JP2013134903A - Hydrogen absorbing alloy for alkaline storage battery, and alkaline storage battery including the same - Google Patents

Hydrogen absorbing alloy for alkaline storage battery, and alkaline storage battery including the same Download PDF

Info

Publication number
JP2013134903A
JP2013134903A JP2011284641A JP2011284641A JP2013134903A JP 2013134903 A JP2013134903 A JP 2013134903A JP 2011284641 A JP2011284641 A JP 2011284641A JP 2011284641 A JP2011284641 A JP 2011284641A JP 2013134903 A JP2013134903 A JP 2013134903A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage battery
negative electrode
battery
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011284641A
Other languages
Japanese (ja)
Inventor
Kazuaki Tamura
和明 田村
Ikuko Harada
育幸 原田
Hajime Mori
一 森
Yoshifumi Magari
佳文 曲
Teruhito Nagae
輝人 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011284641A priority Critical patent/JP2013134903A/en
Publication of JP2013134903A publication Critical patent/JP2013134903A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen absorbing alloy for an alkaline storage battery, etc., capable of saving cost while maintaining high output.SOLUTION: A hydrogen absorbing alloy for an alkaline storage battery is represented by general formula: (ReY)ZrMgNiAl(where, Re includes only La or at least one element selected from Nd and Sm and including La, and 0<x≤0.60, 0≤y≤0.02, 0.09≤z≤0.13, 3.40≤a≤3.80 and 0.05≤b≤0.20 are satisfied).

Description

本発明は、ハイブリッド車(HEV:Hybrid Electric Vehicle)等の高出力で大電流放電を必要とする用途(高出力・大電流用途)に適したアルカリ蓄電池用水素吸蔵合金に関する。   The present invention relates to a hydrogen storage alloy for an alkaline storage battery suitable for applications requiring high current and high current discharge (high power / high current applications) such as a hybrid electric vehicle (HEV).

水素吸蔵合金を負極に備えたアルカリ蓄電池は、安全性にも優れているという点からHEV用等といった高出力で大電流放電を必要とする用途(高出力・大電流用途)に用いられている。ところで、アルカリ蓄電池の負極に用いられる水素吸蔵合金は、一般的には、AB2型構造あるいはAB5型構造の単一相から構成されたものが用いられている。ところが、従来の範囲をはるかに超えた高出力や大電流放電性能が要望されるようになり、希土類−Mg−Ni系水素吸蔵合金のように、AB2型構造とAB5型構造を組み合わせたA27型構造やA519型構造を主相として有するものが提案されるようになった。なお、AB2型構造、AB5型構造、A27型構造、A519型構造において、A成分は希土類とZrとMgの量論比の和を表し、B成分はNi成分と、希土類およびZrおよびMg以外の成分の量論比の和を表している。 Alkaline batteries with a hydrogen storage alloy in the negative electrode are used for applications requiring high power and large current discharge (high power / high current applications) such as for HEVs because they are excellent in safety. . By the way, generally, the hydrogen storage alloy used for the negative electrode of an alkaline storage battery is composed of a single phase of AB 2 type structure or AB 5 type structure. However, high output and large current discharge performance far exceeding the conventional range have been demanded, and the AB 2 type structure and the AB 5 type structure are combined as in the rare earth-Mg—Ni based hydrogen storage alloy. Those having an A 2 B 7 type structure or an A 5 B 19 type structure as a main phase have been proposed. In the AB 2 type structure, AB 5 type structure, A 2 B 7 type structure, and A 5 B 19 type structure, the A component represents the sum of the stoichiometric ratios of rare earth, Zr, and Mg, and the B component is the Ni component. Represents the sum of the stoichiometric ratios of components other than rare earth and Zr and Mg.

ここで、希土類−Mg−Ni系水素吸蔵合金は、B成分(主に、Ni)の化学量論比によって結構構造が変態し、B成分の化学量論比が増加するに従ってA27型構造からA519型構造が構成されやすくなる。この場合、A519型構造は、AB2型構造が1層とAB5型構造が3層を周期として積み重なり合った構造であるので、単位結晶格子当たりのニッケル比率を向上させることができるものである。このため、A519型構造を主相とする(比較的多く含む)希土類−Mg−Ni系水素吸蔵合金を負極に備えたアルカリ蓄電池は、特に優れた高出力を示す電池であるとして、特許文献1や特許文献2や特許文献3等で提案されるようになった。 Here, in the rare earth-Mg—Ni-based hydrogen storage alloy, the structure is transformed by the stoichiometric ratio of the B component (mainly Ni), and the A 2 B 7 type increases as the stoichiometric ratio of the B component increases. A 5 B 19 type structure is easily constructed from the structure. In this case, the A 5 B 19 type structure is a structure in which the AB 2 type structure is stacked with one layer of the AB 2 type structure and three layers of the AB 5 type structure as a period, so that the nickel ratio per unit crystal lattice can be improved. Is. For this reason, an alkaline storage battery including a rare earth-Mg—Ni-based hydrogen storage alloy having a main phase of A 5 B 19 type structure (including relatively many) in the negative electrode is a battery exhibiting particularly excellent high output, It has been proposed in Patent Literature 1, Patent Literature 2, Patent Literature 3, and the like.

