JP5853799B2 - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP5853799B2
JP5853799B2 JP2012064771A JP2012064771A JP5853799B2 JP 5853799 B2 JP5853799 B2 JP 5853799B2 JP 2012064771 A JP2012064771 A JP 2012064771A JP 2012064771 A JP2012064771 A JP 2012064771A JP 5853799 B2 JP5853799 B2 JP 5853799B2
Authority
JP
Japan
Prior art keywords
positive electrode
nickel
active material
hydrogen storage
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012064771A
Other languages
Japanese (ja)
Other versions
JP2013196991A (en
Inventor
雄 松井
雄 松井
赤穂 篤俊
篤俊 赤穂
曲 佳文
佳文 曲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2012064771A priority Critical patent/JP5853799B2/en
Publication of JP2013196991A publication Critical patent/JP2013196991A/en
Application granted granted Critical
Publication of JP5853799B2 publication Critical patent/JP5853799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、ハイブリッド自動車(HEV)などの高出力用途に好適なアルカリ蓄電池に係り、特に、水酸化ニッケルを主正極活物質とするニッケル正極と、水素吸蔵合金を主負極活物質とする水素吸蔵合金負極と、これらの水素吸蔵合金負極とニッケル正極とを隔離するセパレータとからなる電極群をアルカリ電解液とともに外装缶内に備えたアルカリ蓄電池に関する。   The present invention relates to an alkaline storage battery suitable for high output applications such as a hybrid vehicle (HEV), and more particularly, a nickel positive electrode using nickel hydroxide as a main positive electrode active material and a hydrogen storage material using a hydrogen storage alloy as a main negative electrode active material. The present invention relates to an alkaline storage battery provided with an electrode group including an alloy negative electrode and a separator for separating the hydrogen storage alloy negative electrode and the nickel positive electrode in an outer can together with an alkaline electrolyte.

近年、二次電池の用途が拡大して、携帯電話、パーソナルコンピュータ、電動工具、ハイブリッド自動車(HEV)、電気自動車(EV)など広範囲に亘って用いられるようになった。
ハイブリッド自動車(HEV)のような高出力用途において、アルカリ蓄電池の負極にはAB型構造の水素吸蔵合金が用いられてきたが、耐久後にCo,Mnが溶出することでショートを引起しやすいという問題を生じた。そこで、Ln1−xMgNiy−a−bAlと表される水素吸蔵合金を用いることで耐久後のショートの抑制が可能となった。しかしながら、マグネシウムがニッケル正極へ移動することで、充電電位が上昇して酸素発生電位との差が縮まり正極での酸素発生が起こり易くなることで、高温充電効率が低下するという新たな問題を生じた。高温充電効率向上技術としてニッケル正極の活物質にイットリウム、イッテルビウム、ルテチウム、エルビウム、チタニウムおよびカルシウムを含有させたり(例えば、特許文献1)、ニッケル正極の活物質に亜鉛を固溶させたりすることで、酸素発生が低減し高温充電効率の低下が抑制されるようになった(例えば、特許文献2)。しかしながら、これらの技術を用いた場合、抵抗の増大によって回生出力特性および大電流での連続充電性能が低下する課題があった。
In recent years, the use of secondary batteries has expanded, and has come to be used over a wide range such as mobile phones, personal computers, electric tools, hybrid vehicles (HEV), and electric vehicles (EV).
In high power applications such as hybrid vehicles (HEV), AB 5 type hydrogen storage alloy has been used for the negative electrode of alkaline storage batteries, but it is easy to cause a short circuit by elution of Co and Mn after durability. Caused a problem. Therefore, it became possible Ln 1-x Mg x Ni y -a-b Al a M b and the use of a hydrogen-absorbing alloy suppressing short after the endurance in represented. However, the migration of magnesium to the nickel positive electrode raises the charging potential and the difference from the oxygen generation potential is reduced, and oxygen generation at the positive electrode is likely to occur, resulting in a new problem that high-temperature charging efficiency is reduced. It was. By adding yttrium, ytterbium, lutetium, erbium, titanium and calcium to the active material of the nickel positive electrode as a technology for improving high-temperature charging efficiency (for example, Patent Document 1), or by dissolving zinc in the active material of the nickel positive electrode Oxygen generation is reduced, and a decrease in high-temperature charging efficiency is suppressed (for example, Patent Document 2). However, when these techniques are used, there is a problem that the regenerative output characteristic and the continuous charging performance at a large current are reduced due to the increase in resistance.

特開2004−71304号公報JP 2004-71304 A 特開平4−212269号公報JP-A-4-212269

そこで、本発明は上記の如き問題を解決するためになされたものであって、充電効率が向上し、かつ回生出力特性および大電流での連続充電性能に優れるアルカリ蓄電池を提供することを目的としてなされたものである。   Accordingly, the present invention has been made to solve the above-described problems, and an object thereof is to provide an alkaline storage battery having improved charging efficiency and excellent regenerative output characteristics and continuous charging performance at a large current. It was made.

