JP2014007149A - Alkali storage battery, and alkali storage battery system therewith - Google Patents

Alkali storage battery, and alkali storage battery system therewith Download PDF

Info

Publication number
JP2014007149A
JP2014007149A JP2013109648A JP2013109648A JP2014007149A JP 2014007149 A JP2014007149 A JP 2014007149A JP 2013109648 A JP2013109648 A JP 2013109648A JP 2013109648 A JP2013109648 A JP 2013109648A JP 2014007149 A JP2014007149 A JP 2014007149A
Authority
JP
Japan
Prior art keywords
positive electrode
storage battery
nickel
active material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013109648A
Other languages
Japanese (ja)
Inventor
Yu Matsui
雄 松井
Atsutoshi Akaho
篤俊 赤穂
Yoshifumi Magari
佳文 曲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2013109648A priority Critical patent/JP2014007149A/en
Publication of JP2014007149A publication Critical patent/JP2014007149A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: an alkali storage battery which is improved in its initial output characteristic while keeping the high-temperature charging efficiency at least equal to a conventional one, and which allows the suppression of the reduction in output characteristic after having worn; and an alkali storage battery system with such an alkali storage battery used therein.SOLUTION: The alkali storage battery has, in its exterior can, an electrode group and an alkaline electrolyte. The electrode group includes: a sintered nickel positive electrode including nickel hydroxide as a primary positive electrode active material; a negative electrode; and a separator. The sintered positive electrode contains at least one element selected from rare earth elements including yttrium. Representing in a form of the ratio to nickel in the positive electrode active material, the content of the at least one element is 0.1 mass% or lower. The sintered positive electrode includes 0.15-0.65 mass% of at least one element selected from tungsten, molybdenum and niobium in a form of the ratio to nickel in the positive electrode active material.

Description

本発明は、ハイブリッド自動車(HEV)などの高出力用途に好適なアルカリ蓄電池に係り、特に、焼結式ニッケル正極と負極とこれらの焼結式ニッケル正極と負極とを隔離するセパレータとからなる電極群をアルカリ電解液とともに外装缶内に備えたアルカリ蓄電池に関する。   The present invention relates to an alkaline storage battery suitable for high-power applications such as a hybrid vehicle (HEV), and in particular, an electrode comprising a sintered nickel positive electrode and a negative electrode, and a separator separating these sintered nickel positive electrode and negative electrode. The present invention relates to an alkaline storage battery having a group together with an alkaline electrolyte in an outer can.

近年、二次電池の用途が拡大して、携帯電話、パーソナルコンピュータ、電動工具、ハイブリッド自動車(HEV)、電気自動車(EV)など広範囲に亘って用いられるようになった。このうち特に、ハイブリッド自動車(HEV)のような高出力用途においてはアルカリ蓄電池が用いられるようになり、高出力化に関する数多くの技術開発がなされるようになった。   In recent years, the use of secondary batteries has expanded, and has come to be used over a wide range such as mobile phones, personal computers, electric tools, hybrid vehicles (HEV), and electric vehicles (EV). Among these, in particular, alkaline storage batteries have been used in high output applications such as hybrid vehicles (HEV), and many technical developments related to high output have been made.

ところで、ハイブリッド自動車(HEV)のような用途においては、高出力化だけでなく高耐久性能が必要とされるため、多孔性の焼結基板の孔内に硝酸ニッケル等のニッケル塩を含浸させた後、これをアルカリ水溶液で処理し、活物質である水酸化ニッケルを充填させた焼結式ニッケル正極が一般に用いられており、更にこの正極活物質には高温充電効率を向上させるためイットリウムやイッテルビウム、ルテチウム、エルビウム等の希土類元素を添加したりしている。(特許文献1)。   By the way, in applications such as a hybrid vehicle (HEV), not only high output but also high durability performance is required. Therefore, nickel salts such as nickel nitrate are impregnated in the pores of the porous sintered substrate. After that, a sintered nickel positive electrode is generally used, which is treated with an alkaline aqueous solution and filled with nickel hydroxide as an active material. Further, this positive electrode active material has yttrium and ytterbium to improve high-temperature charging efficiency. Rare earth elements such as lutetium and erbium are added. (Patent Document 1).

しかしながら、正極内にイットリウムを含む希土類元素を添加させた場合、抵抗増大により出力が低下する問題があり、さらにハイレートでの部分充放電サイクルを繰り返した後ではイットリウム化合物や希土類元素化合物が活物質表面に溶出・偏在し、電池容量低下と出力の更なる低下(耐久性の低下)を引き起こすといった問題があった。   However, when a rare earth element containing yttrium is added to the positive electrode, there is a problem in that the output decreases due to an increase in resistance, and after repeated partial charge / discharge cycles at a high rate, the yttrium compound or rare earth element compound is on the surface of the active material. Elution and uneven distribution in the battery cause a decrease in battery capacity and a further decrease in output (decrease in durability).

また、ハイブリッド自動車(HEV)のような車両用途に用いられるアルカリ蓄電池においては、上限電圧と下限電圧を設定し、上下限電圧内で部分充放電を行う部分充放電制御方式が一般に用いられているが、アルカリ蓄電池に部分充放電制御を用いると、サイクル経過に伴いメモリー効果が発現し、利用可能なエネルギー量(部分充放電容量)が顕著に低下するといった問題があり、この問題に対して発明者らが鋭意検討した結果、電解液中にタングステン等の元素を添加することでメモリー効果を低減できることが分かったが、これだけではメモリー効果の低減効果は不十分であった。 Moreover, in the alkaline storage battery used for vehicle use like a hybrid vehicle (HEV), the partial charge / discharge control system which sets an upper limit voltage and a minimum voltage and performs partial charge / discharge within the upper and lower limit voltage is generally used. However, when partial charge / discharge control is used for an alkaline storage battery, there is a problem that a memory effect appears as the cycle progresses, and the amount of available energy (partial charge / discharge capacity) decreases significantly. As a result of intensive studies by the inventors, it has been found that the memory effect can be reduced by adding an element such as tungsten to the electrolytic solution, but this alone is not sufficient for reducing the memory effect.

特開2004−71304号JP 2004-71304 A

本発明は上記のような問題を解決し、高温充電効率を従来と同等以上に維持しつつ、出力と耐久性に優れ、部分充放電時のメモリー効果の影響が少ないアルカリ蓄電池を提供することを目的とする。   The present invention solves the above problems, and provides an alkaline storage battery that is excellent in output and durability while maintaining high temperature charging efficiency equal to or higher than that of the prior art, and less affected by the memory effect during partial charge / discharge. Objective.

