JP5247170B2 - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP5247170B2
JP5247170B2 JP2008018827A JP2008018827A JP5247170B2 JP 5247170 B2 JP5247170 B2 JP 5247170B2 JP 2008018827 A JP2008018827 A JP 2008018827A JP 2008018827 A JP2008018827 A JP 2008018827A JP 5247170 B2 JP5247170 B2 JP 5247170B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
negative electrode
battery
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008018827A
Other languages
Japanese (ja)
Other versions
JP2009181768A (en
Inventor
吉宣 片山
周平 吉田
和明 田村
輝人 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008018827A priority Critical patent/JP5247170B2/en
Publication of JP2009181768A publication Critical patent/JP2009181768A/en
Application granted granted Critical
Publication of JP5247170B2 publication Critical patent/JP5247170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、ハイブリッド車(HEV:Hybrid Electric Vehicle)や電気自動車(PEV:Pure Electric Vehicle)等の大電流放電を要する用途に適したアルカリ蓄電池に係わり、特に、水素吸蔵合金を負極活物質とするとともに非水溶性高分子からなる糊材と炭素系導電剤とを含有する水素吸蔵合金負極と、正極と、これらの両極を隔離するセパレータと、アルカリ電解液とを外装缶内に備えたアルカリ蓄電池に関する。   The present invention relates to an alkaline storage battery suitable for applications requiring a large current discharge such as a hybrid electric vehicle (HEV) or an electric vehicle (PEV), and in particular, a hydrogen storage alloy is used as a negative electrode active material. And a hydrogen storage alloy negative electrode containing a paste material made of a water-insoluble polymer and a carbon-based conductive agent, a positive electrode, a separator that separates both electrodes, and an alkaline electrolyte in an outer can. About.

近年、ハイブリッド車(HEV)や電気自動車(PEV)などの出力が求められる機器の電源用としてアルカリ蓄電池、特に、ニッケル−水素蓄電池が用いられるようになった。一般的に、ニッケル−水素蓄電池の負極活物質として用いられる水素吸蔵合金は、LaNi5等のAB5型希土類水素吸蔵合金のB成分(Ni)の一部をアルミニウム(Al)やマンガン(Mn)等の元素で置換したものが用いられている。このようなAB5型希土類水素吸蔵合金以外にも、AB2型構造なども知られている。また、AB2型構造とAB5型構造とを組み合わせることで種々の結晶構造をとることも知られている。 In recent years, alkaline storage batteries, particularly nickel-hydrogen storage batteries, have been used as power sources for devices that require output such as hybrid vehicles (HEV) and electric vehicles (PEV). Generally, a hydrogen storage alloy used as a negative electrode active material of a nickel-hydrogen storage battery is a part of the B component (Ni) of an AB 5 type rare earth hydrogen storage alloy such as LaNi 5 which is aluminum (Al) or manganese (Mn). Those substituted with an element such as are used. In addition to the AB 5 type rare earth hydrogen storage alloy, an AB 2 type structure is also known. It is also known to take various crystal structures by combining an AB 2 type structure and an AB 5 type structure.

これらのうち、AB2型構造とAB5型構造とが2層を周期として重なり合ったA27型構造の水素吸蔵合金が、例えば特許文献1(特開2002−164045号公報)等で種々検討されるようになった。このA27型構造の水素吸蔵合金は六方晶系の結晶構造(2H)を有しており、水素の吸蔵・放出のサイクル寿命特性を向上させることが可能である。ところが、A27型構造の水素吸蔵合金は、放電特性(アシスト出力)が不十分で、従来の範囲を遥かに越えた出力用途としては満足いく性能を有していないという問題があった。 Among these, various hydrogen storage alloys having an A 2 B 7 type structure in which an AB 2 type structure and an AB 5 type structure overlap each other with a period of two layers are disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-164045. It came to be considered. This hydrogen storage alloy having an A 2 B 7 type structure has a hexagonal crystal structure (2H), and can improve the cycle life characteristics of hydrogen storage / release. However, the hydrogen storage alloy of the A 2 B 7 type structure has a problem that the discharge characteristics (assist output) are insufficient and the performance is not satisfactory for output applications far exceeding the conventional range. .

ここで、準安定構造となり得る結晶構造としては、A27型構造の他にA519型構造などが知られている。この場合、A519型構造はAB2型構造とAB5型構造とが3層を周期として積み重なり合っており、A27型構造よりも単位結晶格子当たりのニッケル(Ni)比率を増加させることができるので、水素分子の吸着および水素原子への解離を促進する活性点を増加させることが可能となる。
特開2002−164045号公報
Here, as a crystal structure that can be a metastable structure, an A 5 B 19 type structure and the like are known in addition to the A 2 B 7 type structure. In this case, in the A 5 B 19 type structure, the AB 2 type structure and the AB 5 type structure are stacked with a period of three layers, and the nickel (Ni) ratio per unit crystal lattice is higher than that of the A 2 B 7 type structure. Since the number of active sites can be increased, the number of active sites that promote the adsorption and dissociation of hydrogen molecules into hydrogen atoms can be increased.
JP 2002-164045 A

上述のように、水素吸蔵合金の活性点を増加させることにより、ある程度の出力向上効果が見込めることとなる。しかしながら、負極活物質となる水素吸蔵合金粉末の周囲には非水溶性糊(例えば、SBR(スチレンブタジエンラテックス)など)が点在するため
、電解液は水素吸蔵合金粉末の周辺に分布することとなる。即ち、電解液は水素吸蔵合金粉末の周囲に局所的に介在することとなって、増加させた活性点の周囲に対して充分な電解液を供給し得ないこととなる。これにより、活性点を増加させたのに関わらず、充分な出力向上効果が得られないという問題を生じた。

As described above, a certain level of output improvement effect can be expected by increasing the active points of the hydrogen storage alloy. However, the periphery of the hydrogen storage alloy powder as a negative electrode active material non-water-soluble paste material (e.g., SBR (styrene-butadiene latex), etc.) because the scattered, the electrolyte to be distributed around the hydrogen-absorbing alloy powder It becomes. That is, the electrolytic solution is locally present around the hydrogen storage alloy powder, so that a sufficient amount of electrolytic solution cannot be supplied around the increased active point. As a result, there is a problem that a sufficient output improvement effect cannot be obtained regardless of increasing the active point.