本発明のアルカリ蓄電池は、水素吸蔵合金負極に用いられる水素吸蔵合金は、Ln1−xMgNiy−a−bAl(ただし、式中、LnはYを含む希土類元素とZrとTiとから選択された少なくとも1種の元素であり、MはV,Nb,Ta,Cr,Mo,Fe,Ga,Zn,Sn,In,Cu,Si,P,Bから選択された少なくとも1種の元素であり、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9)と表されるとともに、ニッケル正極には活物質内部にタングステンが固溶され、かつ正極活物質表面にタングステンが付与されていることを特徴とする。
前記ニッケル正極は活物質内部にタングステンを固溶させることで、結晶層間を広げ、プロトンの拡散速度が上がるため反応抵抗を大幅に低減でき、大電流での充電、および連続充電性能の大幅向上が可能となる。
また水素吸蔵合金負極から溶出するマグネシウムがニッケル正極に到達することで、充
電電位が上昇して高温充電効率に悪影響を及ぼす可能性があったが、正極活物質にタングステン固溶させることで充電電圧が低下し正極での酸素発生を抑制でき、さらに正極活物質表面にタングステンを付与させることで酸素発生電位を上昇させ、高温充電効率の向上が可能となる。この際、前記水素吸蔵合金はCo、Mnを含まないため、耐久後のショートの抑制が可能となり長寿命化できる。
また、前記タングステンを固溶かつ表面付与させたニッケル正極は、イットリウム、イッテルビウム、ルテチウム、エルビウム、チタニウムおよびカルシウムの含有量を活物質中のニッケル元素に対して0.1mass%以下に低減させると、反応抵抗を大幅に低減させることができるとともに、懸念される充電効率の低下はタングステンの効果により抑制できる。
また、前記タングステンを固溶かつ表面付与させたニッケル正極は、亜鉛を活物質中のニッケル元素に対して0.1mass%以下に低減させると、反応抵抗を大幅に低減させることができるとともに、懸念される充電効率の低下はタングステンの効果により抑制できる。
Alkaline storage battery of the present invention, the hydrogen storage alloy used in the hydrogen storage alloy negative electrode, Ln 1-x Mg x Ni y-a-b Al a M b ( In the formula, Ln is a rare earth element including Y Zr And at least one element selected from Ti, and M is at least one element selected from V, Nb, Ta, Cr, Mo, Fe, Ga, Zn, Sn, In, Cu, Si, P, and B And is expressed as 0.05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, 2.8 ≦ y ≦ 3.9), The nickel positive electrode is characterized in that tungsten is dissolved in the active material and tungsten is applied to the surface of the positive electrode active material.
The nickel positive electrode dissolves tungsten in the active material, thereby expanding the crystal layer and increasing the diffusion rate of protons, so that the reaction resistance can be greatly reduced, and charging with a large current and continuous charging performance can be greatly improved. It becomes possible.
In addition, when magnesium eluting from the hydrogen storage alloy negative electrode reaches the nickel positive electrode, the charging potential may increase and adversely affect high-temperature charging efficiency. The generation of oxygen at the positive electrode can be suppressed, and tungsten can be added to the surface of the positive electrode active material to increase the oxygen generation potential and improve the high-temperature charging efficiency. At this time, since the hydrogen storage alloy does not contain Co and Mn, it is possible to suppress a short circuit after durability and to extend the life.
In addition, the nickel positive electrode having a solid solution and imparted with tungsten has a yttrium, ytterbium, lutetium, erbium, titanium and calcium content reduced to 0.1 mass% or less with respect to the nickel element in the active material, The reaction resistance can be greatly reduced, and a decrease in charging efficiency which is a concern can be suppressed by the effect of tungsten.
In addition, the nickel positive electrode in which tungsten is solid-solved and surface-coated can reduce the reaction resistance significantly when zinc is reduced to 0.1 mass% or less with respect to the nickel element in the active material. The decrease in charging efficiency can be suppressed by the effect of tungsten.

本発明においては、充電効率が向上し、かつ回生出力特性および大電流での連続充電特性に優れるアルカリ蓄電池を提供することが可能となる。   In the present invention, it is possible to provide an alkaline storage battery with improved charging efficiency and excellent regenerative output characteristics and continuous charging characteristics at a large current.

本発明のニッケル−水素蓄電池を模式的に示す断面図である。It is sectional drawing which shows typically the nickel-hydrogen storage battery of this invention. 本発明のアルカリ蓄電池を用いたシステムの構成を示す概略図である。It is the schematic which shows the structure of the system using the alkaline storage battery of this invention.

ついで、本発明の実施の形態を以下に詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Next, embodiments of the present invention will be described in detail below. However, the present invention is not limited to these embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention.

1.焼結式ニッケル正極
焼結式ニッケル正極11は、以下のようにして作製した。ニッケル粉末に増粘剤(例えばメチルセルロース)と高分子中空微小球体(孔径60μm)と水を混練してなるスラリーを、パンチドメタルに塗着した後、還元雰囲気中で1000℃に加熱することで前記樹脂を溶解・消失させてニッケル焼結基板を得た。得られた多孔性ニッケル基板を水銀圧入式ポロシメータ(ファイソンズ インスツルメンツ製 Pascal 140)で測定したところ、多孔度が85%であった。
そして、得られたニッケル焼結基板を以下のような含浸液に含浸する含浸処理と、アルカリ処理液によるアルカリ処理とを所定回数繰り返すことにより正極活物質が充填された焼結式ニッケル正極を作製した。
前記ニッケル焼結基板を、硝酸ニッケル、硝酸コバルト、硝酸亜鉛からなる含浸液aに浸漬した後、タングステン酸ナトリウムを含むアルカリ処理液b(例えば水酸化ナトリウム水溶液)中に浸漬・反応させ、細孔内で水酸化ニッケル・水酸化コバルト・水酸化亜鉛に転換させると同時に、タングステンを活物質である水酸化ニッケルに固溶させ、その後水洗・乾燥した。本サイクルを6回繰り返した。その後、硝酸ニッケル、硝酸イットリウムからなる含浸液cに浸漬し、アルカリ処理液b中に浸漬・反応させることで、細孔内で水酸化ニッケル・水酸化イットリウムに転換させ、その後水洗・乾燥した。以上の工程を行うことで、規定量の水酸化ニッケルを主体とする活物質を基板内に充填した焼結式ニッケル正極を得た。
このとき、前記含浸液a中の硝酸亜鉛量、およびアルカリ溶液b中のタングステン量、含浸液c中の硝酸イットリウム量を調整することで、正極活物質のタングステン(W)量、イットリウム(Y)量、亜鉛(Zn)量(対ニッケル質量比)の異なる焼結式ニッケル正極A(W0%、Y6%、Zn14%)、焼結式ニッケル正極B(W0%、Y0.1%、
Zn14%)、焼結式ニッケル正極C(W0%、Y6%、Zn0.1%)、焼結式ニッケル正極D(W3%、Y6%、Zn14%)、焼結式ニッケル正極E(W3%、Y0.1%、Zn14%)、焼結式ニッケル正極F(W3%、Y6%、Zn0.1%)を得た。
1. Sintered nickel positive electrode The sintered nickel positive electrode 11 was produced as follows. A slurry obtained by kneading a thickening agent (for example, methylcellulose), a polymer hollow microsphere (pore diameter 60 μm), and water with nickel powder is applied to a punched metal, and then heated to 1000 ° C. in a reducing atmosphere. The resin was dissolved and disappeared to obtain a nickel sintered substrate. When the obtained porous nickel substrate was measured with a mercury intrusion porosimeter (Pascal 140 manufactured by Faisons Instruments), the porosity was 85%.
Then, a sintered nickel positive electrode filled with a positive electrode active material is prepared by repeating the impregnation treatment in which the obtained nickel sintered substrate is impregnated in the following impregnation liquid and the alkali treatment with the alkali treatment liquid a predetermined number of times. did.
After the nickel sintered substrate is immersed in an impregnating solution a composed of nickel nitrate, cobalt nitrate, and zinc nitrate, it is immersed and reacted in an alkali treatment solution b (for example, sodium hydroxide aqueous solution) containing sodium tungstate to form pores. At the same time, it was converted to nickel hydroxide, cobalt hydroxide, and zinc hydroxide, and at the same time, tungsten was dissolved in nickel hydroxide as an active material, and then washed with water and dried. This cycle was repeated 6 times. Then, it was immersed in the impregnation liquid c consisting of nickel nitrate and yttrium nitrate, and immersed and reacted in the alkali treatment liquid b to convert into nickel hydroxide / yttrium hydroxide in the pores, and then washed with water and dried. By performing the above steps, a sintered nickel positive electrode in which an active material mainly composed of a prescribed amount of nickel hydroxide was filled in the substrate was obtained.
At this time, by adjusting the amount of zinc nitrate in the impregnating solution a, the amount of tungsten in the alkaline solution b, and the amount of yttrium nitrate in the impregnating solution c, the amount of tungsten (W) in the positive electrode active material, yttrium (Y) Sintered nickel positive electrode A (W0%, Y6%, Zn14%), sintered nickel positive electrode B (W0%, Y0.1%,
Zn 14%), sintered nickel positive electrode C (W0%, Y6%, Zn 0.1%), sintered nickel positive electrode D (W3%, Y6%, Zn14%), sintered nickel positive electrode E (W3%, Y0.1%, Zn14%) and a sintered nickel positive electrode F (W3%, Y6%, Zn0.1%) were obtained.