上記課題を解決するために本発明では、水酸化ニッケルを主正極活物質とする焼結式ニッケル正極と、負極、セパレータとからなる電極群をアルカリ電解液と共に外装缶内に備えたアルカリ蓄電池であって、前記焼結式正極内にイットリウムを含む希土類元素から選
択された少なくとも1種の元素を前記正極活物質中のニッケル比で0.1mass%以下含有するとともに、前記焼結式正極内にタングステン、モリブデン、ニオブから選択された少なくとも1種の元素を前記正極活物質中のニッケル比で0.15mass%〜0.65mass%含有していることを特徴とする。
In order to solve the above problems, the present invention provides an alkaline storage battery comprising an electrode group consisting of a sintered nickel positive electrode having nickel hydroxide as a main positive electrode active material, a negative electrode, and a separator together with an alkaline electrolyte in an outer can. The sintered positive electrode contains at least one element selected from rare earth elements containing yttrium in a mass ratio of 0.1 mass% or less in the positive electrode active material, and the sintered positive electrode It is characterized by containing at least one element selected from tungsten, molybdenum and niobium in a nickel ratio of 0.15 mass% to 0.65 mass% in the positive electrode active material.

上記のように前記焼結式正極内に、イットリウムを含む希土類元素から選択された少なくとも1種の元素を前記正極活物質中のニッケルに対し0.1mass%以下にまで低減させることで、抵抗が大幅に低減し、出力の向上が可能となる。さらに、ハイレートでの部分充放電を繰り返した後でも活物質表面へのイットリウム化合物や希土類元素化合物の溶出・偏在がないため耐久性の向上も可能となる。   By reducing at least one element selected from rare earth elements including yttrium to 0.1 mass% or less with respect to nickel in the positive electrode active material, the resistance is reduced in the sintered positive electrode as described above. The output is greatly reduced and the output can be improved. Furthermore, even after repeated partial charge and discharge at a high rate, the elution and uneven distribution of yttrium compounds and rare earth element compounds on the active material surface can be improved.

また、前記焼結式正極内に、タングステン、モリブデン、ニオブから選択されたいずれか1種以上の元素を前記正極活物質中のニッケルに対し0.15mass%以上含有させることで、イットリウムや希土類元素の低減により懸念される高温充電効率の低下を抑制することが可能となる。   In addition, the sintered positive electrode contains at least one element selected from tungsten, molybdenum, and niobium in an amount of 0.15 mass% or more based on nickel in the positive electrode active material, so that yttrium and rare earth elements are contained. It is possible to suppress a decrease in high-temperature charging efficiency, which is a concern due to the reduction of the battery.

この際、タングステン、モリブデン、ニオブを正極内に過剰に含有させると抵抗増加により出力が低下してしまうので、これらの元素の正極内の含有量はニッケル比0.65mass%以下にすることが好ましい。   At this time, if tungsten, molybdenum, or niobium is contained excessively in the positive electrode, the output decreases due to an increase in resistance. Therefore, the content of these elements in the positive electrode is preferably set to a nickel ratio of 0.65 mass% or less. .

また、イットリウムを含む希土類元素から選択された少なくとも1種の元素を前記正極活物質中のニッケルに対し0.1mass%以下にまで低減させることで、充放電時の正極活物質の結晶相関伸縮が顕著となり、メモリー効果低減に効果のある元素であるタングステン、モリブデン、ニオブが正極内へより取り込まれやすくなり、部分充放電後のメモリー効果による部分充放電容量低下や出力低下の影響を低減することが可能となる。   In addition, by reducing at least one element selected from rare earth elements including yttrium to 0.1 mass% or less with respect to nickel in the positive electrode active material, the crystal correlation expansion and contraction of the positive electrode active material during charge and discharge can be reduced. Tungsten, molybdenum, and niobium, which are prominent and effective in reducing the memory effect, are more easily incorporated into the positive electrode, and the effects of reduced partial charge / discharge capacity and output due to the memory effect after partial charge / discharge are reduced. Is possible.

また、タングステン、モリブデン、ニオブを正極活物質の細孔内に含有させることで、高温充電効率の向上効果が高まるため、これらの元素は、正極活物質の細孔内に含有させることが好ましい。   In addition, inclusion of tungsten, molybdenum, or niobium in the pores of the positive electrode active material increases the effect of improving the high-temperature charging efficiency. Therefore, these elements are preferably contained in the pores of the positive electrode active material.

また、アルカリ電解液中のナトリウム量を増加させることで充電効率が向上する一方、出力特性が低下することが知られているが、上記の焼結式正極内のイットリウムを含む希土類元素の含有量を低減し、タングステン、モリブデン、ニオブを一種以上含有させた焼結式ニッケル正極を用いたアルカリ蓄電池では、ナトリウム濃度を0.6mol/L〜4mol/Lにすることで、良好な充電効率と出力特性を実現することが可能となる。   Moreover, it is known that the charging efficiency is improved by increasing the amount of sodium in the alkaline electrolyte, while the output characteristics are deteriorated. However, the content of rare earth elements including yttrium in the above sintered positive electrode In an alkaline storage battery using a sintered nickel positive electrode containing one or more of tungsten, molybdenum and niobium, good charging efficiency and output can be achieved by setting the sodium concentration to 0.6 mol / L to 4 mol / L. It becomes possible to realize the characteristics.

また、前記焼結式ニッケル正極活物質の亜鉛含有量を1mass%以下に低減することで、充放電時の正極活物質の結晶伸縮がさらに拡大し、タングステン、モリブデン、ニオブいずれか元素が、正極活物質内へさらに取り込まれやすくなり、メモリー効果による部分充放電容量の低下や出力低下の影響をさらに低減することが可能となる。   Moreover, by reducing the zinc content of the sintered nickel positive electrode active material to 1 mass% or less, the crystal expansion and contraction of the positive electrode active material during charge and discharge is further expanded, and any element of tungsten, molybdenum, or niobium is positive electrode. It becomes easier to be taken into the active material, and it becomes possible to further reduce the influence of a decrease in partial charge / discharge capacity and a decrease in output due to the memory effect.

また、本発明のアルカリ蓄電池で使用する負極は、カドミウム負極や水素吸蔵合金負極などに限定するものではないが、特に水素吸蔵合金で一般式がLn1−xMgNiy−a−bAl(ただし、式中、LnはYを含む希土類元素とZrとTiとから選択された少なくとも1種の元素であり、MはV,Nb,Ta,Cr,Mo,Fe,Ga,Zn,Sn,In,Cu,Si,P,Bから選択された少なくとも1種の元素であり、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9)と表される超格子合金負極が好ましい。 Further, the negative electrode used in the alkaline storage battery of the present invention is not limited to a cadmium negative electrode or a hydrogen storage alloy negative electrode, but is a hydrogen storage alloy, particularly a general formula of Ln 1-x Mg x Ni y-a-b Al. a M b (where, Ln is at least one element selected from rare earth elements including Y, Zr and Ti, and M is V, Nb, Ta, Cr, Mo, Fe, Ga, Zn) , Sn, In, Cu, Si, P, B, at least one element selected from 0.05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0. 50, 2.8 ≦ y ≦ 3.9) is preferred.

上記の通り、本発明は、高温充電効率を従来と同等以上に維持しつつ、出力と耐久性に優れるアルカリ蓄電池を提供することが可能となる。   As described above, the present invention can provide an alkaline storage battery that is excellent in output and durability while maintaining high temperature charging efficiency equal to or higher than that of the prior art.

