the hydrogen storage alloy h1 becomes expensive, so it is not possible to meet the demand for cost reduction, so use a hydrogen storage alloy that does not replace rare earth with La. Is not preferred.

一方、コストダウンの要望に応えるために、希土類−Mg−Ni系合金の希土類を低コストであるLaに置換した希土類−Mg−Ni系水素吸蔵合金を用いた場合、電池I,K,Lに用いられた負極i,k,lのように、Laの含有量を増大させる(Laの量論比xが0.52、0.43、0.38と大きい)と、電池HよりもSOC20%出力およびSOC50%出力の低下が起きることが分かる。なお、電池Jに用いられた負極jのように、Laの含有量を減少させる(Laの量論比xは0.18である)と、電池Hに比較してSOC20%出力およびSOC50%出力がそれほど低下しないことが分かる。   On the other hand, in order to meet the demand for cost reduction, when using a rare earth-Mg-Ni hydrogen storage alloy in which the rare earth of the rare earth-Mg-Ni alloy is replaced with La, which is low cost, the batteries I, K, and L are used. When the La content is increased as in the negative electrodes i, k, and l used (the stoichiometric ratio x of La is larger as 0.52, 0.43, and 0.38), the SOC is 20% than that of the battery H. It can be seen that the output and SOC 50% output decrease. In addition, like the negative electrode j used for the battery J, when the La content is decreased (La stoichiometric ratio x is 0.18), the SOC 20% output and the SOC 50% output are compared with the battery H. It can be seen that does not decrease so much.

一方、電池A〜Gに用いられた負極a〜gのように、Laの量論比xが0.13以上で、0.34以下(0.13≦x≦0.34)で、かつNdの量論比yが0.14以上で、0.60以下(0.14≦y≦0.60)であると、電池Hに比較してSOC20%出力およびSOC50%出力が同等かそれ以上であることが分かる。このことから、Laの量論比xが0.13以上で、0.34以下(0.13≦x≦0.34)で、かつNdの量論比yが0.14以上で、0.60以下(0.14≦y≦0.60)である水素吸蔵合金を用いることにより、コストダウンの要望に応えることができるとともに、高出力特性を達成することが可能となる。   On the other hand, as in the negative electrodes a to g used in the batteries A to G, the stoichiometric ratio x of La is 0.13 or more, 0.34 or less (0.13 ≦ x ≦ 0.34), and Nd When the stoichiometric ratio y is 0.14 or more and 0.60 or less (0.14 ≦ y ≦ 0.60), the SOC 20% output and the SOC 50% output are equal to or higher than those of the battery H. I understand that there is. From this, the stoichiometric ratio x of La is 0.13 or more, 0.34 or less (0.13 ≦ x ≦ 0.34), and the stoichiometric ratio y of Nd is 0.14 or more. By using a hydrogen storage alloy that is 60 or less (0.14 ≦ y ≦ 0.60), it is possible to meet the demand for cost reduction and achieve high output characteristics.

(2)水素吸蔵合金の組成におけるMgの量論比(z)について
電池A〜Lに用いられた負極a〜lのように、Mgの量論比zが0.10以上で0.15以下(0.10≦z≦0.15)であると、耐食性が良好であることが分かる。このことから、Mgの量論比zが0.10以上で0.15以下(0.10≦z≦0.15)である水素吸蔵合金を用いるのが望ましいということができる。
(2) About the stoichiometric ratio (z) of Mg in the composition of the hydrogen storage alloy As in the negative electrodes a to l used in the batteries A to L, the stoichiometric ratio z of Mg is 0.10 or more and 0.15 or less. It turns out that corrosion resistance is favorable in it being (0.10 <= z <= 0.15). From this, it can be said that it is desirable to use a hydrogen storage alloy having a Mg stoichiometric ratio z of 0.10 or more and 0.15 or less (0.10 ≦ z ≦ 0.15).