2.水素吸蔵合金負極
Lnで表される元素(Yを含む希土類元素とZrとTiとから選択された少なくとも1種の元素であり、今回はネオジム〔Nd〕)と、マグネシウム(Mg)と、ニッケル(Ni)と、アルミニウム(Al)とを所定のモル比の割合で混合し、この混合物をアルゴンガス雰囲気中で溶解させ、これを熱処理急冷してNd0.9Mg0.1Ni3.3Al0.2と表される水素吸蔵合金のインゴットを作製した。
ついで、得られた水素吸蔵合金のインゴットについて、アルゴン雰囲気中において、熱処理(均質化)を行い、A型構造と同定される水素吸蔵合金を得た。
ついで、この水素吸蔵合金を不活性雰囲気中で機械的に粉砕することにより、Nd0.9Mg0.1Ni3.3Al0.2となる水素吸蔵合金粉末を得た。なお、レーザ回折・散乱式粒度分布測定装置により粒度分布を測定すると、質量積分50%にあたる平均粒径は25μmであった。この後、得られた水素吸蔵合金粒子100質量部に対し、非水溶性高分子結着剤としてのSBR(スチレンブタジエンラテックス)を0.5質量部と、増粘剤としてのCMC(カルボキシメチルセルロース)0.03質量部と、添加剤としてのカーボンブラック0.5質量部と、適量の水(あるいは純水)を加えて混練し、水素吸蔵合金スラリーを調製した。
得られた水素吸蔵合金スラリーをパンチドメタル(ニッケルメッキ鋼板製)からなる負極芯体の両面に塗着した後、100℃で乾燥させ、所定の充填密度になるように圧延した。この後、所定の寸法に裁断することにより、水素吸蔵合金活物質が充填された水素吸蔵合金負極12を作製した。
2. Hydrogen storage alloy negative electrode Ln (elements selected from rare earth elements including Y and Zr and Ti, this time being neodymium [Nd]), magnesium (Mg), nickel ( Ni) and aluminum (Al) are mixed at a predetermined molar ratio, the mixture is dissolved in an argon gas atmosphere, and this is heat-treated and quenched to obtain Nd 0.9 Mg 0.1 Ni 3.3 Al. An ingot of a hydrogen storage alloy expressed as 0.2 was produced.
Subsequently, the obtained hydrogen storage alloy ingot was subjected to heat treatment (homogenization) in an argon atmosphere to obtain a hydrogen storage alloy identified as an A 2 B 7 type structure.
Next, this hydrogen storage alloy was mechanically pulverized in an inert atmosphere to obtain a hydrogen storage alloy powder of Nd 0.9 Mg 0.1 Ni 3.3 Al 0.2 . When the particle size distribution was measured with a laser diffraction / scattering type particle size distribution measuring device, the average particle size corresponding to 50% of the mass integral was 25 μm. Thereafter, 0.5 parts by mass of SBR (styrene butadiene latex) as a water-insoluble polymer binder and CMC (carboxymethyl cellulose) as a thickener are added to 100 parts by mass of the obtained hydrogen storage alloy particles. 0.03 part by mass, 0.5 part by mass of carbon black as an additive, and an appropriate amount of water (or pure water) were added and kneaded to prepare a hydrogen storage alloy slurry.
The obtained hydrogen storage alloy slurry was applied to both sides of a negative electrode core made of punched metal (made of nickel-plated steel plate), dried at 100 ° C., and rolled to a predetermined packing density. Then, the hydrogen storage alloy negative electrode 12 filled with the hydrogen storage alloy active material was produced by cutting into a predetermined dimension.