特開2008−300108号公報JP 2008-300108 A 特開2009−054514号公報JP 2009-054514 A 特開2009−087631号公報JP 2009-07631 A

ところで、近年、HEV用途では、従来の範囲を超える高出力に加えて、コストダウンが求められている。これまでHEV用途においては、希土類-Mg-Ni系水素吸蔵合金が広く使用されている。
このうち、希土類元素としてNdを多く含む希土類-Mg-Ni水素吸蔵合金は、良好な出力性能が得られるということで、HEV用途において広く使用されている。
しかしながら、Ndは高価であるため、希土類元素としてNdを多く含む希土類-Mg-Ni系水素吸蔵合金は、原材料コストが上昇するという課題が生じる。
Incidentally, in recent years, in HEV applications, in addition to high output exceeding the conventional range, cost reduction is required. Until now, rare earth-Mg-Ni-based hydrogen storage alloys have been widely used in HEV applications.
Among these, rare earth-Mg—Ni hydrogen storage alloys containing a large amount of Nd as a rare earth element are widely used in HEV applications because they can provide good output performance.
However, since Nd is expensive, the rare earth-Mg—Ni-based hydrogen storage alloy containing a large amount of Nd as a rare earth element has a problem that the raw material cost increases.

同水素吸蔵合金のコストダウンを図る方法としては、Ndの一部を安価なLaに置換するという方法がある。しかしながら、Ndの一部をLaに置換すると、水素吸蔵合金の平衡水素圧(以下、平衡圧)が低下し、出力が低下するという課題が生じる。
一方、コストダウンを図る別の手段として、NdとLaの中間程度の価格であるSmを組み合わせる方法が提案されている。この方法であると、出力性能がある程度改善されるも
のの、十分な出力性能が得られないという課題が生じる。
As a method for reducing the cost of the hydrogen storage alloy, there is a method of replacing a part of Nd with inexpensive La. However, when a part of Nd is replaced by La, the equilibrium hydrogen pressure (hereinafter referred to as equilibrium pressure) of the hydrogen storage alloy is lowered, and the output is lowered.
On the other hand, as another means for reducing the cost, there has been proposed a method of combining Sm which is an intermediate price between Nd and La. With this method, the output performance is improved to some extent, but there is a problem that sufficient output performance cannot be obtained.

上記課題を解決するために、本発明のアルカリ蓄電池用水素吸蔵合金は、一般式(Re1−x)1―y-zZrMgNia−bAl(Re:Laのみを含む、もしくはLaを含み、Nd、Sm から選択される少なくとも1種の元素、0<x≦0.60、0≦y≦0.02、0.09≦z≦0.13、3.40≦a≦3.80、0.05≦b≦0.20)で表されることを特徴としている。 In order to solve the above problems, alkali hydrogen-absorbing alloy for battery of the present invention have the general formula (Re 1-x Y x) 1-y-z Zr y Mg z Ni a-b Al b (Re: La only At least one element selected from Nd and Sm, 0 <x ≦ 0.60, 0 ≦ y ≦ 0.02, 0.09 ≦ z ≦ 0.13, 3.40 ≦ a ≦ 3.80, 0.05 ≦ b ≦ 0.20).

上記のように希土類元素としてYを含むようにすると、YはSmと同程度平衡圧を上昇させるものの、価格がSmと同じくNdとLaの中間程度の価格であり、かつSmよりも反応抵抗を低減する。このため、本発明のアルカリ蓄電池用の水素吸蔵合金は、高出力を維持しつつ、コストダウンが可能となる。   As described above, when Y is included as a rare earth element, Y increases the equilibrium pressure to the same extent as Sm, but the price is about the same between Nd and La as Sm, and the reaction resistance is higher than Sm. To reduce. For this reason, the hydrogen storage alloy for alkaline storage batteries of the present invention can reduce costs while maintaining high output.