ここで、増加させた活性点の周囲に対して充分な電解液を供給できるようにするためには、電池内に充填する電解液量を増加させればよいと単純に考えがちであるが、単に、電解液量を増加させただけでは出力は向上しないことが分かった。
これは、電池内に充填する電解液量を増加させたとしても、セパレータなどの他の構成要素に保持される電解液量が増加するようになるからである。また、増加させた電解液量に対応する空間体積が減少することにより、電池内での圧力の増加などの様々の新たな問題も生じるためである。
Here, in order to be able to supply a sufficient amount of electrolyte to the periphery of the increased active point, it is easy to think simply that the amount of electrolyte filled in the battery should be increased. It was found that simply increasing the amount of electrolyte did not improve the output.
This is because even if the amount of electrolyte filled in the battery is increased, the amount of electrolyte retained in other components such as a separator increases. Moreover, it is because various new problems, such as the increase in the pressure in a battery, also arise by the space volume corresponding to the increased amount of electrolyte solution reducing.

そこで、本発明は上記した問題を解決するためになされたものであって、水素吸蔵合金の活性点を増加させるとともに、増加させた活性点の周囲に対して充分な電解液を供給できるようにして、充分な出力向上効果が得られるアルカリ蓄電池を提供することを目的とするものである。   Accordingly, the present invention has been made to solve the above-described problems, and increases the active point of the hydrogen storage alloy so that a sufficient amount of electrolyte can be supplied around the increased active point. Thus, an object of the present invention is to provide an alkaline storage battery capable of obtaining a sufficient output improvement effect.

本発明のアルカリ蓄電池は、水素吸蔵合金を負極活物質とするとともに非水溶性高分子からなる糊材と導電剤としての炭素材料とを含有する水素吸蔵合金負極と、正極と、これらの両極を隔離するセパレータと、アルカリ電解液とを外装缶内に備えている。そして、上記目的を達成するため、水素吸蔵合金は少なくとも希土類元素を含む元素からなるA成分と、少なくともニッケルを含む元素からなるB成分とから構成されるとともに、A成分に対するB成分の合金量論比が3.8以上で、かつ合金主相がA519型構造の水素吸蔵合金で、前記非水溶性高分子からなる糊材の添加量が、前記水素吸蔵合金100質量部に対して0.5質量部以下であり、かつ水素吸蔵合金負極が保持した電解液量は水素吸蔵合金1g当たり0.11g以上で、水素吸蔵合金の総表面積(S1cm2)に対する導電剤となる炭素材料の総表面積(S2cm2)の表面積比(S2/S1)が30以上であることを特徴とする。

The alkaline storage battery of the present invention comprises a hydrogen storage alloy negative electrode comprising a hydrogen storage alloy as a negative electrode active material and a paste material made of a water-insoluble polymer and a carbon material as a conductive agent, a positive electrode, and both of these electrodes. A separator for separation and an alkaline electrolyte are provided in the outer can. In order to achieve the above object, the hydrogen storage alloy is composed of an A component composed of an element containing at least a rare earth element and a B component composed of an element containing at least nickel, and an alloy stoichiometry of the B component with respect to the A component. A hydrogen storage alloy having a ratio of 3.8 or more and an alloy main phase of an A 5 B 19 type structure, and the addition amount of the paste material made of the water-insoluble polymer is based on 100 parts by mass of the hydrogen storage alloy The amount of the electrolyte solution that is 0.5 parts by mass or less and held by the hydrogen storage alloy negative electrode is 0.11 g or more per gram of the hydrogen storage alloy, and is a carbon material serving as a conductive agent for the total surface area (S1 cm 2 ) of the hydrogen storage alloy. The surface area ratio (S2 / S1) of the total surface area (S2 cm 2 ) is 30 or more.

ここで、水素吸蔵合金がA519型構造を有し、A成分とB成分の量論比が3.8以上になると大幅に出力が向上することが明らかになった。そして、この効果は、水素吸蔵合金の総表面積(S1cm2)に対する導電剤となる炭素材料の総表面積(S2cm2)の表面積比(S2/S1)が30以上であるときに発揮され、30未満では望ましい効果が得られないことが明らかになった。また、S2/S1を増加させずに水素吸蔵合金1g当たりの電解液量を増加させても出力を向上させる効果が得られないことも明らかになった。 Here, it has been clarified that when the hydrogen storage alloy has an A 5 B 19 type structure and the stoichiometric ratio of the A component to the B component is 3.8 or more, the output is greatly improved. This effect is exhibited when the surface area ratio (S2 / S1) of the total surface area (S2 cm 2 ) of the carbon material serving as a conductive agent to the total surface area (S1 cm 2 ) of the hydrogen storage alloy is 30 or less. It became clear that the desired effect was not obtained. It has also been clarified that the effect of improving the output cannot be obtained even if the amount of the electrolytic solution per gram of the hydrogen storage alloy is increased without increasing S2 / S1.

以上のことから、水素吸蔵合金はA519型構造を有し、そのA成分とB成分の量論比が3.8以上で、かつ水素吸蔵合金負極には導電剤として炭素材料が混入されるとともに、水素吸蔵合金の総表面積Slに対する炭素材料の総表面積S2の表面積比S2/S1が30以上であり、かつ水素吸蔵合金負極が保持した電解液量が、水素吸蔵合金1g当たり0.11g以上となるように電解液が注液されている必要がある。 From the above, the hydrogen storage alloy has an A 5 B 19 type structure, the stoichiometric ratio of the A component and the B component is 3.8 or more, and the hydrogen storage alloy negative electrode is mixed with a carbon material as a conductive agent. In addition, the surface area ratio S2 / S1 of the total surface area S2 of the carbon material to the total surface area S1 of the hydrogen storage alloy is 30 or more, and the amount of the electrolyte retained by the hydrogen storage alloy negative electrode is 0.00 per gram of the hydrogen storage alloy. The electrolyte solution needs to be poured so that it may be 11 g or more.

この場合、前記水素吸蔵合金は、一般式Lnl-xMgxNiy-a-bAlab(LnはYを含む希土類元素から選択される少なくとも1種の元素、MはCo,Mn,Znの少なくとも1つ以上からなる元素であり、0.1≦x≦0.2、3.8≦y≦4.0、0.05≦a≦0.30、0≦b≦0.2の条件を満たす)で表される組成を用いることが望ましい。これは、当該条件の範囲外の水素吸蔵合金はA519型構造を均一に作製することが困難になる場合や、電池性能に適した水素吸蔵平衡圧に調整するのが困難になるためである。 In this case, the hydrogen storage alloy has the general formula Ln lx Mg x Ni yab Al a M b (Ln is at least one of the at least one element, M is Co, Mn, Zn is selected from rare earth elements including Y It is an element composed of the above, and 0.1 ≦ x ≦ 0.2, 3.8 ≦ y ≦ 4.0, 0.05 ≦ a ≦ 0.30, and 0 ≦ b ≦ 0.2. It is desirable to use the represented composition. This is because it is difficult for a hydrogen storage alloy outside the range of the above conditions to produce an A 5 B 19 type structure uniformly or to adjust to a hydrogen storage equilibrium pressure suitable for battery performance. It is.