3.ニッケル−水素蓄電池
上述のようにして作製した焼結式ニッケル正極11(A〜F)と水素吸蔵合金負極12とを用い、これらの間に、ポリオレフィン製不織布からなるセパレータ13を介在させて渦巻状に巻回して渦巻状電極群を作製し、この電極群に正負極集電体を溶接し電極体とした。
ここで、渦巻状電極群の上部にはニッケル正極11の芯体露出部11cが露出しており、その下部には水素吸蔵合金電極12の芯体露出部12cが露出している。ついで、得られた渦巻状電極群の上端面に露出するニッケル電極11の芯体露出部11cの上に正極集電体15を溶接するとともに、渦巻状電極群の下端面に露出する芯体露出部12aに負極集電体14を溶接している。
ついで、得られた電極体を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)17内に収納した後、負極集電体14を外装缶17の内底面に溶接した。一方、正極集電体15より延出する集電リード部15aを正極端子に兼ねるとともに外周部に絶縁ガスケット19が装着された封口体18の底部に溶接した。なお、封口体18には正極キャップ18aが設けられていて、この正極キャップ18a内に所定の圧力になると変形する弁体18bとスプリング18cよりなる圧力弁(図示せず)が配置されている。
ついで、外装缶17の上部外周部に環状溝部17aを形成した後、アルカリ電解液を注液し、外装缶17の上部に形成された環状溝部17aの上に封口体18の外周部に装着された絶縁ガスケット19を載置した。この後、外装缶17の開口端縁17bをかしめることにより密閉した。
ついで密閉した電池を9.6Ah充電→熟成→放電(終止電圧0.9V)のサイクルを2回繰り返すことにより、公称容量6Ahのニッケル―水素蓄電池を作製した。
この場合、アルカリ電解液としては、水酸化ナトリウムと水酸化カリウムと水酸化リチウム、タングステン酸ナトリウムからなる濃度7.0moL/Lの混合水溶液で、アルカリ
電解液中のタングステン量が正極活物質中のニッケルに対し0mass%となるように調整した電解液α、もしくはアルカリ電解液中のタングステン量が正極活物質中のニッケルに対し1mass%となるように調整した電解液βを使用した。電解液βを使用して電池を作製した場合、正極活物質表面にタングステンが0.4%(対ニッケル質量比)付着していた。(電解液中のタングステンの内、40%が正極活物質表面に付着。)
ここで、焼結式ニッケル正極Aかつ電解液αを使用した電池を比較例1、焼結式ニッケル正極Aかつ電解液βを使用した電池を比較例2、焼結式ニッケル正極Bかつ電解液αを使用した電池を比較例3、焼結式ニッケル正極Cかつ電解液αを使用した電池を比較例4、焼結式ニッケル正極Dかつ電解液βを使用した電池を実施例1、焼結式ニッケル正極Eかつ電解液βを使用した電池を実施例2、焼結式ニッケル正極Fかつ電解液βを使用した電池を実施例3とした。
3. Nickel-hydrogen storage battery A sintered nickel positive electrode 11 (A to F) and a hydrogen storage alloy negative electrode 12 produced as described above are used, and a separator 13 made of a polyolefin nonwoven fabric is interposed between them to form a spiral shape. A spiral electrode group was produced by winding the electrode group, and a positive and negative electrode current collector was welded to the electrode group to form an electrode body.
Here, the core exposed portion 11c of the nickel positive electrode 11 is exposed at the upper portion of the spiral electrode group, and the core exposed portion 12c of the hydrogen storage alloy electrode 12 is exposed at the lower portion thereof. Next, the positive electrode current collector 15 is welded onto the core exposed portion 11c of the nickel electrode 11 exposed at the upper end surface of the obtained spiral electrode group, and the core body exposed at the lower end surface of the spiral electrode group. The negative electrode current collector 14 is welded to the portion 12a.
Next, after the obtained electrode body was accommodated in a bottomed cylindrical outer can in which nickel was plated on iron (the outer surface of the bottom surface becomes a negative external terminal) 17, the negative electrode current collector 14 was attached to the outer can 17. Welded to the inner bottom. On the other hand, the current collector lead portion 15a extending from the positive electrode current collector 15 is also used as the positive electrode terminal, and welded to the bottom of the sealing body 18 having the insulating gasket 19 attached to the outer peripheral portion. The sealing body 18 is provided with a positive electrode cap 18a, and a pressure valve (not shown) composed of a valve body 18b and a spring 18c, which are deformed when a predetermined pressure is reached, is disposed in the positive electrode cap 18a.
Next, after forming the annular groove portion 17 a on the outer periphery of the upper portion of the outer can 17, an alkaline electrolyte is injected, and the outer periphery portion of the sealing body 18 is mounted on the annular groove portion 17 a formed on the upper portion of the outer can 17. An insulating gasket 19 was placed. Thereafter, the outer edge 17b of the outer can 17 was sealed by caulking.
The sealed battery was then subjected to a cycle of 9.6 Ah charging → aging → discharging (end voltage 0.9 V) twice to produce a nickel-hydrogen storage battery having a nominal capacity of 6 Ah.
In this case, the alkaline electrolyte is a mixed aqueous solution of sodium hydroxide, potassium hydroxide, lithium hydroxide, and sodium tungstate and having a concentration of 7.0 mol / L. The amount of tungsten in the alkaline electrolyte is the amount of the positive electrode active material. An electrolytic solution α adjusted to be 0 mass% with respect to nickel or an electrolytic solution β adjusted so that the amount of tungsten in the alkaline electrolytic solution was 1 mass% with respect to nickel in the positive electrode active material was used. When the battery was produced using the electrolytic solution β, 0.4% (to a nickel mass ratio) of tungsten was adhered to the surface of the positive electrode active material. (40% of the tungsten in the electrolyte adheres to the surface of the positive electrode active material.)
Here, the battery using the sintered nickel positive electrode A and the electrolytic solution α is Comparative Example 1, the battery using the sintered nickel positive electrode A and the electrolytic solution β is Comparative Example 2, the sintered nickel positive electrode B and the electrolytic solution The battery using α is Comparative Example 3, the battery using the sintered nickel positive electrode C and the electrolytic solution α is Comparative Example 4, the battery using the sintered nickel positive electrode D and the electrolytic solution β is Example 1, sintered. A battery using the nickel positive electrode E and the electrolytic solution β was Example 2, and a battery using the sintered nickel positive electrode F and the electrolytic solution β was Example 3.

4.電池試験
(1)高温充電特性試験
65℃の温度雰囲気で電池容量に対して0.5Cの充電電流で電池容量の80%まで充電し、直後に1Cの放電電流で終止電圧が0.9Vになるまで放電させて1.0V時点での放電容量を求めた。この時の充電容量に対する放電容量の割合を充電効率(%)として算出し、比較例1の充電効率を100としたときの比較例2〜4、および実施例1〜3の比率を求めると表1のような結果となった。
4). Battery test (1) High-temperature charging characteristics test Charging up to 80% of the battery capacity with a charging current of 0.5C with respect to the battery capacity in a temperature atmosphere of 65 ° C, and immediately after that the final voltage is 0.9V with a discharging current of 1C The discharge capacity at the time of 1.0 V was determined by discharging until The ratio of the discharge capacity to the charge capacity at this time is calculated as the charge efficiency (%), and the ratios of Comparative Examples 2 to 4 and Examples 1 to 3 when the charge efficiency of Comparative Example 1 is 100 are calculated. The result was 1.