但し、xが0.60を超えると、水素吸蔵放出に伴う微粉化が加速され、耐食性が低下するため、0<x≦0.60を満たす必要がある。Zrのモル比yは、0.02以下でサイクル寿命が向上することから、0≦y≦0.02とする必要がある。
Mgのモル比zは、0.13を超えると、水素吸蔵放出に伴う微粉化が加速され、耐食性の低下をもたらし、0.09を下回ると水素吸蔵時の圧力変化の多段化により、安定的水素吸蔵特性が得られないため、Mgのモル比は、0.09≦z≦0.13を満たす必要がある。
また、量論比aが3.40を下回ると、平衡圧が低いため出力低下が顕著になり、3.80を超えると、水素吸蔵放出に伴う微粉化が加速され、耐食性が低下するため、量論比は、3.40≦a≦3.80を満たす必要がある。
さらに、Alのモル比bは、0.20を超えるとAlのアルカリ電解液への溶出量が過多となり、耐食性が低下する。加えて、正極へ侵入するAl量が増加することで出力低下をもたらす。一方、0.05を下回ると、アルカリ電解液への溶出量が少なくなり、電解液との接触面積が減少して、十分な出力を得ることができなくなる。このため、Alのモル比は0.05≦b≦0.20を満たす必要がある。
However, if x exceeds 0.60, pulverization associated with hydrogen storage and release is accelerated and the corrosion resistance is lowered. Therefore, it is necessary to satisfy 0 <x ≦ 0.60. Since the cycle life is improved when the molar ratio y of Zr is 0.02 or less, it is necessary to satisfy 0 ≦ y ≦ 0.02.
When the molar ratio z of Mg exceeds 0.13, pulverization accompanying hydrogen storage and release is accelerated, resulting in a decrease in corrosion resistance. When the molar ratio z is below 0.09, the pressure change during hydrogen storage is stable due to multistage. Since the hydrogen storage characteristic cannot be obtained, the molar ratio of Mg needs to satisfy 0.09 ≦ z ≦ 0.13.
When the stoichiometric ratio a is less than 3.40, the equilibrium pressure is low, so the output drop is significant. When the stoichiometric ratio a exceeds 3.80, pulverization associated with hydrogen storage and release is accelerated, and the corrosion resistance is reduced. The stoichiometric ratio must satisfy 3.40 ≦ a ≦ 3.80.
Furthermore, when the molar ratio b of Al exceeds 0.20, the amount of Al eluted into the alkaline electrolyte becomes excessive, and the corrosion resistance is lowered. In addition, an increase in the amount of Al entering the positive electrode causes a decrease in output. On the other hand, if it is less than 0.05, the amount of elution into the alkaline electrolyte is reduced, the contact area with the electrolyte is reduced, and sufficient output cannot be obtained. For this reason, the molar ratio of Al needs to satisfy 0.05 ≦ b ≦ 0.20.

上記本発明のアルカリ蓄電池用水素吸蔵合金によると、高出力を維持しつつ、コストダウンが可能となる。   According to the hydrogen storage alloy for an alkaline storage battery of the present invention, the cost can be reduced while maintaining a high output.

本発明の一実施例のアルカリ蓄電池を模式的に示す断面図である。It is sectional drawing which shows typically the alkaline storage battery of one Example of this invention.

ついで、本発明の実施の形態を以下に詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Next, embodiments of the present invention will be described in detail below. However, the present invention is not limited to these embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention.

1.水素吸蔵合金
水素吸蔵合金は以下のようにして作製した。この場合、まず、ランタン(La)、ネオジム(Nd)、サマリウム(Sm)、イットリウム(Y)、ジルコニウム(Zr)、マグネシウム(Mg)、ニッケル(Ni)、アルミニウム(Al)を表1に示す組成となるように混合し、この混合物をアルゴンガス雰囲気中で溶解させ、これを溶湯急冷して水素吸蔵合金a1〜e1のインゴットを作製した。この後、これらの各水素吸蔵合金a1〜e1の塊を粗粉砕した後、不活性ガス雰囲気中で機械的に粉砕して、体積累積頻度50%での粒径(D50)が25μmの水素吸蔵合金粉末を作製した。 なお、これらの水素吸蔵合金a1〜e1の組成を高周波プラズマ分光法(ICP)によって分析すると、下記の表1
に示す組成であることが分かった。
1. Hydrogen storage alloy The hydrogen storage alloy was produced as follows. In this case, first, lanthanum (La), neodymium (Nd), samarium (Sm), yttrium (Y), zirconium (Zr), magnesium (Mg), nickel (Ni), and aluminum (Al) are shown in Table 1. The mixture was dissolved in an argon gas atmosphere, and the molten metal was rapidly cooled to produce hydrogen storage alloys a1 to e1 ingots. Thereafter, the mass of each of the hydrogen storage alloys a1 to e1 is coarsely pulverized and then mechanically pulverized in an inert gas atmosphere to obtain a hydrogen storage having a particle size (D50) of 25 μm at a volume cumulative frequency of 50%. Alloy powder was prepared. In addition, when the composition of these hydrogen storage alloys a1 to e1 is analyzed by high frequency plasma spectroscopy (ICP), the following Table 1 is obtained.
It turned out that it is a composition shown to.