本発明においては、活性点が増加した水素吸蔵合金を負極活物質として用い、かつ増加した活性点の周囲に対して充分な電解液を供給できるように、水素吸蔵合金の総表面積に対する導電剤となる炭素材料の総表面積の表面積比と、水素吸蔵合金負極が保持する電解液量を最適化しているので、従来の範囲を遥かに越えた出力特性(アシスト出力)を発揮することが可能なアルカリ蓄電池を得ることが可能となる。   In the present invention, a conductive agent for the total surface area of the hydrogen storage alloy is used so that a hydrogen storage alloy having an increased active point is used as a negative electrode active material and sufficient electrolyte can be supplied around the increased active point. The surface area ratio of the total surface area of the carbon material and the amount of electrolyte retained by the hydrogen-absorbing alloy negative electrode are optimized, so an alkali that can exhibit output characteristics (assist output) far beyond the conventional range A storage battery can be obtained.

ついで、本発明の実施の形態を以下に詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。なお、図1は、本発明のアルカリ蓄電池を模式的に示す断面図である。また、図2は、水素吸蔵合金の総表面積(S1)に対する炭素材料の総表面積(S2)の表面積比(S2/S1)と、−10℃アシスト出力比の関係を示すグラフである。   Next, embodiments of the present invention will be described in detail below. However, the present invention is not limited to these embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention. In addition, FIG. 1 is sectional drawing which shows typically the alkaline storage battery of this invention. FIG. 2 is a graph showing the relationship between the surface area ratio (S2 / S1) of the total surface area (S2) of the carbon material to the total surface area (S1) of the hydrogen storage alloy and the −10 ° C. assist output ratio.

1.水素吸蔵合金
希土類元素(Ln;La,Ce,Pr,Ndなど)、マグネシウム(Mg)、ニッケル(Ni)、アルミニウム(Al)、コバルト(Co)などの金属元素を所定のモル比となるように混合した後、これらの混合物をアルゴンガス雰囲気の高周波誘導炉に投入して溶解させた。この後、これを溶湯急冷して水素吸蔵合金a,bのインゴットを作製した。ついで、得られた各水素吸蔵合金a,bについて、DSC(示差走査熱量計)を用いて融点(Tm)を測定した。その後、これらの水素吸蔵合金a,bの融点(Tm)よりも30℃だけ低い温度(Ta=Tm−30℃)で所定時間(この場合は10時間)の熱処理を行った。
1. Hydrogen storage alloy Rare earth elements (Ln; La, Ce, Pr, Nd, etc.), magnesium (Mg), nickel (Ni), aluminum (Al), cobalt (Co) and other metal elements so as to have a predetermined molar ratio After mixing, these mixtures were put into a high-frequency induction furnace with an argon gas atmosphere and dissolved. Thereafter, the molten metal was rapidly cooled to produce ingots of hydrogen storage alloys a and b. Subsequently, about each obtained hydrogen storage alloy a and b, melting | fusing point (Tm) was measured using DSC (differential scanning calorimeter). Thereafter, heat treatment was performed for a predetermined time (in this case, 10 hours) at a temperature (Ta = Tm−30 ° C.) lower by 30 ° C. than the melting points (Tm) of these hydrogen storage alloys a and b.

なお、これらの水素吸蔵合金a,bの組成を高周波プラズマ分光法(ICP)によって分析すると、下記の表1に示すように、水素吸蔵合金aは組成式がLn0.9Mg0.1Ni3.2Al0.2Co0.1で表され、水素吸蔵合金bはLn0.9Mg0.1Ni3.7Al0.1で表されるものであることが分かった。なお、下記の表1には、各水素吸蔵合金a,bを一般式Lnl-xMgxNiy-a-bAlab(MはCo,Mn,Znの少なくとも1つ以上からなる元素)で表した場合のx(Mgの量論比),a(Alの量論比),b(Mの量論比)およびy(B成分(Ni+Al+M)の量論比)の値も示している。

Figure 0005247170
When the compositions of these hydrogen storage alloys a and b are analyzed by high frequency plasma spectroscopy (ICP), as shown in Table 1 below, the composition formula of the hydrogen storage alloy a is Ln 0.9 Mg 0.1 Ni 3.2 Al 0.2 Co. It was represented by 0.1 , and it was found that the hydrogen storage alloy b was represented by Ln 0.9 Mg 0.1 Ni 3.7 Al 0.1 . In Table 1 below, the hydrogen storage alloys a and b are represented by the general formula Ln lx Mg x Ni yab Al a M b (M is an element composed of at least one of Co, Mn, and Zn). The values of x (stoichiometric ratio of Mg), a (stoichiometric ratio of Al), b (stoichiometric ratio of M) and y (stoichiometric ratio of B component (Ni + Al + M)) are also shown.
Figure 0005247170

この後、これらの各水素吸蔵合金a,bの塊を粗粉砕した後、不活性ガス雰囲気中で単位質量(1g)当たりの表面積(m2)が0.2(m2/g)になるまで機械的に粉砕して、水素吸蔵合金粉末a,bを作製した。ついで、Cu−Kα管をX線源とするX線回折測定装置を用いる粉末X線回折法で水素吸蔵合金粉末a,bの結晶構造の同定を行った。この場合、スキャンスピード1°/min、管電圧40kV、管電流300mA、スキャンステップ1°、測定角度(2θ)20〜50°でX線回折測定を行った。得られたXRDプロファイルよりJCPDSカードチャートを用いて、各水素吸蔵合金a,bの結晶構造を同定した。 Then, after roughly pulverizing each of these hydrogen storage alloys a and b, the surface area (m 2 ) per unit mass (1 g) becomes 0.2 (m 2 / g) in an inert gas atmosphere. And mechanically pulverized to prepare hydrogen storage alloy powders a and b. Next, the crystal structures of the hydrogen storage alloy powders a and b were identified by a powder X-ray diffraction method using an X-ray diffraction measuring apparatus using a Cu-Kα tube as an X-ray source. In this case, X-ray diffraction measurement was performed at a scan speed of 1 ° / min, a tube voltage of 40 kV, a tube current of 300 mA, a scan step of 1 °, and a measurement angle (2θ) of 20 to 50 °. From the obtained XRD profile, the crystal structure of each of the hydrogen storage alloys a and b was identified using a JCPDS card chart.