本発明のニッケル−水素蓄電池を模式的に示す断面図である。It is sectional drawing which shows typically the nickel-hydrogen storage battery of this invention. 本発明のアルカリ蓄電池システムの構成を示す概略図である。It is the schematic which shows the structure of the alkaline storage battery system of this invention.

ついで、本発明の実施の形態を以下に詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Next, embodiments of the present invention will be described in detail below. However, the present invention is not limited to these embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention.

1.焼結式ニッケル正極
ニッケル粉末に増粘剤(例えばメチルセルロース)と高分子中空微小球体(孔径60μm)と水を混練してなるスラリーを、パンチドメタルに塗着した後、還元雰囲気中で1000℃に加熱することで前記樹脂を溶解・消失させてニッケル焼結基板を得た。得られた多孔性ニッケル基板を水銀圧入式ポロシメータ(ファイソンズ インスツルメンツ製 Pascal 140)で測定したところ、多孔度が85%であった。
1. Sintered nickel positive electrode A slurry obtained by kneading nickel powder with a thickener (for example, methylcellulose), polymer hollow microspheres (pore diameter 60 μm) and water is applied to the punched metal, and then 1000 ° C. in a reducing atmosphere. The resin was dissolved and disappeared by heating to a nickel sintered substrate. When the obtained porous nickel substrate was measured with a mercury intrusion porosimeter (Pascal 140 manufactured by Faisons Instruments), the porosity was 85%.

そして、得られたニッケル焼結基板を以下のような含浸液に含浸する含浸処理と、アルカリ処理液によるアルカリ処理とを所定回数繰り返すことにより正極活物質が充填された焼結式ニッケル正極12を作製した。   Then, the sintered nickel positive electrode 12 filled with the positive electrode active material is obtained by repeating the impregnation treatment for impregnating the obtained nickel sintered substrate in the following impregnation liquid and the alkali treatment with the alkali treatment liquid a predetermined number of times. Produced.

前記ニッケル焼結基板に、硝酸ニッケル、硝酸コバルト、硝酸亜鉛からなる含浸液αに浸漬した後、アルカリ処理液(例えば水酸化ナトリウム水溶液)中に浸漬・反応させ、細孔内で水酸化ニッケル・水酸化コバルト・水酸化亜鉛に転換させ、その後水洗・乾燥した。本サイクルを6回繰り返した。その後、硝酸ニッケル、硝酸イットリウムからなる含浸液βに浸漬し、アルカリ処理液中に浸漬・反応させることで、細孔内で水酸化ニッケル・水酸化イットリウムに転換させ、その後水洗・乾燥した。以上の工程を行うことで、規定量の水酸化ニッケルを主体とする活物質を基板内に充填した焼結式ニッケル正極12を得た。   The nickel sintered substrate is immersed in an impregnation liquid α composed of nickel nitrate, cobalt nitrate, and zinc nitrate, and then immersed and reacted in an alkali treatment liquid (for example, an aqueous sodium hydroxide solution). It was converted to cobalt hydroxide and zinc hydroxide, then washed with water and dried. This cycle was repeated 6 times. Then, it was immersed in an impregnation liquid β composed of nickel nitrate and yttrium nitrate, and immersed and reacted in an alkali treatment liquid to convert into nickel hydroxide / yttrium hydroxide in the pores, and then washed and dried. By performing the above steps, a sintered nickel positive electrode 12 filled with an active material mainly composed of a prescribed amount of nickel hydroxide was obtained.

このとき、前記含浸液α中の硝酸亜鉛量および含浸液β中の硝酸イットリウム量を調整することで、亜鉛(Zn)量とイットリウム(Y)量(対活物質中のニッケル質量比)の異なる焼結式ニッケル正極A(Y6%、Zn14%)、焼結式ニッケル正極B(Y0.1%、Zn14%)、および焼結式ニッケル正極C(Y0.1%、Zn1%)を得た。   At this time, by adjusting the amount of zinc nitrate in the impregnating liquid α and the amount of yttrium nitrate in the impregnating liquid β, the amounts of zinc (Zn) and yttrium (Y) (the mass ratio of nickel in the active material) are different. Sintered nickel positive electrode A (Y6%, Zn14%), sintered nickel positive electrode B (Y0.1%, Zn14%), and sintered nickel positive electrode C (Y0.1%, Zn1%) were obtained.

2.水素吸蔵合金負極
Lnで表される元素(Yを含む希土類元素とZrとTiとから選択された少なくとも1種の元素であり、今回はネオジム〔Nd〕)と、マグネシウム(Mg)と、ニッケル(Ni)と、アルミニウム(Al)とを所定のモル比の割合で混合し、この混合物をアルゴンガス雰囲気中で溶解させ、これを急冷してNd0.9Mg0.1Ni3.3Al0.2と表される水素吸蔵合金のインゴットを作製した。
2. Hydrogen storage alloy negative electrode Ln (elements selected from rare earth elements including Y and Zr and Ti, this time being neodymium [Nd]), magnesium (Mg), nickel ( Ni) and aluminum (Al) are mixed at a predetermined molar ratio, the mixture is dissolved in an argon gas atmosphere, and the mixture is rapidly cooled to obtain Nd 0.9 Mg 0.1 Ni 3.3 Al 0. An ingot of a hydrogen storage alloy expressed as .2 was produced.

ついで、得られた水素吸蔵合金のインゴットについて、アルゴン雰囲気中において、熱処理(均質化)を行い、A型構造と同定される水素吸蔵合金を得た。 Subsequently, the obtained hydrogen storage alloy ingot was subjected to heat treatment (homogenization) in an argon atmosphere to obtain a hydrogen storage alloy identified as an A 2 B 7 type structure.

その後、この水素吸蔵合金を不活性雰囲気中で機械的に粉砕することにより、Nd0.9Mg0.1Ni3.3Al0.2となる水素吸蔵合金粉末を得た。なお、レーザ回折・散乱式粒度分布測定装置により粒度分布を測定すると、質量積分50%にあたる平均粒径は25μmであった。この後、得られた水素吸蔵合金粒子100質量部に対し、非水溶性
高分子結着剤としてのSBR(スチレンブタジエンラテックス)を0.5質量部と、増粘剤としてのCMC(カルボキシメチルセルロース)0.03質量部と、添加剤としてのカーボンブラック0.5質量部と、適量の水(あるいは純水)を加えて混練し、水素吸蔵合金スラリーを調製した。
Thereafter, this hydrogen storage alloy was mechanically pulverized in an inert atmosphere to obtain a hydrogen storage alloy powder of Nd 0.9 Mg 0.1 Ni 3.3 Al 0.2 . When the particle size distribution was measured with a laser diffraction / scattering type particle size distribution measuring device, the average particle size corresponding to 50% of the mass integral was 25 μm. Thereafter, 0.5 parts by mass of SBR (styrene butadiene latex) as a water-insoluble polymer binder and CMC (carboxymethyl cellulose) as a thickener are added to 100 parts by mass of the obtained hydrogen storage alloy particles. 0.03 part by mass, 0.5 part by mass of carbon black as an additive, and an appropriate amount of water (or pure water) were added and kneaded to prepare a hydrogen storage alloy slurry.