(2)回生特性試験
25℃の温度雰囲気で、1Cの充電電流でSOC50%まで充電した。この後、20A充電→40A放電→40A充電→80A放電→60A充電→120A放電→80A充電→160A放電→100A充電→200A放電の順で充放電電流を増加させた。このとき、各ステップの間に30分間の休止期間を設け、20秒間の充電→30分間休止→10秒間放電→30分間休止の順で充放電を行った。そして、この充電が10秒経過した時点における電池電圧を充電電流に対してプロットし、最小二乗法にて求めた直線が1.6Vに達したときの電流値を回生出力(A)として算出し、比較例1の回生出力を100としたときの比較例2〜4、および実施例1〜3の比率を求めると表1のような結果となった。
(2) Regenerative characteristic test It charged to SOC50% with the charging current of 1C in the temperature atmosphere of 25 degreeC. Thereafter, the charge / discharge current was increased in the order of 20A charge → 40A discharge → 40A charge → 80A discharge → 60A charge → 120A discharge → 80A charge → 160A discharge → 100A charge → 200A discharge. At this time, a pause period of 30 minutes was provided between each step, and charging / discharging was performed in the order of charging for 20 seconds → pause for 30 minutes → discharge for 10 seconds → pause for 30 minutes. Then, the battery voltage at the time when this charging has elapsed for 10 seconds is plotted against the charging current, and the current value when the straight line obtained by the least square method reaches 1.6 V is calculated as the regenerative output (A). When the ratios of Comparative Examples 2 to 4 and Examples 1 to 3 when the regenerative output of Comparative Example 1 was set to 100 were obtained, the results shown in Table 1 were obtained.