ここで、各結晶構造の構成比において、A519型構造はCe5Co19型構造とPr5Co19型構造とし、A27型構造はCe2Ni7型構造とし、AB5型構造はLaNi5型構造として、JCPDSによる各構造の回折角の強度値と42〜44°の最強強度値との比各強度比を、得られたXRDプロファイルにあてはめて、各構造の構成比率を算出すると、下記の表2に示すような結果が得られた。

Figure 0005247170
Here, in the composition ratio of each crystal structure, the A 5 B 19 type structure is a Ce 5 Co 19 type structure and a Pr 5 Co 19 type structure, the A 2 B 7 type structure is a Ce 2 Ni 7 type structure, and AB 5 The mold structure is a LaNi 5 type structure, and the ratio of the diffraction angle intensity value of each structure according to JCPDS and the strongest intensity value of 42 to 44 ° is applied to the obtained XRD profile, and the composition ratio of each structure As a result, the results shown in Table 2 below were obtained.
Figure 0005247170

上記表1および表2の結果から以下のことが明らかとなった。即ち、合金aのように、B成分(Ni+Al+M)の量論比yが3.5と小さいと、A27型構造が合金主相となる。これに対して、合金bのように、B成分(Ni+Al+M)の量論比yが3.8以上であると、A519型構造が合金主相となることが分かる。 From the results shown in Tables 1 and 2, the following has become clear. That is, when the stoichiometric ratio y of the B component (Ni + Al + M) is as small as 3.5 like the alloy a, the A 2 B 7 type structure becomes the alloy main phase. On the other hand, when the stoichiometric ratio y of the B component (Ni + Al + M) is 3.8 or more like the alloy b, it can be seen that the A 5 B 19 type structure becomes the alloy main phase.

2.水素吸蔵合金負極
上述した水素吸蔵合金a,bを用いて、以下のようにして水素吸蔵合金負極11(a1〜a4,b1〜b4)をそれぞれ作製した。この場合、得られた水素吸蔵合金粉末a,bを100質量部に対して、下記の表3に示すような表面積比(炭素材料の総表面積(S2)/水素吸蔵合金の総表面積(S1))となるように炭素材料(導電剤)としてのケッチェンブラックを添加するとともに、非水溶性結着剤としてのスチレンブタジエンラテックス(SBR)を0.5質量部と、水(あるいは純水)とを添加し、混練して水素吸蔵合金スラリーを作製した。ついで、Niメッキ軟鋼材製の多孔性基板(パンチングメタル)からなる負極芯体11aを用意し、この負極芯体11aに水素吸蔵合金スラリーを塗着して活物質層11bを形成した。この後、乾燥させ、充填密度が5.0g/cm3となるように圧延し、負極表面積(短軸長×長軸長×2)が1000cm2となるように切断して、水素吸蔵合金負極11(a1〜a3,b1〜b4)をそれぞれ作製した。
2. Hydrogen storage alloy negative electrode Using the above-described hydrogen storage alloys a and b, hydrogen storage alloy negative electrodes 11 (a1 to a4 and b1 to b4) were produced as follows. In this case, with respect to 100 parts by mass of the obtained hydrogen storage alloy powders a and b, the surface area ratio (total surface area of carbon material (S2) / total surface area of hydrogen storage alloy (S1) as shown in Table 3 below) Ketjen Black as a carbon material (conductive agent) is added so as to be 0.5), 0.5 part by mass of styrene butadiene latex (SBR) as a water-insoluble binder, and water (or pure water) Was added and kneaded to prepare a hydrogen storage alloy slurry. Next, a negative electrode core 11a made of a porous substrate (punching metal) made of Ni-plated mild steel was prepared, and a hydrogen storage alloy slurry was applied to the negative electrode core 11a to form an active material layer 11b. Thereafter, it is dried, rolled to a packing density of 5.0 g / cm 3 , cut so that the negative electrode surface area (short axis length × long axis length × 2) is 1000 cm 2, and a hydrogen storage alloy negative electrode 11 (a1 to a3, b1 to b4) were produced.

3.ニッケル正極
一方、多孔度が約85%の多孔性ニッケル焼結基板を比重が1.75の硝酸ニッケルと硝酸コバルトの混合水溶液に浸漬して、多孔性ニッケル焼結基板の細孔内にニッケル塩およびコバルト塩を保持させた。この後、この多孔性ニッケル焼結基板を25質量%の水酸化ナトリウム(NaOH)水溶液中に浸漬して、ニッケル塩およびコバルト塩をそれぞれ水酸化ニッケルおよび水酸化コバルトに転換させた。
3. Nickel positive electrode On the other hand, a porous nickel sintered substrate having a porosity of about 85% is immersed in a mixed aqueous solution of nickel nitrate and cobalt nitrate having a specific gravity of 1.75, and a nickel salt is placed in the pores of the porous nickel sintered substrate. And cobalt salts were retained. Thereafter, the porous nickel sintered substrate was immersed in a 25% by mass sodium hydroxide (NaOH) aqueous solution to convert the nickel salt and the cobalt salt into nickel hydroxide and cobalt hydroxide, respectively.

ついで、充分に水洗してアルカリ溶液を除去した後、乾燥を行って、多孔性ニッケル焼結基板の細孔内に水酸化ニッケルを主成分とする活物質を充填した。このような活物質充填操作を所定回数(例えば6回)繰り返して、多孔性焼結基板の細孔内に水酸化ニッケルを主体とする活物質の充填密度が2.5g/cm3になるように充填した。この後、室温で乾燥させた後、所定の寸法に切断してニッケル正極12を作製した。 Next, after sufficiently washing with water to remove the alkaline solution, drying was performed, and the active material mainly composed of nickel hydroxide was filled into the pores of the porous nickel sintered substrate. Such an active material filling operation is repeated a predetermined number of times (for example, 6 times) so that the filling density of the active material mainly composed of nickel hydroxide in the pores of the porous sintered substrate becomes 2.5 g / cm 3. Filled. Then, after making it dry at room temperature, it cut | disconnected to the predetermined dimension and the nickel positive electrode 12 was produced.