得られた水素吸蔵合金スラリーをパンチドメタル(ニッケルメッキ鋼板製)からなる負極芯体の両面に塗着した後、100℃で乾燥させ、所定の充填密度になるように圧延した。この後、所定の寸法に裁断することにより、水素吸蔵合金活物質が充填された水素吸蔵合金負極11を作製した。   The obtained hydrogen storage alloy slurry was applied to both sides of a negative electrode core made of punched metal (made of nickel-plated steel plate), dried at 100 ° C., and rolled to a predetermined packing density. Then, the hydrogen storage alloy negative electrode 11 filled with the hydrogen storage alloy active material was produced by cutting into a predetermined dimension.

3.ニッケル−水素蓄電池(アルカリ蓄電池)
ついで、上述のようにして作製した焼結式ニッケル正極12(A、B又はC)と水素吸蔵合金負極11とを用い、これらの間に、ポリオレフィン製不織布からなるセパレータ13を介在させて渦巻状に巻回して渦巻状電極群を作製した。なお、このようにして作製された渦巻状電極群の上部にはニッケル正極12の芯体露出部12cが露出しており、その下部には水素吸蔵合金電極11の芯体露出部11cが露出している。ついで、得られた渦巻状電極群の上端面に露出するニッケル電極12の芯体露出部12cの上に正極集電体15を溶接するとともに、渦巻状電極群の下端面に露出する芯体露出部11cに負極集電体14を溶接して、電極体とした。
3. Nickel-hydrogen storage battery (alkaline storage battery)
Subsequently, the sintered nickel positive electrode 12 (A, B, or C) and the hydrogen storage alloy negative electrode 11 produced as described above were used, and a separator 13 made of a polyolefin nonwoven fabric was interposed between them to form a spiral shape. A spiral electrode group was produced by winding the electrode assembly in a spiral shape. In addition, the core exposed part 12c of the nickel positive electrode 12 is exposed at the upper part of the spiral electrode group thus manufactured, and the core exposed part 11c of the hydrogen storage alloy electrode 11 is exposed at the lower part. ing. Next, the positive electrode current collector 15 is welded onto the core exposed portion 12c of the nickel electrode 12 exposed at the upper end surface of the obtained spiral electrode group, and the core body exposed at the lower end surface of the spiral electrode group. The negative electrode current collector 14 was welded to the part 11c to obtain an electrode body.

ついで、得られた電極体を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)16内に収納した後、負極集電体14を外装缶16の内底面に溶接した。一方、正極集電体15より延出する集電リード部15aを正極端子として兼ねるとともに外周部に絶縁ガスケット18が装着された封口体17の底部に溶接した。なお、封口体17には正極キャップ17aが設けられていて、この正極キャップ17a内に所定の圧力になると変形する弁体17bとスプリング17cよりなる圧力弁が配置されている。   Next, after the obtained electrode body is housed in a bottomed cylindrical outer can 16 in which iron is nickel-plated (the outer surface of the bottom surface becomes a negative electrode external terminal) 16, the negative electrode current collector 14 is attached to the outer can 16. Welded to the inner bottom. On the other hand, the current collector lead portion 15a extending from the positive electrode current collector 15 is also used as a positive electrode terminal, and welded to the bottom of the sealing body 17 having the outer periphery provided with the insulating gasket 18. The sealing body 17 is provided with a positive electrode cap 17a, and a pressure valve composed of a valve body 17b and a spring 17c which are deformed when a predetermined pressure is reached is disposed in the positive electrode cap 17a.

ついで、外装缶16の上部外周部に環状溝部16aを形成した後、アルカリ電解液を注液し、外装缶16の上部に形成された環状溝部16aの上に封口体17の外周部に装着された絶縁ガスケット18を載置した。この後、外装缶16の開口端縁16bをかしめ、9.6Ah充電→熟成→放電(終止電圧0.9V)のサイクルを2回繰り返すことにより、公称容量が6Ahのニッケル−水素蓄電池10を作製した。   Next, after forming the annular groove portion 16 a on the upper outer peripheral portion of the outer can 16, an alkaline electrolyte is injected, and the outer peripheral portion of the sealing body 17 is mounted on the annular groove portion 16 a formed on the upper portion of the outer can 16. An insulating gasket 18 was placed. Thereafter, the opening edge 16b of the outer can 16 is caulked, and the cycle of 9.6 Ah charging → aging → discharging (end voltage 0.9 V) is repeated twice, thereby producing the nickel-hydrogen storage battery 10 having a nominal capacity of 6 Ah. did.

この場合、アルカリ電解液としては表1に示すように、水酸化ナトリウムと水酸化カリウムと水酸化リチウム、タングステン酸ナトリウムからなる濃度7.0moL/Lの混合水溶液であって、カリウム(K)、ナトリウム(Na)、リチウム(Li)、の各濃度(mol/L)がK6.2、Na0.6、Li0.2でありタングステンが含まれていない電解液aと、電解液aにタングステン量が正極活物質のニッケルに対し0.4mass%となるようにタングステン酸ナトリウムを添加した電解液bと、電解液aにタングステン量が正極活物質中のニッケルに対し1.7mass%となるようにタングステン酸ナトリウムを添加した電解液cと、K、Na、Liの各濃度(mol/L)がK2.8、Na4、Li0.2であって、タングステン量が正極活物質中のニッケルに対して0.4mass%となるようにタングステン酸ナトリウムを添加した電解液dを使用した。   In this case, as shown in Table 1, the alkaline electrolyte is a mixed aqueous solution of sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium tungstate and having a concentration of 7.0 mol / L, and includes potassium (K), Sodium (Na) and lithium (Li) concentrations (mol / L) are K6.2, Na0.6, and Li0.2, and an electrolyte solution a that does not contain tungsten, and the electrolyte solution a has a tungsten content. Electrolytic solution b in which sodium tungstate is added to 0.4 mass% with respect to nickel of the positive electrode active material, and tungsten so that the amount of tungsten in electrolytic solution a is 1.7 mass% with respect to nickel in the positive electrode active material. The electrolyte solution c to which sodium acid was added and the concentrations (mol / L) of K, Na, and Li were K2.8, Na4, and Li0.2, Ten amount using an electrolytic solution d was added sodium tungstate so that 0.4 mass% of nickel contained in the positive electrode active material.