2.水素吸蔵合金負極
ついで、上述のようにして作製された水素吸蔵合金a1〜e1の粉末を用いて、以下のようにして水素吸蔵合金負極11を作製した。
この場合、まず、上述のようにして作製された水素吸蔵合金a1〜e1の粉末と、水溶性結着剤と、熱可塑性エラストマーおよび炭素系導電剤とを混合・混練して水素吸蔵合金スラリーを作製した。この場合、水溶性結着剤としては、0.1質量%のCMC(カルボキシメチルセルロース)と水(あるいは純水)とからなるものを使用した。また、熱可塑性エラストマーとしては、スチレンブタジエンラテックス(SBR)を使用した。さらに、炭素系導電剤としては、ケッチェンブラック使用した。
2. Hydrogen Storage Alloy Negative Electrode Next, using the powders of the hydrogen storage alloys a1 to e1 manufactured as described above, a hydrogen storage alloy negative electrode 11 was manufactured as follows.
In this case, first, the hydrogen storage alloy slurry is prepared by mixing and kneading the powders of the hydrogen storage alloys a1 to e1 prepared as described above, the water-soluble binder, the thermoplastic elastomer, and the carbon-based conductive agent. Produced. In this case, as the water-soluble binder, a material composed of 0.1% by mass of CMC (carboxymethyl cellulose) and water (or pure water) was used. Further, styrene butadiene latex (SBR) was used as the thermoplastic elastomer. Further, ketjen black was used as the carbon-based conductive agent.

ついで、上述のようにして作製した水素吸蔵合金スラリーを負極用導電性芯体(ニッケルメッキを施した軟鋼材製の多孔性基板(パンチングメタル))に所定の充填密度(例えば、5.0g/cm3)となるように塗着、乾燥させて活物質層を形成させた後、所定の厚みになるように圧延した。この後、水素吸蔵合金負極容量が14Ah、水素吸蔵合金負極表面積(短軸長×長軸長×2)が1000cm2(負極表面積/負極容量=71cm2/Ah)となるように所定の寸法に切断して、水素吸蔵合金負極11(a,b,c,d,e)をそれぞれ作製した。負極表面積は、負極表と裏、両方の面積の総和とする。 Next, the hydrogen storage alloy slurry prepared as described above is applied to a negative electrode conductive core (a nickel-plated soft steel porous substrate (punching metal)) with a predetermined filling density (for example, 5.0 g / The active material layer was formed by applying and drying to a thickness of cm 3 ), and then rolling to a predetermined thickness. Thereafter, the hydrogen storage alloy negative electrode capacity is 14 Ah, and the hydrogen storage alloy negative electrode surface area (short axis length × long axis length × 2) is 1000 cm 2 (negative electrode surface area / negative electrode capacity = 71 cm 2 / Ah). The hydrogen storage alloy negative electrode 11 (a, b, c, d, e) was produced by cutting. The negative electrode surface area is the sum of the areas of the front and back surfaces of the negative electrode.

この場合、水素吸蔵合金a1の粉末を用いて作製したものを水素吸蔵合金負極aとした。同様に、水素吸蔵合金b1の粉末を用いて作製したものを水素吸蔵合金負極bとし、水素吸蔵合金c1の粉末を用いて作製したものを水素吸蔵合金負極cとし、水素吸蔵合金d1の粉末を用いて作製したものを水素吸蔵合金負極dとし、水素吸蔵合金e1の粉末を用いて作製したものを水素吸蔵合金負極eとした。   In this case, the hydrogen storage alloy negative electrode a was prepared using the hydrogen storage alloy a1 powder. Similarly, a hydrogen storage alloy negative electrode b is prepared using the hydrogen storage alloy b1 powder, a hydrogen storage alloy negative electrode c is prepared using the hydrogen storage alloy c1 powder, and the hydrogen storage alloy d1 powder is prepared. The hydrogen storage alloy negative electrode d was prepared using this, and the hydrogen storage alloy negative electrode e was prepared using the powder of the hydrogen storage alloy e1.

3.ニッケル正極
ニッケル正極12は、以下のようにして作製した。
まず、多孔度が約85%の多孔性ニッケル焼結基板を比重が1.75の硝酸ニッケルと硝酸コバルトの混合水溶液に浸漬して、多孔性ニッケル焼結基板の細孔内にニッケル塩およびコバルト塩を保持させた。この後、この多孔性ニッケル焼結基板を25質量%の水酸化ナトリウム(NaOH)水溶液中に浸漬して、ニッケル塩およびコバルト塩をそれぞれ水酸化ニッケルおよび水酸化コバルトに転換させた。
ついで、充分に水洗してアルカリ溶液を除去した後、乾燥を行って、多孔性ニッケル焼結基板の細孔内に水酸化ニッケルを主成分とする活物質を充填した。このような活物質充填操作を所定回数(例えば6回)繰り返して、多孔性焼結基板の細孔内に水酸化ニッケルを主体とする活物質の充填密度が2.5g/cm3になるように充填した。この後、室温で乾燥させた後、所定の寸法に切断してニッケル正極12を作製した。
3. Nickel positive electrode The nickel positive electrode 12 was produced as follows.
First, a porous nickel sintered substrate having a porosity of about 85% is immersed in a mixed aqueous solution of nickel nitrate and cobalt nitrate having a specific gravity of 1.75, and nickel salt and cobalt are placed in the pores of the porous nickel sintered substrate. Salt was retained. Thereafter, the porous nickel sintered substrate was immersed in a 25% by mass sodium hydroxide (NaOH) aqueous solution to convert the nickel salt and the cobalt salt into nickel hydroxide and cobalt hydroxide, respectively.
Next, after sufficiently washing with water to remove the alkaline solution, drying was performed, and the active material mainly composed of nickel hydroxide was filled into the pores of the porous nickel sintered substrate. Such an active material filling operation is repeated a predetermined number of times (for example, 6 times) so that the filling density of the active material mainly composed of nickel hydroxide in the pores of the porous sintered substrate becomes 2.5 g / cm 3. Filled. Then, after making it dry at room temperature, it cut | disconnected to the predetermined dimension and the nickel positive electrode 12 was produced.