4.ニッケル−水素蓄電池
この後、上述のように作製された水素吸蔵合金負極11(a1〜a3,b1〜b4)とニッケル正極12とを用い、これらの間に、目付が55g/m2の不織布からなるセパレータ13を介在させて渦巻状に巻回して渦巻状電極群を作製した。なお、このようにして作製された渦巻状電極群の下部には水素吸蔵合金負極11の芯体露出部11cが露出しており、その上部にはニッケル正極12の芯体露出部12cが露出している。ついで、得られた渦巻状電極群の下端面に露出する芯体露出部11cに負極集電体14を溶接するとともに、渦巻状電極群の上端面に露出するニッケル正極12の芯体露出部12cの上に正極集電体15を溶接して、電極体とした。
4). Nickel-hydrogen storage battery Thereafter, using the hydrogen storage alloy negative electrode 11 (a1 to a3, b1 to b4) and the nickel positive electrode 12 produced as described above, between these, a nonwoven fabric having a basis weight of 55 g / m 2 A spiral electrode group was produced by winding the separator 13 in a spiral shape. The core exposed portion 11c of the hydrogen storage alloy negative electrode 11 is exposed at the lower part of the spiral electrode group thus fabricated, and the core exposed part 12c of the nickel positive electrode 12 is exposed at the upper portion thereof. ing. Next, the negative electrode current collector 14 is welded to the core exposed portion 11c exposed at the lower end surface of the obtained spiral electrode group, and the core exposed portion 12c of the nickel positive electrode 12 exposed at the upper end surface of the spiral electrode group. A positive electrode current collector 15 was welded onto the electrode body to obtain an electrode body.

ついで、得られた電極体を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)17内に収納した後、負極集電体14を外装缶17の内底面に溶接した。一方、正極集電体15より延出する集電リード部15aを正極端子を兼ねるとともに外周部に絶縁ガスケット19が装着された封口体18の底部に溶接した。なお、封口体18には正極キャップ18aが設けられていて、この正極キャップ18a内に所定の圧力になると変形する弁体18bとスプリング18cよりなる圧力弁(図示せず)が配置されている。   Next, after the obtained electrode body was accommodated in a bottomed cylindrical outer can in which nickel was plated on iron (the outer surface of the bottom surface becomes a negative external terminal) 17, the negative electrode current collector 14 was attached to the outer can 17. Welded to the inner bottom. On the other hand, the current collecting lead portion 15a extending from the positive electrode current collector 15 was also welded to the bottom portion of the sealing body 18 which also served as the positive electrode terminal and was fitted with the insulating gasket 19 on the outer peripheral portion. The sealing body 18 is provided with a positive electrode cap 18a, and a pressure valve (not shown) composed of a valve body 18b and a spring 18c, which are deformed when a predetermined pressure is reached, is disposed in the positive electrode cap 18a.

ついで、外装缶17の上部外周部に環状溝部17aを形成した後、電解液を注液し、外装缶17の上部に形成された環状溝部17aの上に封口体18の外周部に装着された絶縁ガスケット19を載置する。この後、外装缶17の開口端縁17bをかしめることにより、ニッケル−水素蓄電池10(A1〜A4,B1〜B4)が作製される。この場合、外装缶17内に30質量%の水酸化カリウム(KOH)水溶液からなるアルカリ電解液を電池容量当たり2.4g/Ahおよび2.5g/Ahになるように注入して、Dサイズのニッケル−水素蓄電池10(A1〜A4,B1〜B4)を作製した。 Next, after forming an annular groove portion 17 a on the upper outer peripheral portion of the outer can 17, an electrolytic solution was injected, and the outer peripheral portion of the sealing body 18 was mounted on the annular groove portion 17 a formed on the upper portion of the outer can 17. An insulating gasket 19 is placed. Thereafter, the nickel-hydrogen storage battery 10 (A1 to A4, B1 to B4) is produced by caulking the opening edge 17b of the outer can 17. In this case, by injecting so that the alkaline electrolyte consisting of 30 wt% potassium hydroxide (KOH) solution into the outer can 17 to the battery capacity per 2.4 g / Ah and 2.5 g / Ah, D size Nickel-hydrogen storage battery 10 (A1 to A4, B1 to B4) was prepared.

ここで、電池容量当たり2.4g/Ahとなるように電解液が注入され、水素吸蔵合金負極a1を用いたものを電池A1とした。同様に、2.4g/Ahとなるように電解液が注入され、水素吸蔵合金負極a2を用いたものを電池A2とし、水素吸蔵合金負極a3を用いたものを電池A3とした。また、電池容量当たり2.5g/Ahとなるように電解液が注入され、水素吸蔵合金負極a4を用いたものを電池A4とした。さらに、電池容量当たり2.5g/Ahとなるように電解液が注入され、水素吸蔵合金負極b1を用いたものを電池B1とした。同様に、2.5g/Ahとなるように電解液が注入され、水素吸蔵合金負極b2を用いたものを電池B2とし、水素吸蔵合金負極b3を用いたものを電池B3とし、水素吸蔵合金負極b4を用いたものを電池B4とした。

Figure 0005247170
Here, an electrolyte was injected so as to be 2.4 g / Ah per battery capacity, and a battery using the hydrogen storage alloy negative electrode a1 was designated as battery A1. Similarly, an electrolyte was injected so as to be 2.4 g / Ah, and the battery using the hydrogen storage alloy negative electrode a2 was designated as battery A2, and the battery using the hydrogen storage alloy negative electrode a3 was designated as battery A3. Also, an electrolyte was injected so as to be 2.5 g / Ah per battery capacity, and a battery using the hydrogen storage alloy negative electrode a4 was designated as battery A4. Further, an electrolyte was injected so that the battery capacity was 2.5 g / Ah, and a battery using the hydrogen storage alloy negative electrode b1 was designated as a battery B1. Similarly, an electrolyte is injected so as to be 2.5 g / Ah, a battery using hydrogen storage alloy negative electrode b2 is designated as battery B2, a battery using hydrogen storage alloy negative electrode b3 is designated as battery B3, and a hydrogen storage alloy negative electrode. A battery using B4 was designated as a battery B4.
Figure 0005247170

5.電池試験
(1)活性化
ついで、上述のようにして作製した電池A1〜A4,B1〜B4を以下のようにして活性化した。この場合、まず、25℃の温度雰囲気で、1Itの充電々流でSOC(State Of Charge:充電深度)の120%まで充電し、25℃の温度雰囲気で1時間休止する。ついで、70℃の温度雰囲気で24時間放置した後、45℃の温度雰囲気で、1Itの放電々流で電池電圧が0.3Vになるまで放電させるサイクルを2サイクル繰り返して、これらの各電池A1〜A4,B1〜B4を活性化した。
5. Battery Test (1) Activation Next, the batteries A1 to A4 and B1 to B4 produced as described above were activated as follows. In this case, first, charging is performed up to 120% of SOC (State Of Charge: charging depth) with a charging current of 1 It in a temperature atmosphere of 25 ° C., and the operation is stopped for one hour in a temperature atmosphere of 25 ° C. Then, after being left for 24 hours in a temperature atmosphere of 70 ° C., a cycle of discharging the battery voltage to 0.3 V with a discharge current of 1 It in a temperature atmosphere of 45 ° C. was repeated two times, and each of these batteries A1 -A4, B1-B4 were activated.