この時、電解液bもしくは電解液dを使用して電池を作製した場合には正極活物質の細孔内にタングステンが0.15mass%(対活物質中ニッケル比)含有され、電解液cを使用して電池を作製した場合には正極活物質細孔内にタングステンが0.65mass%(対活物質中ニッケル比)含有されること(電解液中のタングステンの内、約40%が正極活物質細孔内に付与)を確認した。   At this time, when a battery is fabricated using the electrolytic solution b or the electrolytic solution d, 0.15 mass% (nickel ratio in the active material) of tungsten is contained in the pores of the positive electrode active material. When a battery is produced by using the positive electrode active material pores, tungsten is contained in 0.65 mass% (the nickel ratio in the active material) (about 40% of the tungsten in the electrolytic solution is active in the positive electrode). (Provided in the substance pores).

ここで、焼結式ニッケル正極Aかつ電解液aを使用した電池を比較例1、焼結式ニッケル正極Bかつ電解液aを使用した電池を比較例2、焼結式ニッケル正極Aかつ電解液bを使用した電池を比較例3、焼結式ニッケル正極Bかつ電解液bを使用した電池を実施例1、焼結式ニッケル正極Bかつ電解液cを使用した電池を実施例2、焼結式ニッケル正極Bかつ電解液dを使用した電池を実施例3、焼結式ニッケル正極Cかつ電解液bを使用した電池を実施例4とした。   Here, the battery using the sintered nickel positive electrode A and the electrolytic solution a is Comparative Example 1, the battery using the sintered nickel positive electrode B and the electrolytic solution a is Comparative Example 2, the sintered nickel positive electrode A and the electrolytic solution The battery using b is comparative example 3, the battery using the sintered nickel positive electrode B and the electrolytic solution b is example 1, the battery using the sintered nickel positive electrode B and the electrolytic solution c is example 2, and the battery is sintered. A battery using the nickel positive electrode B and the electrolytic solution d was designated as Example 3, and a battery using the sintered nickel positive electrode C and the electrolytic solution b was designated as Example 4.

Figure 2014007149
Figure 2014007149

4.電池試験
ついで、上述のように作製した実施例及び比較例の各電池を使用して以下に示す性能評価試験を実施した。
(1)出力特性評価
25℃の温度雰囲気で、1Cの充電電流でSOC(充電深度)50%まで充電した。この後、20A充電→40A放電→40A充電→80A放電→60A充電→120A放電→80A充電→160A放電→100A充電→200A放電の順で充放電電流を増加させた。このとき、各ステップの間に30分間の休止期間を設け、20秒間の充電→30分間休止→10秒間放電→30分間休止の順で充放電を行った。そして、この放電が10秒経過した時点における電池電圧を充電電流に対してプロットし、最小二乗法にて求めた直線が0.9Vに達したときの電流値を出力(A)として算出した。
4). Battery Test Next, the following performance evaluation tests were performed using the batteries of Examples and Comparative Examples produced as described above.
(1) Output characteristic evaluation It charged to SOC (charge depth) 50% with the charging current of 1C in the temperature atmosphere of 25 degreeC. Thereafter, the charge / discharge current was increased in the order of 20A charge → 40A discharge → 40A charge → 80A discharge → 60A charge → 120A discharge → 80A charge → 160A discharge → 100A charge → 200A discharge. At this time, a pause period of 30 minutes was provided between each step, and charging / discharging was performed in the order of charging for 20 seconds → pause for 30 minutes → discharge for 10 seconds → pause for 30 minutes. The battery voltage at the time when 10 seconds had elapsed from this discharge was plotted against the charging current, and the current value when the straight line obtained by the least square method reached 0.9 V was calculated as the output (A).

(2)高温充電効率評価
55℃の温度雰囲気で0.5Cの充電電流でSOC80%まで充電し、直後に1Cの放電電流で終止電圧が0.9Vになるまで放電させて1.0V時点での放電容量を求めた。この時の充電容量に対する放電容量の割合を充電効率(%)として算出した。
(2) Evaluation of high-temperature charging efficiency Charging to SOC 80% with a charging current of 0.5C in a temperature atmosphere of 55 ° C, and immediately after discharging to a final voltage of 0.9V with a discharging current of 1C at 1.0V The discharge capacity of was determined. The ratio of the discharge capacity to the charge capacity at this time was calculated as the charge efficiency (%).

(3)耐久性能評価
10Cの充電電流にて、50℃の温度雰囲気で、前記で測定した初期電池容量に対するSOCが80%となる電圧まで充電した後、10Cの放電電流にてSOCが20%となる電圧まで放電させるというサイクルを繰り返す部分充放電サイクル試験を行った。そして、このような部分充放電サイクルを、出力の初期比が60%になるまで繰返し、この出力初期比が60%になるまでの総放電電気量を耐久性として評価した。
(3) Durability Performance Evaluation After charging at a charging current of 10 C to a voltage at which the SOC with respect to the initial battery capacity measured above is 80% in a temperature atmosphere of 50 ° C., the SOC is 20% at a discharging current of 10 C. A partial charge / discharge cycle test was repeated, in which a cycle of discharging to a voltage as follows was repeated. Such a partial charge / discharge cycle was repeated until the initial output ratio reached 60%, and the total amount of discharge electricity until the initial output ratio reached 60% was evaluated as durability.

(4)メモリー効果影響評価
10Cの充電電流にて、50℃の温度雰囲気で、前記で測定した初期電池容量に対するSOCが80%となる電圧まで充電した後、10Cの放電電流にてSOCが20%となる電圧まで放電させるというサイクルを繰り返す部分充放電サイクル試験を行い、総放電電気量が25kAhになるまで繰り返した後の部分充放電容量の初期比を部分充放電容量維
持率として評価した。
(4) Memory effect influence evaluation After charging to a voltage at which the SOC with respect to the initial battery capacity measured above is 80% in a temperature atmosphere of 50 ° C. at a charging current of 10 C, the SOC is 20 at a discharging current of 10 C. A partial charge / discharge cycle test was repeated in which the cycle of discharging to a voltage of% was repeated, and the initial ratio of the partial charge / discharge capacity after the repetition until the total discharge electricity amount was 25 kAh was evaluated as the partial charge / discharge capacity maintenance rate.

5.試験結果(比較例1)
正極内におけるイットリウム(Y)含有量が活物質中のニッケル(Ni)に対し6mass%であって、正極活物質にタングステン(W)を含有していない焼結式ニッケル正極と、水酸化カリウムと水酸化ナトリウムと水酸化リチウムの混合水溶液であって、電解液中のナトリウム(Na)濃度が0.6mol/Lであるアルカリ電解液を使用し作製したアルカリ蓄電池である比較例1では、出力と高温充電効率は十分でなく、耐久性も改善する必要があった。
5. Test results (Comparative Example 1)
A sintered nickel positive electrode in which the yttrium (Y) content in the positive electrode is 6 mass% with respect to nickel (Ni) in the active material and the positive electrode active material does not contain tungsten (W), potassium hydroxide, In Comparative Example 1, which is an alkaline storage battery that is a mixed aqueous solution of sodium hydroxide and lithium hydroxide and produced using an alkaline electrolyte having a sodium (Na) concentration of 0.6 mol / L in the electrolyte, The high temperature charging efficiency was not sufficient, and the durability had to be improved.