5.試験結果 5. Test results

(比較例1)
焼結式ニッケル正極Aかつ電解液αを使用することで、正極活物質にイットリウム(Y)を6mass%(対ニッケル(Ni)比)含有し、かつ正極活物質に亜鉛(Zn)を14mass%(対ニッケル(Ni)比)固溶し、電解液にタングステンを含まない電池では、高温充電特性は十分でなく、加えて回生性能も改善する必要があった。
(比較例2)
焼結式ニッケル正極Aかつ電解液βを使用することで、正極活物質表面にタングステン(W)が0.4mass%(対ニッケル(Ni)比)付与され、かつ正極活物質にイットリウム(Y)を6mass%(対ニッケル(Ni)比)含有し、かつ正極活物質に亜鉛(Zn)を14mass%(対ニッケル(Ni)比)固溶した電池では、タングステン表面
付与の効果で比較例1に対し充電効率が向上するも、比較例1に対し回生出力は低下する。
(比較例3)
焼結式ニッケル正極Bかつ電解液αを使用することで、正極活物質に含有しているイットリウム(Y)量を0.1mass%(対ニッケル(Ni)比)まで低減し、かつ正極活物質に亜鉛(Zn)を14mass%(対ニッケル(Ni)比)固溶した電池では、イットリウム量低減の効果で比較例1に対し回生出力が向上するも、比較例1に対し充電効率は大幅に低下する。
(比較例4)
焼結式ニッケル正極Cかつ電解液αを使用することで、正極活物質に固溶している亜鉛(Zn)量を0.1mass%(対ニッケル(Ni)比)まで低減し、かつ正極活物質にイットリウム(Y)を6mass%(対ニッケル(Ni)比)含有した電池では、亜鉛量低減の効果で比較例1に対し回生出力が向上するも、比較例1に対し充電効率は大幅に低下する。
(実施例1)
焼結式ニッケル正極Dかつ電解液βを使用することで、正極活物質にタングステンを3mass%(対ニッケル(Ni)比)固溶し、かつ正極活物質表面にタングステン(W)が0.4mass%(対ニッケル(Ni)比)付与され、かつ正極活物質にイットリウム(Y)を6mass%(対ニッケル(Ni)比)含有し、かつ正極活物質に亜鉛(Zn)を14mass%(対ニッケル(Ni)比)固溶した電池では、タングステン固溶とタングステン表面付与の効果で比較例1に対して充電効率が向上し、さらにタングステン固溶の効果で比較例1に対し回生出力が向上する。
(実施例2)
焼結式ニッケル正極Eかつ電解液βを使用することで、正極活物質にタングステンを3mass%(対ニッケル(Ni)比)固溶し、かつ正極活物質表面にタングステン(W)が0.4mass%(対ニッケル(Ni)比)付与され、正極活物質に含有しているイットリウム(Y)量を0.1mass%(対ニッケル(Ni)比)まで低減し、かつ正極活物質に亜鉛(Zn)を14mass%(対ニッケル(Ni)比)固溶した電池では、イットリウム量低減とタングステン固溶の効果で比較例1に対し回生出力が大幅に向上し、かつイットリウム量低減により懸念される充電効率の低下はタングステン固溶とタングステン表面付与の効果で抑制され、比較例1に対し充電効率が向上する。
(実施例3)
焼結式ニッケル正極Fかつ電解液βを使用することで、正極活物質にタングステンを3mass%(対ニッケル(Ni)比)固溶し、かつ正極活物質表面にタングステン(W)が0.4mass%(対ニッケル(Ni)比)付与され、正極活物質に固溶している亜鉛(Zn)量を0.1mass%(対ニッケル(Ni)比)まで低減し、かつ正極活物質にイットリウム(Y)を6mass%(対ニッケル(Ni)比)含有した電池では、亜鉛量低減とタングステン固溶の効果で比較例1に対し回生出力が大幅に向上し、かつ亜鉛量低減により懸念される充電効率の低下はタングステン固溶とタングステン表面付与の効果で抑制され、比較例1に対し充電効率が向上する。
上記の結果は、非焼結式・焼結式ニッケル正極共に発現するものであるが、HEVのような高出力用途においては低抵抗な焼結式ニッケル正極を用いることが好ましい。また、タングステンは過度に固溶および表面付与すると抵抗増加により回生出力が低下するので、タングステン固溶量は0.2〜12mass%(対ニッケル比)、タングステン表面付与量は0.05〜2mass%(対ニッケル比)が好ましい。
以上より本発明では、正極活物質にタングステンを固溶かつ表面付与させることで、高温充電効率の向上が可能となり、大電流での充電が可能なアルカリ蓄電池を提供できる。さらに正極活物質にタングステンを固溶かつ表面付与し、かつ正極活物質のイットリウム含有量や亜鉛固溶量を大幅に低減させると、より大電流での充電が可能で、かつ高温充電効率の高いアルカリ蓄電池を提供できる。
(Comparative Example 1)
By using the sintered nickel positive electrode A and the electrolytic solution α, the positive electrode active material contains 6 mass% of yttrium (Y) (relative to nickel (Ni)), and the positive electrode active material contains 14 mass% of zinc (Zn). In a battery that has a solid solution (ratio to nickel (Ni)) and does not contain tungsten in the electrolyte, the high-temperature charge characteristics are not sufficient, and in addition, the regenerative performance has to be improved.
(Comparative Example 2)
By using the sintered nickel positive electrode A and the electrolyte β, tungsten (W) is added to the surface of the positive electrode active material by 0.4 mass% (ratio to nickel (Ni)), and the positive electrode active material is yttrium (Y). In a battery containing 6 mass% (ratio to nickel (Ni)) and 14 mass% (ratio to nickel (Ni)) solid solution of zinc (Zn) in the positive electrode active material, the effect of imparting tungsten surface is On the other hand, although the charging efficiency is improved, the regenerative output is lower than that of Comparative Example 1.
(Comparative Example 3)
By using the sintered nickel positive electrode B and the electrolytic solution α, the amount of yttrium (Y) contained in the positive electrode active material is reduced to 0.1 mass% (to nickel (Ni) ratio), and the positive electrode active material In a battery in which zinc (Zn) is dissolved in 14 mass% (ratio to nickel (Ni)), the regenerative output is improved compared to Comparative Example 1 due to the effect of reducing the amount of yttrium, but the charging efficiency is significantly higher than that of Comparative Example 1. descend.
(Comparative Example 4)
By using the sintered nickel positive electrode C and the electrolytic solution α, the amount of zinc (Zn) dissolved in the positive electrode active material is reduced to 0.1 mass% (ratio to nickel (Ni)), and the positive electrode active In a battery containing 6 mass% of yttrium (Y) as a substance (ratio to nickel (Ni)), the regenerative output is improved compared to Comparative Example 1 due to the effect of reducing the amount of zinc, but the charging efficiency is significantly higher than that of Comparative Example 1. descend.
Example 1
By using the sintered nickel positive electrode D and the electrolytic solution β, tungsten is solid-dissolved in 3 mass% (ratio to nickel (Ni)) in the positive electrode active material, and tungsten (W) is 0.4 mass on the positive electrode active material surface. % (To nickel (Ni) ratio), and the positive electrode active material contains 6 mass% of yttrium (Y) (to nickel (Ni) ratio), and the positive electrode active material contains 14 mass% of zinc (Zn) (to nickel). (Ni) ratio) In the solid solution battery, the charging efficiency is improved with respect to the comparative example 1 due to the effect of tungsten solid solution and tungsten surface application, and the regenerative output is improved with respect to the comparative example 1 due to the effect of tungsten solid solution. .
(Example 2)
By using the sintered nickel positive electrode E and the electrolytic solution β, tungsten is solid-dissolved in 3 mass% (ratio to nickel (Ni)) in the positive electrode active material, and tungsten (W) is 0.4 mass on the positive electrode active material surface. % (To nickel (Ni) ratio), the amount of yttrium (Y) contained in the positive electrode active material is reduced to 0.1 mass% (to nickel (Ni) ratio), and zinc (Zn) is added to the positive electrode active material. ) 14 mass% (to nickel (Ni) ratio) solid solution, the regenerative output is significantly improved compared to Comparative Example 1 due to the effect of yttrium content reduction and tungsten solid solution, and there is a concern about the reduction in yttrium content. The reduction in efficiency is suppressed by the effect of tungsten solid solution and tungsten surface application, and the charging efficiency is improved as compared with Comparative Example 1.
(Example 3)
By using the sintered nickel positive electrode F and the electrolytic solution β, tungsten is solid-dissolved in 3 mass% (ratio to nickel (Ni)) in the positive electrode active material, and tungsten (W) is 0.4 mass on the surface of the positive electrode active material. % (To nickel (Ni) ratio), the amount of zinc (Zn) dissolved in the positive electrode active material is reduced to 0.1 mass% (to nickel (Ni) ratio), and the positive electrode active material is yttrium ( In a battery containing 6 mass% (ratio to nickel (Ni)) of Y), the regenerative output is greatly improved compared to Comparative Example 1 due to the effects of reduced zinc content and solid solution of tungsten. The reduction in efficiency is suppressed by the effect of tungsten solid solution and tungsten surface application, and the charging efficiency is improved as compared with Comparative Example 1.
Although the above results are manifested in both non-sintered and sintered nickel positive electrodes, it is preferable to use a low resistance sintered nickel positive electrode for high power applications such as HEV. In addition, when tungsten is excessively dissolved and applied to the surface, the regenerative output decreases due to an increase in resistance, so the tungsten solid solution amount is 0.2 to 12 mass% (to nickel ratio), and the tungsten surface application amount is 0.05 to 2 mass%. (To nickel ratio) is preferred.
As described above, according to the present invention, it is possible to improve the high-temperature charging efficiency and to provide an alkaline storage battery that can be charged with a large current by adding tungsten to the positive electrode active material as a solid solution and providing the surface. In addition, if tungsten is dissolved and applied to the positive electrode active material, and the yttrium content and zinc solid solution amount of the positive electrode active material are greatly reduced, charging with a larger current is possible and high temperature charging efficiency is high. An alkaline storage battery can be provided.

6.アルカリ蓄電池システム
ついで、上述のようにして作製したニッケル−水素蓄電池10を複数個組み合わせて構成されるアルカリ蓄電池システム100を、図2に基づいて以下に説明する。ここで、図2に示すように、本発明のアルカリ蓄電池システム100は、電源101と、上述したニッケル−水素蓄電池10からなる単電池が8個直列接続された電池モジュールを30個直列接続して形成された組電池102とを備えている。
6). Alkaline Storage Battery System Next, an alkaline storage battery system 100 configured by combining a plurality of nickel-hydrogen storage batteries 10 produced as described above will be described below with reference to FIG. Here, as shown in FIG. 2, the alkaline storage battery system 100 of the present invention has a power supply 101 and 30 battery modules in which 8 unit cells made of the nickel-hydrogen storage battery 10 are connected in series. The assembled battery 102 is formed.