なお、上述のように活性化した後、各電池A1〜A4,B1〜B4を解体して、負極が保持した電解液量を求めた。その結果、電池容量当たり2.4g/Ahの電解液が注入された電池A1〜A3においては、活性化後の水素吸蔵合金負極が保持した電解液量は、水素吸蔵合金の単位質量(1g)当り0.09gであることが分かった。また、2.5g/Ahの電解液が注入された電池A4,B1〜B4においては、活性化後の水素吸蔵合金負極が保持した電解液量は、水素吸蔵合金の単位質量(1g)当り0.11gであることが分かった。   In addition, after activating as mentioned above, each battery A1-A4, B1-B4 was disassembled, and the amount of electrolyte solution retained by the negative electrode was determined. As a result, in batteries A1 to A3 into which 2.4 g / Ah of electrolyte was injected per battery capacity, the amount of electrolyte retained by the activated hydrogen storage alloy negative electrode was the unit mass (1 g) of the hydrogen storage alloy. It was found to be 0.09 g per unit. Further, in the batteries A4, B1 to B4 into which 2.5 g / Ah electrolyte was injected, the amount of electrolyte retained by the activated hydrogen storage alloy negative electrode was 0 per unit mass (1 g) of the hydrogen storage alloy. It was found to be .11 g.

(2)出力特性評価
また、上述のように活性化した後、25℃の温度雰囲気で、1Itの充電電流でSOC(State Of Charge :充電深度)の50%まで充電した後、25℃の温度雰囲気で1時間休止する。ついで、−10℃の温度雰囲気で、任意の充電レートで20秒間充電させた後、−10℃の温度雰囲気で30分間休止させる。この後、−10℃の温度雰囲気で、任意の放電レートで10秒間放電させた後、−10℃の温度雰囲気で30分間休止させる。このような−10℃の温度雰囲気で、任意の充電レートでの20秒間充電、30分の休止、任意の放電レートで10秒間放電、30分の休止を繰り返す。
(2) Output characteristic evaluation After activation as described above, after charging to 50% of SOC (State Of Charge) at a charging current of 1 It in a temperature atmosphere of 25 ° C., a temperature of 25 ° C. Pause for 1 hour in the atmosphere. Next, the battery is charged at an arbitrary charging rate for 20 seconds in a temperature atmosphere of −10 ° C., and then rested in a temperature atmosphere of −10 ° C. for 30 minutes. Thereafter, the battery is discharged at an arbitrary discharge rate for 10 seconds in a temperature atmosphere of −10 ° C., and then suspended for 30 minutes in a temperature atmosphere of −10 ° C. In such a temperature atmosphere of −10 ° C., charging for 20 seconds at an arbitrary charging rate, pause for 30 minutes, discharging for 10 seconds at an arbitrary discharge rate, and pause for 30 minutes are repeated.

この場合、任意の充電レートは、0.8It→1.7It→2.5It→3.3It→4.2Itの順で充電電流を増加させ、任意の放電レートは、1.7It→3.3It→5.0It→6.7It→8.3Itの順で放電電流を増加させ、各放電レートで10秒間経過時点での各電池A1〜A4,B1〜B4の電池電圧(V)を各電流毎にそれぞれ測定した。ここで、放電特性(アシスト出力特性)の指標として、放電V−Iプロット近似曲線の傾きであるアシスト出力抵抗の逆数を−10℃アシスト出力として求めた。求めた−10℃アシスト出力において、電池A2の−10℃アシスト出力を基準(100)とし、これとの相対比を−10℃アシスト出力比(対電池A1)として算出すると、下記の表4に示すような結果となった。
また、表4の結果に基づいて、炭素材料の総表面積(S2)/水素吸蔵合金の総表面積(S1)を横軸(X軸)とし、−10℃アシスト出力を縦軸(Y軸)としてグラフに表すと、図2に示すような結果となった。

Figure 0005247170
In this case, an arbitrary charging rate increases charging current in the order of 0.8 It → 1.7 It → 2.5 It → 3.3 It → 4.2 It, and an arbitrary discharging rate is 1.7 It → 3.3 It. → The discharge current is increased in the order of 5.0 It → 6.7 It → 8.3 It, and the battery voltage (V) of each of the batteries A1 to A4 and B1 to B4 at the time of 10 seconds at each discharge rate for each current. Each was measured. Here, as an index of the discharge characteristics (assist output characteristics), the reciprocal of the assist output resistance, which is the slope of the discharge VI plot approximate curve, was obtained as the −10 ° C. assist output. In the obtained -10 ° C assist output, the -10 ° C assist output of the battery A2 is used as a reference (100), and the relative ratio thereof is calculated as the -10 ° C assist output ratio (vs. battery A1). The result was as shown.
Further, based on the results of Table 4, the total surface area (S2) of the carbon material / total surface area (S1) of the hydrogen storage alloy is taken as the horizontal axis (X axis), and the −10 ° C. assist output is taken as the vertical axis (Y axis). When represented on a graph, the results shown in FIG. 2 were obtained.
Figure 0005247170

上記表4および図2の結果から、以下のことが明らかになった。即ち、A成分とB成分の量論比が3.5でA27型構造が合金主相となる水素吸蔵合金aを用いた電池A1〜A4においては−10℃アシスト出力比が小さく、出力が向上していないことが分かる。この場合、表面積比(S2/S1)が32である負極a2を用い、負極が保持した電解液量が水素吸蔵合金の単位質量(1g)当り、0.09gとなる電池A2と、0.11gとなる電池A4とを比較すると、単位質量(1g)当りの電解液量が少ない方が−10℃アシスト出力比が大きく、単純に電界液量を増加させても出力が向上しないことを示している。 From the results shown in Table 4 and FIG. That is, in the batteries A1 to A4 using the hydrogen storage alloy a in which the stoichiometric ratio of the A component and the B component is 3.5 and the A 2 B 7 type structure is the alloy main phase, the −10 ° C. assist output ratio is small, It can be seen that the output has not improved. In this case, the negative electrode a2 having a surface area ratio (S2 / S1) of 32 was used, and the amount of the electrolyte retained by the negative electrode was 0.09 g per unit mass (1 g) of the hydrogen storage alloy, and the battery A2 was 0.11 g. When the battery A4 is compared, the smaller the amount of electrolyte per unit mass (1 g) is, the larger the -10 ° C assist output ratio is. Yes.