(比較例2)
比較例1に対して正極内におけるイットリウム含有量を活物質中のニッケルに対し0.1mass%まで低減させた比較例2では、イットリウムを低減させることで比較例1に対して抵抗が低減し、初期の出力が向上する。
加えてハイレート部分充放電を繰り返した後でもイットリウム化合物の正極活物質表面への溶出・偏在が無いため耐久性が向上する。
しかしながら、イットリウム低減により高温充電効率が大幅に低下する問題がある。
(Comparative Example 2)
In Comparative Example 2 in which the yttrium content in the positive electrode is reduced to 0.1 mass% with respect to nickel in the active material as compared with Comparative Example 1, resistance is reduced with respect to Comparative Example 1 by reducing yttrium. Initial output is improved.
In addition, durability is improved because there is no elution or uneven distribution of the yttrium compound on the surface of the positive electrode active material even after repeated high-rate partial charge / discharge.
However, there is a problem that the high-temperature charging efficiency is greatly reduced due to the reduction of yttrium.

(比較例3)
比較例1に対して正極活物質細孔内にタングステンを活物質中のニッケルに対し0.15mass%含有させた比較例3では、正極活物質細孔内にタングステンを含有させることで正極充電時の副反応である酸素発生を抑制するため高温充電効率が向上する。
加えてこの正極で発生した酸素は負極で還元されるが、この還元反応により電池が急激に発熱することが知られている。そのため高温充電効率を向上させることで充電時の電池の発熱量が減少し、正極材料の劣化が抑制されて耐久性が向上する。
しかしながら、タングステンは僅かに抵抗成分であるために出力が若干低下する問題がある。
加えて、メモリー効果の影響により、サイクル後では部分充放電容量が著しく低下するという問題があった。
(Comparative Example 3)
In Comparative Example 3 in which tungsten was contained in the positive electrode active material pores in the positive electrode active material pores in an amount of 0.15 mass% with respect to nickel in the active material, the positive electrode active material pores were contained in the positive electrode active material pores during charging of the positive electrode. Therefore, high temperature charging efficiency is improved.
In addition, oxygen generated at the positive electrode is reduced at the negative electrode, and it is known that the battery rapidly generates heat by this reduction reaction. Therefore, by improving the high-temperature charging efficiency, the amount of heat generated by the battery during charging is reduced, deterioration of the positive electrode material is suppressed, and durability is improved.
However, since tungsten is a slight resistance component, there is a problem that the output is slightly reduced.
In addition, there is a problem that the partial charge / discharge capacity is significantly reduced after the cycle due to the influence of the memory effect.

(実施例1)
比較例1に対して正極内におけるイットリウム含有量を活物質中のニッケルに対し0.1mass%まで低減させ、正極活物質細孔内にタングステンを活物質中のニッケルに対し0.15mass%含有させた実施例1では、イットリウムを低減させることで比較例1に対して出力が向上し、加えてイットリウム低減とタングステンの効果で耐久性が大幅に向上する。
さらにイットリウム低減により懸念される充電効率の低下は、タングステンの効果で抑制される。
加えてイットリウム低減により充放電時の正極活物質の結晶伸縮が拡大し、サイクル後に比較例3に比べ正極細孔内まで取り込まれるタングステンの量が増し、比較例3に対してサイクル後の部分充放電容量維持率が向上する。
Example 1
Compared to Comparative Example 1, the yttrium content in the positive electrode is reduced to 0.1 mass% with respect to nickel in the active material, and tungsten is contained in the positive electrode active material pores at 0.15 mass% with respect to nickel in the active material. In Example 1, the output is improved compared to Comparative Example 1 by reducing yttrium, and in addition, the durability is greatly improved by the effect of yttrium reduction and tungsten.
Further, the decrease in charging efficiency, which is a concern due to yttrium reduction, is suppressed by the effect of tungsten.
In addition, the reduction of yttrium expands the crystal expansion and contraction of the positive electrode active material during charging and discharging, and the amount of tungsten taken into the positive electrode pores after the cycle is increased compared to Comparative Example 3; The discharge capacity maintenance rate is improved.

(実施例2)
実施例1に対して正極活物質細孔内のタングステン量を活物質中のニッケルに対し0.65mass%に増加させた実施例2では、タングステン量増加の効果で、実施例1に対して高温充電効率が増加し、耐久性が大幅に向上する。
タングステン量増加で出力は低下するが、正極活物質細孔内のタングステン量が活物質中のニッケルに対し0.65mass%まであれば、イットリウム低減の効果で比較例1同等以上の出力が得られる。
(Example 2)
In Example 2, in which the amount of tungsten in the positive electrode active material pores was increased to 0.65 mass% with respect to nickel in the active material as compared with Example 1, the effect of increasing the amount of tungsten was higher than that in Example 1. Charging efficiency increases and durability is greatly improved.
Although the output decreases with an increase in the amount of tungsten, if the amount of tungsten in the positive electrode active material pores is 0.65 mass% with respect to nickel in the active material, an output equal to or higher than that of Comparative Example 1 can be obtained due to the effect of reducing yttrium. .

(実施例3)
実施例1に対して電解液中のナトリウム濃度を4mol/Lまで増加させた実施例3では、ナトリウム量増加の効果で実施例1に対して高温充電効率が増加し、耐久性も向上する。
ナトリウム量増加で出力は低下するが、電解液中のナトリウム濃度が4mol/Lまであれば、イットリウム低減の効果で比較例1同等以上の出力が得られる。
(Example 3)
In Example 3, in which the sodium concentration in the electrolytic solution is increased to 4 mol / L compared to Example 1, the high-temperature charging efficiency is increased compared to Example 1 due to the effect of increasing the amount of sodium, and the durability is also improved.
The output decreases as the amount of sodium increases, but if the sodium concentration in the electrolyte is up to 4 mol / L, an output equivalent to or higher than that of Comparative Example 1 can be obtained due to the effect of reducing yttrium.

(実施例4)
実施例1に対して正極活物質内の亜鉛含有量を活物質中のニッケルに対し1mass%まで低減させた実施例4では、実施例1に比べ充放電時の正極活物質の結晶伸縮がさらに拡大し、サイクル後に正極細孔内に取り込まれるタングステンの量が実施例1よりもさらに増し、実施例1に対してサイクル後の部分充放電容量維持率が向上する。
Example 4
In Example 4 in which the zinc content in the positive electrode active material was reduced to 1 mass% with respect to nickel in the active material as compared to Example 1, the crystal expansion and contraction of the positive electrode active material during charge / discharge was further increased compared to Example 1. As a result, the amount of tungsten taken into the positive electrode pores after the cycle is further increased as compared with Example 1, and the partial charge / discharge capacity retention ratio after the cycle is improved as compared with Example 1.