4.ニッケル−水素蓄電池
ニッケル−水素蓄電池10は、以下のようにして作製した。
まず、上述のように作製された水素吸蔵合金負極11とニッケル正極12とを用い、これらの間に、ポリプロピレン繊維を含む不織布からなるセパレータ13を介在させて渦巻状に巻回して渦巻状電極群を作製した。なお、このようにして作製された渦巻状電極群の下部には水素吸蔵合金負極11の芯体露出部11cが露出しており、その上部にはニッケル正極12の芯体露出部12cが露出している。ついで、得られた渦巻状電極群の下端面に露出する芯体露出部11cに負極集電体14を溶接するとともに、渦巻状電極群の上端面に露出するニッケル正極12の芯体露出部12cの上に正極集電体15を溶接して、電極体とした。
4). Nickel-hydrogen storage battery The nickel-hydrogen storage battery 10 was produced as follows.
First, the hydrogen storage alloy negative electrode 11 and the nickel positive electrode 12 manufactured as described above are used, and a separator 13 made of a nonwoven fabric containing polypropylene fibers is interposed between them, and the spiral electrode group is wound. Was made. The core exposed portion 11c of the hydrogen storage alloy negative electrode 11 is exposed at the lower part of the spiral electrode group thus fabricated, and the core exposed part 12c of the nickel positive electrode 12 is exposed at the upper portion thereof. ing. Next, the negative electrode current collector 14 is welded to the core exposed portion 11c exposed at the lower end surface of the obtained spiral electrode group, and the core exposed portion 12c of the nickel positive electrode 12 exposed at the upper end surface of the spiral electrode group. A positive electrode current collector 15 was welded onto the electrode body to obtain an electrode body.

ついで、得られた電極体を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)16内に収納した後、負極集電体14を外装缶16の内底面に溶接した。一方、正極集電体15より延出する集電リード部15aと、正極端子を兼ねると
ともに外周部に絶縁ガスケット18が装着された封口板17とを溶接した。なお、封口板17には正極キャップ17aが設けられていて、この正極キャップ17a内に所定の圧力になると変形する弁体17bとスプリング17cよりなる圧力弁が配置されている。
Next, after the obtained electrode body is housed in a bottomed cylindrical outer can 16 in which iron is nickel-plated (the outer surface of the bottom surface becomes a negative electrode external terminal) 16, the negative electrode current collector 14 is attached to the outer can 16. Welded to the inner bottom. On the other hand, a current collecting lead portion 15a extending from the positive electrode current collector 15 and a sealing plate 17 serving as a positive electrode terminal and having an insulating gasket 18 attached to the outer peripheral portion were welded. The sealing plate 17 is provided with a positive electrode cap 17a, and a pressure valve including a valve body 17b and a spring 17c which are deformed when a predetermined pressure is reached is disposed in the positive electrode cap 17a.

ついで、外装缶16の上部外周部に環状溝部16aを形成した後、電解液を注液し、外装缶16の上部に形成された環状溝部16aの上に封口板17の外周部に装着された絶縁ガスケット18を載置した。この後、外装缶16の開口端縁16bをかしめ、外装缶16内にアルカリ電解液(例えば、30質量%の水酸化カリウム(KOH)水溶液からなる)を電池容量(Ah)当たり2.5g(2.5g/Ah)注入して、電池容量が6Ahのニッケル−水素蓄電池10(A,B,C,D,E)を作製した。   Next, after forming the annular groove portion 16 a on the upper outer peripheral portion of the outer can 16, the electrolytic solution was injected, and the outer peripheral portion of the sealing plate 17 was mounted on the annular groove portion 16 a formed on the upper portion of the outer can 16. An insulating gasket 18 was placed. Thereafter, the opening edge 16b of the outer can 16 is caulked, and an alkaline electrolyte (for example, composed of 30% by mass potassium hydroxide (KOH) aqueous solution) is put in the outer can 16 at 2.5 g per battery capacity (Ah) ( 2.5 g / Ah) was injected to produce a nickel-hydrogen storage battery 10 (A, B, C, D, E) having a battery capacity of 6 Ah.