一方、A成分とB成分の量論比を3.8でA519型構造が合金主相となる水素吸蔵合金bを用いた電池B1〜B4においては、−10℃アシスト出力比が大きく、大幅に出力が向上していることが分かる。ただし、表面積比(S2/S1)が0、即ち、炭素材料が無添加の負極b1を用いた電池B1においては、ほとんど出力が向上していないことが分かる。そして、水素吸蔵合金bを用いた場合、表面積比(S2/S1)が大きくなほど出力が向上することは、図2のグラフに明確に示されているということができ、かつ、表面積比(S2/S1)が30以上であれば、大幅な出力向上が可能で、十分に出力向上効果が発揮されているということができる。 On the other hand, in the batteries B1 to B4 using the hydrogen storage alloy b in which the stoichiometric ratio of the A component and the B component is 3.8 and the A 5 B 19 type structure is the alloy main phase, the −10 ° C. assist output ratio is large. It can be seen that the output is greatly improved. However, it can be seen that in the battery B1 using the negative electrode b1 having a surface area ratio (S2 / S1) of 0, that is, no carbon material added, the output is hardly improved. When the hydrogen storage alloy b is used, it can be said that the output is improved as the surface area ratio (S2 / S1) is increased, and that the surface area ratio ( If S2 / S1) is 30 or more, it can be said that the output can be greatly improved and the output improvement effect is sufficiently exhibited.

以上のことから、水素吸蔵合金はA519型構造を有し、A成分とB成分の量論比を3.8以上で、この負極には導電剤として炭素材料が混入され、それらの表面積比(S2/S1)が30以上で、かつ負極が保持している電解液は、水素吸蔵合金の単位質量当たり0.11以上であるように電解液量を注液されている場合に、低温出力特性の大幅な向上が図れるということができる。

From the above, the hydrogen storage alloy has a A 5 B 19 type structure, with a stoichiometric ratio of the components A and B than 3.8, a carbon material as a conductive agent in the negative electrode is mixed into them When the surface area ratio (S2 / S1) is 30 or more and the amount of the electrolyte is poured so that the electrolyte held by the negative electrode is 0.11 g or more per unit mass of the hydrogen storage alloy In addition, it can be said that the low temperature output characteristics can be greatly improved.

なお、水素吸蔵合金は、一般式Lnl-xMgxNiy-a-bAlab(LnはYを含む希土類元素から選択される少なくとも1種の元素、MはCo,Mn,Znの少なくとも1つ以上からなる元素であり、0.1≦x≦0.2、3.8≦y≦4.0、0.05≦a≦0.30、0≦b≦0.2の条件を満たす)で表される組成を用いることが望ましい。これは、当該条件の範囲外の水素吸蔵合金は、A519型構造を均一に作製することが困難になる場合や、電池性能に適した水素吸蔵平衡圧に調整するのが困難になるためである。 The hydrogen storage alloy is at least one element of the general formula Ln lx Mg x Ni yab Al a M b (Ln is selected from rare earth elements including Y, M is Co, Mn, of at least one or more Zn And an element satisfying the following conditions: 0.1 ≦ x ≦ 0.2, 3.8 ≦ y ≦ 4.0, 0.05 ≦ a ≦ 0.30, and 0 ≦ b ≦ 0.2 It is desirable to use a composition that This is because a hydrogen storage alloy outside the range of the above conditions makes it difficult to uniformly produce an A 5 B 19 type structure or to adjust to a hydrogen storage equilibrium pressure suitable for battery performance. Because.

なお、上述した実施形態においては、非水溶性高分子としてスチレン系熱可塑性エラストマーのスチレンブタジエンラテックス(SBR)を用いる例について説明したが、スチレン系熱可塑性エラストマー以外の熱可塑性エラストマーとして、オレフィン系,PVC系,ウレタン系,エステル系,アミド系熱可塑性エラストマーを用いるようにしてもよい。また、上述した実施形態においては、導電剤となる炭素材料としてケッチェンブラックを添加する例について説明したが、ケッチェンブラック以外の炭素材料として、アセチレンブラックなどのカーボンブラック、グラファイト、カーボンナノチューブ、活性炭粉末、炭素繊維等を添加するようにしてもよい。   In the above-described embodiment, the example of using the styrene butadiene latex (SBR) of the styrene thermoplastic elastomer as the water-insoluble polymer has been described. However, as the thermoplastic elastomer other than the styrene thermoplastic elastomer, an olefin, PVC, urethane, ester, and amide thermoplastic elastomers may be used. In the embodiment described above, an example in which ketjen black is added as a carbon material to be a conductive agent has been described. However, as a carbon material other than ketjen black, carbon black such as acetylene black, graphite, carbon nanotube, activated carbon You may make it add powder, carbon fiber, etc.

本発明のアルカリ蓄電池を模式的に示す断面図である。It is sectional drawing which shows the alkaline storage battery of this invention typically. 水素吸蔵合金の総表面積(S1)に対する炭素材料の総表面積(S2)の表面積比(S2/S1)と、−10℃アシスト出力比の関係を示すグラフである。It is a graph which shows the relationship between the surface area ratio (S2 / S1) of the total surface area (S2) of a carbon material with respect to the total surface area (S1) of a hydrogen storage alloy, and -10 degreeC assist output ratio.

符号の説明Explanation of symbols

11…水素吸蔵合金負極、11b…活物質層、11c…芯体露出部、12…ニッケル正極、12c…芯体露出部、13…セパレータ、14…負極集電体、15…正極集電体、15a…正極用リード、16…外装缶、16a…環状溝部、16b…開口端縁、17…封口体、17a…封口板、17b…正極キャップ、17c…弁板、17d…スプリング、18…絶縁ガスケット DESCRIPTION OF SYMBOLS 11 ... Hydrogen storage alloy negative electrode, 11b ... Active material layer, 11c ... Core body exposed part, 12 ... Nickel positive electrode, 12c ... Core body exposed part, 13 ... Separator, 14 ... Negative electrode collector, 15 ... Positive electrode collector, DESCRIPTION OF SYMBOLS 15a ... Lead for positive electrodes, 16 ... Exterior can, 16a ... Annular groove part, 16b ... Opening edge, 17 ... Sealing body, 17a ... Sealing plate, 17b ... Positive electrode cap, 17c ... Valve plate, 17d ... Spring, 18 ... Insulating gasket

Claims (2)