(3)水素吸蔵合金の組成におけるA成分に対するB成分の量論比(n)について
電池Jに用いられた負極jのように、Laの量論比xが0.13以上で、0.34以下(0.13≦x≦0.34)であっても、A成分に対するB成分の量論比(n)が3.45と低いと、SOC20%出力およびSOC50%出力が低下していることが分かる。これは、量論比(n)が3.50未満であると水素平衡圧が低くなるためと考えられる。
一方、電池A〜Gに用いられた負極a〜gのように、A成分に対するB成分の量論比(n)が3.50以上で3.75以下(3.50≦n≦3.75)の範囲内であれば、SOC20%出力およびSOC50%出力が向上し、かつ耐食性特性が維持できているので、A成分に対するB成分の量論比(n)が3.50以上で3.75以下(3.50≦n≦3.75)に規制するのが望ましいということができる。
(3) Regarding the stoichiometric ratio (n) of the B component to the A component in the composition of the hydrogen storage alloy As in the negative electrode j used in the battery J, the stoichiometric ratio x of La is 0.13 or more and 0.34 Even below (0.13 ≦ x ≦ 0.34), if the stoichiometric ratio (n) of the B component to the A component is as low as 3.45, the SOC 20% output and the SOC 50% output are reduced. I understand. This is presumably because the hydrogen equilibrium pressure decreases when the stoichiometric ratio (n) is less than 3.50.
On the other hand, as in the negative electrodes a to g used in the batteries A to G, the stoichiometric ratio (n) of the B component to the A component is 3.50 or more and 3.75 or less (3.50 ≦ n ≦ 3.75). ), The SOC 20% output and the SOC 50% output are improved and the corrosion resistance characteristics can be maintained. Therefore, the stoichiometric ratio (n) of the B component to the A component is 3.50 or more and 3.75. It can be said that it is desirable to restrict to the following (3.50 ≦ n ≦ 3.75).

(4)水素吸蔵合金の組成におけるAlの量論比(m)について
Alの量論比(m)が0.23より多くなると、水素吸蔵合金からアルカリ電解液中にAlが多量に溶出し、これがニッケル正極へ移動して正極活物質内に侵入し、アルカリ蓄電池の耐久性が低下するといった不具合が発生する。一方、Alの量論比(m)が0.13未満であると結晶構造が不安定になり、プラトー性が低下、安定な出力を取り出すことが困難となる。このため、Alの量論比(m)は0.13以上で0.22以下(0.13≦m≦0.22)に規制するのが望ましいということができる。
(4) About the stoichiometric ratio (m) of Al in the composition of the hydrogen storage alloy When the stoichiometric ratio (m) of Al exceeds 0.23, a large amount of Al is eluted from the hydrogen storage alloy into the alkaline electrolyte, This moves to the nickel positive electrode and enters the positive electrode active material, causing a problem that the durability of the alkaline storage battery is lowered. On the other hand, if the Al stoichiometric ratio (m) is less than 0.13, the crystal structure becomes unstable, the plateau property is lowered, and it becomes difficult to obtain a stable output. For this reason, it can be said that the stoichiometric ratio (m) of Al is desirably regulated to 0.13 or more and 0.22 or less (0.13 ≦ m ≦ 0.22).

以上の結果を総合勘案すると、一般式がLaxNdyRe1-x-y-zMgzNin-m-vAlmv(Re:Yを含む希土類元素(LaおよびNdを除く)から選択される少なくとも1種の元素、T:Co、Mn、Znから選択される少なくとも1種の元素)で表され、かつ、0.13≦x≦0.34、0.14≦y≦0.60、0.10≦z≦0.15、3.50≦n≦3.75、0.13≦m≦0.22、v≧0の条件を満たす水素吸蔵合金を負極に用いることで、従来レベルの高出力且出力安定性を維持し、しかも安価な水素吸蔵合金負極を備えたアルカリ蓄電池を提供するとともに、電池サイズダウン、メモリー効果抑制仕様においても出力性能を維持することが可能となる。 Taken together consideration of the above results, the general formula La x Nd y Re 1-xyz Mg z Ni nmv Al m T v (Re: rare earth elements including Y (other than La and Nd) at least one selected from Element, T: at least one element selected from Co, Mn, and Zn), and 0.13 ≦ x ≦ 0.34, 0.14 ≦ y ≦ 0.60, 0.10 ≦ z. ≦ 0.15, 3.50 ≦ n ≦ 3.75, 0.13 ≦ m ≦ 0.22, v ≧ 0 satisfying the requirements of high output and stable output by using hydrogen storage alloy for negative electrode In addition, it is possible to provide an alkaline storage battery having an inexpensive hydrogen storage alloy negative electrode, and to maintain output performance even in a battery size down and memory effect suppression specification.

なお、上述した実施形態においては、元素Tが無添加(v=0)の水素吸蔵合金を用いる例について説明したが、元素Tとして、Co、Mn、Znから選択して添加しても、無添加の場合と同様の効果を引き出せる。この場合、元素Tの量論比(v)の上限値は0.10とするのが望ましい
In the above-described embodiment, the example using the hydrogen storage alloy in which the element T is not added (v = 0) has been described. However, even if the element T is selected from Co, Mn, and Zn, it may be added. The same effect as in the case of addition can be brought out. In this case, it is desirable that the upper limit value of the stoichiometric ratio (v) of the element T is 0.10 .