この場合、水素吸蔵合金負極aを用いて作製したものを電池Aとし、水素吸蔵合金負極bを用いて作製したものを電池Bとし、水素吸蔵合金負極cを用いて作製したものを電池Cとし、水素吸蔵合金負極dを用いて作製したものを電池Dとし、水素吸蔵合金負極eを用いて作製したものを電池Eとした。   In this case, the battery A was prepared using the hydrogen storage alloy negative electrode a, the battery B was manufactured using the hydrogen storage alloy negative electrode b, and the battery C was manufactured using the hydrogen storage alloy negative electrode c. A battery D was prepared using the hydrogen storage alloy negative electrode d, and a battery E was prepared using the hydrogen storage alloy negative electrode e.

5.電池試験
(1)活性化
活性化は、以下のようにして行った。即ち、上述のようにして作製されたニッケル−水素蓄電池10(A,B,C,D,E)を電池電圧が放置時ピーク電圧の60%になるまで放置した後、25℃の温度雰囲気で、1Itの充電々流でSOC120%まで充電し、25℃の温度雰囲気で1時間休止する。ついで、70℃の温度雰囲気で24時間放置した後、45℃の温度雰囲気で、1Itの放電々流で電池電圧が0.3Vになるまで放電させるサイクルを2サイクル繰り返した。
5. Battery test (1) Activation Activation was performed as follows. That is, the nickel-hydrogen storage battery 10 (A, B, C, D, E) manufactured as described above is left until the battery voltage reaches 60% of the peak voltage when left, and then in a temperature atmosphere of 25 ° C. The battery is charged up to 120% SOC at a charging current of 1 It and rests at 25 ° C. for 1 hour. Then, after being allowed to stand for 24 hours in a temperature atmosphere at 70 ° C., a cycle in which the battery voltage was 0.3 V with a discharge current of 1 It in a temperature atmosphere of 45 ° C. was repeated two times.

(2)出力特性(−10℃アシスト出力)
出力特性(−10℃アシスト出力)を以下のようにして求めた。
まず、上述のようにして活性化したニッケル−水素蓄電池10(A,B,C,D,E)を25℃の温度雰囲気で1Itの充電々流でSOC50%まで充電した後、25℃の温度雰囲気で1時間休止させた。ついで、−10℃の温度雰囲気で、任意の充電レートで20秒間充電させた後、−10℃の温度雰囲気で30分間休止させた。この後、−10℃の温度雰囲気で、任意の放電レートで10秒間放電させた後、−10℃の温度雰囲気で30分間休止させた。このような−10℃の温度雰囲気で、任意の充電レートでの20秒間充電、30分の休止、任意の放電レートで10秒間放電、−10℃の温度雰囲気での30分の休止を繰り返した。
(2) Output characteristics (-10 ° C assist output)
The output characteristics (−10 ° C. assist output) were determined as follows.
First, the nickel-hydrogen storage battery 10 (A, B, C, D, E) activated as described above was charged to SOC 50% at a charging current of 1 It in a temperature atmosphere of 25 ° C., and then a temperature of 25 ° C. It was allowed to rest for 1 hour in the atmosphere. Next, the battery was charged for 20 seconds at an arbitrary charging rate in a temperature atmosphere of −10 ° C., and then rested for 30 minutes in a temperature atmosphere of −10 ° C. Thereafter, the battery was discharged for 10 seconds at an arbitrary discharge rate in a temperature atmosphere of −10 ° C., and then rested in a temperature atmosphere of −10 ° C. for 30 minutes. In such a temperature atmosphere of −10 ° C., charging for 20 seconds at an arbitrary charging rate, pause for 30 minutes, discharging for 10 seconds at an arbitrary discharge rate, and pause for 30 minutes in a temperature atmosphere of −10 ° C. were repeated. .

この場合、任意の充電レートは、0.8It→1.7It→2.5It→3.3It→4.2Itの順で充電々流を増加させ、任意の放電レートは、1.7It→3.3It→5.0It→6.7It→8.3Itの順で放電々流を増加させるようにして、0.8It充電→1.7It放電→1.7It充電→3.3It放電→2.5It充電→5.0It放電→3.3It充電→6.7It放電→4.2It充電→8.3It放電の充放電処理を行った。このとき、各放電レートで10秒間経過時点での各電池の電池電圧(V)を放電レート毎に測定した。ついで、測定した10秒間経過時点での各電池A,B,C,D,Eの電池電圧(V)を放電レート毎の放電々流値に対して2次元プロットし、電池電圧と放電々流値の関係を示す近似曲線を求め、近似曲線における0.9V時の放電々流値を−10℃でのSOC50%出力特性(−10℃でのSOC50%アシスト出力)として求めると、下記の表2に示すような結果となった。   In this case, the charging rate is increased in the order of 0.8 It → 1.7 It → 2.5 It → 3.3 It → 4.2 It, and the arbitrary discharging rate is 1.7 It → 3. The discharge current is increased in the order of 3 It → 5.0 It → 6.7 It → 8.3 It so that 0.8 It charge → 1.7 It discharge → 1.7 It charge → 3.3 It discharge → 2.5 It charge → 5.0 It discharge → 3.3 It charge → 6.7 It discharge → 4.2 It charge → 8.3 It discharge / discharge treatment was performed. At this time, the battery voltage (V) of each battery at the time when 10 seconds passed at each discharge rate was measured for each discharge rate. Next, the battery voltage (V) of each of the batteries A, B, C, D, and E when the measured 10 seconds have elapsed is two-dimensionally plotted against the discharge current value for each discharge rate, and the battery voltage and the discharge current are plotted. When an approximate curve indicating the relationship between values is obtained, and the discharge current value at 0.9 V in the approximate curve is obtained as an SOC 50% output characteristic at −10 ° C. (SOC 50% assist output at −10 ° C.), the following table is obtained. Results were as shown in 2.