電源101と組電池102との間には、この電源101からの電流および電圧を所定の定電流および定電圧に変換して組電池102に供給する充電制御部103と、組電池102に流れる電流を検出する電流検出回路104と、組電池102の電池電圧を検出する電圧検出回路105と、組電池102の強制放電を制御する放電制御部106と、電流検出回路104および電圧検出回路105からの検出値に基づいて、充電制御部103および放電制御部106の動作を制御するCPUなどからなるマイクロコンピュータ107とが接続されている。なお、放電制御部106には組電池102を放電するための放電抵抗が接続されており、マイクロコンピュータ107には所定の時間を計測するタイマー108が接続されている。マイクロコンピュータ107は、部分充放電制御回路を含んでおり、ニッケル−水素蓄電池10が部分充放電されるように制御される。   Between the power source 101 and the assembled battery 102, a current and voltage from the power source 101 are converted into a predetermined constant current and constant voltage and supplied to the assembled battery 102, and a current flowing through the assembled battery 102 From the current detection circuit 104 for detecting the battery voltage, the voltage detection circuit 105 for detecting the battery voltage of the assembled battery 102, the discharge control unit 106 for controlling the forced discharge of the assembled battery 102, the current detection circuit 104 and the voltage detection circuit 105. A microcomputer 107 composed of a CPU or the like that controls the operation of the charge control unit 103 and the discharge control unit 106 is connected based on the detected value. The discharge controller 106 is connected to a discharge resistor for discharging the assembled battery 102, and the microcomputer 107 is connected to a timer 108 for measuring a predetermined time. The microcomputer 107 includes a partial charge / discharge control circuit, and is controlled such that the nickel-hydrogen storage battery 10 is partially charged / discharged.

また、上記構成のアルカリ蓄電池システム100における部分充放電制御は、アルカリ蓄電池が、SOCが20〜80%の範囲でのみ、充放電がされるようになされているので、ニッケル−水素蓄電池10が低SOC又は高SOC状態となるのを効果的に防止できニッケル−水素蓄電池10の耐久性が向上するというメリットがある。
さらに上記構成のアルカリ蓄電池システム100に本発明のアルカリ蓄電池を使用した場合では、充電効率が高いために充放電サイクル後での電圧変化が生じにくく部分充放電制御が容易となる。
さらに反応抵抗が低いため充放電に伴う電池の発熱を抑え長寿命化を可能にする。
このため本発明のアルカリ蓄電池は、上記構成のアルカリ蓄電池システムに好適であるといえる。
Further, the partial charge / discharge control in the alkaline storage battery system 100 having the above-described configuration is such that the alkaline storage battery is charged / discharged only when the SOC is in the range of 20 to 80%, so that the nickel-hydrogen storage battery 10 is low. There is a merit that the SOC or high SOC state can be effectively prevented and the durability of the nickel-hydrogen storage battery 10 is improved.
Furthermore, when the alkaline storage battery of the present invention is used in the alkaline storage battery system 100 having the above configuration, the charge efficiency is high, so that the voltage change after the charge / discharge cycle hardly occurs and the partial charge / discharge control becomes easy.
Furthermore, since the reaction resistance is low, heat generation of the battery due to charging / discharging is suppressed and a long life can be achieved.
For this reason, it can be said that the alkaline storage battery of this invention is suitable for the alkaline storage battery system of the said structure.

なお、上述した実施形態においては、Nd0.9Mg0.1Ni3.3Al0.2と表される水素吸蔵合金を用いる例について説明したが、水素吸蔵合金としては、一般式がLn1−xMgNiy−a−bAl(ただし、式中、LnはYを含む希土類元素とZrとTiとから選択された少なくとも1種の元素であり、MはV,Nb,Ta,Cr,Mo,Fe,Ga,Zn,Sn,In,Cu,Si,P,Bから選択された少なくとも1種の元素)と表され、かつ、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9の条件を満たす水素吸蔵合金であれば、どのようなものを用いてもよい。
また、上述した実施形態においては、正極活物質のイットリウム含有量を0.1mass%まで低減したニッケル正極を用いる例について説明したが、このイットリウムをイッテルビウム、ルテチウム、エルビウム、チタニウム、およびカルシウムに置き換えても同様の効果を発揮することを確認している。
In the above-described embodiment, the example using the hydrogen storage alloy represented by Nd 0.9 Mg 0.1 Ni 3.3 Al 0.2 has been described. However, as the hydrogen storage alloy, the general formula is Ln. 1-x Mg x Ni y-a-b Al a M b (where Ln is at least one element selected from rare earth elements including Y, Zr and Ti, and M is V, Nb , Ta, Cr, Mo, Fe, Ga, Zn, Sn, In, Cu, Si, P, B) and 0.05 ≦ x ≦ 0.30, Any hydrogen storage alloy that satisfies the conditions of 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, and 2.8 ≦ y ≦ 3.9 may be used.
Further, in the above-described embodiment, the example using the nickel positive electrode in which the yttrium content of the positive electrode active material is reduced to 0.1 mass% has been described, but this yttrium is replaced with ytterbium, lutetium, erbium, titanium, and calcium. Has been confirmed to exhibit the same effect.

10…ニッケル−水素蓄電池、11…ニッケル電極、11c…芯体露出部、12…水素吸蔵合金電極、12c…芯体露出部、13…セパレータ、14…負極集電体、15…正極集電体、15a…集電リード部、17…外装缶、17a…環状溝部、17b…開口端縁、18…封口体、18a…正極キャップ、18b…弁板、18c…スプリング、19…絶縁ガスケット、100…アルカリ蓄電池システム、101…電源、102…組電池、103…
充電制御部、104…電流検出部、105…電圧検出部、106…放電制御部、107…マイクロコンピュータ、108…タイマー
DESCRIPTION OF SYMBOLS 10 ... Nickel-hydrogen storage battery, 11 ... Nickel electrode, 11c ... Core body exposed part, 12 ... Hydrogen storage alloy electrode, 12c ... Core body exposed part, 13 ... Separator, 14 ... Negative electrode collector, 15 ... Positive electrode collector , 15a ... current collecting lead part, 17 ... exterior can, 17a ... annular groove part, 17b ... opening edge, 18 ... sealing body, 18a ... positive electrode cap, 18b ... valve plate, 18c ... spring, 19 ... insulating gasket, 100 ... Alkaline battery system, 101 ... Power source, 102 ... Battery, 103 ...
Charging control unit, 104 ... current detection unit, 105 ... voltage detection unit, 106 ... discharge control unit, 107 ... microcomputer, 108 ... timer

Claims (4)