Figure 2014007149
Figure 2014007149

Figure 2014007149
Figure 2014007149

なお、正極内のイットリウム含有量を低減し、かつ正極活物質細孔内にタングステンを含有させる例について説明したが、正極内の希土類元素含有量を低減した場合や、もしくは正極活物質細孔内にモリブデンもしくはニオブを含有させた場合でも同様の効果が発現することを確認している。   In addition, although the example in which the yttrium content in the positive electrode is reduced and tungsten is contained in the positive electrode active material pore has been described, the case where the rare earth element content in the positive electrode is reduced or in the positive electrode active material pore It has been confirmed that the same effect is exhibited even when molybdenum or niobium is contained in.

以上より、焼結式正極内におけるイットリウムを含む希土類元素の含有量をニッケル比0.1mass%以下まで低減させ、かつ正極活物質の細孔内にタングステン、モリブデン、ニオブから選択されたいずれか1種以上の元素をニッケル比0.15mass%〜0.65mass%含有されていることで、従来よりも出力・高温充電効率・耐久性を向上させ、部分充放電時のメモリー効果の影響を抑制できることがわかった。   As described above, the content of rare earth elements including yttrium in the sintered positive electrode is reduced to a nickel ratio of 0.1 mass% or less, and any one selected from tungsten, molybdenum, and niobium in the pores of the positive electrode active material. By containing more than seed elements in a nickel ratio of 0.15 mass% to 0.65 mass%, it is possible to improve the output, high-temperature charging efficiency and durability compared to the past, and to suppress the memory effect during partial charge / discharge. I understood.

またこの際、出力・高温充電効率・耐久性の各性能のバランスを保つためにはアルカリ電解液中のナトリウム濃度を0.6mol/L〜4mol/Lにすることが好ましく、部
分充放電時のメモリー効果の影響をさらに抑制するためには正極活物質中の亜鉛量をニッケル比1mass%以下まで低減させることが好ましいことがわかった。
At this time, in order to maintain a balance between the output, high-temperature charging efficiency, and durability, the sodium concentration in the alkaline electrolyte is preferably 0.6 mol / L to 4 mol / L. In order to further suppress the influence of the memory effect, it has been found preferable to reduce the amount of zinc in the positive electrode active material to a nickel ratio of 1 mass% or less.

6.アルカリ蓄電池システム
ついで、上述のようにして作製した実施例1の電池を複数個組み合わせて構成されるアルカリ蓄電池システムを作製した。
6). Alkaline storage battery system Next, an alkaline storage battery system constituted by combining a plurality of the batteries of Example 1 manufactured as described above was manufactured.

前記アルカリ蓄電池システムは、アルカリ蓄電池がSOC20〜80%の範囲でのみ充放電がされるように制御されており、低SOC又は高SOC状態となるのを効果的に防止でき、アルカリ蓄電池の耐久性が向上するというメリットがある。   The alkaline storage battery system is controlled so that the alkaline storage battery is charged / discharged only in the range of SOC 20 to 80%, and can effectively prevent the low SOC or high SOC state, and the durability of the alkaline storage battery. There is a merit that improves.

さらに上記構成のアルカリ蓄電池システムに本発明のアルカリ蓄電池を使用した場合では、反応抵抗が低いため充放電に伴う電池の発熱を抑え、加えて充放電サイクル後での活物質表面へのイットリウム化合物の溶出・偏在がないため、耐久性の更なる向上も可能となる。   Further, when the alkaline storage battery of the present invention is used in the alkaline storage battery system having the above configuration, the reaction resistance is low, so the heat generation of the battery accompanying charging / discharging is suppressed, and in addition, the yttrium compound on the active material surface after the charging / discharging cycle is suppressed. Since there is no elution or uneven distribution, the durability can be further improved.

このため本発明のアルカリ蓄電池は、上記構成のアルカリ蓄電池システムに好適であるといえる。   For this reason, it can be said that the alkaline storage battery of this invention is suitable for the alkaline storage battery system of the said structure.

上記構成のアルカリ蓄電池システムの具体的構成は以下の通りである。すなわち、上述のようにして作製したニッケル−水素蓄電池10を複数個組み合わせて構成されるアルカリ蓄電池システム100を、図2に基づいて以下に説明する。ここで、図2に示すように、本発明のアルカリ蓄電池システム100は、電源101と、上述したニッケル−水素蓄電池10からなる単電池が8個直列接続された電池モジュールを30個直列接続して形成された組電池102とを備えている。   The specific configuration of the alkaline storage battery system having the above configuration is as follows. That is, an alkaline storage battery system 100 configured by combining a plurality of nickel-hydrogen storage batteries 10 manufactured as described above will be described below with reference to FIG. Here, as shown in FIG. 2, the alkaline storage battery system 100 of the present invention has a power supply 101 and 30 battery modules in which 8 unit cells made of the nickel-hydrogen storage battery 10 are connected in series. The assembled battery 102 is formed.

電源101と組電池102との間には、この電源101からの電流および電圧を所定の定電流および定電圧に変換して組電池102に供給する充電制御部103と、組電池102に流れる電流を検出する電流検出回路104と、組電池102の電池電圧を検出する電圧検出回路105と、組電池102の強制放電を制御する放電制御部106と、電流検出回路104および電圧検出回路105からの検出値に基づいて、充電制御部103および放電制御部106の動作を制御するCPUなどからなるマイクロコンピュータ107とが接続されている。なお、放電制御部106には組電池102を放電するための放電抵抗が接続されており、マイクロコンピュータ107には所定の時間を計測するタイマー108が接続されている。マイクロコンピュータ107は、部分充放電制御回路を含んでおり、ニッケル−水素蓄電池10が部分充放電されるように制御される。   Between the power source 101 and the assembled battery 102, a current and voltage from the power source 101 are converted into a predetermined constant current and constant voltage and supplied to the assembled battery 102, and a current flowing through the assembled battery 102 From the current detection circuit 104 for detecting the battery voltage, the voltage detection circuit 105 for detecting the battery voltage of the assembled battery 102, the discharge control unit 106 for controlling the forced discharge of the assembled battery 102, the current detection circuit 104 and the voltage detection circuit 105. A microcomputer 107 composed of a CPU or the like that controls the operation of the charge control unit 103 and the discharge control unit 106 is connected based on the detected value. The discharge controller 106 is connected to a discharge resistor for discharging the assembled battery 102, and the microcomputer 107 is connected to a timer 108 for measuring a predetermined time. The microcomputer 107 includes a partial charge / discharge control circuit, and is controlled such that the nickel-hydrogen storage battery 10 is partially charged / discharged.