(3)コスト特性
水素吸蔵合金a1〜e1の原材料コストを求めると、下記の表2に示すような結果とな
った。
(3) Cost characteristics When the raw material costs of the hydrogen storage alloys a1 to e1 were determined, the results shown in Table 2 below were obtained.

6.試験結果上記表の結果から以下のことが明らかとなった。
即ち、電池Dのように、希土類元素がLaNdのみからなる組成に対し、電池EのようにNdの一部をSmに置換することにより、出力特性が向上するが、電池Aのように、NdをYで置換すると、出力特性がさらに向上する。
これは、電池Eのように、Nd→Smに置換することで平衡圧が上昇し、出力が向上するが、電池AのようにNd→Y置換すると、Sm置換同程度にまで平衡圧が上昇することに加え、電池内での反応抵抗がSm置換よりも低下することで、Sm以上の出力が得られるものと考える。
また、Yは、Smと同じくNdとLaの中間程度の価格であることから、Nd→Y置換した水素吸蔵合金は、LaNdからなる組成より低コストとなる。よって、Nd→Y置換した水素吸蔵合金は、水素吸蔵合金の高出力化とコストダウンの両立が可能となる。
また、電池Aに対し、Y置換量(x)を増大させた電池Bまたは電池Cは、出力特性がさらに向上することから、Y置換量(x)は、0.40以上であることが望ましいことが分かる。特に、電池CのようにNdをLaとYのみで置換した場合、大幅な高出力とコストダウンの両立が可能となる。
6). Test results From the results in the above table, the following became clear.
That is, the output characteristics are improved by substituting a part of Nd with Sm as in the battery E for a composition in which the rare earth element is composed only of LaNd as in the battery D. When Y is replaced with Y, the output characteristics are further improved.
This is because, as in battery E, replacing Nd → Sm increases the equilibrium pressure and improves the output. However, as in battery A, replacing Nd → Y increases the equilibrium pressure to the same extent as Sm replacement. In addition to this, it is considered that an output higher than Sm can be obtained because the reaction resistance in the battery is lower than the Sm substitution.
Further, since Y is about the middle price between Nd and La like Sm, the hydrogen storage alloy substituted with Nd → Y has a lower cost than the composition made of LaNd. Therefore, the hydrogen storage alloy substituted with Nd → Y can achieve both high output and cost reduction of the hydrogen storage alloy.
Further, since the output characteristics of the battery B or the battery C in which the Y substitution amount (x) is increased with respect to the battery A are further improved, the Y substitution amount (x) is preferably 0.40 or more. I understand that. In particular, when Nd is replaced only with La and Y as in the battery C, it is possible to achieve both high output and cost reduction.

さらに、水素吸蔵合金を負極に用いたアルカリ蓄電池においては、負極容量X(Ah)、負極表面積をYとしたときのY/Xが大きくなる(特に、60cm/Ah以上)に伴って、負極の構造が薄長くなり、必然的にニッケル正極との対向面積が増加するとともに電池抵抗も小さくなって、高出力化が可能となる。このような高出力化の電池設計を採用する場合には、上述した本発明の水素吸蔵合金を負極に採用するのが好ましい。 Furthermore, in an alkaline storage battery using a hydrogen storage alloy for the negative electrode, as the negative electrode capacity X (Ah) and the negative electrode surface area Y are Y / X increases (especially 60 cm 2 / Ah or more), the negative electrode Therefore, the area facing the nickel positive electrode is inevitably increased and the battery resistance is reduced, so that high output can be achieved. When such a high-power battery design is employed, the above-described hydrogen storage alloy of the present invention is preferably employed for the negative electrode.