水酸化ニッケルを主正極活物質とするニッケル正極と、水素吸蔵合金を主負極活物質とする水素吸蔵合金負極と、これらのニッケル正極と水素吸蔵合金負極とを隔離するセパレータとからなる電極群をアルカリ電解液とともに外装缶内に備えたアルカリ蓄電池であって、
前記水素吸蔵合金負極に用いられる水素吸蔵合金は、一般式がLn1−xMgNiy−a−bAl(ただし、式中、LnはYを含む希土類元素とZrとTiとから選択された少なくとも1種の元素であり、MはV,Nb,Ta,Cr,Mo,Fe,Ga,Zn,Sn,In,Cu,Si,P,Bから選択された少なくとも1種の元素であり、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9)と表されるとともに、前記ニッケル正極には活物質内部にタングステンが固溶され、かつ正極活物質表面にタングステンが付与されていることを特徴とするアルカリ蓄電池。
An electrode group consisting of a nickel positive electrode using nickel hydroxide as a main positive electrode active material, a hydrogen storage alloy negative electrode using a hydrogen storage alloy as a main negative electrode active material, and a separator separating these nickel positive electrode and hydrogen storage alloy negative electrode. An alkaline storage battery provided in an outer can together with an alkaline electrolyte,
Hydrogen storage alloy used in the hydrogen storage alloy negative electrode is represented by the general formula is Ln 1-x Mg x Ni y -a-b Al a M b ( In the formula, Ln is a rare earth element and Zr and Ti containing Y And at least one element selected from V, Nb, Ta, Cr, Mo, Fe, Ga, Zn, Sn, In, Cu, Si, P, and B 0.05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, 2.8 ≦ y ≦ 3.9), and the nickel positive electrode The alkaline storage battery, wherein tungsten is dissolved in the active material and tungsten is applied to the surface of the positive electrode active material.
前記ニッケル正極は、正極活物質中のニッケル元素に対してイットリウム、イッテルビウム、ルテチウム、エルビウム、チタニウムおよびカルシウムの含有量が0.1mass%以下であることを特徴とする請求項1に記載のアルカリ蓄電池。   2. The alkaline storage battery according to claim 1, wherein the nickel positive electrode has a yttrium, ytterbium, lutetium, erbium, titanium, and calcium content of 0.1 mass% or less with respect to the nickel element in the positive electrode active material. . 前記ニッケル正極は、正極活物質中のニッケル元素に対する亜鉛の固溶量が0.1mass%以下であることを特徴とする請求項1に記載のアルカリ蓄電池。   The alkaline storage battery according to claim 1, wherein the nickel positive electrode has a solid solution amount of zinc of 0.1 mass% or less with respect to nickel element in the positive electrode active material. 前記ニッケル正極は焼結式正極であることを特徴とする請求項1〜3のいずれかに記載のアルカリ蓄電池。   The alkaline storage battery according to claim 1, wherein the nickel positive electrode is a sintered positive electrode.
JP2012064771A 2012-03-22 2012-03-22 Alkaline storage battery Active JP5853799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012064771A JP5853799B2 (en) 2012-03-22 2012-03-22 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012064771A JP5853799B2 (en) 2012-03-22 2012-03-22 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2013196991A JP2013196991A (en) 2013-09-30
JP5853799B2 true JP5853799B2 (en) 2016-02-09

Family

ID=49395680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012064771A Active JP5853799B2 (en) 2012-03-22 2012-03-22 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP5853799B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6234190B2 (en) * 2013-11-28 2017-11-22 Fdk株式会社 Nickel metal hydride secondary battery
JP2015130249A (en) * 2014-01-06 2015-07-16 パナソニックIpマネジメント株式会社 Positive electrode for alkali storage batteries and alkali storage battery using the same
US20170256801A1 (en) * 2014-09-26 2017-09-07 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179056A (en) * 1990-11-09 1992-06-25 Matsushita Electric Ind Co Ltd Alkaline storage battery
JP3512128B2 (en) * 1995-02-15 2004-03-29 日立マクセル株式会社 Alkaline storage battery and method for manufacturing the same
JP3518975B2 (en) * 1996-09-20 2004-04-12 松下電器産業株式会社 Positive electrode for alkaline storage battery and alkaline storage battery
JP2001217000A (en) * 1999-02-26 2001-08-10 Toshiba Battery Co Ltd Nickel-hydrogen secondary battery
JP3953278B2 (en) * 2001-02-05 2007-08-08 三洋電機株式会社 Sintered nickel electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
JP4330832B2 (en) * 2001-12-07 2009-09-16 パナソニック株式会社 Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery
JP5147235B2 (en) * 2006-12-30 2013-02-20 三洋電機株式会社 Nickel metal hydride storage battery
JP5241188B2 (en) * 2007-09-28 2013-07-17 三洋電機株式会社 Alkaline storage battery system
JP2013134904A (en) * 2011-12-27 2013-07-08 Sanyo Electric Co Ltd Alkaline storage battery and alkaline storage battery system including the same

Also Published As

Publication number Publication date
JP2013196991A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
JP5196938B2 (en) Alkaline storage battery system
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP2009087631A (en) Alkaline storage battery system
JP2008084649A (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method
JP2013114888A (en) Alkali storage battery, and alkali storage battery system with the same
CN106463786B (en) Nickel-hydrogen secondary battery
JP2012156101A (en) Hydrogen-storing alloy electrode for alkaline storage battery, and alkaline storage battery comprising the same
JP5853799B2 (en) Alkaline storage battery
JP5849768B2 (en) Alkaline storage battery and alkaline storage battery system
JP2011008994A (en) Alkaline storage battery, and alkaline storage battery system
JP6225116B2 (en) Battery system
JPWO2007034760A1 (en) Alkaline storage battery
JP5105766B2 (en) Alkaline storage battery, method for manufacturing the same, and assembled battery device
JP2012238565A (en) Alkaline storage battery
JP6024295B2 (en) Alkaline storage battery
JP2013134904A (en) Alkaline storage battery and alkaline storage battery system including the same
JP2005190863A (en) Hydrogen storage alloy electrode for alkaline storage battery, and alkaline storage battery
WO2014050075A1 (en) Storage cell system
JP5334498B2 (en) Alkaline storage battery
JP5060667B2 (en) Nickel metal hydride storage battery and manufacturing method thereof
JP2016012946A (en) Vehicle equipped with storage battery module
JP6263983B2 (en) Alkaline storage battery and method for manufacturing the same
JP5752487B2 (en) Alkaline storage battery and alkaline storage battery system
WO2014068868A1 (en) Nickel metal hydride storage battery and storage battery system
JP2014007149A (en) Alkali storage battery, and alkali storage battery system therewith

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20141113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151123

R151 Written notification of patent or utility model registration

Ref document number: 5853799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151