また、上記構成のアルカリ蓄電池システム100における部分充放電制御は、アルカリ蓄電池が、SOCが20〜80%の範囲でのみ、充放電がされるようになされているので、ニッケル−水素蓄電池10が低SOC又は高SOC状態となるのを効果的に防止できニッケル−水素蓄電池10の耐久性が向上するというメリットがある。さらに上記構成のアルカリ蓄電池システム100に本発明のアルカリ蓄電池を使用した場合では、充電効率が高いために充放電サイクル後での電圧変化が生じにくく部分充放電制御が容易となる。さらに反応抵抗が低いため充放電に伴う電池の発熱を抑え長寿命化を可能にする。このため本発明のアルカリ蓄電池は、上記構成のアルカリ蓄電池システムに好適であるといえる。   Further, the partial charge / discharge control in the alkaline storage battery system 100 having the above-described configuration is such that the alkaline storage battery is charged / discharged only when the SOC is in the range of 20 to 80%, so that the nickel-hydrogen storage battery 10 is low. There is a merit that the SOC or high SOC state can be effectively prevented and the durability of the nickel-hydrogen storage battery 10 is improved. Furthermore, when the alkaline storage battery of the present invention is used in the alkaline storage battery system 100 having the above configuration, the charge efficiency is high, so that the voltage change after the charge / discharge cycle hardly occurs and the partial charge / discharge control becomes easy. Furthermore, since the reaction resistance is low, heat generation of the battery due to charging / discharging is suppressed and a long life can be achieved. For this reason, it can be said that the alkaline storage battery of this invention is suitable for the alkaline storage battery system of the said structure.

10…ニッケル−水素蓄電池、11…水素吸蔵合金電極、11c…芯体露出部、12…ニッケル電極、12c…芯体露出部、13…セパレータ、14…負極集電体、15…正極集電体、15a…集電リード部、16…外装缶、16a…環状溝部、16b…開口端縁、1
7…封口体、17a…正極キャップ、17b…弁板、17c…スプリング、18…絶縁ガスケット、100…アルカリ蓄電池システム、101…電源、102…組電池、103…充電制御部、104…電流検出部、105…電圧検出部、106…放電制御部、107…マイクロコンピュータ、108…タイマー
DESCRIPTION OF SYMBOLS 10 ... Nickel-hydrogen storage battery, 11 ... Hydrogen storage alloy electrode, 11c ... Core body exposed part, 12 ... Nickel electrode, 12c ... Core body exposed part, 13 ... Separator, 14 ... Negative electrode collector, 15 ... Positive electrode collector , 15a ... current collecting lead part, 16 ... outer can, 16a ... annular groove part, 16b ... opening edge, 1
DESCRIPTION OF SYMBOLS 7 ... Sealing body, 17a ... Positive electrode cap, 17b ... Valve plate, 17c ... Spring, 18 ... Insulation gasket, 100 ... Alkaline storage battery system, 101 ... Power supply, 102 ... Assembly battery, 103 ... Charge control part, 104 ... Current detection part , 105 ... voltage detection unit, 106 ... discharge control unit, 107 ... microcomputer, 108 ... timer

Claims (4)

水酸化ニッケルを主正極活物質とする焼結式ニッケル正極と、負極、セパレータとからなる電極群をアルカリ電解液と共に外装缶内に備えたアルカリ蓄電池であって、
前記焼結式正極内にイットリウムを含む希土類元素から選択された少なくとも1種の元素を前記正極活物質中のニッケル比で0.1mass%以下含有するとともに、
前記焼結式正極内にタングステン、モリブデン、ニオブから選択された少なくとも1種の元素を前記正極活物質中のニッケル比で0.15mass%〜0.65mass%含有していることを特徴とするアルカリ蓄電池。
An alkaline storage battery comprising an electrode group composed of a sintered nickel positive electrode having nickel hydroxide as a main positive electrode active material, a negative electrode and a separator together with an alkaline electrolyte in an outer can,
The sintered positive electrode contains at least one element selected from rare earth elements including yttrium in a nickel ratio of 0.1 mass% or less in the positive electrode active material,
An alkali characterized in that the sintered positive electrode contains at least one element selected from tungsten, molybdenum, and niobium in a nickel ratio of 0.15 mass% to 0.65 mass% in the positive electrode active material. Storage battery.
前記アルカリ電解液は、ナトリウム濃度が0.6mol/L〜4mol/Lであることを特徴とする請求項1に記載のアルカリ蓄電池。   The alkaline storage battery according to claim 1, wherein the alkaline electrolyte has a sodium concentration of 0.6 mol / L to 4 mol / L. 前記焼結式ニッケル正極の活物質内の亜鉛の含有量は正極活物質中のニッケル比で1mass%以下である請求項1に記載のアルカリ蓄電池。   The alkaline storage battery according to claim 1, wherein the content of zinc in the active material of the sintered nickel positive electrode is 1 mass% or less in terms of nickel ratio in the positive electrode active material. 請求項1〜3のいずれかに記載のアルカリ蓄電池を備えているとともに、当該アルカリ蓄電池を部分充放電制御するようになされていることを特徴とするアルカリ蓄電池システム。   An alkaline storage battery system comprising the alkaline storage battery according to any one of claims 1 to 3, wherein the alkaline storage battery is subjected to partial charge / discharge control.
JP2013109648A 2012-05-31 2013-05-24 Alkali storage battery, and alkali storage battery system therewith Pending JP2014007149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013109648A JP2014007149A (en) 2012-05-31 2013-05-24 Alkali storage battery, and alkali storage battery system therewith

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012123825 2012-05-31
JP2012123825 2012-05-31
JP2013109648A JP2014007149A (en) 2012-05-31 2013-05-24 Alkali storage battery, and alkali storage battery system therewith

Publications (1)

Publication Number Publication Date
JP2014007149A true JP2014007149A (en) 2014-01-16

Family

ID=50104665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013109648A Pending JP2014007149A (en) 2012-05-31 2013-05-24 Alkali storage battery, and alkali storage battery system therewith

Country Status (1)

Country Link
JP (1) JP2014007149A (en)

Similar Documents

Publication Publication Date Title
JP5196938B2 (en) Alkaline storage battery system
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP2009087631A (en) Alkaline storage battery system
JP2008084649A (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method
CN106463786B (en) Nickel-hydrogen secondary battery
JP2013114888A (en) Alkali storage battery, and alkali storage battery system with the same
JP2012156101A (en) Hydrogen-storing alloy electrode for alkaline storage battery, and alkaline storage battery comprising the same
JP5512176B2 (en) Alkaline storage battery and alkaline storage battery system
JP5853799B2 (en) Alkaline storage battery
JP5717125B2 (en) Alkaline storage battery
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JP2001076730A (en) Nickel-hydrogen secondary battery
JP6024295B2 (en) Alkaline storage battery
WO2014068953A1 (en) Accumulator system
JP2013134904A (en) Alkaline storage battery and alkaline storage battery system including the same
JP2014007149A (en) Alkali storage battery, and alkali storage battery system therewith
JP5334498B2 (en) Alkaline storage battery
JPWO2014050075A1 (en) Storage battery system.
JP3895984B2 (en) Nickel / hydrogen storage battery
JP2014229593A (en) Alkali storage battery
JP6263983B2 (en) Alkaline storage battery and method for manufacturing the same
JP5752487B2 (en) Alkaline storage battery and alkaline storage battery system
JP2010010097A (en) Method of manufacturing nickel metal hydride storage battery
JP5060667B2 (en) Nickel metal hydride storage battery and manufacturing method thereof
WO2014068868A1 (en) Nickel metal hydride storage battery and storage battery system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20141113