11…水素吸蔵合金負極、11c…芯体露出部、12…ニッケル正極、12c…芯体露出部、13…セパレータ、14…負極集電体、15…正極集電体、15a…正極用リード、16…外装缶、16a…環状溝部、16b…開口端縁、17…封口板、17a…正極キャップ、17b…弁板、17c…スプリング、18…絶縁ガスケット
DESCRIPTION OF SYMBOLS 11 ... Hydrogen storage alloy negative electrode, 11c ... Core exposed part, 12 ... Nickel positive electrode, 12c ... Core exposed part, 13 ... Separator, 14 ... Negative electrode collector, 15 ... Positive electrode collector, 15a ... Lead for positive electrode, DESCRIPTION OF SYMBOLS 16 ... Exterior can, 16a ... Circular groove part, 16b ... Opening edge, 17 ... Sealing plate, 17a ... Positive electrode cap, 17b ... Valve plate, 17c ... Spring, 18 ... Insulation gasket

Claims (2)

アルカリ蓄電池用水素吸蔵合金であって、一般式(Re1−x)1―y-zZrMgNia−bAl(Re:Laのみを含む、もしくはLaを含み、Nd、Sm から選択される少なくとも1種の元素、0<x≦0.60、0≦y≦0.02、0.09≦z≦0.13、3.40≦a≦3.80、0.05≦b≦0.20)で表されることを特徴とするアルカリ蓄電池用水素吸蔵合金。 A hydrogen-absorbing alloy for an alkaline storage battery, the general formula (Re 1-x Y x) 1-y-z Zr y Mg z Ni a-b Al b (Re: La contains only or includes a La, Nd, At least one element selected from Sm, 0 <x ≦ 0.60, 0 ≦ y ≦ 0.02, 0.09 ≦ z ≦ 0.13, 3.40 ≦ a ≦ 3.80, 0.05 <= B <= 0.20) The hydrogen storage alloy for alkaline storage batteries characterized by the above-mentioned. 負極に請求項1に記載の水素吸蔵合金含むアルカリ蓄電池であって、負極の極板容量をX、負極の極板表面積をYとしたときのY/Xが60cm/Ah以上であることを特徴とするアルカリ蓄電池。 It is an alkaline storage battery containing the hydrogen storage alloy according to claim 1 in the negative electrode, wherein Y / X is 60 cm 2 / Ah or more when the electrode plate capacity of the negative electrode is X and the electrode plate surface area of the negative electrode is Y. Characteristic alkaline storage battery.
JP2011284641A 2011-12-27 2011-12-27 Hydrogen absorbing alloy for alkaline storage battery, and alkaline storage battery including the same Pending JP2013134903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011284641A JP2013134903A (en) 2011-12-27 2011-12-27 Hydrogen absorbing alloy for alkaline storage battery, and alkaline storage battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011284641A JP2013134903A (en) 2011-12-27 2011-12-27 Hydrogen absorbing alloy for alkaline storage battery, and alkaline storage battery including the same

Publications (1)

Publication Number Publication Date
JP2013134903A true JP2013134903A (en) 2013-07-08

Family

ID=48911462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284641A Pending JP2013134903A (en) 2011-12-27 2011-12-27 Hydrogen absorbing alloy for alkaline storage battery, and alkaline storage battery including the same

Country Status (1)

Country Link
JP (1) JP2013134903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024256A1 (en) * 2022-07-29 2024-02-01 パナソニックIpマネジメント株式会社 Hydrogen storage alloy and alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024256A1 (en) * 2022-07-29 2024-02-01 パナソニックIpマネジメント株式会社 Hydrogen storage alloy and alkaline storage battery

Similar Documents

Publication Publication Date Title
JP5207750B2 (en) Alkaline storage battery
JP5425433B2 (en) Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material
JP5173320B2 (en) Hydrogen storage alloy electrode and alkaline storage battery using this hydrogen storage alloy electrode
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
US8802292B2 (en) Hydrogen-absorbing alloy for alkaline storage battery and method for manufacturing the same
JP2008084649A (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method
JP2012156101A (en) Hydrogen-storing alloy electrode for alkaline storage battery, and alkaline storage battery comprising the same
JP5717125B2 (en) Alkaline storage battery
JP5252920B2 (en) Alkaline storage battery
JP5322392B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP5853799B2 (en) Alkaline storage battery
JP4420767B2 (en) Nickel / hydrogen storage battery
JP5213312B2 (en) Alkaline storage battery
JP6105389B2 (en) Alkaline storage battery
KR20180046353A (en) Anode material and battery
JP2013134903A (en) Hydrogen absorbing alloy for alkaline storage battery, and alkaline storage battery including the same
JP2013178882A (en) Alkaline storage battery
WO2014050075A1 (en) Storage cell system
JP5247170B2 (en) Alkaline storage battery
JP2013147753A (en) Method for manufacturing hydrogen storing alloy for battery
JP5334498B2 (en) Alkaline storage battery
JP4573609B2 (en) Alkaline storage battery
JP2005105356A (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and hermetically sealed-type nickel hydrogen storage battery
WO2012165519A1 (en) Alkaline storage cell and alkaline storage cell system
JP2000200601A (en) Alkaline secondary battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130628