さらに、水素吸蔵合金を負極に用いたアルカリ蓄電池においては、負極容量α(Ah)と負極表面積β(cm2)の比β/αが大きくなる(特に、β/αが60cm2/Ah以上)に伴って、負極の構造が薄長くなり、必然的にニッケル正極との対向面積が増加するとともに電池抵抗も小さくなって、高出力化が可能となる。このような高出力化の電池設計(60cm2/Ah≦β/α)を採用する場合には、上述した本発明の水素吸蔵合金を負極に採用するのが好ましい。 Furthermore, in an alkaline storage battery using a hydrogen storage alloy for the negative electrode, the ratio β / α between the negative electrode capacity α (Ah) and the negative electrode surface area β (cm 2 ) is increased (particularly β / α is 60 cm 2 / Ah or more). Along with this, the structure of the negative electrode becomes thin and long, the area facing the nickel positive electrode inevitably increases, and the battery resistance also decreases, enabling high output. When such a high-power battery design (60 cm 2 / Ah ≦ β / α) is employed, the above-described hydrogen storage alloy of the present invention is preferably employed for the negative electrode.

また、正極活物質中に含有される亜鉛の添加量を正極中のニッケル質量に対して2.0質量%以下に低減させることにより、メモリー効果を抑制される。これは、正極活物質中に含有される亜鉛の添加量が減少することで、充放電時の電圧勾配が大きくなり、所定のSOC範囲での電圧差が大きくなるからである。この弊害として、低SOC領域での出力低下が顕著となるため、これを改善するためには、本発明の水素吸蔵合金を負極に採用するのが好ましい。   Moreover, the memory effect is suppressed by reducing the addition amount of zinc contained in the positive electrode active material to 2.0% by mass or less with respect to the mass of nickel in the positive electrode. This is because the voltage gradient during charging / discharging increases and the voltage difference in a predetermined SOC range increases due to a decrease in the amount of zinc contained in the positive electrode active material. As an adverse effect, a decrease in output in a low SOC region becomes remarkable. In order to improve this, it is preferable to employ the hydrogen storage alloy of the present invention for the negative electrode.

11…水素吸蔵合金負極、11c…芯体露出部、12…ニッケル正極、12c…芯体露出部、13…セパレータ、14…負極集電体、15…正極集電体、15a…正極用リード、16…外装缶、16a…環状溝部、16b…開口端縁、17…封口板、17a…正極キャップ、17b…弁板、17c…スプリング、18…絶縁ガスケット DESCRIPTION OF SYMBOLS 11 ... Hydrogen storage alloy negative electrode, 11c ... Core exposed part, 12 ... Nickel positive electrode, 12c ... Core exposed part, 13 ... Separator, 14 ... Negative electrode collector, 15 ... Positive electrode collector, 15a ... Lead for positive electrode, DESCRIPTION OF SYMBOLS 16 ... Exterior can, 16a ... Circular groove part, 16b ... Opening edge, 17 ... Sealing plate, 17a ... Positive electrode cap, 17b ... Valve plate, 17c ... Spring, 18 ... Insulation gasket

Claims (3)

水素吸蔵合金を主成分とする水素吸蔵合金負極と、水酸化ニッケルを主成分とするニッケル正極と、セパレータとからなる電極群をアルカリ電解液とともに外装缶内に備えたアルカリ蓄電池であって、
前記水素吸蔵合金は、一般式がLaNdRe1−x−y−zMgNin−m−vAl(ReはSmであり、T:Co、Mn、Znから選択される少なくとも1種の元素)で表され、かつ、0.13≦x≦0.34、0.14≦y≦0.60、0.10≦z≦0.15、3.50≦n≦3.75、0.13≦m≦0.22、v≧0の条件を満たすものであることを特徴とするアルカリ蓄電池。
An alkaline storage battery comprising an electrode group consisting of a hydrogen storage alloy negative electrode mainly composed of a hydrogen storage alloy, a nickel positive electrode mainly composed of nickel hydroxide, and a separator together with an alkaline electrolyte in an outer can,
The hydrogen storage alloy is represented by the general formula is La x Nd y Re 1-x -y-z Mg z Ni n-m-v Al m T v (Re is Sm, T: Co, Mn, is selected from Zn At least one element) and 0.13 ≦ x ≦ 0.34, 0.14 ≦ y ≦ 0.60, 0.10 ≦ z ≦ 0.15, 3.50 ≦ n ≦ 3 .75, 0.13 ≦ m ≦ 0.22, and v ≧ 0.
前記水素吸蔵合金負極の負極容量をα(Ah)とし、同水素吸蔵合金負極の負極表面積をβ(cm)としたしたときの負極容量に対する負極表面積の比(β/α)が60cm/Ah以上であることを特徴とする請求項1に記載のアルカリ蓄電池。 When the negative electrode capacity of the hydrogen storage alloy negative electrode is α (Ah) and the negative electrode surface area of the hydrogen storage alloy negative electrode is β (cm 2 ), the ratio of the negative electrode surface area to the negative electrode capacity (β / α) is 60 cm 2 / It is Ah or more, The alkaline storage battery of Claim 1 characterized by the above-mentioned. 前記ニッケル正極に含有される亜鉛(Zn)の含有量はニッケル(Ni)の含有量に対して2.0質量%以下であることを特徴とする請求項1または請求項2に記載のアルカリ蓄電池。   The alkaline storage battery according to claim 1 or 2, wherein a content of zinc (Zn) contained in the nickel positive electrode is 2.0 mass% or less with respect to a content of nickel (Ni). .
JP2010243854A 2010-10-29 2010-10-29 Alkaline storage battery Active JP5717125B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010243854A JP5717125B2 (en) 2010-10-29 2010-10-29 Alkaline storage battery
PCT/JP2011/075046 WO2012057351A1 (en) 2010-10-29 2011-10-31 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010243854A JP5717125B2 (en) 2010-10-29 2010-10-29 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2012099250A JP2012099250A (en) 2012-05-24
JP5717125B2 true JP5717125B2 (en) 2015-05-13