水素吸蔵合金を負極活物質とするとともに非水溶性高分子からなる糊材と導電剤としての炭素材料とを含有する水素吸蔵合金負極と、正極と、これらの両極を隔離するセパレータと、アルカリ電解液とを外装缶内に備えたアルカリ蓄電池であって、
前記水素吸蔵合金は少なくとも希土類元素を含む元素からなるA成分と、少なくともニッケルを含む元素からなるB成分とから構成されるとともに、前記A成分に対する前記B成分の合金量論比が3.8以上で、かつ合金主相がA519型構造の水素吸蔵合金で、前記非水溶性高分子からなる糊材の添加量が、前記水素吸蔵合金100質量部に対して0.5質量部以下であり、
前記水素吸蔵合金負極が保持した電解液質量は前記水素吸蔵合金1g当たり0.11g以上で、
前記水素吸蔵合金の総表面積S1(m2)に対する前記炭素材料の総表面積S2(m2)の表面積比(S2/S1)が30以上であることを特徴とするアルカリ蓄電池。
A hydrogen storage alloy negative electrode containing a hydrogen storage alloy as a negative electrode active material and containing a paste material made of a water-insoluble polymer and a carbon material as a conductive agent, a positive electrode, a separator separating these two electrodes, and alkaline electrolysis An alkaline storage battery with a liquid in an outer can,
The hydrogen storage alloy is composed of an A component composed of an element including at least a rare earth element and a B component composed of an element including at least nickel, and an alloy stoichiometric ratio of the B component to the A component is 3.8 or more. In addition, the alloy main phase is a hydrogen storage alloy having an A 5 B 19 type structure, and the amount of the paste material made of the water-insoluble polymer is 0.5 parts by mass or less with respect to 100 parts by mass of the hydrogen storage alloy. And
The electrolyte mass held by the hydrogen storage alloy negative electrode is 0.11 g or more per 1 g of the hydrogen storage alloy,
Alkaline storage battery, wherein the surface area ratio of the total surface area S2 (m 2) of the carbon material to the total surface area S1 (m 2) of the hydrogen storage alloy (S2 / S1) is 30 or more.
前記水素吸蔵合金は一般式がLnl-xMgxNiy-a-bAlabと表され、前記希土類元素(Ln)は少なくともイットリウム(Y)を含み、かつMはCo,Mn,Znから選択される少なくとも1種の元素であり、0.1≦x≦0.2、3.8≦y≦4.0、0.05≦a≦0.30、0≦b≦0.2の条件を満たすことを特徴とする請求項1に記載のアルカリ蓄電池。
At least the hydrogen storage alloy has the general formula is represented as Ln lx Mg x Ni yab Al a M b, the rare earth element (Ln) comprises at least yttrium (Y), and M is selected from among Co, Mn, and Zn It is one kind of element and satisfies the condition of 0.1 ≦ x ≦ 0.2, 3.8 ≦ y ≦ 4.0, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.2 The alkaline storage battery according to claim 1 .
JP2008018827A 2008-01-30 2008-01-30 Alkaline storage battery Active JP5247170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008018827A JP5247170B2 (en) 2008-01-30 2008-01-30 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008018827A JP5247170B2 (en) 2008-01-30 2008-01-30 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2009181768A JP2009181768A (en) 2009-08-13
JP5247170B2 true JP5247170B2 (en) 2013-07-24

Family

ID=41035581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008018827A Active JP5247170B2 (en) 2008-01-30 2008-01-30 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP5247170B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642577B2 (en) * 2010-03-18 2014-12-17 三洋電機株式会社 Alkaline storage battery and alkaline storage battery system
CN114497692B (en) * 2021-12-24 2023-05-09 深圳新宙邦科技股份有限公司 Secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567935B2 (en) * 1999-12-27 2010-10-27 株式会社東芝 Hydrogen storage alloy, secondary battery, hybrid car and electric vehicle
US7951326B2 (en) * 2005-08-11 2011-05-31 Gs Yuasa International Ltd. Hydrogen absorbing alloy, hydrogen absorbing alloy electrode, secondary battery and production method of hydrogen absorbing alloy
JP5322392B2 (en) * 2007-01-31 2013-10-23 三洋電機株式会社 Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP2008218070A (en) * 2007-03-01 2008-09-18 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP5171114B2 (en) * 2007-05-30 2013-03-27 三洋電機株式会社 Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP5173320B2 (en) * 2007-08-29 2013-04-03 三洋電機株式会社 Hydrogen storage alloy electrode and alkaline storage battery using this hydrogen storage alloy electrode
JP5241188B2 (en) * 2007-09-28 2013-07-17 三洋電機株式会社 Alkaline storage battery system
JP5425433B2 (en) * 2007-12-27 2014-02-26 三洋電機株式会社 Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material
JP5207750B2 (en) * 2008-01-29 2013-06-12 三洋電機株式会社 Alkaline storage battery

Also Published As

Publication number Publication date
JP2009181768A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5207750B2 (en) Alkaline storage battery
JP5171114B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP5173320B2 (en) Hydrogen storage alloy electrode and alkaline storage battery using this hydrogen storage alloy electrode
JP5425433B2 (en) Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material
US9105947B2 (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery and alkaline storage battery system each including negative electrode having the alloy
JP5636740B2 (en) Hydrogen storage alloy for alkaline storage battery and method for producing the same
JP2009087631A (en) Alkaline storage battery system
JP2008084649A (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method
JP5535684B2 (en) Hydrogen storage alloy for alkaline storage battery and hydrogen storage alloy electrode for alkaline storage battery using the same
JP2012156101A (en) Hydrogen-storing alloy electrode for alkaline storage battery, and alkaline storage battery comprising the same
JP5512176B2 (en) Alkaline storage battery and alkaline storage battery system
JP5322392B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP5252920B2 (en) Alkaline storage battery
JP5717125B2 (en) Alkaline storage battery
JP4698291B2 (en) Alkaline storage battery
EP2096691A1 (en) Hydrogen storage alloy and alkaline storage battery employing hydrogen storage alloy as negative electrode active material
JP5354970B2 (en) Hydrogen storage alloy and alkaline storage battery
JP5247170B2 (en) Alkaline storage battery
JP2005190863A (en) Hydrogen storage alloy electrode for alkaline storage battery, and alkaline storage battery
JP6105389B2 (en) Alkaline storage battery
JP6024295B2 (en) Alkaline storage battery
JP5334498B2 (en) Alkaline storage battery
JP2013178882A (en) Alkaline storage battery
JP4573609B2 (en) Alkaline storage battery
JP2013134903A (en) Hydrogen absorbing alloy for alkaline storage battery, and alkaline storage battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R151 Written notification of patent or utility model registration

Ref document number: 5247170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3