Family

ID=45994052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243854A Active JP5717125B2 (en) 2010-10-29 2010-10-29 Alkaline storage battery

Country Status (2)

Country Link
JP (1) JP5717125B2 (en)
WO (1) WO2012057351A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5861099B2 (en) * 2013-03-29 2016-02-16 パナソニックIpマネジメント株式会社 Alloy powder for electrode, negative electrode for nickel metal hydride storage battery and nickel metal hydride storage battery using the same
JP6422017B2 (en) * 2014-09-30 2018-11-14 株式会社Gsユアサ Hydrogen storage alloy, electrode and nickel metal hydride storage battery
US10323301B2 (en) 2014-09-30 2019-06-18 Gs Yuasa International Ltd. Hydrogen storing alloy, electrode, and nickel-hydrogen storage battery
JP6394955B2 (en) * 2014-09-30 2018-09-26 株式会社Gsユアサ Hydrogen storage alloy, electrode and nickel metal hydride storage battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5213312B2 (en) * 2006-05-17 2013-06-19 三洋電機株式会社 Alkaline storage battery
JP2008084649A (en) * 2006-09-27 2008-04-10 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method
JP5171114B2 (en) * 2007-05-30 2013-03-27 三洋電機株式会社 Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP5196938B2 (en) * 2007-09-28 2013-05-15 三洋電機株式会社 Alkaline storage battery system
JP5207750B2 (en) * 2008-01-29 2013-06-12 三洋電機株式会社 Alkaline storage battery
JP5405167B2 (en) * 2009-03-26 2014-02-05 三洋電機株式会社 Alkaline storage battery system
JP5512176B2 (en) * 2009-06-24 2014-06-04 三洋電機株式会社 Alkaline storage battery and alkaline storage battery system
JP5507140B2 (en) * 2009-07-16 2014-05-28 三洋電機株式会社 Hydrogen storage alloy for nickel-hydrogen secondary battery and nickel-hydrogen secondary battery

Also Published As

Publication number Publication date
JP2012099250A (en) 2012-05-24
WO2012057351A1 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
JP5425433B2 (en) Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material
US9105947B2 (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery and alkaline storage battery system each including negative electrode having the alloy
JP5173320B2 (en) Hydrogen storage alloy electrode and alkaline storage battery using this hydrogen storage alloy electrode
JP5207750B2 (en) Alkaline storage battery
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2008084649A (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method
EP2690690B1 (en) Nickel-metal hydride secondary cell and negative electrode therefor
EP2234189A1 (en) Alkaline storage battery system with partial charge-discharge
JP5717125B2 (en) Alkaline storage battery
JP2012156101A (en) Hydrogen-storing alloy electrode for alkaline storage battery, and alkaline storage battery comprising the same
JP5322392B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP5512176B2 (en) Alkaline storage battery and alkaline storage battery system
EP2096691B1 (en) Hydrogen storage alloy and alkaline storage battery employing hydrogen storage alloy as negative electrode active material
JP5252920B2 (en) Alkaline storage battery
JP6105389B2 (en) Alkaline storage battery
JP5213312B2 (en) Alkaline storage battery
JP5247170B2 (en) Alkaline storage battery
WO2014050075A1 (en) Storage cell system
JP2013178882A (en) Alkaline storage battery
JP2013134903A (en) Hydrogen absorbing alloy for alkaline storage battery, and alkaline storage battery including the same
JP5334498B2 (en) Alkaline storage battery
JP2006236692A (en) Nickel hydrogen storage battery
JP4573609B2 (en) Alkaline storage battery
WO2012165519A1 (en) Alkaline storage cell and alkaline storage cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131008

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150311

R150 Certificate of patent or registration of utility model

Ref document number: 5717125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150